]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/infiniband/sw/rdmavt/qp.c
41183bd665ca1d7a0f6d6cb8d33c7867c58f758e
[mirror_ubuntu-jammy-kernel.git] / drivers / infiniband / sw / rdmavt / qp.c
1 /*
2 * Copyright(c) 2016, 2017 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include "qp.h"
57 #include "vt.h"
58 #include "trace.h"
59
60 static void rvt_rc_timeout(struct timer_list *t);
61
62 /*
63 * Convert the AETH RNR timeout code into the number of microseconds.
64 */
65 static const u32 ib_rvt_rnr_table[32] = {
66 655360, /* 00: 655.36 */
67 10, /* 01: .01 */
68 20, /* 02 .02 */
69 30, /* 03: .03 */
70 40, /* 04: .04 */
71 60, /* 05: .06 */
72 80, /* 06: .08 */
73 120, /* 07: .12 */
74 160, /* 08: .16 */
75 240, /* 09: .24 */
76 320, /* 0A: .32 */
77 480, /* 0B: .48 */
78 640, /* 0C: .64 */
79 960, /* 0D: .96 */
80 1280, /* 0E: 1.28 */
81 1920, /* 0F: 1.92 */
82 2560, /* 10: 2.56 */
83 3840, /* 11: 3.84 */
84 5120, /* 12: 5.12 */
85 7680, /* 13: 7.68 */
86 10240, /* 14: 10.24 */
87 15360, /* 15: 15.36 */
88 20480, /* 16: 20.48 */
89 30720, /* 17: 30.72 */
90 40960, /* 18: 40.96 */
91 61440, /* 19: 61.44 */
92 81920, /* 1A: 81.92 */
93 122880, /* 1B: 122.88 */
94 163840, /* 1C: 163.84 */
95 245760, /* 1D: 245.76 */
96 327680, /* 1E: 327.68 */
97 491520 /* 1F: 491.52 */
98 };
99
100 /*
101 * Note that it is OK to post send work requests in the SQE and ERR
102 * states; rvt_do_send() will process them and generate error
103 * completions as per IB 1.2 C10-96.
104 */
105 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
106 [IB_QPS_RESET] = 0,
107 [IB_QPS_INIT] = RVT_POST_RECV_OK,
108 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
109 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
110 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
111 RVT_PROCESS_NEXT_SEND_OK,
112 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
113 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
114 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
115 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
116 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
117 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
118 };
119 EXPORT_SYMBOL(ib_rvt_state_ops);
120
121 static void get_map_page(struct rvt_qpn_table *qpt,
122 struct rvt_qpn_map *map)
123 {
124 unsigned long page = get_zeroed_page(GFP_KERNEL);
125
126 /*
127 * Free the page if someone raced with us installing it.
128 */
129
130 spin_lock(&qpt->lock);
131 if (map->page)
132 free_page(page);
133 else
134 map->page = (void *)page;
135 spin_unlock(&qpt->lock);
136 }
137
138 /**
139 * init_qpn_table - initialize the QP number table for a device
140 * @qpt: the QPN table
141 */
142 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
143 {
144 u32 offset, i;
145 struct rvt_qpn_map *map;
146 int ret = 0;
147
148 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
149 return -EINVAL;
150
151 spin_lock_init(&qpt->lock);
152
153 qpt->last = rdi->dparms.qpn_start;
154 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
155
156 /*
157 * Drivers may want some QPs beyond what we need for verbs let them use
158 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
159 * for those. The reserved range must be *after* the range which verbs
160 * will pick from.
161 */
162
163 /* Figure out number of bit maps needed before reserved range */
164 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
165
166 /* This should always be zero */
167 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
168
169 /* Starting with the first reserved bit map */
170 map = &qpt->map[qpt->nmaps];
171
172 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
173 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
174 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
175 if (!map->page) {
176 get_map_page(qpt, map);
177 if (!map->page) {
178 ret = -ENOMEM;
179 break;
180 }
181 }
182 set_bit(offset, map->page);
183 offset++;
184 if (offset == RVT_BITS_PER_PAGE) {
185 /* next page */
186 qpt->nmaps++;
187 map++;
188 offset = 0;
189 }
190 }
191 return ret;
192 }
193
194 /**
195 * free_qpn_table - free the QP number table for a device
196 * @qpt: the QPN table
197 */
198 static void free_qpn_table(struct rvt_qpn_table *qpt)
199 {
200 int i;
201
202 for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
203 free_page((unsigned long)qpt->map[i].page);
204 }
205
206 /**
207 * rvt_driver_qp_init - Init driver qp resources
208 * @rdi: rvt dev strucutre
209 *
210 * Return: 0 on success
211 */
212 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
213 {
214 int i;
215 int ret = -ENOMEM;
216
217 if (!rdi->dparms.qp_table_size)
218 return -EINVAL;
219
220 /*
221 * If driver is not doing any QP allocation then make sure it is
222 * providing the necessary QP functions.
