]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/infiniband/hw/mlx5/odp.c
Merge branch 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-focal-kernel.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39
40 #include <linux/mlx5/eq.h>
41
42 /* Contains the details of a pagefault. */
43 struct mlx5_pagefault {
44 u32 bytes_committed;
45 u32 token;
46 u8 event_subtype;
47 u8 type;
48 union {
49 /* Initiator or send message responder pagefault details. */
50 struct {
51 /* Received packet size, only valid for responders. */
52 u32 packet_size;
53 /*
54 * Number of resource holding WQE, depends on type.
55 */
56 u32 wq_num;
57 /*
58 * WQE index. Refers to either the send queue or
59 * receive queue, according to event_subtype.
60 */
61 u16 wqe_index;
62 } wqe;
63 /* RDMA responder pagefault details */
64 struct {
65 u32 r_key;
66 /*
67 * Received packet size, minimal size page fault
68 * resolution required for forward progress.
69 */
70 u32 packet_size;
71 u32 rdma_op_len;
72 u64 rdma_va;
73 } rdma;
74 };
75
76 struct mlx5_ib_pf_eq *eq;
77 struct work_struct work;
78 };
79
80 #define MAX_PREFETCH_LEN (4*1024*1024U)
81
82 /* Timeout in ms to wait for an active mmu notifier to complete when handling
83 * a pagefault. */
84 #define MMU_NOTIFIER_TIMEOUT 1000
85
86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
91
92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
93
94 static u64 mlx5_imr_ksm_entries;
95
96 static int check_parent(struct ib_umem_odp *odp,
97 struct mlx5_ib_mr *parent)
98 {
99 struct mlx5_ib_mr *mr = odp->private;
100
101 return mr && mr->parent == parent && !odp->dying;
102 }
103
104 static struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr)
105 {
106 if (WARN_ON(!mr || !is_odp_mr(mr)))
107 return NULL;
108
109 return to_ib_umem_odp(mr->umem)->per_mm;
110 }
111
112 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
113 {
114 struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
115 struct ib_ucontext_per_mm *per_mm = odp->per_mm;
116 struct rb_node *rb;
117
118 down_read(&per_mm->umem_rwsem);
119 while (1) {
120 rb = rb_next(&odp->interval_tree.rb);
121 if (!rb)
122 goto not_found;
123 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
124 if (check_parent(odp, parent))
125 goto end;
126 }
127 not_found:
128 odp = NULL;
129 end:
130 up_read(&per_mm->umem_rwsem);
131 return odp;
132 }
133
134 static struct ib_umem_odp *odp_lookup(u64 start, u64 length,
135 struct mlx5_ib_mr *parent)
136 {
137 struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent);
138 struct ib_umem_odp *odp;
139 struct rb_node *rb;
140
141 down_read(&per_mm->umem_rwsem);
142 odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length);
143 if (!odp)
144 goto end;
145
146 while (1) {
147 if (check_parent(odp, parent))
148 goto end;
149 rb = rb_next(&odp->interval_tree.rb);
150 if (!rb)
151 goto not_found;
152 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
153 if (ib_umem_start(odp) > start + length)
154 goto not_found;
155 }
156 not_found:
157 odp = NULL;
158 end:
159 up_read(&per_mm->umem_rwsem);
160 return odp;
161 }
162
163 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
164 size_t nentries, struct mlx5_ib_mr *mr, int flags)
165 {
166 struct ib_pd *pd = mr->ibmr.pd;
167 struct mlx5_ib_dev *dev = to_mdev(pd->device);
168 struct ib_umem_odp *odp;
169 unsigned long va;
170 int i;
171
172 if (flags & MLX5_IB_UPD_XLT_ZAP) {
173 for (i = 0; i < nentries; i++, pklm++) {
174 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
175 pklm->key = cpu_to_be32(dev->null_mkey);
176 pklm->va = 0;
177 }
178 return;
179 }
180
181 /*
182 * The locking here is pretty subtle. Ideally the implicit children
183 * list would be protected by the umem_mutex, however that is not
184 * possible. Instead this uses a weaker update-then-lock pattern:
185 *
186 * srcu_read_lock()
187 * <change children list>
188 * mutex_lock(umem_mutex)
189 * mlx5_ib_update_xlt()
190 * mutex_unlock(umem_mutex)
191 * destroy lkey
192 *
193 * ie any change the children list must be followed by the locked
194 * update_xlt before destroying.
195 *
196 * The umem_mutex provides the acquire/release semantic needed to make
197 * the children list visible to a racing thread. While SRCU is not
198 * technically required, using it gives consistent use of the SRCU
199 * locking around the children list.
200 */
201 lockdep_assert_held(&to_ib_umem_odp(mr->umem)->umem_mutex);
202 lockdep_assert_held(&mr->dev->mr_srcu);
203
204 odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE,
205 nentries * MLX5_IMR_MTT_SIZE, mr);
206
207 for (i = 0; i < nentries; i++, pklm++) {
208 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
209 va = (offset + i) * MLX5_IMR_MTT_SIZE;
210 if (odp && ib_umem_start(odp) == va) {
211 struct mlx5_ib_mr *mtt = odp->private;
212
213 pklm->key = cpu_to_be32(mtt->ibmr.lkey);
214 odp = odp_next(odp);
215 } else {
216 pklm->key = cpu_to_be32(dev->null_mkey);
217 }
218 mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
219 i, va, be32_to_cpu(pklm->key));
220 }
221 }
222
223 static void mr_leaf_free_action(struct work_struct *work)
224 {
225 struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
226 int idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
227 struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
228 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
229 int srcu_key;
230
231 mr->parent = NULL;
232 synchronize_srcu(&mr->dev->mr_srcu);
233
234 if (smp_load_acquire(&imr->live)) {
235 srcu_key = srcu_read_lock(&mr->dev->mr_srcu);
236 mutex_lock(&odp_imr->umem_mutex);
237 mlx5_ib_update_xlt(imr, idx, 1, 0,
238 MLX5_IB_UPD_XLT_INDIRECT |
239 MLX5_IB_UPD_XLT_ATOMIC);
240 mutex_unlock(&odp_imr->umem_mutex);
241 srcu_read_unlock(&mr->dev->mr_srcu, srcu_key);
242 }
243 ib_umem_odp_release(odp);
244 mlx5_mr_cache_free(mr->dev, mr);
245
246 if (atomic_dec_and_test(&imr->num_leaf_free))
247 wake_up(&imr->q_leaf_free);
248 }
249
250 void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start,
251 unsigned long end)
252 {
253 struct mlx5_ib_mr *mr;
254 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
255 sizeof(struct mlx5_mtt)) - 1;
256 u64 idx = 0, blk_start_idx = 0;
257 int in_block = 0;
258 u64 addr;
259
260 if (!umem_odp) {
261 pr_err("invalidation called on NULL umem or non-ODP umem\n");
262 return;
263 }
264
265 mr = umem_odp->private;
266
267 if (!mr || !mr->ibmr.pd)
268 return;
269
270 start = max_t(u64, ib_umem_start(umem_odp), start);
271 end = min_t(u64, ib_umem_end(umem_odp), end);
272
273 /*
274 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
275 * while we are doing the invalidation, no page fault will attempt to
276 * overwrite the same MTTs. Concurent invalidations might race us,
277 * but they will write 0s as well, so no difference in the end result.
