]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/infiniband/hw/mlx5/odp.c
IB/mlx5: Add implicit MR support
[mirror_ubuntu-hirsute-kernel.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35
36 #include "mlx5_ib.h"
37 #include "cmd.h"
38
39 #define MAX_PREFETCH_LEN (4*1024*1024U)
40
41 /* Timeout in ms to wait for an active mmu notifier to complete when handling
42 * a pagefault. */
43 #define MMU_NOTIFIER_TIMEOUT 1000
44
45 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
46 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
47 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
48 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
49 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
50
51 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
52
53 static u64 mlx5_imr_ksm_entries;
54
55 static int check_parent(struct ib_umem_odp *odp,
56 struct mlx5_ib_mr *parent)
57 {
58 struct mlx5_ib_mr *mr = odp->private;
59
60 return mr && mr->parent == parent;
61 }
62
63 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
64 {
65 struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
66 struct ib_ucontext *ctx = odp->umem->context;
67 struct rb_node *rb;
68
69 down_read(&ctx->umem_rwsem);
70 while (1) {
71 rb = rb_next(&odp->interval_tree.rb);
72 if (!rb)
73 goto not_found;
74 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
75 if (check_parent(odp, parent))
76 goto end;
77 }
78 not_found:
79 odp = NULL;
80 end:
81 up_read(&ctx->umem_rwsem);
82 return odp;
83 }
84
85 static struct ib_umem_odp *odp_lookup(struct ib_ucontext *ctx,
86 u64 start, u64 length,
87 struct mlx5_ib_mr *parent)
88 {
89 struct ib_umem_odp *odp;
90 struct rb_node *rb;
91
92 down_read(&ctx->umem_rwsem);
93 odp = rbt_ib_umem_lookup(&ctx->umem_tree, start, length);
94 if (!odp)
95 goto end;
96
97 while (1) {
98 if (check_parent(odp, parent))
99 goto end;
100 rb = rb_next(&odp->interval_tree.rb);
101 if (!rb)
102 goto not_found;
103 odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
104 if (ib_umem_start(odp->umem) > start + length)
105 goto not_found;
106 }
107 not_found:
108 odp = NULL;
109 end:
110 up_read(&ctx->umem_rwsem);
111 return odp;
112 }
113
114 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
115 size_t nentries, struct mlx5_ib_mr *mr, int flags)
116 {
117 struct ib_pd *pd = mr->ibmr.pd;
118 struct ib_ucontext *ctx = pd->uobject->context;
119 struct mlx5_ib_dev *dev = to_mdev(pd->device);
120 struct ib_umem_odp *odp;
121 unsigned long va;
122 int i;
123
124 if (flags & MLX5_IB_UPD_XLT_ZAP) {
125 for (i = 0; i < nentries; i++, pklm++) {
126 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
127 pklm->key = cpu_to_be32(dev->null_mkey);
128 pklm->va = 0;
129 }
130 return;
131 }
132
133 odp = odp_lookup(ctx, offset * MLX5_IMR_MTT_SIZE,
134 nentries * MLX5_IMR_MTT_SIZE, mr);
135
136 for (i = 0; i < nentries; i++, pklm++) {
137 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
138 va = (offset + i) * MLX5_IMR_MTT_SIZE;
139 if (odp && odp->umem->address == va) {
140 struct mlx5_ib_mr *mtt = odp->private;
141
142 pklm->key = cpu_to_be32(mtt->ibmr.lkey);
143 odp = odp_next(odp);
144 } else {
145 pklm->key = cpu_to_be32(dev->null_mkey);
146 }
147 mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
148 i, va, be32_to_cpu(pklm->key));
149 }
150 }
151
152 static void mr_leaf_free_action(struct work_struct *work)
153 {
154 struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
155 int idx = ib_umem_start(odp->umem) >> MLX5_IMR_MTT_SHIFT;
156 struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
157
158 mr->parent = NULL;
159 synchronize_srcu(&mr->dev->mr_srcu);
160
161 if (!READ_ONCE(odp->dying)) {
162 mr->parent = imr;
163 if (atomic_dec_and_test(&imr->num_leaf_free))
164 wake_up(&imr->q_leaf_free);
165 return;
166 }
167
168 ib_umem_release(odp->umem);
169 if (imr->live)
170 mlx5_ib_update_xlt(imr, idx, 1, 0,
171 MLX5_IB_UPD_XLT_INDIRECT |
172 MLX5_IB_UPD_XLT_ATOMIC);
173 mlx5_mr_cache_free(mr->dev, mr);
174
175 if (atomic_dec_and_test(&imr->num_leaf_free))
176 wake_up(&imr->q_leaf_free);
177 }
178
179 void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
180 unsigned long end)
181 {
182 struct mlx5_ib_mr *mr;
183 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
184 sizeof(struct mlx5_mtt)) - 1;
185 u64 idx = 0, blk_start_idx = 0;
186 int in_block = 0;
187 u64 addr;
188
189 if (!umem || !umem->odp_data) {
190 pr_err("invalidation called on NULL umem or non-ODP umem\n");
191 return;
192 }
193
194 mr = umem->odp_data->private;
195
196 if (!mr || !mr->ibmr.pd)
197 return;
198
199 start = max_t(u64, ib_umem_start(umem), start);
200 end = min_t(u64, ib_umem_end(umem), end);
201
202 /*
203 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
204 * while we are doing the invalidation, no page fault will attempt to
205 * overwrite the same MTTs. Concurent invalidations might race us,
206 * but they will write 0s as well, so no difference in the end result.