223 */
224 if (!rdi->driver_f.free_all_qps ||
225 !rdi->driver_f.qp_priv_alloc ||
226 !rdi->driver_f.qp_priv_free ||
227 !rdi->driver_f.notify_qp_reset ||
228 !rdi->driver_f.notify_restart_rc)
229 return -EINVAL;
230
231 /* allocate parent object */
232 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
233 rdi->dparms.node);
234 if (!rdi->qp_dev)
235 return -ENOMEM;
236
237 /* allocate hash table */
238 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
239 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
240 rdi->qp_dev->qp_table =
241 kmalloc_array_node(rdi->qp_dev->qp_table_size,
242 sizeof(*rdi->qp_dev->qp_table),
243 GFP_KERNEL, rdi->dparms.node);
244 if (!rdi->qp_dev->qp_table)
245 goto no_qp_table;
246
247 for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
248 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
249
250 spin_lock_init(&rdi->qp_dev->qpt_lock);
251
252 /* initialize qpn map */
253 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
254 goto fail_table;
255
256 spin_lock_init(&rdi->n_qps_lock);
257
258 return 0;
259
260 fail_table:
261 kfree(rdi->qp_dev->qp_table);
262 free_qpn_table(&rdi->qp_dev->qpn_table);
263
264 no_qp_table:
265 kfree(rdi->qp_dev);
266
267 return ret;
268 }
269
270 /**
271 * free_all_qps - check for QPs still in use
272 * @rdi: rvt device info structure
273 *
274 * There should not be any QPs still in use.
275 * Free memory for table.
276 */
277 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
278 {
279 unsigned long flags;
280 struct rvt_qp *qp;
281 unsigned n, qp_inuse = 0;
282 spinlock_t *ql; /* work around too long line below */
283
284 if (rdi->driver_f.free_all_qps)
285 qp_inuse = rdi->driver_f.free_all_qps(rdi);
286
287 qp_inuse += rvt_mcast_tree_empty(rdi);
288
289 if (!rdi->qp_dev)
290 return qp_inuse;
291
292 ql = &rdi->qp_dev->qpt_lock;
293 spin_lock_irqsave(ql, flags);
294 for (n = 0; n < rdi->qp_dev->qp_table_size; n++) {
295 qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n],
296 lockdep_is_held(ql));
297 RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL);
298
299 for (; qp; qp = rcu_dereference_protected(qp->next,
300 lockdep_is_held(ql)))
301 qp_inuse++;
302 }
303 spin_unlock_irqrestore(ql, flags);
304 synchronize_rcu();
305 return qp_inuse;
306 }
307
308 /**
309 * rvt_qp_exit - clean up qps on device exit
310 * @rdi: rvt dev structure
311 *
312 * Check for qp leaks and free resources.
313 */
314 void rvt_qp_exit(struct rvt_dev_info *rdi)
315 {
316 u32 qps_inuse = rvt_free_all_qps(rdi);
317
318 if (qps_inuse)
319 rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
320 qps_inuse);
321 if (!rdi->qp_dev)
322 return;
323
324 kfree(rdi->qp_dev->qp_table);
325 free_qpn_table(&rdi->qp_dev->qpn_table);
326 kfree(rdi->qp_dev);
327 }
328
329 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
330 struct rvt_qpn_map *map, unsigned off)
331 {
332 return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
333 }
334
335 /**
336 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
337 * IB_QPT_SMI/IB_QPT_GSI
338 * @rdi: rvt device info structure
339 * @qpt: queue pair number table pointer
340 * @port_num: IB port number, 1 based, comes from core
341 *
342 * Return: The queue pair number
343 */
344 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
345 enum ib_qp_type type, u8 port_num)
346 {
347 u32 i, offset, max_scan, qpn;
348 struct rvt_qpn_map *map;
349 u32 ret;
350
351 if (rdi->driver_f.alloc_qpn)
352 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
353
354 if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
355 unsigned n;
356
357 ret = type == IB_QPT_GSI;
358 n = 1 << (ret + 2 * (port_num - 1));
359 spin_lock(&qpt->lock);
360 if (qpt->flags & n)
361 ret = -EINVAL;
362 else
363 qpt->flags |= n;
364 spin_unlock(&qpt->lock);
365 goto bail;
366 }
367
368 qpn = qpt->last + qpt->incr;
369 if (qpn >= RVT_QPN_MAX)
370 qpn = qpt->incr | ((qpt->last & 1) ^ 1);
371 /* offset carries bit 0 */
372 offset = qpn & RVT_BITS_PER_PAGE_MASK;
373 map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
374 max_scan = qpt->nmaps - !offset;
375 for (i = 0;;) {
376 if (unlikely(!map->page)) {
377 get_map_page(qpt, map);
378 if (unlikely(!map->page))
379 break;
380 }
381 do {
382 if (!test_and_set_bit(offset, map->page)) {
383 qpt->last = qpn;
384 ret = qpn;
385 goto bail;
386 }
387 offset += qpt->incr;
388 /*
389 * This qpn might be bogus if offset >= BITS_PER_PAGE.
