]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/infiniband/sw/rdmavt/mr.c
Merge tag 'iwlwifi-next-for-kalle-2016-07-06' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-bionic-kernel.git] / drivers / infiniband / sw / rdmavt / mr.c
1 /*
2 * Copyright(c) 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/slab.h>
49 #include <linux/vmalloc.h>
50 #include <rdma/ib_umem.h>
51 #include <rdma/rdma_vt.h>
52 #include "vt.h"
53 #include "mr.h"
54
55 /**
56 * rvt_driver_mr_init - Init MR resources per driver
57 * @rdi: rvt dev struct
58 *
59 * Do any intilization needed when a driver registers with rdmavt.
60 *
61 * Return: 0 on success or errno on failure
62 */
63 int rvt_driver_mr_init(struct rvt_dev_info *rdi)
64 {
65 unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
66 unsigned lk_tab_size;
67 int i;
68
69 /*
70 * The top hfi1_lkey_table_size bits are used to index the
71 * table. The lower 8 bits can be owned by the user (copied from
72 * the LKEY). The remaining bits act as a generation number or tag.
73 */
74 if (!lkey_table_size)
75 return -EINVAL;
76
77 spin_lock_init(&rdi->lkey_table.lock);
78
79 /* ensure generation is at least 4 bits */
80 if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
81 rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
82 lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
83 rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
84 lkey_table_size = rdi->dparms.lkey_table_size;
85 }
86 rdi->lkey_table.max = 1 << lkey_table_size;
87 lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
88 rdi->lkey_table.table = (struct rvt_mregion __rcu **)
89 vmalloc_node(lk_tab_size, rdi->dparms.node);
90 if (!rdi->lkey_table.table)
91 return -ENOMEM;
92
93 RCU_INIT_POINTER(rdi->dma_mr, NULL);
94 for (i = 0; i < rdi->lkey_table.max; i++)
95 RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
96
97 return 0;
98 }
99
100 /**
101 *rvt_mr_exit: clean up MR
102 *@rdi: rvt dev structure
103 *
104 * called when drivers have unregistered or perhaps failed to register with us
105 */
106 void rvt_mr_exit(struct rvt_dev_info *rdi)
107 {
108 if (rdi->dma_mr)
109 rvt_pr_err(rdi, "DMA MR not null!\n");
110
111 vfree(rdi->lkey_table.table);
112 }
113
114 static void rvt_deinit_mregion(struct rvt_mregion *mr)
115 {
116 int i = mr->mapsz;
117
118 mr->mapsz = 0;
119 while (i)
120 kfree(mr->map[--i]);
121 }
122
123 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
124 int count)
125 {
126 int m, i = 0;
127 struct rvt_dev_info *dev = ib_to_rvt(pd->device);
128
129 mr->mapsz = 0;
130 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
131 for (; i < m; i++) {
132 mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
133 dev->dparms.node);
134 if (!mr->map[i]) {
135 rvt_deinit_mregion(mr);
136 return -ENOMEM;
137 }
138 mr->mapsz++;
139 }
140 init_completion(&mr->comp);
141 /* count returning the ptr to user */
142 atomic_set(&mr->refcount, 1);
143 mr->pd = pd;
144 mr->max_segs = count;
145 return 0;
146 }
147
148 /**
149 * rvt_alloc_lkey - allocate an lkey
150 * @mr: memory region that this lkey protects
151 * @dma_region: 0->normal key, 1->restricted DMA key
152 *
153 * Returns 0 if successful, otherwise returns -errno.
154 *
155 * Increments mr reference count as required.
156 *
157 * Sets the lkey field mr for non-dma regions.