207 */
208
209 for (addr = start; addr < end; addr += (u64)umem->page_size) {
210 idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
211 /*
212 * Strive to write the MTTs in chunks, but avoid overwriting
213 * non-existing MTTs. The huristic here can be improved to
214 * estimate the cost of another UMR vs. the cost of bigger
215 * UMR.
216 */
217 if (umem->odp_data->dma_list[idx] &
218 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
219 if (!in_block) {
220 blk_start_idx = idx;
221 in_block = 1;
222 }
223 } else {
224 u64 umr_offset = idx & umr_block_mask;
225
226 if (in_block && umr_offset == 0) {
227 mlx5_ib_update_xlt(mr, blk_start_idx,
228 idx - blk_start_idx,
229 PAGE_SHIFT,
230 MLX5_IB_UPD_XLT_ZAP |
231 MLX5_IB_UPD_XLT_ATOMIC);
232 in_block = 0;
233 }
234 }
235 }
236 if (in_block)
237 mlx5_ib_update_xlt(mr, blk_start_idx,
238 idx - blk_start_idx + 1,
239 PAGE_SHIFT,
240 MLX5_IB_UPD_XLT_ZAP |
241 MLX5_IB_UPD_XLT_ATOMIC);
242 /*
243 * We are now sure that the device will not access the
244 * memory. We can safely unmap it, and mark it as dirty if
245 * needed.
246 */
247
248 ib_umem_odp_unmap_dma_pages(umem, start, end);
249
250 if (unlikely(!umem->npages && mr->parent &&
251 !umem->odp_data->dying)) {
252 WRITE_ONCE(umem->odp_data->dying, 1);
253 atomic_inc(&mr->parent->num_leaf_free);
254 schedule_work(&umem->odp_data->work);
255 }
256 }
257
258 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
259 {
260 struct ib_odp_caps *caps = &dev->odp_caps;
261
262 memset(caps, 0, sizeof(*caps));
263
264 if (!MLX5_CAP_GEN(dev->mdev, pg))
265 return;
266
267 caps->general_caps = IB_ODP_SUPPORT;
268
269 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
270 dev->odp_max_size = U64_MAX;
271 else
272 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
273
274 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
275 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
276
277 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
278 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
279
280 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
281 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
282
283 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
284 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
285
286 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
287 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
288
289 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
290 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
291
292 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
293 MLX5_CAP_GEN(dev->mdev, null_mkey) &&
294 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
295 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
296
297 return;
298 }
299
300 static struct mlx5_ib_mr *mlx5_ib_odp_find_mr_lkey(struct mlx5_ib_dev *dev,
301 u32 key)
302 {
303 u32 base_key = mlx5_base_mkey(key);
304 struct mlx5_core_mkey *mmkey = __mlx5_mr_lookup(dev->mdev, base_key);
305 struct mlx5_ib_mr *mr;
306
307 if (!mmkey || mmkey->key != key || mmkey->type != MLX5_MKEY_MR)
308 return NULL;
309
310 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
311
312 if (!mr->live)
313 return NULL;
314
315 return container_of(mmkey, struct mlx5_ib_mr, mmkey);
316 }
317
318 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
319 struct mlx5_pagefault *pfault,
