]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/infiniband/hw/mlx5/odp.c
RDMA/mlx5: Initialize return variable in case pagefault was skipped
[mirror_ubuntu-eoan-kernel.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39
40 #define MAX_PREFETCH_LEN (4*1024*1024U)
41
42 /* Timeout in ms to wait for an active mmu notifier to complete when handling
43 * a pagefault. */
44 #define MMU_NOTIFIER_TIMEOUT 1000
45
46 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
47 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
48 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
49 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
50 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
51
52 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
53
54 static u64 mlx5_imr_ksm_entries;
55
56 static int check_parent(struct ib_umem_odp *odp,
57 struct mlx5_ib_mr *parent)
58 {
59 struct mlx5_ib_mr *mr = odp->private;
60
61 return mr && mr->parent == parent && !odp->dying;
62 }
63
64 struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr)
65 {
66 if (WARN_ON(!mr || !mr->umem || !mr->umem->is_odp))
67 return NULL;
68
69 return to_ib_umem_odp(mr->umem)->per_mm;
70 }
71
72 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
73 {
74 struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
75 struct ib_ucontext_per_mm *per_mm = odp->per_mm;
76 struct rb_node *rb;
77
78 down_read(&per_mm->umem_rwsem);
79 while (1) {
80 rb = rb_next(&odp->interval_tree.rb);
81 if (!rb)
82 goto not_found;
83 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
84 if (check_parent(odp, parent))
85 goto end;
86 }
87 not_found:
88 odp = NULL;
89 end:
90 up_read(&per_mm->umem_rwsem);
91 return odp;
92 }
93
94 static struct ib_umem_odp *odp_lookup(u64 start, u64 length,
95 struct mlx5_ib_mr *parent)
96 {
97 struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent);
98 struct ib_umem_odp *odp;
99 struct rb_node *rb;
100
101 down_read(&per_mm->umem_rwsem);
102 odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length);
103 if (!odp)
104 goto end;
105
106 while (1) {
107 if (check_parent(odp, parent))
108 goto end;
109 rb = rb_next(&odp->interval_tree.rb);
110 if (!rb)
111 goto not_found;
112 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
113 if (ib_umem_start(&odp->umem) > start + length)
114 goto not_found;
115 }
116 not_found:
117 odp = NULL;
118 end:
119 up_read(&per_mm->umem_rwsem);
120 return odp;
121 }
122
123 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
124 size_t nentries, struct mlx5_ib_mr *mr, int flags)
125 {
126 struct ib_pd *pd = mr->ibmr.pd;
127 struct mlx5_ib_dev *dev = to_mdev(pd->device);
128 struct ib_umem_odp *odp;
129 unsigned long va;
130 int i;
131
132 if (flags & MLX5_IB_UPD_XLT_ZAP) {
133 for (i = 0; i < nentries; i++, pklm++) {
134 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
135 pklm->key = cpu_to_be32(dev->null_mkey);
136 pklm->va = 0;
137 }
138 return;
139 }
140
141 odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE,
142 nentries * MLX5_IMR_MTT_SIZE, mr);
143
144 for (i = 0; i < nentries; i++, pklm++) {
145 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
146 va = (offset + i) * MLX5_IMR_MTT_SIZE;
147 if (odp && odp->umem.address == va) {
148 struct mlx5_ib_mr *mtt = odp->private;
149
150 pklm->key = cpu_to_be32(mtt->ibmr.lkey);
151 odp = odp_next(odp);
152 } else {
153 pklm->key = cpu_to_be32(dev->null_mkey);
154 }
155 mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
156 i, va, be32_to_cpu(pklm->key));
157 }
158 }
159
160 static void mr_leaf_free_action(struct work_struct *work)
161 {
162 struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
163 int idx = ib_umem_start(&odp->umem) >> MLX5_IMR_MTT_SHIFT;
164 struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
165
166 mr->parent = NULL;
167 synchronize_srcu(&mr->dev->mr_srcu);
168
169 ib_umem_release(&odp->umem);
170 if (imr->live)
171 mlx5_ib_update_xlt(imr, idx, 1, 0,
172 MLX5_IB_UPD_XLT_INDIRECT |
173 MLX5_IB_UPD_XLT_ATOMIC);
174 mlx5_mr_cache_free(mr->dev, mr);
175
176 if (atomic_dec_and_test(&imr->num_leaf_free))
177 wake_up(&imr->q_leaf_free);
178 }
179
180 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start,
181 unsigned long end)
182 {
183 struct mlx5_ib_mr *mr;
184 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
185 sizeof(struct mlx5_mtt)) - 1;
186 u64 idx = 0, blk_start_idx = 0;
187 struct ib_umem *umem;
188 int in_block = 0;
189 u64 addr;
190
191 if (!umem_odp) {
192 pr_err("invalidation called on NULL umem or non-ODP umem\n");
193 return;
194 }
195 umem = &umem_odp->umem;
196
197 mr = umem_odp->private;
198
199 if (!mr || !mr->ibmr.pd)
200 return;
201
202 start = max_t(u64, ib_umem_start(umem), start);
203 end = min_t(u64, ib_umem_end(umem), end);
204
205 /*
206 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
207 * while we are doing the invalidation, no page fault will attempt to
208 * overwrite the same MTTs. Concurent invalidations might race us,
209 * but they will write 0s as well, so no difference in the end result.