278 */
279 mutex_lock(&umem_odp->umem_mutex);
280 for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
281 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
282 /*
283 * Strive to write the MTTs in chunks, but avoid overwriting
284 * non-existing MTTs. The huristic here can be improved to
285 * estimate the cost of another UMR vs. the cost of bigger
286 * UMR.
287 */
288 if (umem_odp->dma_list[idx] &
289 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
290 if (!in_block) {
291 blk_start_idx = idx;
292 in_block = 1;
293 }
294 } else {
295 u64 umr_offset = idx & umr_block_mask;
296
297 if (in_block && umr_offset == 0) {
298 mlx5_ib_update_xlt(mr, blk_start_idx,
299 idx - blk_start_idx, 0,
300 MLX5_IB_UPD_XLT_ZAP |
301 MLX5_IB_UPD_XLT_ATOMIC);
302 in_block = 0;
303 }
304 }
305 }
306 if (in_block)
307 mlx5_ib_update_xlt(mr, blk_start_idx,
308 idx - blk_start_idx + 1, 0,
309 MLX5_IB_UPD_XLT_ZAP |
310 MLX5_IB_UPD_XLT_ATOMIC);
311 /*
312 * We are now sure that the device will not access the
313 * memory. We can safely unmap it, and mark it as dirty if
314 * needed.
315 */
316
317 ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
318
319 if (unlikely(!umem_odp->npages && mr->parent &&
320 !umem_odp->dying)) {
321 WRITE_ONCE(mr->live, 0);
322 umem_odp->dying = 1;
323 atomic_inc(&mr->parent->num_leaf_free);
324 schedule_work(&umem_odp->work);
325 }
326 mutex_unlock(&umem_odp->umem_mutex);
327 }
328
329 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
330 {
331 struct ib_odp_caps *caps = &dev->odp_caps;
332
333 memset(caps, 0, sizeof(*caps));
334
335 if (!MLX5_CAP_GEN(dev->mdev, pg) ||
336 !mlx5_ib_can_use_umr(dev, true))
337 return;
338
339 caps->general_caps = IB_ODP_SUPPORT;
340
341 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
342 dev->odp_max_size = U64_MAX;
343 else
344 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
345
346 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
347 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
348
349 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
350 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
351
352 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
353 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
354
355 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
356 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
357
358 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
359 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
360
361 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
362 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
363
364 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
365 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
366
367 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
368 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
369
370 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
371 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
372
373 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
374 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
375
376 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
377 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
378
379 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
380 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
381
382 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
383 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
384
385 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
386 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
387
388 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
389 MLX5_CAP_GEN(dev->mdev, null_mkey) &&
390 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
391 !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
392 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
393
394 return;
395 }
396
397 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
398 struct mlx5_pagefault *pfault,
399 int error)
400 {
401 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
402 pfault->wqe.wq_num : pfault->token;
403 u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
404 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = { };
405 int err;
406
407 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
408 MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
409 MLX5_SET(page_fault_resume_in, in, token, pfault->token);
410 MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
411 MLX5_SET(page_fault_resume_in, in, error, !!error);
412
413 err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
414 if (err)
415 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
416 wq_num, err);
417 }
418
419 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
420 struct ib_umem_odp *umem_odp,
421 bool ksm, int access_flags)
422 {
423 struct mlx5_ib_dev *dev = to_mdev(pd->device);
424 struct mlx5_ib_mr *mr;
425 int err;
426
427 mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
428 MLX5_IMR_MTT_CACHE_ENTRY);
429
430 if (IS_ERR(mr))
431 return mr;
432
433 mr->ibmr.pd = pd;
434
435 mr->dev = dev;
436 mr->access_flags = access_flags;
437 mr->mmkey.iova = 0;
438 mr->umem = &umem_odp->umem;
439
440 if (ksm) {
441 err = mlx5_ib_update_xlt(mr, 0,
442 mlx5_imr_ksm_entries,
443 MLX5_KSM_PAGE_SHIFT,
444 MLX5_IB_UPD_XLT_INDIRECT |
445 MLX5_IB_UPD_XLT_ZAP |
446 MLX5_IB_UPD_XLT_ENABLE);
447
448 } else {
449 err = mlx5_ib_update_xlt(mr, 0,
450 MLX5_IMR_MTT_ENTRIES,
451 PAGE_SHIFT,
452 MLX5_IB_UPD_XLT_ZAP |
453 MLX5_IB_UPD_XLT_ENABLE |
454 MLX5_IB_UPD_XLT_ATOMIC);
455 }
456
457 if (err)
458 goto fail;
459
460 mr->ibmr.lkey = mr->mmkey.key;
461 mr->ibmr.rkey = mr->mmkey.key;