320 int error)
321 {
322 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
323 pfault->wqe.wq_num : pfault->token;
324 int ret = mlx5_core_page_fault_resume(dev->mdev,
325 pfault->token,
326 wq_num,
327 pfault->type,
328 error);
329 if (ret)
330 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n",
331 wq_num);
332 }
333
334 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
335 struct ib_umem *umem,
336 bool ksm, int access_flags)
337 {
338 struct mlx5_ib_dev *dev = to_mdev(pd->device);
339 struct mlx5_ib_mr *mr;
340 int err;
341
342 mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
343 MLX5_IMR_MTT_CACHE_ENTRY);
344
345 if (IS_ERR(mr))
346 return mr;
347
348 mr->ibmr.pd = pd;
349
350 mr->dev = dev;
351 mr->access_flags = access_flags;
352 mr->mmkey.iova = 0;
353 mr->umem = umem;
354
355 if (ksm) {
356 err = mlx5_ib_update_xlt(mr, 0,
357 mlx5_imr_ksm_entries,
358 MLX5_KSM_PAGE_SHIFT,
359 MLX5_IB_UPD_XLT_INDIRECT |
360 MLX5_IB_UPD_XLT_ZAP |
361 MLX5_IB_UPD_XLT_ENABLE);
362
363 } else {
364 err = mlx5_ib_update_xlt(mr, 0,
365 MLX5_IMR_MTT_ENTRIES,
366 PAGE_SHIFT,
367 MLX5_IB_UPD_XLT_ZAP |
368 MLX5_IB_UPD_XLT_ENABLE |
369 MLX5_IB_UPD_XLT_ATOMIC);
370 }
371
372 if (err)
373 goto fail;
374
375 mr->ibmr.lkey = mr->mmkey.key;
376 mr->ibmr.rkey = mr->mmkey.key;
377
378 mr->live = 1;
379
380 mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
381 mr->mmkey.key, dev->mdev, mr);
382
383 return mr;
384
385 fail:
386 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
387 mlx5_mr_cache_free(dev, mr);
388
389 return ERR_PTR(err);
390 }
391
392 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
393 u64 io_virt, size_t bcnt)
394 {
395 struct ib_ucontext *ctx = mr->ibmr.pd->uobject->context;
396 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
397 struct ib_umem_odp *odp, *result = NULL;
398 u64 addr = io_virt & MLX5_IMR_MTT_MASK;
399 int nentries = 0, start_idx = 0, ret;
400 struct mlx5_ib_mr *mtt;
401 struct ib_umem *umem;
402
403 mutex_lock(&mr->umem->odp_data->umem_mutex);
404 odp = odp_lookup(ctx, addr, 1, mr);
405
406 mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
407 io_virt, bcnt, addr, odp);
408
409 next_mr:
410 if (likely(odp)) {
411 if (nentries)
412 nentries++;
413 } else {
414 umem = ib_alloc_odp_umem(ctx, addr, MLX5_IMR_MTT_SIZE);
415 if (IS_ERR(umem)) {
416 mutex_unlock(&mr->umem->odp_data->umem_mutex);
417 return ERR_CAST(umem);
418 }
419
420 mtt = implicit_mr_alloc(mr->ibmr.pd, umem, 0, mr->access_flags);
421 if (IS_ERR(mtt)) {
422 mutex_unlock(&mr->umem->odp_data->umem_mutex);
423 ib_umem_release(umem);
424 return ERR_CAST(mtt);
425 }
426
427 odp = umem->odp_data;
428 odp->private = mtt;
429 mtt->umem = umem;
430 mtt->mmkey.iova = addr;
431 mtt->parent = mr;
432 INIT_WORK(&odp->work, mr_leaf_free_action);
433
434 if (!nentries)
435 start_idx = addr >> MLX5_IMR_MTT_SHIFT;
436 nentries++;
437 }
438
439 odp->dying = 0;
440
441 /* Return first odp if region not covered by single one */
442 if (likely(!result))
443 result = odp;
444
445 addr += MLX5_IMR_MTT_SIZE;
446 if (unlikely(addr < io_virt + bcnt)) {
447 odp = odp_next(odp);
448 if (odp && odp->umem->address != addr)
449 odp = NULL;
450 goto next_mr;
451 }
452
453 if (unlikely(nentries)) {
454 ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
455 MLX5_IB_UPD_XLT_INDIRECT |