210 */
211
212 for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
213 idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
214 /*
215 * Strive to write the MTTs in chunks, but avoid overwriting
216 * non-existing MTTs. The huristic here can be improved to
217 * estimate the cost of another UMR vs. the cost of bigger
218 * UMR.
219 */
220 if (umem_odp->dma_list[idx] &
221 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
222 if (!in_block) {
223 blk_start_idx = idx;
224 in_block = 1;
225 }
226 } else {
227 u64 umr_offset = idx & umr_block_mask;
228
229 if (in_block && umr_offset == 0) {
230 mlx5_ib_update_xlt(mr, blk_start_idx,
231 idx - blk_start_idx, 0,
232 MLX5_IB_UPD_XLT_ZAP |
233 MLX5_IB_UPD_XLT_ATOMIC);
234 in_block = 0;
235 }
236 }
237 }
238 if (in_block)
239 mlx5_ib_update_xlt(mr, blk_start_idx,
240 idx - blk_start_idx + 1, 0,
241 MLX5_IB_UPD_XLT_ZAP |
242 MLX5_IB_UPD_XLT_ATOMIC);
243 /*
244 * We are now sure that the device will not access the
245 * memory. We can safely unmap it, and mark it as dirty if
246 * needed.
247 */
248
249 ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
250
251 if (unlikely(!umem->npages && mr->parent &&
252 !umem_odp->dying)) {
253 WRITE_ONCE(umem_odp->dying, 1);
254 atomic_inc(&mr->parent->num_leaf_free);
255 schedule_work(&umem_odp->work);
256 }
257 }
258
259 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
260 {
261 struct ib_odp_caps *caps = &dev->odp_caps;
262
263 memset(caps, 0, sizeof(*caps));
264
265 if (!MLX5_CAP_GEN(dev->mdev, pg))
266 return;
267
268 caps->general_caps = IB_ODP_SUPPORT;
269
270 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
271 dev->odp_max_size = U64_MAX;
272 else
273 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
274
275 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
276 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
277
278 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
279 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
280
281 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
282 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
283
284 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
285 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
286
287 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
288 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
289
290 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
291 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
292
293 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
294 MLX5_CAP_GEN(dev->mdev, null_mkey) &&
295 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
296 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
297
298 return;
299 }
300
301 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
302 struct mlx5_pagefault *pfault,
303 int error)
304 {
305 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
306 pfault->wqe.wq_num : pfault->token;
307 int ret = mlx5_core_page_fault_resume(dev->mdev,
308 pfault->token,
309 wq_num,
310 pfault->type,
311 error);
312 if (ret)
313 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n",
314 wq_num);
315 }
316
317 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
318 struct ib_umem *umem,
319 bool ksm, int access_flags)
320 {
321 struct mlx5_ib_dev *dev = to_mdev(pd->device);
322 struct mlx5_ib_mr *mr;
323 int err;
324
325 mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
326 MLX5_IMR_MTT_CACHE_ENTRY);
327
328 if (IS_ERR(mr))
329 return mr;
330
331 mr->ibmr.pd = pd;
332
333 mr->dev = dev;
334 mr->access_flags = access_flags;
335 mr->mmkey.iova = 0;
336 mr->umem = umem;
337
338 if (ksm) {
339 err = mlx5_ib_update_xlt(mr, 0,
340 mlx5_imr_ksm_entries,
341 MLX5_KSM_PAGE_SHIFT,