390 * That is OK. It gets re-assigned below
391 */
392 qpn = mk_qpn(qpt, map, offset);
393 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
394 /*
395 * In order to keep the number of pages allocated to a
396 * minimum, we scan the all existing pages before increasing
397 * the size of the bitmap table.
398 */
399 if (++i > max_scan) {
400 if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
401 break;
402 map = &qpt->map[qpt->nmaps++];
403 /* start at incr with current bit 0 */
404 offset = qpt->incr | (offset & 1);
405 } else if (map < &qpt->map[qpt->nmaps]) {
406 ++map;
407 /* start at incr with current bit 0 */
408 offset = qpt->incr | (offset & 1);
409 } else {
410 map = &qpt->map[0];
411 /* wrap to first map page, invert bit 0 */
412 offset = qpt->incr | ((offset & 1) ^ 1);
413 }
414 /* there can be no set bits in low-order QoS bits */
415 WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1));
416 qpn = mk_qpn(qpt, map, offset);
417 }
418
419 ret = -ENOMEM;
420
421 bail:
422 return ret;
423 }
424
425 /**
426 * rvt_clear_mr_refs - Drop help mr refs
427 * @qp: rvt qp data structure
428 * @clr_sends: If shoudl clear send side or not
429 */
430 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
431 {
432 unsigned n;
433 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
434
435 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
436 rvt_put_ss(&qp->s_rdma_read_sge);
437
438 rvt_put_ss(&qp->r_sge);
439
440 if (clr_sends) {
441 while (qp->s_last != qp->s_head) {
442 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
443
444 rvt_put_swqe(wqe);
445
446 if (qp->ibqp.qp_type == IB_QPT_UD ||
447 qp->ibqp.qp_type == IB_QPT_SMI ||
448 qp->ibqp.qp_type == IB_QPT_GSI)
449 atomic_dec(&ibah_to_rvtah(
450 wqe->ud_wr.ah)->refcount);
451 if (++qp->s_last >= qp->s_size)
452 qp->s_last = 0;
453 smp_wmb(); /* see qp_set_savail */
454 }
455 if (qp->s_rdma_mr) {
456 rvt_put_mr(qp->s_rdma_mr);
457 qp->s_rdma_mr = NULL;
458 }
459 }
460
461 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
462 struct rvt_ack_entry *e = &qp->s_ack_queue[n];
463
464 if (e->rdma_sge.mr) {
465 rvt_put_mr(e->rdma_sge.mr);
466 e->rdma_sge.mr = NULL;
467 }
468 }
469 }
470
471 /**
472 * rvt_swqe_has_lkey - return true if lkey is used by swqe
473 * @wqe - the send wqe
474 * @lkey - the lkey
475 *
476 * Test the swqe for using lkey
477 */
478 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
479 {
480 int i;
481
482 for (i = 0; i < wqe->wr.num_sge; i++) {
483 struct rvt_sge *sge = &wqe->sg_list[i];
484
485 if (rvt_mr_has_lkey(sge->mr, lkey))
486 return true;
487 }
488 return false;
489 }
490
491 /**
492 * rvt_qp_sends_has_lkey - return true is qp sends use lkey
493 * @qp - the rvt_qp
494 * @lkey - the lkey
495 */
496 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
497 {
498 u32 s_last = qp->s_last;
499
500 while (s_last != qp->s_head) {
501 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
502
503 if (rvt_swqe_has_lkey(wqe, lkey))
504 return true;
505
506 if (++s_last >= qp->s_size)
507 s_last = 0;
508 }
509 if (qp->s_rdma_mr)
510 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
511 return true;
512 return false;
513 }
514
515 /**
516 * rvt_qp_acks_has_lkey - return true if acks have lkey
517 * @qp - the qp
518 * @lkey - the lkey
519 */
520 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
521 {
522 int i;
523 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
524
525 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
526 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
527
528 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
529 return true;
530 }
531 return false;
532 }
533
534 /*
535 * rvt_qp_mr_clean - clean up remote ops for lkey
536 * @qp - the qp
537 * @lkey - the lkey that is being de-registered
538 *
539 * This routine checks if the lkey is being used by
540 * the qp.
541 *
542 * If so, the qp is put into an error state to elminate
543 * any references from the qp.