456 MLX5_IB_UPD_XLT_ATOMIC);
457 if (ret) {
458 mlx5_ib_err(dev, "Failed to update PAS\n");
459 result = ERR_PTR(ret);
460 }
461 }
462
463 mutex_unlock(&mr->umem->odp_data->umem_mutex);
464 return result;
465 }
466
467 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
468 int access_flags)
469 {
470 struct ib_ucontext *ctx = pd->ibpd.uobject->context;
471 struct mlx5_ib_mr *imr;
472 struct ib_umem *umem;
473
474 umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
475 if (IS_ERR(umem))
476 return ERR_CAST(umem);
477
478 imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
479 if (IS_ERR(imr)) {
480 ib_umem_release(umem);
481 return ERR_CAST(imr);
482 }
483
484 imr->umem = umem;
485 init_waitqueue_head(&imr->q_leaf_free);
486 atomic_set(&imr->num_leaf_free, 0);
487
488 return imr;
489 }
490
491 static int mr_leaf_free(struct ib_umem *umem, u64 start,
492 u64 end, void *cookie)
493 {
494 struct mlx5_ib_mr *mr = umem->odp_data->private, *imr = cookie;
495
496 if (mr->parent != imr)
497 return 0;
498
499 ib_umem_odp_unmap_dma_pages(umem,
500 ib_umem_start(umem),
501 ib_umem_end(umem));
502
503 if (umem->odp_data->dying)
504 return 0;
505
506 WRITE_ONCE(umem->odp_data->dying, 1);
507 atomic_inc(&imr->num_leaf_free);
508 schedule_work(&umem->odp_data->work);
509
510 return 0;
511 }
512
513 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
514 {
515 struct ib_ucontext *ctx = imr->ibmr.pd->uobject->context;
516
517 down_read(&ctx->umem_rwsem);
518 rbt_ib_umem_for_each_in_range(&ctx->umem_tree, 0, ULLONG_MAX,
519 mr_leaf_free, imr);
520 up_read(&ctx->umem_rwsem);
521
522 wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
523 }
524
525 /*
526 * Handle a single data segment in a page-fault WQE or RDMA region.
527 *
528 * Returns number of pages retrieved on success. The caller may continue to
529 * the next data segment.
530 * Can return the following error codes:
531 * -EAGAIN to designate a temporary error. The caller will abort handling the
532 * page fault and resolve it.
533 * -EFAULT when there's an error mapping the requested pages. The caller will
534 * abort the page fault handling.
535 */
536 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
537 u32 key, u64 io_virt, size_t bcnt,
538 u32 *bytes_committed,
539 u32 *bytes_mapped)
540 {
541 int srcu_key;
542 unsigned int current_seq = 0;
543 u64 start_idx;
544 int npages = 0, ret = 0;
545 struct mlx5_ib_mr *mr;
546 u64 access_mask = ODP_READ_ALLOWED_BIT;
547 struct ib_umem_odp *odp;
548 int implicit = 0;
549 size_t size;
550
551 srcu_key = srcu_read_lock(&dev->mr_srcu);
552 mr = mlx5_ib_odp_find_mr_lkey(dev, key);
553 /*
554 * If we didn't find the MR, it means the MR was closed while we were
555 * handling the ODP event. In this case we return -EFAULT so that the
556 * QP will be closed.
557 */
558 if (!mr || !mr->ibmr.pd) {
559 mlx5_ib_dbg(dev, "Failed to find relevant mr for lkey=0x%06x, probably the MR was destroyed\n",
560 key);
561 ret = -EFAULT;
562 goto srcu_unlock;
563 }
564 if (!mr->umem->odp_data) {
565 mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
566 key);
567 if (bytes_mapped)
568 *bytes_mapped +=
569 (bcnt - *bytes_committed);
570 goto srcu_unlock;
571 }
572
573 /*
574 * Avoid branches - this code will perform correctly
575 * in all iterations (in iteration 2 and above,
576 * bytes_committed == 0).