342 MLX5_IB_UPD_XLT_INDIRECT |
343 MLX5_IB_UPD_XLT_ZAP |
344 MLX5_IB_UPD_XLT_ENABLE);
345
346 } else {
347 err = mlx5_ib_update_xlt(mr, 0,
348 MLX5_IMR_MTT_ENTRIES,
349 PAGE_SHIFT,
350 MLX5_IB_UPD_XLT_ZAP |
351 MLX5_IB_UPD_XLT_ENABLE |
352 MLX5_IB_UPD_XLT_ATOMIC);
353 }
354
355 if (err)
356 goto fail;
357
358 mr->ibmr.lkey = mr->mmkey.key;
359 mr->ibmr.rkey = mr->mmkey.key;
360
361 mr->live = 1;
362
363 mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
364 mr->mmkey.key, dev->mdev, mr);
365
366 return mr;
367
368 fail:
369 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
370 mlx5_mr_cache_free(dev, mr);
371
372 return ERR_PTR(err);
373 }
374
375 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
376 u64 io_virt, size_t bcnt)
377 {
378 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
379 struct ib_umem_odp *odp, *result = NULL;
380 struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
381 u64 addr = io_virt & MLX5_IMR_MTT_MASK;
382 int nentries = 0, start_idx = 0, ret;
383 struct mlx5_ib_mr *mtt;
384
385 mutex_lock(&odp_mr->umem_mutex);
386 odp = odp_lookup(addr, 1, mr);
387
388 mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
389 io_virt, bcnt, addr, odp);
390
391 next_mr:
392 if (likely(odp)) {
393 if (nentries)
394 nentries++;
395 } else {
396 odp = ib_alloc_odp_umem(odp_mr->per_mm, addr,
397 MLX5_IMR_MTT_SIZE);
398 if (IS_ERR(odp)) {
399 mutex_unlock(&odp_mr->umem_mutex);
400 return ERR_CAST(odp);
401 }
402
403 mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0,
404 mr->access_flags);
405 if (IS_ERR(mtt)) {
406 mutex_unlock(&odp_mr->umem_mutex);
407 ib_umem_release(&odp->umem);
408 return ERR_CAST(mtt);
409 }
410
411 odp->private = mtt;
412 mtt->umem = &odp->umem;
413 mtt->mmkey.iova = addr;
414 mtt->parent = mr;
415 INIT_WORK(&odp->work, mr_leaf_free_action);
416
417 if (!nentries)
418 start_idx = addr >> MLX5_IMR_MTT_SHIFT;
419 nentries++;
420 }
421
422 /* Return first odp if region not covered by single one */
423 if (likely(!result))
424 result = odp;
425
426 addr += MLX5_IMR_MTT_SIZE;
427 if (unlikely(addr < io_virt + bcnt)) {
428 odp = odp_next(odp);
429 if (odp && odp->umem.address != addr)
430 odp = NULL;
431 goto next_mr;
432 }
433
434 if (unlikely(nentries)) {
435 ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
436 MLX5_IB_UPD_XLT_INDIRECT |
437 MLX5_IB_UPD_XLT_ATOMIC);
438 if (ret) {
439 mlx5_ib_err(dev, "Failed to update PAS\n");
440 result = ERR_PTR(ret);
441 }
442 }
443
444 mutex_unlock(&odp_mr->umem_mutex);
445 return result;
446 }
447
448 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
449 int access_flags)
450 {
451 struct ib_ucontext *ctx = pd->ibpd.uobject->context;
452 struct mlx5_ib_mr *imr;
453 struct ib_umem *umem;
454
455 umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
456 if (IS_ERR(umem))
457 return ERR_CAST(umem);
458
459 imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
460 if (IS_ERR(imr)) {
461 ib_umem_release(umem);
462 return ERR_CAST(imr);
463 }
464
465 imr->umem = umem;
466 init_waitqueue_head(&imr->q_leaf_free);
467 atomic_set(&imr->num_leaf_free, 0);
468
469 return imr;
470 }
471
472 static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end,
473 void *cookie)
474 {
475 struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie;
476 struct ib_umem *umem = &umem_odp->umem;
477
478 if (mr->parent != imr)
479 return 0;
480
481 ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem),
482 ib_umem_end(umem));
483
484 if (umem_odp->dying)
485 return 0;
486
487 WRITE_ONCE(umem_odp->dying, 1);
488 atomic_inc(&imr->num_leaf_free);
489 schedule_work(&umem_odp->work);
490
491 return 0;
492 }
493
494 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
495 {