544 */
545 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
546 {
547 bool lastwqe = false;
548
549 if (qp->ibqp.qp_type == IB_QPT_SMI ||
550 qp->ibqp.qp_type == IB_QPT_GSI)
551 /* avoid special QPs */
552 return;
553 spin_lock_irq(&qp->r_lock);
554 spin_lock(&qp->s_hlock);
555 spin_lock(&qp->s_lock);
556
557 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
558 goto check_lwqe;
559
560 if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
561 rvt_qp_sends_has_lkey(qp, lkey) ||
562 rvt_qp_acks_has_lkey(qp, lkey))
563 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
564 check_lwqe:
565 spin_unlock(&qp->s_lock);
566 spin_unlock(&qp->s_hlock);
567 spin_unlock_irq(&qp->r_lock);
568 if (lastwqe) {
569 struct ib_event ev;
570
571 ev.device = qp->ibqp.device;
572 ev.element.qp = &qp->ibqp;
573 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
574 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
575 }
576 }
577
578 /**
579 * rvt_remove_qp - remove qp form table
580 * @rdi: rvt dev struct
581 * @qp: qp to remove
582 *
583 * Remove the QP from the table so it can't be found asynchronously by
584 * the receive routine.
585 */
586 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
587 {
588 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
589 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
590 unsigned long flags;
591 int removed = 1;
592
593 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
594
595 if (rcu_dereference_protected(rvp->qp[0],
596 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
597 RCU_INIT_POINTER(rvp->qp[0], NULL);
598 } else if (rcu_dereference_protected(rvp->qp[1],
599 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
600 RCU_INIT_POINTER(rvp->qp[1], NULL);
601 } else {
602 struct rvt_qp *q;
603 struct rvt_qp __rcu **qpp;
604
605 removed = 0;
606 qpp = &rdi->qp_dev->qp_table[n];
607 for (; (q = rcu_dereference_protected(*qpp,
608 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
609 qpp = &q->next) {
610 if (q == qp) {
611 RCU_INIT_POINTER(*qpp,
612 rcu_dereference_protected(qp->next,
613 lockdep_is_held(&rdi->qp_dev->qpt_lock)));
614 removed = 1;
615 trace_rvt_qpremove(qp, n);
616 break;
617 }
618 }
619 }
620
621 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
622 if (removed) {
623 synchronize_rcu();
624 rvt_put_qp(qp);
625 }
626 }
627
628 /**
629 * rvt_init_qp - initialize the QP state to the reset state
630 * @qp: the QP to init or reinit
631 * @type: the QP type
632 *
633 * This function is called from both rvt_create_qp() and
634 * rvt_reset_qp(). The difference is that the reset
635 * patch the necessary locks to protect against concurent
636 * access.
637 */
638 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
639 enum ib_qp_type type)
640 {
641 qp->remote_qpn = 0;
642 qp->qkey = 0;
643 qp->qp_access_flags = 0;
644 qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
645 qp->s_hdrwords = 0;
646 qp->s_wqe = NULL;
647 qp->s_draining = 0;
648 qp->s_next_psn = 0;
649 qp->s_last_psn = 0;
650 qp->s_sending_psn = 0;
651 qp->s_sending_hpsn = 0;
652 qp->s_psn = 0;
653 qp->r_psn = 0;
654 qp->r_msn = 0;
655 if (type == IB_QPT_RC) {
656 qp->s_state = IB_OPCODE_RC_SEND_LAST;
657 qp->r_state = IB_OPCODE_RC_SEND_LAST;
658 } else {
659 qp->s_state = IB_OPCODE_UC_SEND_LAST;
660 qp->r_state = IB_OPCODE_UC_SEND_LAST;
661 }
662 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
663 qp->r_nak_state = 0;
664 qp->r_aflags = 0;
665 qp->r_flags = 0;
666 qp->s_head = 0;
667 qp->s_tail = 0;
668 qp->s_cur = 0;
669 qp->s_acked = 0;
670 qp->s_last = 0;
671 qp->s_ssn = 1;
672 qp->s_lsn = 0;
673 qp->s_mig_state = IB_MIG_MIGRATED;
674 qp->r_head_ack_queue = 0;
675 qp->s_tail_ack_queue = 0;
676 qp->s_num_rd_atomic = 0;
677 if (qp->r_rq.wq) {
678 qp->r_rq.wq->head = 0;
679 qp->r_rq.wq->tail = 0;
680 }
681 qp->r_sge.num_sge = 0;
682 atomic_set(&qp->s_reserved_used, 0);
683 }
684
685 /**
686 * rvt_reset_qp - initialize the QP state to the reset state
687 * @qp: the QP to reset
688 * @type: the QP type
689 *
690 * r_lock, s_hlock, and s_lock are required to be held by the caller
691 */
692 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
693 enum ib_qp_type type)
694 __must_hold(&qp->s_lock)
695 __must_hold(&qp->s_hlock)
696 __must_hold(&qp->r_lock)
697 {
698 lockdep_assert_held(&qp->r_lock);
699 lockdep_assert_held(&qp->s_hlock);
700 lockdep_assert_held(&qp->s_lock);
701 if (qp->state != IB_QPS_RESET) {
702 qp->state = IB_QPS_RESET;
703
704 /* Let drivers flush their waitlist */
705 rdi->driver_f.flush_qp_waiters(qp);