462
463 mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
464 mr->mmkey.key, dev->mdev, mr);
465
466 return mr;
467
468 fail:
469 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
470 mlx5_mr_cache_free(dev, mr);
471
472 return ERR_PTR(err);
473 }
474
475 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
476 u64 io_virt, size_t bcnt)
477 {
478 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
479 struct ib_umem_odp *odp, *result = NULL;
480 struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
481 u64 addr = io_virt & MLX5_IMR_MTT_MASK;
482 int nentries = 0, start_idx = 0, ret;
483 struct mlx5_ib_mr *mtt;
484
485 mutex_lock(&odp_mr->umem_mutex);
486 odp = odp_lookup(addr, 1, mr);
487
488 mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
489 io_virt, bcnt, addr, odp);
490
491 next_mr:
492 if (likely(odp)) {
493 if (nentries)
494 nentries++;
495 } else {
496 odp = ib_umem_odp_alloc_child(odp_mr, addr, MLX5_IMR_MTT_SIZE);
497 if (IS_ERR(odp)) {
498 mutex_unlock(&odp_mr->umem_mutex);
499 return ERR_CAST(odp);
500 }
501
502 mtt = implicit_mr_alloc(mr->ibmr.pd, odp, 0,
503 mr->access_flags);
504 if (IS_ERR(mtt)) {
505 mutex_unlock(&odp_mr->umem_mutex);
506 ib_umem_odp_release(odp);
507 return ERR_CAST(mtt);
508 }
509
510 odp->private = mtt;
511 mtt->umem = &odp->umem;
512 mtt->mmkey.iova = addr;
513 mtt->parent = mr;
514 INIT_WORK(&odp->work, mr_leaf_free_action);
515
516 smp_store_release(&mtt->live, 1);
517
518 if (!nentries)
519 start_idx = addr >> MLX5_IMR_MTT_SHIFT;
520 nentries++;
521 }
522
523 /* Return first odp if region not covered by single one */
524 if (likely(!result))
525 result = odp;
526
527 addr += MLX5_IMR_MTT_SIZE;
528 if (unlikely(addr < io_virt + bcnt)) {
529 odp = odp_next(odp);
530 if (odp && ib_umem_start(odp) != addr)
531 odp = NULL;
532 goto next_mr;
533 }
534
535 if (unlikely(nentries)) {
536 ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
537 MLX5_IB_UPD_XLT_INDIRECT |
538 MLX5_IB_UPD_XLT_ATOMIC);
539 if (ret) {
540 mlx5_ib_err(dev, "Failed to update PAS\n");
541 result = ERR_PTR(ret);
542 }
543 }
544
545 mutex_unlock(&odp_mr->umem_mutex);
546 return result;
547 }
548
549 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
550 struct ib_udata *udata,
551 int access_flags)
552 {
553 struct mlx5_ib_mr *imr;
554 struct ib_umem_odp *umem_odp;
555
556 umem_odp = ib_umem_odp_alloc_implicit(udata, access_flags);
557 if (IS_ERR(umem_odp))
558 return ERR_CAST(umem_odp);
559
560 imr = implicit_mr_alloc(&pd->ibpd, umem_odp, 1, access_flags);
561 if (IS_ERR(imr)) {
562 ib_umem_odp_release(umem_odp);
563 return ERR_CAST(imr);
564 }
565
566 imr->umem = &umem_odp->umem;
567 init_waitqueue_head(&imr->q_leaf_free);
568 atomic_set(&imr->num_leaf_free, 0);
569 atomic_set(&imr->num_pending_prefetch, 0);
570 smp_store_release(&imr->live, 1);
571
572 return imr;
573 }
574
575 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
576 {
577 struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr);
578 struct rb_node *node;
579
580 down_read(&per_mm->umem_rwsem);
581 for (node = rb_first_cached(&per_mm->umem_tree); node;
582 node = rb_next(node)) {
583 struct ib_umem_odp *umem_odp =
584 rb_entry(node, struct ib_umem_odp, interval_tree.rb);
585 struct mlx5_ib_mr *mr = umem_odp->private;
586
587 if (mr->parent != imr)
588 continue;
589
590 mutex_lock(&umem_odp->umem_mutex);
591 ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp),
592 ib_umem_end(umem_odp));
593
594 if (umem_odp->dying) {
595 mutex_unlock(&umem_odp->umem_mutex);
596 continue;
597 }
598
599 umem_odp->dying = 1;
600 atomic_inc(&imr->num_leaf_free);
601 schedule_work(&umem_odp->work);
602 mutex_unlock(&umem_odp->umem_mutex);
603 }
604 up_read(&per_mm->umem_rwsem);
605
606 wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
607 }
608
609 #define MLX5_PF_FLAGS_PREFETCH BIT(0)
610 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
611 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
612 u64 io_virt, size_t bcnt, u32 *bytes_mapped,
613 u32 flags)
614 {
615 int npages = 0, current_seq, page_shift, ret, np;
616 struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
617 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
618 bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
619 u64 access_mask;
620 u64 start_idx, page_mask;
621 struct ib_umem_odp *odp;
622 size_t size;
623
624 if (odp_mr->is_implicit_odp) {
625 odp = implicit_mr_get_data(mr, io_virt, bcnt);
626
627 if (IS_ERR(odp))
628 return PTR_ERR(odp);
629 mr = odp->private;
630 } else {
631 odp = odp_mr;
632 }
633
634 next_mr:
635 size = min_t(size_t, bcnt, ib_umem_end(odp) - io_virt);
636
637 page_shift = odp->page_shift;
638 page_mask = ~(BIT(page_shift) - 1);
639 start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
640 access_mask = ODP_READ_ALLOWED_BIT;
641
642 if (prefetch && !downgrade && !odp->umem.writable) {
643 /* prefetch with write-access must
644 * be supported by the MR
645 */
646 ret = -EINVAL;
647 goto out;
648 }
649
650 if (odp->umem.writable && !downgrade)
651 access_mask |= ODP_WRITE_ALLOWED_BIT;
652
653 current_seq = READ_ONCE(odp->notifiers_seq);
654 /*
655 * Ensure the sequence number is valid for some time before we call
656 * gup.
657 */
658 smp_rmb();
659
660 ret = ib_umem_odp_map_dma_pages(odp, io_virt, size, access_mask,
661 current_seq);
662
663 if (ret < 0)
664 goto out;
665
666 np = ret;
667
668 mutex_lock(&odp->umem_mutex);
669 if (!ib_umem_mmu_notifier_retry(odp, current_seq)) {
670 /*
671 * No need to check whether the MTTs really belong to
672 * this MR, since ib_umem_odp_map_dma_pages already
673 * checks this.