496 struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr);
497
498 down_read(&per_mm->umem_rwsem);
499 rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX,
500 mr_leaf_free, true, imr);
501 up_read(&per_mm->umem_rwsem);
502
503 wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
504 }
505
506 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
507 u64 io_virt, size_t bcnt, u32 *bytes_mapped)
508 {
509 struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
510 u64 access_mask = ODP_READ_ALLOWED_BIT;
511 int npages = 0, page_shift, np;
512 u64 start_idx, page_mask;
513 struct ib_umem_odp *odp;
514 int current_seq;
515 size_t size;
516 int ret;
517
518 if (!odp_mr->page_list) {
519 odp = implicit_mr_get_data(mr, io_virt, bcnt);
520
521 if (IS_ERR(odp))
522 return PTR_ERR(odp);
523 mr = odp->private;
524
525 } else {
526 odp = odp_mr;
527 }
528
529 next_mr:
530 size = min_t(size_t, bcnt, ib_umem_end(&odp->umem) - io_virt);
531
532 page_shift = mr->umem->page_shift;
533 page_mask = ~(BIT(page_shift) - 1);
534 start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
535
536 if (mr->umem->writable)
537 access_mask |= ODP_WRITE_ALLOWED_BIT;
538
539 current_seq = READ_ONCE(odp->notifiers_seq);
540 /*
541 * Ensure the sequence number is valid for some time before we call
542 * gup.
543 */
544 smp_rmb();
545
546 ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size,
547 access_mask, current_seq);
548
549 if (ret < 0)
550 goto out;
551
552 np = ret;
553
554 mutex_lock(&odp->umem_mutex);
555 if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem),
556 current_seq)) {
557 /*
558 * No need to check whether the MTTs really belong to
559 * this MR, since ib_umem_odp_map_dma_pages already
560 * checks this.
561 */
562 ret = mlx5_ib_update_xlt(mr, start_idx, np,
563 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
564 } else {
565 ret = -EAGAIN;
566 }
567 mutex_unlock(&odp->umem_mutex);
568
569 if (ret < 0) {
570 if (ret != -EAGAIN)
571 mlx5_ib_err(dev, "Failed to update mkey page tables\n");
572 goto out;
573 }
574
575 if (bytes_mapped) {
576 u32 new_mappings = (np << page_shift) -
577 (io_virt - round_down(io_virt, 1 << page_shift));
578 *bytes_mapped += min_t(u32, new_mappings, size);
579 }
580
581 npages += np << (page_shift - PAGE_SHIFT);
582 bcnt -= size;
583
584 if (unlikely(bcnt)) {
585 struct ib_umem_odp *next;
586
587 io_virt += size;
588 next = odp_next(odp);
589 if (unlikely(!next || next->umem.address != io_virt)) {
590 mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
591 io_virt, next);
592 return -EAGAIN;
593 }
594 odp = next;
595 mr = odp->private;
596 goto next_mr;
597 }
598
599 return npages;
600
601 out:
602 if (ret == -EAGAIN) {
603 if (mr->parent || !odp->dying) {
604 unsigned long timeout =
605 msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
606
607 if (!wait_for_completion_timeout(
608 &odp->notifier_completion,
609 timeout)) {
610 mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n",
611 current_seq, odp->notifiers_seq);
612 }
613 } else {
614 /* The MR is being killed, kill the QP as well. */
615 ret = -EFAULT;
616 }
617 }
618
619 return ret;
620 }
621
622 struct pf_frame {
623 struct pf_frame *next;
624 u32 key;
625 u64 io_virt;
626 size_t bcnt;
627 int depth;
628 };
629
630 /*
631 * Handle a single data segment in a page-fault WQE or RDMA region.
632 *
633 * Returns number of OS pages retrieved on success. The caller may continue to
634 * the next data segment.
635 * Can return the following error codes:
636 * -EAGAIN to designate a temporary error. The caller will abort handling the
637 * page fault and resolve it.
638 * -EFAULT when there's an error mapping the requested pages. The caller will
639 * abort the page fault handling.