158 *
159 */
160 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
161 {
162 unsigned long flags;
163 u32 r;
164 u32 n;
165 int ret = 0;
166 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
167 struct rvt_lkey_table *rkt = &dev->lkey_table;
168
169 rvt_get_mr(mr);
170 spin_lock_irqsave(&rkt->lock, flags);
171
172 /* special case for dma_mr lkey == 0 */
173 if (dma_region) {
174 struct rvt_mregion *tmr;
175
176 tmr = rcu_access_pointer(dev->dma_mr);
177 if (!tmr) {
178 rcu_assign_pointer(dev->dma_mr, mr);
179 mr->lkey_published = 1;
180 } else {
181 rvt_put_mr(mr);
182 }
183 goto success;
184 }
185
186 /* Find the next available LKEY */
187 r = rkt->next;
188 n = r;
189 for (;;) {
190 if (!rcu_access_pointer(rkt->table[r]))
191 break;
192 r = (r + 1) & (rkt->max - 1);
193 if (r == n)
194 goto bail;
195 }
196 rkt->next = (r + 1) & (rkt->max - 1);
197 /*
198 * Make sure lkey is never zero which is reserved to indicate an
199 * unrestricted LKEY.
200 */
201 rkt->gen++;
202 /*
203 * bits are capped to ensure enough bits for generation number
204 */
205 mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
206 ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
207 << 8);
208 if (mr->lkey == 0) {
209 mr->lkey |= 1 << 8;
210 rkt->gen++;
211 }
212 rcu_assign_pointer(rkt->table[r], mr);
213 mr->lkey_published = 1;
214 success:
215 spin_unlock_irqrestore(&rkt->lock, flags);
216 out:
217 return ret;
218 bail:
219 rvt_put_mr(mr);
220 spin_unlock_irqrestore(&rkt->lock, flags);
221 ret = -ENOMEM;
222 goto out;
223 }
224
225 /**
226 * rvt_free_lkey - free an lkey
227 * @mr: mr to free from tables
228 */
229 static void rvt_free_lkey(struct rvt_mregion *mr)
230 {
231 unsigned long flags;
232 u32 lkey = mr->lkey;
233 u32 r;
234 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
235 struct rvt_lkey_table *rkt = &dev->lkey_table;
236 int freed = 0;
237
238 spin_lock_irqsave(&rkt->lock, flags);
239 if (!mr->lkey_published)
240 goto out;
241 if (lkey == 0) {
242 RCU_INIT_POINTER(dev->dma_mr, NULL);
243 } else {
244 r = lkey >> (32 - dev->dparms.lkey_table_size);
245 RCU_INIT_POINTER(rkt->table[r], NULL);
246 }
247 mr->lkey_published = 0;
248 freed++;
249 out:
250 spin_unlock_irqrestore(&rkt->lock, flags);
251 if (freed) {
252 synchronize_rcu();
253 rvt_put_mr(mr);
254 }
255 }
256
257 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
258 {
259 struct rvt_mr *mr;
260 int rval = -ENOMEM;
261 int m;
262
263 /* Allocate struct plus pointers to first level page tables. */
264 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
265 mr = kzalloc(sizeof(*mr) + m * sizeof(mr->mr.map[0]), GFP_KERNEL);
266 if (!mr)
267 goto bail;
268
269 rval = rvt_init_mregion(&mr->mr, pd, count);
270 if (rval)
271 goto bail;
272 /*
273 * ib_reg_phys_mr() will initialize mr->ibmr except for
274 * lkey and rkey.
275 */
276 rval = rvt_alloc_lkey(&mr->mr, 0);
277 if (rval)
278 goto bail_mregion;
279 mr->ibmr.lkey = mr->mr.lkey;
280 mr->ibmr.rkey = mr->mr.lkey;
281 done:
282 return mr;
283
284 bail_mregion:
285 rvt_deinit_mregion(&mr->mr);
286 bail:
287 kfree(mr);
288 mr = ERR_PTR(rval);
289 goto done;
290 }
291
292 static void __rvt_free_mr(struct rvt_mr *mr)
293 {
294 rvt_deinit_mregion(&mr->mr);
295 rvt_free_lkey(&mr->mr);
296 vfree(mr);
297 }
298
299 /**
300 * rvt_get_dma_mr - get a DMA memory region
301 * @pd: protection domain for this memory region
302 * @acc: access flags
303 *
304 * Return: the memory region on success, otherwise returns an errno.
305 * Note that all DMA addresses should be created via the
306 * struct ib_dma_mapping_ops functions (see dma.c).