577 */
578 io_virt += *bytes_committed;
579 bcnt -= *bytes_committed;
580
581 if (!mr->umem->odp_data->page_list) {
582 odp = implicit_mr_get_data(mr, io_virt, bcnt);
583
584 if (IS_ERR(odp)) {
585 ret = PTR_ERR(odp);
586 goto srcu_unlock;
587 }
588 mr = odp->private;
589 implicit = 1;
590
591 } else {
592 odp = mr->umem->odp_data;
593 }
594
595 next_mr:
596 current_seq = READ_ONCE(odp->notifiers_seq);
597 /*
598 * Ensure the sequence number is valid for some time before we call
599 * gup.
600 */
601 smp_rmb();
602
603 size = min_t(size_t, bcnt, ib_umem_end(odp->umem) - io_virt);
604 start_idx = (io_virt - (mr->mmkey.iova & PAGE_MASK)) >> PAGE_SHIFT;
605
606 if (mr->umem->writable)
607 access_mask |= ODP_WRITE_ALLOWED_BIT;
608
609 ret = ib_umem_odp_map_dma_pages(mr->umem, io_virt, size,
610 access_mask, current_seq);
611
612 if (ret < 0)
613 goto srcu_unlock;
614
615 if (ret > 0) {
616 int np = ret;
617
618 mutex_lock(&odp->umem_mutex);
619 if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
620 /*
621 * No need to check whether the MTTs really belong to
622 * this MR, since ib_umem_odp_map_dma_pages already
623 * checks this.
624 */
625 ret = mlx5_ib_update_xlt(mr, start_idx, np,
626 PAGE_SHIFT,
627 MLX5_IB_UPD_XLT_ATOMIC);
628 } else {
629 ret = -EAGAIN;
630 }
631 mutex_unlock(&odp->umem_mutex);
632 if (ret < 0) {
633 if (ret != -EAGAIN)
634 mlx5_ib_err(dev, "Failed to update mkey page tables\n");
635 goto srcu_unlock;
636 }
637
638 if (bytes_mapped) {
639 u32 new_mappings = np * PAGE_SIZE -
640 (io_virt - round_down(io_virt, PAGE_SIZE));
641 *bytes_mapped += min_t(u32, new_mappings, size);
642 }
643
644 npages += np;
645 }
646
647 bcnt -= size;
648 if (unlikely(bcnt)) {
649 struct ib_umem_odp *next;
650
651 io_virt += size;
652 next = odp_next(odp);
653 if (unlikely(!next || next->umem->address != io_virt)) {
654 mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
655 io_virt, next);
656 ret = -EAGAIN;
657 goto srcu_unlock_no_wait;
658 }
659 odp = next;
660 mr = odp->private;
661 goto next_mr;
662 }
663
664 srcu_unlock:
665 if (ret == -EAGAIN) {
666 if (implicit || !odp->dying) {
667 unsigned long timeout =
668 msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
669
670 if (!wait_for_completion_timeout(
671 &odp->notifier_completion,
672 timeout)) {
673 mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n",
674 current_seq, odp->notifiers_seq);
675 }
676 } else {
677 /* The MR is being killed, kill the QP as well. */
678 ret = -EFAULT;
679 }
680 }
681
682 srcu_unlock_no_wait:
683 srcu_read_unlock(&dev->mr_srcu, srcu_key);
684 *bytes_committed = 0;
685 return ret ? ret : npages;
686 }
687
688 /**
689 * Parse a series of data segments for page fault handling.
690 *
691 * @qp the QP on which the fault occurred.
692 * @pfault contains page fault information.
693 * @wqe points at the first data segment in the WQE.
694 * @wqe_end points after the end of the WQE.
695 * @bytes_mapped receives the number of bytes that the function was able to
696 * map. This allows the caller to decide intelligently whether
697 * enough memory was mapped to resolve the page fault
698 * successfully (e.g. enough for the next MTU, or the entire
699 * WQE).
700 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
701 * the committed bytes).
702 *
703 * Returns the number of pages loaded if positive, zero for an empty WQE, or a
704 * negative error code.