640 */
641 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
642 u32 key, u64 io_virt, size_t bcnt,
643 u32 *bytes_committed,
644 u32 *bytes_mapped)
645 {
646 int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
647 struct pf_frame *head = NULL, *frame;
648 struct mlx5_core_mkey *mmkey;
649 struct mlx5_ib_mw *mw;
650 struct mlx5_ib_mr *mr;
651 struct mlx5_klm *pklm;
652 u32 *out = NULL;
653 size_t offset;
654
655 srcu_key = srcu_read_lock(&dev->mr_srcu);
656
657 io_virt += *bytes_committed;
658 bcnt -= *bytes_committed;
659
660 next_mr:
661 mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key));
662 if (!mmkey || mmkey->key != key) {
663 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
664 ret = -EFAULT;
665 goto srcu_unlock;
666 }
667
668 switch (mmkey->type) {
669 case MLX5_MKEY_MR:
670 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
671 if (!mr->live || !mr->ibmr.pd) {
672 mlx5_ib_dbg(dev, "got dead MR\n");
673 ret = -EFAULT;
674 goto srcu_unlock;
675 }
676
677 if (!mr->umem->is_odp) {
678 mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
679 key);
680 if (bytes_mapped)
681 *bytes_mapped += bcnt;
682 ret = 0;
683 goto srcu_unlock;
684 }
685
686 ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped);
687 if (ret < 0)
688 goto srcu_unlock;
689
690 npages += ret;
691 ret = 0;
692 break;
693
694 case MLX5_MKEY_MW:
695 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
696
697 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
698 mlx5_ib_dbg(dev, "indirection level exceeded\n");
699 ret = -EFAULT;
700 goto srcu_unlock;
701 }
702
703 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
704 sizeof(*pklm) * (mw->ndescs - 2);
705
706 if (outlen > cur_outlen) {
707 kfree(out);
708 out = kzalloc(outlen, GFP_KERNEL);
709 if (!out) {
710 ret = -ENOMEM;
711 goto srcu_unlock;
712 }
713 cur_outlen = outlen;
714 }
715
716 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
717 bsf0_klm0_pas_mtt0_1);
718
719 ret = mlx5_core_query_mkey(dev->mdev, &mw->mmkey, out, outlen);
720 if (ret)
721 goto srcu_unlock;
722
723 offset = io_virt - MLX5_GET64(query_mkey_out, out,
724 memory_key_mkey_entry.start_addr);
725
726 for (i = 0; bcnt && i < mw->ndescs; i++, pklm++) {
727 if (offset >= be32_to_cpu(pklm->bcount)) {
728 offset -= be32_to_cpu(pklm->bcount);
729 continue;
730 }
731
732 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
733 if (!frame) {
734 ret = -ENOMEM;
735 goto srcu_unlock;
736 }
737
738 frame->key = be32_to_cpu(pklm->key);
739 frame->io_virt = be64_to_cpu(pklm->va) + offset;
740 frame->bcnt = min_t(size_t, bcnt,
741 be32_to_cpu(pklm->bcount) - offset);
742 frame->depth = depth + 1;
743 frame->next = head;
744 head = frame;
745
746 bcnt -= frame->bcnt;
747 offset = 0;
748 }
749 break;
750
751 default:
752 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
753 ret = -EFAULT;
754 goto srcu_unlock;
755 }
756
757 if (head) {
758 frame = head;
759 head = frame->next;
760
761 key = frame->key;
762 io_virt = frame->io_virt;
763 bcnt = frame->bcnt;
764 depth = frame->depth;
765 kfree(frame);
766
767 goto next_mr;
768 }
769
770 srcu_unlock:
771 while (head) {
772 frame = head;
773 head = frame->next;
774 kfree(frame);
775 }
776 kfree(out);
777
778 srcu_read_unlock(&dev->mr_srcu, srcu_key);
779 *bytes_committed = 0;
780 return ret ? ret : npages;
781 }
782
783 /**
784 * Parse a series of data segments for page fault handling.
785 *
786 * @qp the QP on which the fault occurred.
787 * @pfault contains page fault information.
788 * @wqe points at the first data segment in the WQE.
789 * @wqe_end points after the end of the WQE.
790 * @bytes_mapped receives the number of bytes that the function was able to
791 * map. This allows the caller to decide intelligently whether
792 * enough memory was mapped to resolve the page fault
793 * successfully (e.g. enough for the next MTU, or the entire
794 * WQE).