307 */
308 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
309 {
310 struct rvt_mr *mr;
311 struct ib_mr *ret;
312 int rval;
313
314 if (ibpd_to_rvtpd(pd)->user)
315 return ERR_PTR(-EPERM);
316
317 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
318 if (!mr) {
319 ret = ERR_PTR(-ENOMEM);
320 goto bail;
321 }
322
323 rval = rvt_init_mregion(&mr->mr, pd, 0);
324 if (rval) {
325 ret = ERR_PTR(rval);
326 goto bail;
327 }
328
329 rval = rvt_alloc_lkey(&mr->mr, 1);
330 if (rval) {
331 ret = ERR_PTR(rval);
332 goto bail_mregion;
333 }
334
335 mr->mr.access_flags = acc;
336 ret = &mr->ibmr;
337 done:
338 return ret;
339
340 bail_mregion:
341 rvt_deinit_mregion(&mr->mr);
342 bail:
343 kfree(mr);
344 goto done;
345 }
346
347 /**
348 * rvt_reg_user_mr - register a userspace memory region
349 * @pd: protection domain for this memory region
350 * @start: starting userspace address
351 * @length: length of region to register
352 * @mr_access_flags: access flags for this memory region
353 * @udata: unused by the driver
354 *
355 * Return: the memory region on success, otherwise returns an errno.
356 */
357 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
358 u64 virt_addr, int mr_access_flags,
359 struct ib_udata *udata)
360 {
361 struct rvt_mr *mr;
362 struct ib_umem *umem;
363 struct scatterlist *sg;
364 int n, m, entry;
365 struct ib_mr *ret;
366
367 if (length == 0)
368 return ERR_PTR(-EINVAL);
369
370 umem = ib_umem_get(pd->uobject->context, start, length,
371 mr_access_flags, 0);
372 if (IS_ERR(umem))
373 return (void *)umem;
374
375 n = umem->nmap;
376
377 mr = __rvt_alloc_mr(n, pd);
378 if (IS_ERR(mr)) {
379 ret = (struct ib_mr *)mr;
380 goto bail_umem;
381 }
382
383 mr->mr.user_base = start;
384 mr->mr.iova = virt_addr;
385 mr->mr.length = length;
386 mr->mr.offset = ib_umem_offset(umem);
387 mr->mr.access_flags = mr_access_flags;
388 mr->umem = umem;
389
390 if (is_power_of_2(umem->page_size))
391 mr->mr.page_shift = ilog2(umem->page_size);
392 m = 0;
393 n = 0;
394 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
395 void *vaddr;
396
397 vaddr = page_address(sg_page(sg));
398 if (!vaddr) {
399 ret = ERR_PTR(-EINVAL);
400 goto bail_inval;
401 }
402 mr->mr.map[m]->segs[n].vaddr = vaddr;
403 mr->mr.map[m]->segs[n].length = umem->page_size;
404 n++;
405 if (n == RVT_SEGSZ) {
406 m++;
407 n = 0;
408 }
409 }
410 return &mr->ibmr;
411
412 bail_inval:
413 __rvt_free_mr(mr);
414
415 bail_umem:
416 ib_umem_release(umem);
417
418 return ret;
419 }
420
421 /**
422 * rvt_dereg_mr - unregister and free a memory region
423 * @ibmr: the memory region to free
424 *
425 *
426 * Note that this is called to free MRs created by rvt_get_dma_mr()
427 * or rvt_reg_user_mr().
428 *
429 * Returns 0 on success.
430 */
431 int rvt_dereg_mr(struct ib_mr *ibmr)
432 {
433 struct rvt_mr *mr = to_imr(ibmr);
434 struct rvt_dev_info *rdi = ib_to_rvt(ibmr->pd->device);
435 int ret = 0;
436 unsigned long timeout;
437
438 rvt_free_lkey(&mr->mr);
439
440 rvt_put_mr(&mr->mr); /* will set completion if last */
441 timeout = wait_for_completion_timeout(&mr->mr.comp, 5 * HZ);
442 if (!timeout) {
443 rvt_pr_err(rdi,
444 "rvt_dereg_mr timeout mr %p pd %p refcount %u\n",
445 mr, mr->mr.pd, atomic_read(&mr->mr.refcount));
446 rvt_get_mr(&mr->mr);
447 ret = -EBUSY;
448 goto out;
449 }
450 rvt_deinit_mregion(&mr->mr);
451 if (mr->umem)
452 ib_umem_release(mr->umem);
453 kfree(mr);
454 out:
455 return ret;
456 }
457
458 /**
459 * rvt_alloc_mr - Allocate a memory region usable with the
460 * @pd: protection domain for this memory region
461 * @mr_type: mem region type
462 * @max_num_sg: Max number of segments allowed
463 *
464 * Return: the memory region on success, otherwise return an errno.