706 rvt_stop_rc_timers(qp);
707 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
708 spin_unlock(&qp->s_lock);
709 spin_unlock(&qp->s_hlock);
710 spin_unlock_irq(&qp->r_lock);
711
712 /* Stop the send queue and the retry timer */
713 rdi->driver_f.stop_send_queue(qp);
714 rvt_del_timers_sync(qp);
715 /* Wait for things to stop */
716 rdi->driver_f.quiesce_qp(qp);
717
718 /* take qp out the hash and wait for it to be unused */
719 rvt_remove_qp(rdi, qp);
720
721 /* grab the lock b/c it was locked at call time */
722 spin_lock_irq(&qp->r_lock);
723 spin_lock(&qp->s_hlock);
724 spin_lock(&qp->s_lock);
725
726 rvt_clear_mr_refs(qp, 1);
727 /*
728 * Let the driver do any tear down or re-init it needs to for
729 * a qp that has been reset
730 */
731 rdi->driver_f.notify_qp_reset(qp);
732 }
733 rvt_init_qp(rdi, qp, type);
734 lockdep_assert_held(&qp->r_lock);
735 lockdep_assert_held(&qp->s_hlock);
736 lockdep_assert_held(&qp->s_lock);
737 }
738
739 /** rvt_free_qpn - Free a qpn from the bit map
740 * @qpt: QP table
741 * @qpn: queue pair number to free
742 */
743 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
744 {
745 struct rvt_qpn_map *map;
746
747 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
748 if (map->page)
749 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
750 }
751
752 /**
753 * rvt_create_qp - create a queue pair for a device
754 * @ibpd: the protection domain who's device we create the queue pair for
755 * @init_attr: the attributes of the queue pair
756 * @udata: user data for libibverbs.so
757 *
758 * Queue pair creation is mostly an rvt issue. However, drivers have their own
759 * unique idea of what queue pair numbers mean. For instance there is a reserved
760 * range for PSM.
761 *
762 * Return: the queue pair on success, otherwise returns an errno.
763 *
764 * Called by the ib_create_qp() core verbs function.
765 */
766 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
767 struct ib_qp_init_attr *init_attr,
768 struct ib_udata *udata)
769 {
770 struct rvt_qp *qp;
771 int err;
772 struct rvt_swqe *swq = NULL;
773 size_t sz;
774 size_t sg_list_sz;
775 struct ib_qp *ret = ERR_PTR(-ENOMEM);
776 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
777 void *priv = NULL;
778 size_t sqsize;
779
780 if (!rdi)
781 return ERR_PTR(-EINVAL);
782
783 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_sge ||
784 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
785 init_attr->create_flags)
786 return ERR_PTR(-EINVAL);
787
788 /* Check receive queue parameters if no SRQ is specified. */
789 if (!init_attr->srq) {
790 if (init_attr->cap.max_recv_sge > rdi->dparms.props.max_sge ||
791 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
792 return ERR_PTR(-EINVAL);
793
794 if (init_attr->cap.max_send_sge +
795 init_attr->cap.max_send_wr +
796 init_attr->cap.max_recv_sge +
797 init_attr->cap.max_recv_wr == 0)
798 return ERR_PTR(-EINVAL);
799 }
800 sqsize =
801 init_attr->cap.max_send_wr + 1 +
802 rdi->dparms.reserved_operations;
803 switch (init_attr->qp_type) {
804 case IB_QPT_SMI:
805 case IB_QPT_GSI:
806 if (init_attr->port_num == 0 ||
807 init_attr->port_num > ibpd->device->phys_port_cnt)
808 return ERR_PTR(-EINVAL);
809 /* fall through */
810 case IB_QPT_UC:
811 case IB_QPT_RC:
812 case IB_QPT_UD:
813 sz = sizeof(struct rvt_sge) *
814 init_attr->cap.max_send_sge +
815 sizeof(struct rvt_swqe);
816 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
817 if (!swq)
818 return ERR_PTR(-ENOMEM);
819
820 sz = sizeof(*qp);
821 sg_list_sz = 0;
822 if (init_attr->srq) {
823 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
824
825 if (srq->rq.max_sge > 1)
826 sg_list_sz = sizeof(*qp->r_sg_list) *
827 (srq->rq.max_sge - 1);
828 } else if (init_attr->cap.max_recv_sge > 1)
829 sg_list_sz = sizeof(*qp->r_sg_list) *
830 (init_attr->cap.max_recv_sge - 1);
831 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
832 rdi->dparms.node);
833 if (!qp)
834 goto bail_swq;
835
836 RCU_INIT_POINTER(qp->next, NULL);
837 if (init_attr->qp_type == IB_QPT_RC) {
838 qp->s_ack_queue =
839 kcalloc_node(rvt_max_atomic(rdi),
840 sizeof(*qp->s_ack_queue),
841 GFP_KERNEL,
842 rdi->dparms.node);
843 if (!qp->s_ack_queue)
844 goto bail_qp;
845 }
846 /* initialize timers needed for rc qp */
847 timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
848 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
849 HRTIMER_MODE_REL);
850 qp->s_rnr_timer.function = rvt_rc_rnr_retry;
851
852 /*
853 * Driver needs to set up it's private QP structure and do any
854 * initialization that is needed.