795 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
796 * the committed bytes).
797 *
798 * Returns the number of pages loaded if positive, zero for an empty WQE, or a
799 * negative error code.
800 */
801 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
802 struct mlx5_pagefault *pfault,
803 struct mlx5_ib_qp *qp, void *wqe,
804 void *wqe_end, u32 *bytes_mapped,
805 u32 *total_wqe_bytes, int receive_queue)
806 {
807 int ret = 0, npages = 0;
808 u64 io_virt;
809 u32 key;
810 u32 byte_count;
811 size_t bcnt;
812 int inline_segment;
813
814 /* Skip SRQ next-WQE segment. */
815 if (receive_queue && qp->ibqp.srq)
816 wqe += sizeof(struct mlx5_wqe_srq_next_seg);
817
818 if (bytes_mapped)
819 *bytes_mapped = 0;
820 if (total_wqe_bytes)
821 *total_wqe_bytes = 0;
822
823 while (wqe < wqe_end) {
824 struct mlx5_wqe_data_seg *dseg = wqe;
825
826 io_virt = be64_to_cpu(dseg->addr);
827 key = be32_to_cpu(dseg->lkey);
828 byte_count = be32_to_cpu(dseg->byte_count);
829 inline_segment = !!(byte_count & MLX5_INLINE_SEG);
830 bcnt = byte_count & ~MLX5_INLINE_SEG;
831
832 if (inline_segment) {
833 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
834 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
835 16);
836 } else {
837 wqe += sizeof(*dseg);
838 }
839
840 /* receive WQE end of sg list. */
841 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
842 io_virt == 0)
843 break;
844
845 if (!inline_segment && total_wqe_bytes) {
846 *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
847 pfault->bytes_committed);
848 }
849
850 /* A zero length data segment designates a length of 2GB. */
851 if (bcnt == 0)
852 bcnt = 1U << 31;
853
854 if (inline_segment || bcnt <= pfault->bytes_committed) {
855 pfault->bytes_committed -=
856 min_t(size_t, bcnt,
857 pfault->bytes_committed);
858 continue;
859 }
860
861 ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
862 &pfault->bytes_committed,
863 bytes_mapped);
864 if (ret < 0)
865 break;
866 npages += ret;
867 }
868
869 return ret < 0 ? ret : npages;
870 }
871
872 static const u32 mlx5_ib_odp_opcode_cap[] = {
873 [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND,
874 [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND,
875 [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND,
876 [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE,
877 [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE,
878 [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ,
879 [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC,
880 [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC,
881 };
882
883 /*
884 * Parse initiator WQE. Advances the wqe pointer to point at the
885 * scatter-gather list, and set wqe_end to the end of the WQE.
886 */
887 static int mlx5_ib_mr_initiator_pfault_handler(
888 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
889 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
890 {
891 struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
892 u16 wqe_index = pfault->wqe.wqe_index;
893 u32 transport_caps;
894 struct mlx5_base_av *av;
895 unsigned ds, opcode;
896 #if defined(DEBUG)
897 u32 ctrl_wqe_index, ctrl_qpn;
898 #endif
899 u32 qpn = qp->trans_qp.base.mqp.qpn;
900
901 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
902 if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
903 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
904 ds, wqe_length);
905 return -EFAULT;
906 }
907
908 if (ds == 0) {
909 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
910 wqe_index, qpn);
911 return -EFAULT;
912 }
913
914 #if defined(DEBUG)
915 ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
916 MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
917 MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
918 if (wqe_index != ctrl_wqe_index) {
919 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
920 wqe_index, qpn,
921 ctrl_wqe_index);
922 return -EFAULT;
923 }
924
925 ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
926 MLX5_WQE_CTRL_QPN_SHIFT;
927 if (qpn != ctrl_qpn) {
928 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
929 wqe_index, qpn,
930 ctrl_qpn);
931 return -EFAULT;
932 }
933 #endif /* DEBUG */
934
935 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
936 *wqe += sizeof(*ctrl);
937
938 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
939 MLX5_WQE_CTRL_OPCODE_MASK;
940
941 switch (qp->ibqp.qp_type) {
942 case IB_QPT_RC:
943 transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
944 break;
945 case IB_QPT_UD:
946 transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
947 break;
948 default:
949 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
950 qp->ibqp.qp_type);
951 return -EFAULT;
952 }
953
954 if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
955 !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
956 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
957 opcode);
958 return -EFAULT;
959 }
960
961 if (qp->ibqp.qp_type != IB_QPT_RC) {
962 av = *wqe;
963 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
964 *wqe += sizeof(struct mlx5_av);
965 else
966 *wqe += sizeof(struct mlx5_base_av);
967 }
968
969 switch (opcode) {
970 case MLX5_OPCODE_RDMA_WRITE:
971 case MLX5_OPCODE_RDMA_WRITE_IMM:
972 case MLX5_OPCODE_RDMA_READ:
973 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
974 break;
975 case MLX5_OPCODE_ATOMIC_CS:
976 case MLX5_OPCODE_ATOMIC_FA:
977 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
978 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
979 break;
980 }
981
982 return 0;
983 }
984
985 /*
986 * Parse responder WQE. Advances the wqe pointer to point at the
987 * scatter-gather list, and set wqe_end to the end of the WQE.