674 */
675 ret = mlx5_ib_update_xlt(mr, start_idx, np,
676 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
677 } else {
678 ret = -EAGAIN;
679 }
680 mutex_unlock(&odp->umem_mutex);
681
682 if (ret < 0) {
683 if (ret != -EAGAIN)
684 mlx5_ib_err(dev, "Failed to update mkey page tables\n");
685 goto out;
686 }
687
688 if (bytes_mapped) {
689 u32 new_mappings = (np << page_shift) -
690 (io_virt - round_down(io_virt, 1 << page_shift));
691 *bytes_mapped += min_t(u32, new_mappings, size);
692 }
693
694 npages += np << (page_shift - PAGE_SHIFT);
695 bcnt -= size;
696
697 if (unlikely(bcnt)) {
698 struct ib_umem_odp *next;
699
700 io_virt += size;
701 next = odp_next(odp);
702 if (unlikely(!next || ib_umem_start(next) != io_virt)) {
703 mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
704 io_virt, next);
705 return -EAGAIN;
706 }
707 odp = next;
708 mr = odp->private;
709 goto next_mr;
710 }
711
712 return npages;
713
714 out:
715 if (ret == -EAGAIN) {
716 unsigned long timeout = msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
717
718 if (!wait_for_completion_timeout(&odp->notifier_completion,
719 timeout)) {
720 mlx5_ib_warn(
721 dev,
722 "timeout waiting for mmu notifier. seq %d against %d. notifiers_count=%d\n",
723 current_seq, odp->notifiers_seq,
724 odp->notifiers_count);
725 }
726 }
727
728 return ret;
729 }
730
731 struct pf_frame {
732 struct pf_frame *next;
733 u32 key;
734 u64 io_virt;
735 size_t bcnt;
736 int depth;
737 };
738
739 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
740 {
741 if (!mmkey)
742 return false;
743 if (mmkey->type == MLX5_MKEY_MW)
744 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
745 return mmkey->key == key;
746 }
747
748 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
749 {
750 struct mlx5_ib_mw *mw;
751 struct mlx5_ib_devx_mr *devx_mr;
752
753 if (mmkey->type == MLX5_MKEY_MW) {
754 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
755 return mw->ndescs;
756 }
757
758 devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
759 mmkey);
760 return devx_mr->ndescs;
761 }
762
763 /*
764 * Handle a single data segment in a page-fault WQE or RDMA region.
765 *
766 * Returns number of OS pages retrieved on success. The caller may continue to
767 * the next data segment.
768 * Can return the following error codes:
769 * -EAGAIN to designate a temporary error. The caller will abort handling the
770 * page fault and resolve it.
771 * -EFAULT when there's an error mapping the requested pages. The caller will
772 * abort the page fault handling.
773 */
774 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
775 struct ib_pd *pd, u32 key,
776 u64 io_virt, size_t bcnt,
777 u32 *bytes_committed,
778 u32 *bytes_mapped, u32 flags)
779 {
780 int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
781 bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
782 struct pf_frame *head = NULL, *frame;
783 struct mlx5_core_mkey *mmkey;
784 struct mlx5_ib_mr *mr;
785 struct mlx5_klm *pklm;
786 u32 *out = NULL;
787 size_t offset;
788 int ndescs;
789
790 srcu_key = srcu_read_lock(&dev->mr_srcu);
791
792 io_virt += *bytes_committed;
793 bcnt -= *bytes_committed;
794
795 next_mr:
796 mmkey = xa_load(&dev->mdev->priv.mkey_table, mlx5_base_mkey(key));
797 if (!mkey_is_eq(mmkey, key)) {
798 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
799 ret = -EFAULT;
800 goto srcu_unlock;
801 }
802
803 if (prefetch && mmkey->type != MLX5_MKEY_MR) {
804 mlx5_ib_dbg(dev, "prefetch is allowed only for MR\n");
805 ret = -EINVAL;
806 goto srcu_unlock;
807 }
808
809 switch (mmkey->type) {
810 case MLX5_MKEY_MR:
811 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
812 if (!smp_load_acquire(&mr->live) || !mr->ibmr.pd) {
813 mlx5_ib_dbg(dev, "got dead MR\n");
814 ret = -EFAULT;
815 goto srcu_unlock;
816 }
817
818 if (prefetch) {
819 if (!is_odp_mr(mr) ||
820 mr->ibmr.pd != pd) {
821 mlx5_ib_dbg(dev, "Invalid prefetch request: %s\n",
822 is_odp_mr(mr) ? "MR is not ODP" :
823 "PD is not of the MR");
824 ret = -EINVAL;
825 goto srcu_unlock;
826 }
827 }
828
829 if (!is_odp_mr(mr)) {
830 mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
831 key);
832 if (bytes_mapped)
833 *bytes_mapped += bcnt;
834 ret = 0;
835 goto srcu_unlock;
836 }
837
838 ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped, flags);
839 if (ret < 0)
840 goto srcu_unlock;
841
842 npages += ret;
843 ret = 0;
844 break;
845
846 case MLX5_MKEY_MW:
847 case MLX5_MKEY_INDIRECT_DEVX:
848 ndescs = get_indirect_num_descs(mmkey);
849
850 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
851 mlx5_ib_dbg(dev, "indirection level exceeded\n");
852 ret = -EFAULT;
853 goto srcu_unlock;
854 }
855
856 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
857 sizeof(*pklm) * (ndescs - 2);
858
859 if (outlen > cur_outlen) {
860 kfree(out);
861 out = kzalloc(outlen, GFP_KERNEL);
862 if (!out) {
863 ret = -ENOMEM;
864 goto srcu_unlock;
865 }
866 cur_outlen = outlen;
867 }
868
869 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
870 bsf0_klm0_pas_mtt0_1);
871
872 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
873 if (ret)
874 goto srcu_unlock;
875
876 offset = io_virt - MLX5_GET64(query_mkey_out, out,
877 memory_key_mkey_entry.start_addr);
878
879 for (i = 0; bcnt && i < ndescs; i++, pklm++) {
880 if (offset >= be32_to_cpu(pklm->bcount)) {
881 offset -= be32_to_cpu(pklm->bcount);
882 continue;
883 }
884
885 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
886 if (!frame) {
887 ret = -ENOMEM;
888 goto srcu_unlock;
889 }
890
891 frame->key = be32_to_cpu(pklm->key);
892 frame->io_virt = be64_to_cpu(pklm->va) + offset;
893 frame->bcnt = min_t(size_t, bcnt,
894 be32_to_cpu(pklm->bcount) - offset);
895 frame->depth = depth + 1;
896 frame->next = head;
897 head = frame;
898
899 bcnt -= frame->bcnt;
900 offset = 0;
901 }
902 break;
903
904 default:
905 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
906 ret = -EFAULT;
907 goto srcu_unlock;
908 }
909
910 if (head) {
911 frame = head;
912 head = frame->next;
913
914 key = frame->key;
915 io_virt = frame->io_virt;
916 bcnt = frame->bcnt;
917 depth = frame->depth;
918 kfree(frame);
919
920 goto next_mr;
921 }
922
923 srcu_unlock:
924 while (head) {
925 frame = head;
926 head = frame->next;
927 kfree(frame);
928 }
929 kfree(out);
930
931 srcu_read_unlock(&dev->mr_srcu, srcu_key);
932 *bytes_committed = 0;
933 return ret ? ret : npages;
934 }
935
936 /**
937 * Parse a series of data segments for page fault handling.