855 */
856 priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
857 if (IS_ERR(priv)) {
858 ret = priv;
859 goto bail_qp;
860 }
861 qp->priv = priv;
862 qp->timeout_jiffies =
863 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
864 1000UL);
865 if (init_attr->srq) {
866 sz = 0;
867 } else {
868 qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
869 qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
870 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
871 sizeof(struct rvt_rwqe);
872 if (udata)
873 qp->r_rq.wq = vmalloc_user(
874 sizeof(struct rvt_rwq) +
875 qp->r_rq.size * sz);
876 else
877 qp->r_rq.wq = vzalloc_node(
878 sizeof(struct rvt_rwq) +
879 qp->r_rq.size * sz,
880 rdi->dparms.node);
881 if (!qp->r_rq.wq)
882 goto bail_driver_priv;
883 }
884
885 /*
886 * ib_create_qp() will initialize qp->ibqp
887 * except for qp->ibqp.qp_num.
888 */
889 spin_lock_init(&qp->r_lock);
890 spin_lock_init(&qp->s_hlock);
891 spin_lock_init(&qp->s_lock);
892 spin_lock_init(&qp->r_rq.lock);
893 atomic_set(&qp->refcount, 0);
894 atomic_set(&qp->local_ops_pending, 0);
895 init_waitqueue_head(&qp->wait);
896 INIT_LIST_HEAD(&qp->rspwait);
897 qp->state = IB_QPS_RESET;
898 qp->s_wq = swq;
899 qp->s_size = sqsize;
900 qp->s_avail = init_attr->cap.max_send_wr;
901 qp->s_max_sge = init_attr->cap.max_send_sge;
902 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
903 qp->s_flags = RVT_S_SIGNAL_REQ_WR;
904
905 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
906 init_attr->qp_type,
907 init_attr->port_num);
908 if (err < 0) {
909 ret = ERR_PTR(err);
910 goto bail_rq_wq;
911 }
912 qp->ibqp.qp_num = err;
913 qp->port_num = init_attr->port_num;
914 rvt_init_qp(rdi, qp, init_attr->qp_type);
915 break;
916
917 default:
918 /* Don't support raw QPs */
919 return ERR_PTR(-EINVAL);
920 }
921
922 init_attr->cap.max_inline_data = 0;
923
924 /*
925 * Return the address of the RWQ as the offset to mmap.
926 * See rvt_mmap() for details.
927 */
928 if (udata && udata->outlen >= sizeof(__u64)) {
929 if (!qp->r_rq.wq) {
930 __u64 offset = 0;
931
932 err = ib_copy_to_udata(udata, &offset,
933 sizeof(offset));
934 if (err) {
935 ret = ERR_PTR(err);
936 goto bail_qpn;
937 }
938 } else {
939 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
940
941 qp->ip = rvt_create_mmap_info(rdi, s,
942 ibpd->uobject->context,
943 qp->r_rq.wq);
944 if (!qp->ip) {
945 ret = ERR_PTR(-ENOMEM);
946 goto bail_qpn;
947 }
948
949 err = ib_copy_to_udata(udata, &qp->ip->offset,
950 sizeof(qp->ip->offset));
951 if (err) {
952 ret = ERR_PTR(err);
953 goto bail_ip;
954 }
955 }
956 qp->pid = current->pid;
957 }
958
959 spin_lock(&rdi->n_qps_lock);
960 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
961 spin_unlock(&rdi->n_qps_lock);
962 ret = ERR_PTR(-ENOMEM);
963 goto bail_ip;
964 }
965
966 rdi->n_qps_allocated++;
967 /*
968 * Maintain a busy_jiffies variable that will be added to the timeout
969 * period in mod_retry_timer and add_retry_timer. This busy jiffies
970 * is scaled by the number of rc qps created for the device to reduce
971 * the number of timeouts occurring when there is a large number of
972 * qps. busy_jiffies is incremented every rc qp scaling interval.