988 */
989 static int mlx5_ib_mr_responder_pfault_handler(
990 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
991 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
992 {
993 struct mlx5_ib_wq *wq = &qp->rq;
994 int wqe_size = 1 << wq->wqe_shift;
995
996 if (qp->ibqp.srq) {
997 mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
998 return -EFAULT;
999 }
1000
1001 if (qp->wq_sig) {
1002 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1003 return -EFAULT;
1004 }
1005
1006 if (wqe_size > wqe_length) {
1007 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1008 return -EFAULT;
1009 }
1010
1011 switch (qp->ibqp.qp_type) {
1012 case IB_QPT_RC:
1013 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
1014 IB_ODP_SUPPORT_RECV))
1015 goto invalid_transport_or_opcode;
1016 break;
1017 default:
1018 invalid_transport_or_opcode:
1019 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
1020 qp->ibqp.qp_type);
1021 return -EFAULT;
1022 }
1023
1024 *wqe_end = *wqe + wqe_size;
1025
1026 return 0;
1027 }
1028
1029 static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev,
1030 u32 wq_num)
1031 {
1032 struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num);
1033
1034 if (!mqp) {
1035 mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num);
1036 return NULL;
1037 }
1038
1039 return to_mibqp(mqp);
1040 }
1041
1042 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1043 struct mlx5_pagefault *pfault)
1044 {
1045 int ret;
1046 void *wqe, *wqe_end;
1047 u32 bytes_mapped, total_wqe_bytes;
1048 char *buffer = NULL;
1049 int resume_with_error = 1;
1050 u16 wqe_index = pfault->wqe.wqe_index;
1051 int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
1052 struct mlx5_ib_qp *qp;
1053
1054 buffer = (char *)__get_free_page(GFP_KERNEL);
1055 if (!buffer) {
1056 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1057 goto resolve_page_fault;
1058 }
1059
1060 qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num);
1061 if (!qp)
1062 goto resolve_page_fault;
1063
1064 ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
1065 PAGE_SIZE, &qp->trans_qp.base);
1066 if (ret < 0) {
1067 mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
1068 ret, wqe_index, pfault->token);
1069 goto resolve_page_fault;
1070 }
1071
1072 wqe = buffer;
1073 if (requestor)
1074 ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
1075 &wqe_end, ret);
1076 else
1077 ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
1078 &wqe_end, ret);
1079 if (ret < 0)
1080 goto resolve_page_fault;
1081
1082 if (wqe >= wqe_end) {
1083 mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
1084 goto resolve_page_fault;
1085 }
1086
1087 ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
1088 &bytes_mapped, &total_wqe_bytes,
1089 !requestor);
1090 if (ret == -EAGAIN) {
1091 resume_with_error = 0;
1092 goto resolve_page_fault;
1093 } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
1094 goto resolve_page_fault;
1095 }
1096
1097 resume_with_error = 0;
1098 resolve_page_fault:
1099 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1100 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1101 pfault->wqe.wq_num, resume_with_error,
1102 pfault->type);
1103 free_page((unsigned long)buffer);
1104 }
1105
1106 static int pages_in_range(u64 address, u32 length)
1107 {
1108 return (ALIGN(address + length, PAGE_SIZE) -
1109 (address & PAGE_MASK)) >> PAGE_SHIFT;
1110 }
1111
1112 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1113 struct mlx5_pagefault *pfault)
1114 {
1115 u64 address;
1116 u32 length;
1117 u32 prefetch_len = pfault->bytes_committed;
1118 int prefetch_activated = 0;
1119 u32 rkey = pfault->rdma.r_key;
1120 int ret;
1121
1122 /* The RDMA responder handler handles the page fault in two parts.