705 */
706 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
707 struct mlx5_pagefault *pfault,
708 struct mlx5_ib_qp *qp, void *wqe,
709 void *wqe_end, u32 *bytes_mapped,
710 u32 *total_wqe_bytes, int receive_queue)
711 {
712 int ret = 0, npages = 0;
713 u64 io_virt;
714 u32 key;
715 u32 byte_count;
716 size_t bcnt;
717 int inline_segment;
718
719 /* Skip SRQ next-WQE segment. */
720 if (receive_queue && qp->ibqp.srq)
721 wqe += sizeof(struct mlx5_wqe_srq_next_seg);
722
723 if (bytes_mapped)
724 *bytes_mapped = 0;
725 if (total_wqe_bytes)
726 *total_wqe_bytes = 0;
727
728 while (wqe < wqe_end) {
729 struct mlx5_wqe_data_seg *dseg = wqe;
730
731 io_virt = be64_to_cpu(dseg->addr);
732 key = be32_to_cpu(dseg->lkey);
733 byte_count = be32_to_cpu(dseg->byte_count);
734 inline_segment = !!(byte_count & MLX5_INLINE_SEG);
735 bcnt = byte_count & ~MLX5_INLINE_SEG;
736
737 if (inline_segment) {
738 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
739 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
740 16);
741 } else {
742 wqe += sizeof(*dseg);
743 }
744
745 /* receive WQE end of sg list. */
746 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
747 io_virt == 0)
748 break;
749
750 if (!inline_segment && total_wqe_bytes) {
751 *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
752 pfault->bytes_committed);
753 }
754
755 /* A zero length data segment designates a length of 2GB. */
756 if (bcnt == 0)
757 bcnt = 1U << 31;
758
759 if (inline_segment || bcnt <= pfault->bytes_committed) {
760 pfault->bytes_committed -=
761 min_t(size_t, bcnt,
762 pfault->bytes_committed);
763 continue;
764 }
765
766 ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
767 &pfault->bytes_committed,
768 bytes_mapped);
769 if (ret < 0)
770 break;
771 npages += ret;
772 }
773
774 return ret < 0 ? ret : npages;
775 }
776
777 static const u32 mlx5_ib_odp_opcode_cap[] = {
778 [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND,
779 [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND,
780 [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND,
781 [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE,
782 [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE,
783 [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ,
784 [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC,
785 [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC,
786 };
787
788 /*
789 * Parse initiator WQE. Advances the wqe pointer to point at the
790 * scatter-gather list, and set wqe_end to the end of the WQE.
791 */
792 static int mlx5_ib_mr_initiator_pfault_handler(
793 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
794 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
795 {
796 struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
797 u16 wqe_index = pfault->wqe.wqe_index;
798 u32 transport_caps;
799 struct mlx5_base_av *av;
800 unsigned ds, opcode;
801 #if defined(DEBUG)
802 u32 ctrl_wqe_index, ctrl_qpn;
803 #endif
804 u32 qpn = qp->trans_qp.base.mqp.qpn;
805
806 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
807 if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
808 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
809 ds, wqe_length);
810 return -EFAULT;
811 }
812
813 if (ds == 0) {
814 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
815 wqe_index, qpn);
816 return -EFAULT;
817 }
818
819 #if defined(DEBUG)
820 ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
821 MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
822 MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
823 if (wqe_index != ctrl_wqe_index) {
824 mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
825 wqe_index, qpn,
826 ctrl_wqe_index);
827 return -EFAULT;
828 }
829
830 ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
831 MLX5_WQE_CTRL_QPN_SHIFT;
832 if (qpn != ctrl_qpn) {
833 mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
834 wqe_index, qpn,
835 ctrl_qpn);
836 return -EFAULT;
837 }
838 #endif /* DEBUG */
839
840 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
841 *wqe += sizeof(*ctrl);
842
843 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
844 MLX5_WQE_CTRL_OPCODE_MASK;
845
846 switch (qp->ibqp.qp_type) {
847 case IB_QPT_RC:
848 transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
849 break;
850 case IB_QPT_UD:
851 transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
852 break;
853 default:
854 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
855 qp->ibqp.qp_type);
856 return -EFAULT;
857 }
858
859 if (unlikely(opcode >= sizeof(mlx5_ib_odp_opcode_cap) /
860 sizeof(mlx5_ib_odp_opcode_cap[0]) ||
861 !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
862 mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
863 opcode);
864 return -EFAULT;
865 }
866
867 if (qp->ibqp.qp_type != IB_QPT_RC) {
868 av = *wqe;
869 if (av->dqp_dct & be32_to_cpu(MLX5_WQE_AV_EXT))
870 *wqe += sizeof(struct mlx5_av);
871 else
872 *wqe += sizeof(struct mlx5_base_av);
873 }
874
875 switch (opcode) {
876 case MLX5_OPCODE_RDMA_WRITE:
877 case MLX5_OPCODE_RDMA_WRITE_IMM:
878 case MLX5_OPCODE_RDMA_READ:
879 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
880 break;
881 case MLX5_OPCODE_ATOMIC_CS:
882 case MLX5_OPCODE_ATOMIC_FA:
883 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
884 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
885 break;
886 }
887
888 return 0;
889 }
890
891 /*
892 * Parse responder WQE. Advances the wqe pointer to point at the
893 * scatter-gather list, and set wqe_end to the end of the WQE.