973 * The scaling interval is selected based on extensive performance
974 * evaluation of targeted workloads.
975 */
976 if (init_attr->qp_type == IB_QPT_RC) {
977 rdi->n_rc_qps++;
978 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
979 }
980 spin_unlock(&rdi->n_qps_lock);
981
982 if (qp->ip) {
983 spin_lock_irq(&rdi->pending_lock);
984 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
985 spin_unlock_irq(&rdi->pending_lock);
986 }
987
988 ret = &qp->ibqp;
989
990 /*
991 * We have our QP and its good, now keep track of what types of opcodes
992 * can be processed on this QP. We do this by keeping track of what the
993 * 3 high order bits of the opcode are.
994 */
995 switch (init_attr->qp_type) {
996 case IB_QPT_SMI:
997 case IB_QPT_GSI:
998 case IB_QPT_UD:
999 qp->allowed_ops = IB_OPCODE_UD;
1000 break;
1001 case IB_QPT_RC:
1002 qp->allowed_ops = IB_OPCODE_RC;
1003 break;
1004 case IB_QPT_UC:
1005 qp->allowed_ops = IB_OPCODE_UC;
1006 break;
1007 default:
1008 ret = ERR_PTR(-EINVAL);
1009 goto bail_ip;
1010 }
1011
1012 return ret;
1013
1014 bail_ip:
1015 if (qp->ip)
1016 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1017
1018 bail_qpn:
1019 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1020
1021 bail_rq_wq:
1022 if (!qp->ip)
1023 vfree(qp->r_rq.wq);
1024
1025 bail_driver_priv:
1026 rdi->driver_f.qp_priv_free(rdi, qp);
1027
1028 bail_qp:
1029 kfree(qp->s_ack_queue);
1030 kfree(qp);
1031
1032 bail_swq:
1033 vfree(swq);
1034
1035 return ret;
1036 }
1037
1038 /**
1039 * rvt_error_qp - put a QP into the error state
1040 * @qp: the QP to put into the error state
1041 * @err: the receive completion error to signal if a RWQE is active
1042 *
1043 * Flushes both send and receive work queues.
1044 *
1045 * Return: true if last WQE event should be generated.
1046 * The QP r_lock and s_lock should be held and interrupts disabled.
1047 * If we are already in error state, just return.
1048 */
1049 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1050 {
1051 struct ib_wc wc;
1052 int ret = 0;
1053 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1054
1055 lockdep_assert_held(&qp->r_lock);
1056 lockdep_assert_held(&qp->s_lock);
1057 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1058 goto bail;
1059
1060 qp->state = IB_QPS_ERR;
1061
1062 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1063 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1064 del_timer(&qp->s_timer);
1065 }
1066
1067 if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1068 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1069
1070 rdi->driver_f.notify_error_qp(qp);
1071
1072 /* Schedule the sending tasklet to drain the send work queue. */
1073 if (READ_ONCE(qp->s_last) != qp->s_head)
1074 rdi->driver_f.schedule_send(qp);
1075
1076 rvt_clear_mr_refs(qp, 0);
1077
1078 memset(&wc, 0, sizeof(wc));
1079 wc.qp = &qp->ibqp;
1080 wc.opcode = IB_WC_RECV;
1081
1082 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1083 wc.wr_id = qp->r_wr_id;
1084 wc.status = err;
1085 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1086 }
1087 wc.status = IB_WC_WR_FLUSH_ERR;
1088
1089 if (qp->r_rq.wq) {
1090 struct rvt_rwq *wq;
1091 u32 head;
1092 u32 tail;
1093
1094 spin_lock(&qp->r_rq.lock);
1095
1096 /* sanity check pointers before trusting them */
1097 wq = qp->r_rq.wq;
1098 head = wq->head;
1099 if (head >= qp->r_rq.size)
1100 head = 0;
1101 tail = wq->tail;
1102 if (tail >= qp->r_rq.size)
1103 tail = 0;
1104 while (tail != head) {
1105 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1106 if (++tail >= qp->r_rq.size)
1107 tail = 0;
1108 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1109 }
1110 wq->tail = tail;
1111
1112 spin_unlock(&qp->r_rq.lock);
1113 } else if (qp->ibqp.event_handler) {
1114 ret = 1;
1115 }
1116
1117 bail:
1118 return ret;
1119 }
1120 EXPORT_SYMBOL(rvt_error_qp);
1121
1122 /*
1123 * Put the QP into the hash table.
1124 * The hash table holds a reference to the QP.