465 */
466 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
467 enum ib_mr_type mr_type,
468 u32 max_num_sg)
469 {
470 struct rvt_mr *mr;
471
472 if (mr_type != IB_MR_TYPE_MEM_REG)
473 return ERR_PTR(-EINVAL);
474
475 mr = __rvt_alloc_mr(max_num_sg, pd);
476 if (IS_ERR(mr))
477 return (struct ib_mr *)mr;
478
479 return &mr->ibmr;
480 }
481
482 /**
483 * rvt_alloc_fmr - allocate a fast memory region
484 * @pd: the protection domain for this memory region
485 * @mr_access_flags: access flags for this memory region
486 * @fmr_attr: fast memory region attributes
487 *
488 * Return: the memory region on success, otherwise returns an errno.
489 */
490 struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
491 struct ib_fmr_attr *fmr_attr)
492 {
493 struct rvt_fmr *fmr;
494 int m;
495 struct ib_fmr *ret;
496 int rval = -ENOMEM;
497
498 /* Allocate struct plus pointers to first level page tables. */
499 m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
500 fmr = kzalloc(sizeof(*fmr) + m * sizeof(fmr->mr.map[0]), GFP_KERNEL);
501 if (!fmr)
502 goto bail;
503
504 rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages);
505 if (rval)
506 goto bail;
507
508 /*
509 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
510 * rkey.
511 */
512 rval = rvt_alloc_lkey(&fmr->mr, 0);
513 if (rval)
514 goto bail_mregion;
515 fmr->ibfmr.rkey = fmr->mr.lkey;
516 fmr->ibfmr.lkey = fmr->mr.lkey;
517 /*
518 * Resources are allocated but no valid mapping (RKEY can't be
519 * used).
520 */
521 fmr->mr.access_flags = mr_access_flags;
522 fmr->mr.max_segs = fmr_attr->max_pages;
523 fmr->mr.page_shift = fmr_attr->page_shift;
524
525 ret = &fmr->ibfmr;
526 done:
527 return ret;
528
529 bail_mregion:
530 rvt_deinit_mregion(&fmr->mr);
531 bail:
532 kfree(fmr);
533 ret = ERR_PTR(rval);
534 goto done;
535 }
536
537 /**
538 * rvt_map_phys_fmr - set up a fast memory region
539 * @ibmfr: the fast memory region to set up
540 * @page_list: the list of pages to associate with the fast memory region
541 * @list_len: the number of pages to associate with the fast memory region
542 * @iova: the virtual address of the start of the fast memory region
543 *
544 * This may be called from interrupt context.
545 *
546 * Return: 0 on success
547 */
548
549 int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
550 int list_len, u64 iova)
551 {
552 struct rvt_fmr *fmr = to_ifmr(ibfmr);
553 struct rvt_lkey_table *rkt;
554 unsigned long flags;
555 int m, n, i;
556 u32 ps;
557 struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
558
559 i = atomic_read(&fmr->mr.refcount);
560 if (i > 2)
561 return -EBUSY;
562
563 if (list_len > fmr->mr.max_segs)
564 return -EINVAL;
565
566 rkt = &rdi->lkey_table;
567 spin_lock_irqsave(&rkt->lock, flags);
568 fmr->mr.user_base = iova;
569 fmr->mr.iova = iova;
570 ps = 1 << fmr->mr.page_shift;
571 fmr->mr.length = list_len * ps;
572 m = 0;
573 n = 0;
574 for (i = 0; i < list_len; i++) {
575 fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
576 fmr->mr.map[m]->segs[n].length = ps;
577 if (++n == RVT_SEGSZ) {
578 m++;
579 n = 0;
580 }
581 }
582 spin_unlock_irqrestore(&rkt->lock, flags);
583 return 0;
584 }
585
586 /**
587 * rvt_unmap_fmr - unmap fast memory regions
588 * @fmr_list: the list of fast memory regions to unmap
589 *
590 * Return: 0 on success.