894 */
895 static int mlx5_ib_mr_responder_pfault_handler(
896 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
897 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
898 {
899 struct mlx5_ib_wq *wq = &qp->rq;
900 int wqe_size = 1 << wq->wqe_shift;
901
902 if (qp->ibqp.srq) {
903 mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
904 return -EFAULT;
905 }
906
907 if (qp->wq_sig) {
908 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
909 return -EFAULT;
910 }
911
912 if (wqe_size > wqe_length) {
913 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
914 return -EFAULT;
915 }
916
917 switch (qp->ibqp.qp_type) {
918 case IB_QPT_RC:
919 if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
920 IB_ODP_SUPPORT_RECV))
921 goto invalid_transport_or_opcode;
922 break;
923 default:
924 invalid_transport_or_opcode:
925 mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
926 qp->ibqp.qp_type);
927 return -EFAULT;
928 }
929
930 *wqe_end = *wqe + wqe_size;
931
932 return 0;
933 }
934
935 static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev,
936 u32 wq_num)
937 {
938 struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num);
939
940 if (!mqp) {
941 mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num);
942 return NULL;
943 }
944
945 return to_mibqp(mqp);
946 }
947
948 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
949 struct mlx5_pagefault *pfault)
950 {
951 int ret;
952 void *wqe, *wqe_end;
953 u32 bytes_mapped, total_wqe_bytes;
954 char *buffer = NULL;
955 int resume_with_error = 1;
956 u16 wqe_index = pfault->wqe.wqe_index;
957 int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
958 struct mlx5_ib_qp *qp;
959
960 buffer = (char *)__get_free_page(GFP_KERNEL);
961 if (!buffer) {
962 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
963 goto resolve_page_fault;
964 }
965
966 qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num);
967 if (!qp)
968 goto resolve_page_fault;
969
970 ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
971 PAGE_SIZE, &qp->trans_qp.base);
972 if (ret < 0) {
973 mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
974 ret, wqe_index, pfault->token);
975 goto resolve_page_fault;
976 }
977
978 wqe = buffer;
979 if (requestor)
980 ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
981 &wqe_end, ret);
982 else
983 ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
984 &wqe_end, ret);
985 if (ret < 0)
986 goto resolve_page_fault;
987
988 if (wqe >= wqe_end) {
989 mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
990 goto resolve_page_fault;
991 }
992
993 ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
994 &bytes_mapped, &total_wqe_bytes,
995 !requestor);
996 if (ret == -EAGAIN) {
997 resume_with_error = 0;
998 goto resolve_page_fault;
999 } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
1000 if (ret != -ENOENT)
1001 mlx5_ib_err(dev, "PAGE FAULT error: %d. QP 0x%x. type: 0x%x\n",
1002 ret, pfault->wqe.wq_num, pfault->type);
1003 goto resolve_page_fault;
1004 }
1005
1006 resume_with_error = 0;
1007 resolve_page_fault:
1008 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1009 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1010 pfault->wqe.wq_num, resume_with_error,
1011 pfault->type);
1012 free_page((unsigned long)buffer);
1013 }
1014
1015 static int pages_in_range(u64 address, u32 length)
1016 {
1017 return (ALIGN(address + length, PAGE_SIZE) -
1018 (address & PAGE_MASK)) >> PAGE_SHIFT;
1019 }
1020
1021 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1022 struct mlx5_pagefault *pfault)
1023 {
1024 u64 address;
1025 u32 length;
1026 u32 prefetch_len = pfault->bytes_committed;
1027 int prefetch_activated = 0;
1028 u32 rkey = pfault->rdma.r_key;
1029 int ret;
1030
1031 /* The RDMA responder handler handles the page fault in two parts.