938 *
939 * @pfault contains page fault information.
940 * @wqe points at the first data segment in the WQE.
941 * @wqe_end points after the end of the WQE.
942 * @bytes_mapped receives the number of bytes that the function was able to
943 * map. This allows the caller to decide intelligently whether
944 * enough memory was mapped to resolve the page fault
945 * successfully (e.g. enough for the next MTU, or the entire
946 * WQE).
947 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
948 * the committed bytes).
949 *
950 * Returns the number of pages loaded if positive, zero for an empty WQE, or a
951 * negative error code.
952 */
953 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
954 struct mlx5_pagefault *pfault,
955 void *wqe,
956 void *wqe_end, u32 *bytes_mapped,
957 u32 *total_wqe_bytes, bool receive_queue)
958 {
959 int ret = 0, npages = 0;
960 u64 io_virt;
961 u32 key;
962 u32 byte_count;
963 size_t bcnt;
964 int inline_segment;
965
966 if (bytes_mapped)
967 *bytes_mapped = 0;
968 if (total_wqe_bytes)
969 *total_wqe_bytes = 0;
970
971 while (wqe < wqe_end) {
972 struct mlx5_wqe_data_seg *dseg = wqe;
973
974 io_virt = be64_to_cpu(dseg->addr);
975 key = be32_to_cpu(dseg->lkey);
976 byte_count = be32_to_cpu(dseg->byte_count);
977 inline_segment = !!(byte_count & MLX5_INLINE_SEG);
978 bcnt = byte_count & ~MLX5_INLINE_SEG;
979
980 if (inline_segment) {
981 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
982 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
983 16);
984 } else {
985 wqe += sizeof(*dseg);
986 }
987
988 /* receive WQE end of sg list. */
989 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
990 io_virt == 0)
991 break;
992
993 if (!inline_segment && total_wqe_bytes) {
994 *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
995 pfault->bytes_committed);
996 }
997
998 /* A zero length data segment designates a length of 2GB. */
999 if (bcnt == 0)
1000 bcnt = 1U << 31;
1001
1002 if (inline_segment || bcnt <= pfault->bytes_committed) {
1003 pfault->bytes_committed -=
1004 min_t(size_t, bcnt,
1005 pfault->bytes_committed);
1006 continue;
1007 }
1008
1009 ret = pagefault_single_data_segment(dev, NULL, key,
1010 io_virt, bcnt,
1011 &pfault->bytes_committed,
1012 bytes_mapped, 0);
1013 if (ret < 0)
1014 break;
1015 npages += ret;
1016 }
1017
1018 return ret < 0 ? ret : npages;
1019 }
1020
1021 /*
1022 * Parse initiator WQE. Advances the wqe pointer to point at the
1023 * scatter-gather list, and set wqe_end to the end of the WQE.
1024 */
1025 static int mlx5_ib_mr_initiator_pfault_handler(
1026 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1027 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1028 {
1029 struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1030 u16 wqe_index = pfault->wqe.wqe_index;
1031 struct mlx5_base_av *av;
1032 unsigned ds, opcode;
1033 u32 qpn = qp->trans_qp.base.mqp.qpn;
1034
1035 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1036 if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1037 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1038 ds, wqe_length);
1039 return -EFAULT;
1040 }
1041
1042 if (ds == 0) {
1043 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1044 wqe_index, qpn);
1045 return -EFAULT;
1046 }
1047
1048 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1049 *wqe += sizeof(*ctrl);
1050
1051 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1052 MLX5_WQE_CTRL_OPCODE_MASK;
1053
1054 if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1055 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1056
1057 if (qp->ibqp.qp_type == IB_QPT_UD ||
1058 qp->qp_sub_type == MLX5_IB_QPT_DCI) {
1059 av = *wqe;
1060 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1061 *wqe += sizeof(struct mlx5_av);
1062 else
1063 *wqe += sizeof(struct mlx5_base_av);
1064 }
1065
1066 switch (opcode) {
1067 case MLX5_OPCODE_RDMA_WRITE:
1068 case MLX5_OPCODE_RDMA_WRITE_IMM:
1069 case MLX5_OPCODE_RDMA_READ:
1070 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1071 break;
1072 case MLX5_OPCODE_ATOMIC_CS:
1073 case MLX5_OPCODE_ATOMIC_FA:
1074 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1075 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1076 break;
1077 }
1078
1079 return 0;
1080 }
1081
1082 /*
1083 * Parse responder WQE and set wqe_end to the end of the WQE.