591 */
592 int rvt_unmap_fmr(struct list_head *fmr_list)
593 {
594 struct rvt_fmr *fmr;
595 struct rvt_lkey_table *rkt;
596 unsigned long flags;
597 struct rvt_dev_info *rdi;
598
599 list_for_each_entry(fmr, fmr_list, ibfmr.list) {
600 rdi = ib_to_rvt(fmr->ibfmr.device);
601 rkt = &rdi->lkey_table;
602 spin_lock_irqsave(&rkt->lock, flags);
603 fmr->mr.user_base = 0;
604 fmr->mr.iova = 0;
605 fmr->mr.length = 0;
606 spin_unlock_irqrestore(&rkt->lock, flags);
607 }
608 return 0;
609 }
610
611 /**
612 * rvt_dealloc_fmr - deallocate a fast memory region
613 * @ibfmr: the fast memory region to deallocate
614 *
615 * Return: 0 on success.
616 */
617 int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
618 {
619 struct rvt_fmr *fmr = to_ifmr(ibfmr);
620 int ret = 0;
621 unsigned long timeout;
622
623 rvt_free_lkey(&fmr->mr);
624 rvt_put_mr(&fmr->mr); /* will set completion if last */
625 timeout = wait_for_completion_timeout(&fmr->mr.comp, 5 * HZ);
626 if (!timeout) {
627 rvt_get_mr(&fmr->mr);
628 ret = -EBUSY;
629 goto out;
630 }
631 rvt_deinit_mregion(&fmr->mr);
632 kfree(fmr);
633 out:
634 return ret;
635 }
636
637 /**
638 * rvt_lkey_ok - check IB SGE for validity and initialize
639 * @rkt: table containing lkey to check SGE against
640 * @pd: protection domain
641 * @isge: outgoing internal SGE
642 * @sge: SGE to check
643 * @acc: access flags
644 *
645 * Check the IB SGE for validity and initialize our internal version
646 * of it.
647 *
648 * Return: 1 if valid and successful, otherwise returns 0.
649 *
650 * increments the reference count upon success
651 *
652 */
653 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
654 struct rvt_sge *isge, struct ib_sge *sge, int acc)
655 {
656 struct rvt_mregion *mr;
657 unsigned n, m;
658 size_t off;
659 struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
660
661 /*
662 * We use LKEY == zero for kernel virtual addresses
663 * (see rvt_get_dma_mr and dma.c).
664 */
665 rcu_read_lock();
666 if (sge->lkey == 0) {
667 if (pd->user)
668 goto bail;
669 mr = rcu_dereference(dev->dma_mr);
670 if (!mr)
671 goto bail;
672 atomic_inc(&mr->refcount);
673 rcu_read_unlock();
674
675 isge->mr = mr;
676 isge->vaddr = (void *)sge->addr;
677 isge->length = sge->length;
678 isge->sge_length = sge->length;
679 isge->m = 0;
680 isge->n = 0;
681 goto ok;
682 }
683 mr = rcu_dereference(
684 rkt->table[(sge->lkey >> (32 - dev->dparms.lkey_table_size))]);
685 if (unlikely(!mr || mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
686 goto bail;
687
688 off = sge->addr - mr->user_base;
689 if (unlikely(sge->addr < mr->user_base ||
690 off + sge->length > mr->length ||
691 (mr->access_flags & acc) != acc))
692 goto bail;
693 atomic_inc(&mr->refcount);
694 rcu_read_unlock();
695
696 off += mr->offset;
697 if (mr->page_shift) {
698 /*
699 * page sizes are uniform power of 2 so no loop is necessary
700 * entries_spanned_by_off is the number of times the loop below
701 * would have executed.