1032 * First it brings the necessary pages for the current packet
1033 * (and uses the pfault context), and then (after resuming the QP)
1034 * prefetches more pages. The second operation cannot use the pfault
1035 * context and therefore uses the dummy_pfault context allocated on
1036 * the stack */
1037 pfault->rdma.rdma_va += pfault->bytes_committed;
1038 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1039 pfault->rdma.rdma_op_len);
1040 pfault->bytes_committed = 0;
1041
1042 address = pfault->rdma.rdma_va;
1043 length = pfault->rdma.rdma_op_len;
1044
1045 /* For some operations, the hardware cannot tell the exact message
1046 * length, and in those cases it reports zero. Use prefetch
1047 * logic. */
1048 if (length == 0) {
1049 prefetch_activated = 1;
1050 length = pfault->rdma.packet_size;
1051 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1052 }
1053
1054 ret = pagefault_single_data_segment(dev, rkey, address, length,
1055 &pfault->bytes_committed, NULL);
1056 if (ret == -EAGAIN) {
1057 /* We're racing with an invalidation, don't prefetch */
1058 prefetch_activated = 0;
1059 } else if (ret < 0 || pages_in_range(address, length) > ret) {
1060 mlx5_ib_page_fault_resume(dev, pfault, 1);
1061 if (ret != -ENOENT)
1062 mlx5_ib_warn(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1063 ret, pfault->token, pfault->type);
1064 return;
1065 }
1066
1067 mlx5_ib_page_fault_resume(dev, pfault, 0);
1068 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1069 pfault->token, pfault->type,
1070 prefetch_activated);
1071
1072 /* At this point, there might be a new pagefault already arriving in
1073 * the eq, switch to the dummy pagefault for the rest of the
1074 * processing. We're still OK with the objects being alive as the
1075 * work-queue is being fenced. */
1076
1077 if (prefetch_activated) {
1078 u32 bytes_committed = 0;
1079
1080 ret = pagefault_single_data_segment(dev, rkey, address,
1081 prefetch_len,
1082 &bytes_committed, NULL);
1083 if (ret < 0 && ret != -EAGAIN) {
1084 mlx5_ib_warn(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1085 ret, pfault->token, address, prefetch_len);
1086 }
1087 }
1088 }
1089
1090 void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context,
1091 struct mlx5_pagefault *pfault)
1092 {
1093 struct mlx5_ib_dev *dev = context;
1094 u8 event_subtype = pfault->event_subtype;
1095
1096 switch (event_subtype) {
1097 case MLX5_PFAULT_SUBTYPE_WQE:
1098 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1099 break;
1100 case MLX5_PFAULT_SUBTYPE_RDMA:
1101 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1102 break;
1103 default:
1104 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1105 event_subtype);
1106 mlx5_ib_page_fault_resume(dev, pfault, 1);
1107 }
1108 }
1109
1110 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1111 {
1112 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1113 return;
1114
1115 switch (ent->order - 2) {
1116 case MLX5_IMR_MTT_CACHE_ENTRY:
1117 ent->page = PAGE_SHIFT;
1118 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1119 sizeof(struct mlx5_mtt) /
1120 MLX5_IB_UMR_OCTOWORD;
1121 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1122 ent->limit = 0;
1123 break;
1124
1125 case MLX5_IMR_KSM_CACHE_ENTRY:
1126 ent->page = MLX5_KSM_PAGE_SHIFT;
1127 ent->xlt = mlx5_imr_ksm_entries *
1128 sizeof(struct mlx5_klm) /
1129 MLX5_IB_UMR_OCTOWORD;
1130 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1131 ent->limit = 0;
1132 break;
1133 }
1134 }
1135
1136 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1137 {
1138 int ret;
1139
1140 ret = init_srcu_struct(&dev->mr_srcu);
1141 if (ret)
1142 return ret;
1143
1144 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1145 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1146 if (ret) {
1147 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1148 return ret;
1149 }
1150 }
1151
1152 return 0;
1153 }
1154
1155 void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *dev)
1156 {
1157 cleanup_srcu_struct(&dev->mr_srcu);
1158 }
1159
1160 int mlx5_ib_odp_init(void)
1161 {
1162 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1163 MLX5_IMR_MTT_BITS);
1164
1165 return 0;
1166 }
1167