1084 */
1085 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1086 struct mlx5_ib_srq *srq,
1087 void **wqe, void **wqe_end,
1088 int wqe_length)
1089 {
1090 int wqe_size = 1 << srq->msrq.wqe_shift;
1091
1092 if (wqe_size > wqe_length) {
1093 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1094 return -EFAULT;
1095 }
1096
1097 *wqe_end = *wqe + wqe_size;
1098 *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1099
1100 return 0;
1101 }
1102
1103 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1104 struct mlx5_ib_qp *qp,
1105 void *wqe, void **wqe_end,
1106 int wqe_length)
1107 {
1108 struct mlx5_ib_wq *wq = &qp->rq;
1109 int wqe_size = 1 << wq->wqe_shift;
1110
1111 if (qp->wq_sig) {
1112 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1113 return -EFAULT;
1114 }
1115
1116 if (wqe_size > wqe_length) {
1117 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1118 return -EFAULT;
1119 }
1120
1121 *wqe_end = wqe + wqe_size;
1122
1123 return 0;
1124 }
1125
1126 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1127 u32 wq_num, int pf_type)
1128 {
1129 struct mlx5_core_rsc_common *common = NULL;
1130 struct mlx5_core_srq *srq;
1131
1132 switch (pf_type) {
1133 case MLX5_WQE_PF_TYPE_RMP:
1134 srq = mlx5_cmd_get_srq(dev, wq_num);
1135 if (srq)
1136 common = &srq->common;
1137 break;
1138 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1139 case MLX5_WQE_PF_TYPE_RESP:
1140 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1141 common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP);
1142 break;
1143 default:
1144 break;
1145 }
1146
1147 return common;
1148 }
1149
1150 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1151 {
1152 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1153
1154 return to_mibqp(mqp);
1155 }
1156
1157 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1158 {
1159 struct mlx5_core_srq *msrq =
1160 container_of(res, struct mlx5_core_srq, common);
1161
1162 return to_mibsrq(msrq);
1163 }
1164
1165 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1166 struct mlx5_pagefault *pfault)
1167 {
1168 bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1169 u16 wqe_index = pfault->wqe.wqe_index;
1170 void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1171 u32 bytes_mapped, total_wqe_bytes;
1172 struct mlx5_core_rsc_common *res;
1173 int resume_with_error = 1;
1174 struct mlx5_ib_qp *qp;
1175 size_t bytes_copied;
1176 int ret = 0;
1177
1178 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1179 if (!res) {
1180 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1181 return;
1182 }
1183
1184 if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1185 res->res != MLX5_RES_XSRQ) {
1186 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1187 pfault->type);
1188 goto resolve_page_fault;
1189 }
1190
1191 wqe_start = (void *)__get_free_page(GFP_KERNEL);
1192 if (!wqe_start) {
1193 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1194 goto resolve_page_fault;
1195 }
1196
1197 wqe = wqe_start;
1198 qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1199 if (qp && sq) {
1200 ret = mlx5_ib_read_user_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1201 &bytes_copied);
1202 if (ret)
1203 goto read_user;
1204 ret = mlx5_ib_mr_initiator_pfault_handler(
1205 dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1206 } else if (qp && !sq) {
1207 ret = mlx5_ib_read_user_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1208 &bytes_copied);
1209 if (ret)
1210 goto read_user;
1211 ret = mlx5_ib_mr_responder_pfault_handler_rq(
1212 dev, qp, wqe, &wqe_end, bytes_copied);
1213 } else if (!qp) {
1214 struct mlx5_ib_srq *srq = res_to_srq(res);
1215
1216 ret = mlx5_ib_read_user_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1217 &bytes_copied);
1218 if (ret)
1219 goto read_user;
1220 ret = mlx5_ib_mr_responder_pfault_handler_srq(
1221 dev, srq, &wqe, &wqe_end, bytes_copied);
1222 }
1223
1224 if (ret < 0 || wqe >= wqe_end)
1225 goto resolve_page_fault;
1226
1227 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1228 &total_wqe_bytes, !sq);
1229 if (ret == -EAGAIN)
1230 goto out;
1231
1232 if (ret < 0 || total_wqe_bytes > bytes_mapped)
1233 goto resolve_page_fault;
1234
1235 out:
1236 ret = 0;
1237 resume_with_error = 0;
1238
1239 read_user:
1240 if (ret)
1241 mlx5_ib_err(
1242 dev,
1243 "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1244 ret, wqe_index, pfault->token);
1245
1246 resolve_page_fault:
1247 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1248 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1249 pfault->wqe.wq_num, resume_with_error,
1250 pfault->type);
1251 mlx5_core_res_put(res);
1252 free_page((unsigned long)wqe_start);
1253 }
1254
1255 static int pages_in_range(u64 address, u32 length)
1256 {
1257 return (ALIGN(address + length, PAGE_SIZE) -
1258 (address & PAGE_MASK)) >> PAGE_SHIFT;
1259 }
1260
1261 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1262 struct mlx5_pagefault *pfault)
1263 {
1264 u64 address;
1265 u32 length;
1266 u32 prefetch_len = pfault->bytes_committed;
1267 int prefetch_activated = 0;
1268 u32 rkey = pfault->rdma.r_key;
1269 int ret;
1270
1271 /* The RDMA responder handler handles the page fault in two parts.
1272 * First it brings the necessary pages for the current packet
1273 * (and uses the pfault context), and then (after resuming the QP)
1274 * prefetches more pages. The second operation cannot use the pfault
1275 * context and therefore uses the dummy_pfault context allocated on
1276 * the stack */
1277 pfault->rdma.rdma_va += pfault->bytes_committed;
1278 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1279 pfault->rdma.rdma_op_len);
1280 pfault->bytes_committed = 0;
1281
1282 address = pfault->rdma.rdma_va;
1283 length = pfault->rdma.rdma_op_len;
1284
1285 /* For some operations, the hardware cannot tell the exact message
1286 * length, and in those cases it reports zero. Use prefetch
1287 * logic. */
1288 if (length == 0) {
1289 prefetch_activated = 1;
1290 length = pfault->rdma.packet_size;
1291 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1292 }
1293
1294 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1295 &pfault->bytes_committed, NULL,
1296 0);
1297 if (ret == -EAGAIN) {
1298 /* We're racing with an invalidation, don't prefetch */
1299 prefetch_activated = 0;
1300 } else if (ret < 0 || pages_in_range(address, length) > ret) {
1301 mlx5_ib_page_fault_resume(dev, pfault, 1);
1302 if (ret != -ENOENT)
1303 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1304 ret, pfault->token, pfault->type);