1123 * First it brings the necessary pages for the current packet
1124 * (and uses the pfault context), and then (after resuming the QP)
1125 * prefetches more pages. The second operation cannot use the pfault
1126 * context and therefore uses the dummy_pfault context allocated on
1127 * the stack */
1128 pfault->rdma.rdma_va += pfault->bytes_committed;
1129 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1130 pfault->rdma.rdma_op_len);
1131 pfault->bytes_committed = 0;
1132
1133 address = pfault->rdma.rdma_va;
1134 length = pfault->rdma.rdma_op_len;
1135
1136 /* For some operations, the hardware cannot tell the exact message
1137 * length, and in those cases it reports zero. Use prefetch
1138 * logic. */
1139 if (length == 0) {
1140 prefetch_activated = 1;
1141 length = pfault->rdma.packet_size;
1142 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1143 }
1144
1145 ret = pagefault_single_data_segment(dev, rkey, address, length,
1146 &pfault->bytes_committed, NULL);
1147 if (ret == -EAGAIN) {
1148 /* We're racing with an invalidation, don't prefetch */
1149 prefetch_activated = 0;
1150 } else if (ret < 0 || pages_in_range(address, length) > ret) {
1151 mlx5_ib_page_fault_resume(dev, pfault, 1);
1152 if (ret != -ENOENT)
1153 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1154 ret, pfault->token, pfault->type);
1155 return;
1156 }
1157
1158 mlx5_ib_page_fault_resume(dev, pfault, 0);
1159 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1160 pfault->token, pfault->type,
1161 prefetch_activated);
1162
1163 /* At this point, there might be a new pagefault already arriving in
1164 * the eq, switch to the dummy pagefault for the rest of the
1165 * processing. We're still OK with the objects being alive as the
1166 * work-queue is being fenced. */
1167
1168 if (prefetch_activated) {
1169 u32 bytes_committed = 0;
1170
1171 ret = pagefault_single_data_segment(dev, rkey, address,
1172 prefetch_len,
1173 &bytes_committed, NULL);
1174 if (ret < 0 && ret != -EAGAIN) {
1175 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1176 ret, pfault->token, address, prefetch_len);
1177 }
1178 }
1179 }
1180
1181 void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context,
1182 struct mlx5_pagefault *pfault)
1183 {
1184 struct mlx5_ib_dev *dev = context;
1185 u8 event_subtype = pfault->event_subtype;
1186
1187 switch (event_subtype) {
1188 case MLX5_PFAULT_SUBTYPE_WQE:
1189 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1190 break;
1191 case MLX5_PFAULT_SUBTYPE_RDMA:
1192 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1193 break;
1194 default:
1195 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1196 event_subtype);
1197 mlx5_ib_page_fault_resume(dev, pfault, 1);
1198 }
1199 }
1200
1201 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1202 {
1203 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1204 return;
1205
1206 switch (ent->order - 2) {
1207 case MLX5_IMR_MTT_CACHE_ENTRY:
1208 ent->page = PAGE_SHIFT;
1209 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1210 sizeof(struct mlx5_mtt) /
1211 MLX5_IB_UMR_OCTOWORD;
1212 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1213 ent->limit = 0;
1214 break;
1215
1216 case MLX5_IMR_KSM_CACHE_ENTRY:
1217 ent->page = MLX5_KSM_PAGE_SHIFT;
1218 ent->xlt = mlx5_imr_ksm_entries *
1219 sizeof(struct mlx5_klm) /
1220 MLX5_IB_UMR_OCTOWORD;
1221 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1222 ent->limit = 0;
1223 break;
1224 }
1225 }
1226
1227 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1228 {
1229 int ret;
1230
1231 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1232 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1233 if (ret) {
1234 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1235 return ret;
1236 }
1237 }
1238
1239 return 0;
1240 }
1241
1242 int mlx5_ib_odp_init(void)
1243 {
1244 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1245 MLX5_IMR_MTT_BITS);
1246
1247 return 0;
1248 }
1249