702 */
703 size_t entries_spanned_by_off;
704
705 entries_spanned_by_off = off >> mr->page_shift;
706 off -= (entries_spanned_by_off << mr->page_shift);
707 m = entries_spanned_by_off / RVT_SEGSZ;
708 n = entries_spanned_by_off % RVT_SEGSZ;
709 } else {
710 m = 0;
711 n = 0;
712 while (off >= mr->map[m]->segs[n].length) {
713 off -= mr->map[m]->segs[n].length;
714 n++;
715 if (n >= RVT_SEGSZ) {
716 m++;
717 n = 0;
718 }
719 }
720 }
721 isge->mr = mr;
722 isge->vaddr = mr->map[m]->segs[n].vaddr + off;
723 isge->length = mr->map[m]->segs[n].length - off;
724 isge->sge_length = sge->length;
725 isge->m = m;
726 isge->n = n;
727 ok:
728 return 1;
729 bail:
730 rcu_read_unlock();
731 return 0;
732 }
733 EXPORT_SYMBOL(rvt_lkey_ok);
734
735 /**
736 * rvt_rkey_ok - check the IB virtual address, length, and RKEY
737 * @qp: qp for validation
738 * @sge: SGE state
739 * @len: length of data
740 * @vaddr: virtual address to place data
741 * @rkey: rkey to check
742 * @acc: access flags
743 *
744 * Return: 1 if successful, otherwise 0.
745 *
746 * increments the reference count upon success
747 */
748 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
749 u32 len, u64 vaddr, u32 rkey, int acc)
750 {
751 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
752 struct rvt_lkey_table *rkt = &dev->lkey_table;
753 struct rvt_mregion *mr;
754 unsigned n, m;
755 size_t off;
756
757 /*
758 * We use RKEY == zero for kernel virtual addresses
759 * (see rvt_get_dma_mr and dma.c).
760 */
761 rcu_read_lock();
762 if (rkey == 0) {
763 struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
764 struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
765
766 if (pd->user)
767 goto bail;
768 mr = rcu_dereference(rdi->dma_mr);
769 if (!mr)
770 goto bail;
771 atomic_inc(&mr->refcount);
772 rcu_read_unlock();
773
774 sge->mr = mr;
775 sge->vaddr = (void *)vaddr;
776 sge->length = len;
777 sge->sge_length = len;
778 sge->m = 0;
779 sge->n = 0;
780 goto ok;
781 }
782
783 mr = rcu_dereference(
784 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
785 if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
786 goto bail;
787
788 off = vaddr - mr->iova;
789 if (unlikely(vaddr < mr->iova || off + len > mr->length ||
790 (mr->access_flags & acc) == 0))
791 goto bail;
792 atomic_inc(&mr->refcount);
793 rcu_read_unlock();
794
795 off += mr->offset;
796 if (mr->page_shift) {
797 /*
798 * page sizes are uniform power of 2 so no loop is necessary
799 * entries_spanned_by_off is the number of times the loop below
800 * would have executed.
801 */
802 size_t entries_spanned_by_off;
803
804 entries_spanned_by_off = off >> mr->page_shift;
805 off -= (entries_spanned_by_off << mr->page_shift);
806 m = entries_spanned_by_off / RVT_SEGSZ;
807 n = entries_spanned_by_off % RVT_SEGSZ;
808 } else {
809 m = 0;
810 n = 0;
811 while (off >= mr->map[m]->segs[n].length) {
812 off -= mr->map[m]->segs[n].length;
813 n++;
814 if (n >= RVT_SEGSZ) {
815 m++;
816 n = 0;
817 }
818 }
819 }
820 sge->mr = mr;
821 sge->vaddr = mr->map[m]->segs[n].vaddr + off;
822 sge->length = mr->map[m]->segs[n].length - off;
823 sge->sge_length = len;
824 sge->m = m;
825 sge->n = n;
826 ok:
827 return 1;
828 bail:
829 rcu_read_unlock();
830 return 0;
831 }
832 EXPORT_SYMBOL(rvt_rkey_ok);