1305 return;
1306 }
1307
1308 mlx5_ib_page_fault_resume(dev, pfault, 0);
1309 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1310 pfault->token, pfault->type,
1311 prefetch_activated);
1312
1313 /* At this point, there might be a new pagefault already arriving in
1314 * the eq, switch to the dummy pagefault for the rest of the
1315 * processing. We're still OK with the objects being alive as the
1316 * work-queue is being fenced. */
1317
1318 if (prefetch_activated) {
1319 u32 bytes_committed = 0;
1320
1321 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1322 prefetch_len,
1323 &bytes_committed, NULL,
1324 0);
1325 if (ret < 0 && ret != -EAGAIN) {
1326 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1327 ret, pfault->token, address, prefetch_len);
1328 }
1329 }
1330 }
1331
1332 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1333 {
1334 u8 event_subtype = pfault->event_subtype;
1335
1336 switch (event_subtype) {
1337 case MLX5_PFAULT_SUBTYPE_WQE:
1338 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1339 break;
1340 case MLX5_PFAULT_SUBTYPE_RDMA:
1341 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1342 break;
1343 default:
1344 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1345 event_subtype);
1346 mlx5_ib_page_fault_resume(dev, pfault, 1);
1347 }
1348 }
1349
1350 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1351 {
1352 struct mlx5_pagefault *pfault = container_of(work,
1353 struct mlx5_pagefault,
1354 work);
1355 struct mlx5_ib_pf_eq *eq = pfault->eq;
1356
1357 mlx5_ib_pfault(eq->dev, pfault);
1358 mempool_free(pfault, eq->pool);
1359 }
1360
1361 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1362 {
1363 struct mlx5_eqe_page_fault *pf_eqe;
1364 struct mlx5_pagefault *pfault;
1365 struct mlx5_eqe *eqe;
1366 int cc = 0;
1367
1368 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1369 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1370 if (!pfault) {
1371 schedule_work(&eq->work);
1372 break;
1373 }
1374
1375 pf_eqe = &eqe->data.page_fault;
1376 pfault->event_subtype = eqe->sub_type;
1377 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1378
1379 mlx5_ib_dbg(eq->dev,
1380 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1381 eqe->sub_type, pfault->bytes_committed);
1382
1383 switch (eqe->sub_type) {
1384 case MLX5_PFAULT_SUBTYPE_RDMA:
1385 /* RDMA based event */
1386 pfault->type =
1387 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1388 pfault->token =
1389 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1390 MLX5_24BIT_MASK;
1391 pfault->rdma.r_key =
1392 be32_to_cpu(pf_eqe->rdma.r_key);
1393 pfault->rdma.packet_size =
1394 be16_to_cpu(pf_eqe->rdma.packet_length);
1395 pfault->rdma.rdma_op_len =
1396 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1397 pfault->rdma.rdma_va =
1398 be64_to_cpu(pf_eqe->rdma.rdma_va);
1399 mlx5_ib_dbg(eq->dev,
1400 "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1401 pfault->type, pfault->token,
1402 pfault->rdma.r_key);
1403 mlx5_ib_dbg(eq->dev,
1404 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1405 pfault->rdma.rdma_op_len,
1406 pfault->rdma.rdma_va);
1407 break;
1408
1409 case MLX5_PFAULT_SUBTYPE_WQE:
1410 /* WQE based event */
1411 pfault->type =
1412 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1413 pfault->token =
1414 be32_to_cpu(pf_eqe->wqe.token);
1415 pfault->wqe.wq_num =
1416 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1417 MLX5_24BIT_MASK;
1418 pfault->wqe.wqe_index =
1419 be16_to_cpu(pf_eqe->wqe.wqe_index);
1420 pfault->wqe.packet_size =
1421 be16_to_cpu(pf_eqe->wqe.packet_length);
1422 mlx5_ib_dbg(eq->dev,
1423 "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1424 pfault->type, pfault->token,
1425 pfault->wqe.wq_num,
1426 pfault->wqe.wqe_index);
1427 break;
1428
1429 default:
1430 mlx5_ib_warn(eq->dev,
1431 "Unsupported page fault event sub-type: 0x%02hhx\n",
1432 eqe->sub_type);
1433 /* Unsupported page faults should still be
1434 * resolved by the page fault handler
1435 */
1436 }
1437
1438 pfault->eq = eq;
1439 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1440 queue_work(eq->wq, &pfault->work);
1441
1442 cc = mlx5_eq_update_cc(eq->core, ++cc);
1443 }
1444
1445 mlx5_eq_update_ci(eq->core, cc, 1);
1446 }
1447
1448 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1449 void *data)
1450 {
1451 struct mlx5_ib_pf_eq *eq =
1452 container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1453 unsigned long flags;
1454
1455 if (spin_trylock_irqsave(&eq->lock, flags)) {
1456 mlx5_ib_eq_pf_process(eq);
1457 spin_unlock_irqrestore(&eq->lock, flags);
1458 } else {
1459 schedule_work(&eq->work);
1460 }
1461
1462 return IRQ_HANDLED;
1463 }
1464
1465 /* mempool_refill() was proposed but unfortunately wasn't accepted
1466 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1467 * Cheap workaround.
1468 */
1469 static void mempool_refill(mempool_t *pool)
1470 {
1471 while (pool->curr_nr < pool->min_nr)
1472 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1473 }
1474
1475 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1476 {
1477 struct mlx5_ib_pf_eq *eq =
1478 container_of(work, struct mlx5_ib_pf_eq, work);
1479
1480 mempool_refill(eq->pool);
1481
1482 spin_lock_irq(&eq->lock);
1483 mlx5_ib_eq_pf_process(eq);
1484 spin_unlock_irq(&eq->lock);
1485 }
1486
1487 enum {
1488 MLX5_IB_NUM_PF_EQE = 0x1000,
1489 MLX5_IB_NUM_PF_DRAIN = 64,
1490 };
1491
1492 static int
1493 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1494 {
1495 struct mlx5_eq_param param = {};
1496 int err;
1497
1498 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1499 spin_lock_init(&eq->lock);
1500 eq->dev = dev;
1501
1502 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1503 sizeof(struct mlx5_pagefault));
1504 if (!eq->pool)
1505 return -ENOMEM;
1506
1507 eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1508 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1509 MLX5_NUM_CMD_EQE);
1510 if (!eq->wq) {
1511 err = -ENOMEM;
1512 goto err_mempool;
1513 }
1514
1515 eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1516 param = (struct mlx5_eq_param) {
1517 .irq_index = 0,
1518 .nent = MLX5_IB_NUM_PF_EQE,
1519 };
1520 param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1521 eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1522 if (IS_ERR(eq->core)) {
1523 err = PTR_ERR(eq->core);
1524 goto err_wq;
1525 }
1526 err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1527 if (err) {
1528 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1529 goto err_eq;
1530 }
1531
1532 return 0;
1533 err_eq:
1534 mlx5_eq_destroy_generic(dev->mdev, eq->core);
1535 err_wq:
1536 destroy_workqueue(eq->wq);
1537 err_mempool:
1538 mempool_destroy(eq->pool);
1539 return err;
1540 }
1541
1542 static int
1543 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1544 {
1545 int err;
1546
1547 mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1548 err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1549 cancel_work_sync(&eq->work);
1550 destroy_workqueue(eq->wq);
1551 mempool_destroy(eq->pool);
1552
1553 return err;
1554 }
1555
1556 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1557 {
1558 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1559 return;
1560
1561 switch (ent->order - 2) {
1562 case MLX5_IMR_MTT_CACHE_ENTRY:
1563 ent->page = PAGE_SHIFT;
1564 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1565 sizeof(struct mlx5_mtt) /
1566 MLX5_IB_UMR_OCTOWORD;
1567 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1568 ent->limit = 0;
1569 break;
1570
1571 case MLX5_IMR_KSM_CACHE_ENTRY:
1572 ent->page = MLX5_KSM_PAGE_SHIFT;
1573 ent->xlt = mlx5_imr_ksm_entries *
1574 sizeof(struct mlx5_klm) /
1575 MLX5_IB_UMR_OCTOWORD;
1576 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1577 ent->limit = 0;
1578 break;
1579 }
1580 }
1581
1582 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1583 .advise_mr = mlx5_ib_advise_mr,
1584 .invalidate_range = mlx5_ib_invalidate_range,
1585 };
1586
1587 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1588 {
1589 int ret = 0;
1590
1591 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1592 return ret;
1593
1594 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1595
1596 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1597 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1598 if (ret) {
1599 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1600 return ret;
1601 }
1602 }
1603
1604 ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1605
1606 return ret;
1607 }
1608
1609 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1610 {
1611 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1612 return;
1613
1614 mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1615 }
1616
1617 int mlx5_ib_odp_init(void)
1618 {
1619 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1620 MLX5_IMR_MTT_BITS);
1621
1622 return 0;
1623 }
1624
1625 struct prefetch_mr_work {
1626 struct work_struct work;
1627 struct ib_pd *pd;
1628 u32 pf_flags;
1629 u32 num_sge;
1630 struct ib_sge sg_list[0];
1631 };
1632
1633 static void num_pending_prefetch_dec(struct mlx5_ib_dev *dev,
1634 struct ib_sge *sg_list, u32 num_sge,
1635 u32 from)
1636 {
1637 u32 i;
1638 int srcu_key;
1639
1640 srcu_key = srcu_read_lock(&dev->mr_srcu);
1641
1642 for (i = from; i < num_sge; ++i) {
1643 struct mlx5_core_mkey *mmkey;
1644 struct mlx5_ib_mr *mr;
1645
1646 mmkey = xa_load(&dev->mdev->priv.mkey_table,
1647 mlx5_base_mkey(sg_list[i].lkey));
1648 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1649 atomic_dec(&mr->num_pending_prefetch);
1650 }
1651
1652 srcu_read_unlock(&dev->mr_srcu, srcu_key);
1653 }
1654
1655 static bool num_pending_prefetch_inc(struct ib_pd *pd,
1656 struct ib_sge *sg_list, u32 num_sge)
1657 {
1658 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1659 bool ret = true;
1660 u32 i;
1661
1662 for (i = 0; i < num_sge; ++i) {
1663 struct mlx5_core_mkey *mmkey;
1664 struct mlx5_ib_mr *mr;
1665
1666 mmkey = xa_load(&dev->mdev->priv.mkey_table,
1667 mlx5_base_mkey(sg_list[i].lkey));
1668 if (!mmkey || mmkey->key != sg_list[i].lkey) {
1669 ret = false;
1670 break;
1671 }
1672
1673 if (mmkey->type != MLX5_MKEY_MR) {
1674 ret = false;
1675 break;
1676 }
1677
1678 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1679
1680 if (!smp_load_acquire(&mr->live)) {
1681 ret = false;
1682 break;
1683 }
1684
1685 if (mr->ibmr.pd != pd) {
1686 ret = false;
1687 break;
1688 }
1689
1690 atomic_inc(&mr->num_pending_prefetch);
1691 }
1692
1693 if (!ret)
1694 num_pending_prefetch_dec(dev, sg_list, i, 0);
1695
1696 return ret;
1697 }
1698
1699 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, u32 pf_flags,
1700 struct ib_sge *sg_list, u32 num_sge)
1701 {
1702 u32 i;
1703 int ret = 0;
1704 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1705
1706 for (i = 0; i < num_sge; ++i) {
1707 struct ib_sge *sg = &sg_list[i];
1708 int bytes_committed = 0;
1709
1710 ret = pagefault_single_data_segment(dev, pd, sg->lkey, sg->addr,
1711 sg->length,
1712 &bytes_committed, NULL,
1713 pf_flags);
1714 if (ret < 0)
1715 break;
1716 }
1717
1718 return ret < 0 ? ret : 0;
1719 }
1720
1721 static void mlx5_ib_prefetch_mr_work(struct work_struct *work)
1722 {
1723 struct prefetch_mr_work *w =
1724 container_of(work, struct prefetch_mr_work, work);
1725
1726 if (ib_device_try_get(w->pd->device)) {
1727 mlx5_ib_prefetch_sg_list(w->pd, w->pf_flags, w->sg_list,
1728 w->num_sge);
1729 ib_device_put(w->pd->device);
1730 }
1731
1732 num_pending_prefetch_dec(to_mdev(w->pd->device), w->sg_list,
1733 w->num_sge, 0);
1734 kvfree(w);
1735 }
1736
1737 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1738 enum ib_uverbs_advise_mr_advice advice,
1739 u32 flags, struct ib_sge *sg_list, u32 num_sge)
1740 {
1741 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1742 u32 pf_flags = MLX5_PF_FLAGS_PREFETCH;
1743 struct prefetch_mr_work *work;
1744 bool valid_req;
1745 int srcu_key;
1746
1747 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1748 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1749
1750 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1751 return mlx5_ib_prefetch_sg_list(pd, pf_flags, sg_list,
1752 num_sge);
1753
1754 work = kvzalloc(struct_size(work, sg_list, num_sge), GFP_KERNEL);
1755 if (!work)
1756 return -ENOMEM;
1757
1758 memcpy(work->sg_list, sg_list, num_sge * sizeof(struct ib_sge));
1759
1760 /* It is guaranteed that the pd when work is executed is the pd when
1761 * work was queued since pd can't be destroyed while it holds MRs and
1762 * destroying a MR leads to flushing the workquque
1763 */
1764 work->pd = pd;
1765 work->pf_flags = pf_flags;
1766 work->num_sge = num_sge;
1767
1768 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1769
1770 srcu_key = srcu_read_lock(&dev->mr_srcu);
1771
1772 valid_req = num_pending_prefetch_inc(pd, sg_list, num_sge);
1773 if (valid_req)
1774 queue_work(system_unbound_wq, &work->work);
1775 else
1776 kvfree(work);
1777
1778 srcu_read_unlock(&dev->mr_srcu, srcu_key);
1779
1780 return valid_req ? 0 : -EINVAL;
1781 }