1125 */
1126 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1127 {
1128 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1129 unsigned long flags;
1130
1131 rvt_get_qp(qp);
1132 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1133
1134 if (qp->ibqp.qp_num <= 1) {
1135 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1136 } else {
1137 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1138
1139 qp->next = rdi->qp_dev->qp_table[n];
1140 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1141 trace_rvt_qpinsert(qp, n);
1142 }
1143
1144 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1145 }
1146
1147 /**
1148 * rvt_modify_qp - modify the attributes of a queue pair
1149 * @ibqp: the queue pair who's attributes we're modifying
1150 * @attr: the new attributes
1151 * @attr_mask: the mask of attributes to modify
1152 * @udata: user data for libibverbs.so
1153 *
1154 * Return: 0 on success, otherwise returns an errno.
1155 */
1156 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1157 int attr_mask, struct ib_udata *udata)
1158 {
1159 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1160 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1161 enum ib_qp_state cur_state, new_state;
1162 struct ib_event ev;
1163 int lastwqe = 0;
1164 int mig = 0;
1165 int pmtu = 0; /* for gcc warning only */
1166 enum rdma_link_layer link;
1167 int opa_ah;
1168
1169 link = rdma_port_get_link_layer(ibqp->device, qp->port_num);
1170
1171 spin_lock_irq(&qp->r_lock);
1172 spin_lock(&qp->s_hlock);
1173 spin_lock(&qp->s_lock);
1174
1175 cur_state = attr_mask & IB_QP_CUR_STATE ?
1176 attr->cur_qp_state : qp->state;
1177 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1178 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1179
1180 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1181 attr_mask, link))
1182 goto inval;
1183
1184 if (rdi->driver_f.check_modify_qp &&
1185 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1186 goto inval;
1187
1188 if (attr_mask & IB_QP_AV) {
1189 if (opa_ah) {
1190 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1191 opa_get_mcast_base(OPA_MCAST_NR))
1192 goto inval;
1193 } else {
1194 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1195 be16_to_cpu(IB_MULTICAST_LID_BASE))
1196 goto inval;
1197 }
1198
1199 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1200 goto inval;
1201 }
1202
1203 if (attr_mask & IB_QP_ALT_PATH) {
1204 if (opa_ah) {
1205 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1206 opa_get_mcast_base(OPA_MCAST_NR))
1207 goto inval;
1208 } else {
1209 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1210 be16_to_cpu(IB_MULTICAST_LID_BASE))
1211 goto inval;
1212 }
1213
1214 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1215 goto inval;
1216 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1217 goto inval;
1218 }
1219
1220 if (attr_mask & IB_QP_PKEY_INDEX)
1221 if (attr->pkey_index >= rvt_get_npkeys(rdi))
1222 goto inval;
1223
1224 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1225 if (attr->min_rnr_timer > 31)
1226 goto inval;
1227
1228 if (attr_mask & IB_QP_PORT)
1229 if (qp->ibqp.qp_type == IB_QPT_SMI ||
1230 qp->ibqp.qp_type == IB_QPT_GSI ||
1231 attr->port_num == 0 ||
1232 attr->port_num > ibqp->device->phys_port_cnt)
1233 goto inval;
1234
1235 if (attr_mask & IB_QP_DEST_QPN)
1236 if (attr->dest_qp_num > RVT_QPN_MASK)
1237 goto inval;
1238
1239 if (attr_mask & IB_QP_RETRY_CNT)
1240 if (attr->retry_cnt > 7)
1241 goto inval;
1242
1243 if (attr_mask & IB_QP_RNR_RETRY)
1244 if (attr->rnr_retry > 7)
1245 goto inval;
1246
1247 /*
1248 * Don't allow invalid path_mtu values. OK to set greater
1249 * than the active mtu (or even the max_cap, if we have tuned
1250 * that to a small mtu. We'll set qp->path_mtu
1251 * to the lesser of requested attribute mtu and active,
1252 * for packetizing messages.
1253 * Note that the QP port has to be set in INIT and MTU in RTR.
1254 */
1255 if (attr_mask & IB_QP_PATH_MTU) {
1256 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1257 if (pmtu < 0)
1258 goto inval;
1259 }
1260
1261 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1262 if (attr->path_mig_state == IB_MIG_REARM) {
1263 if (qp->s_mig_state == IB_MIG_ARMED)
1264 goto inval;
1265 if (new_state != IB_QPS_RTS)
1266 goto inval;
1267 } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1268 if (qp->s_mig_state == IB_MIG_REARM)
1269 goto inval;
1270 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1271 goto inval;
1272 if (qp->s_mig_state == IB_MIG_ARMED)
1273 mig = 1;
1274 } else {
1275 goto inval;
1276 }
1277 }
1278
1279 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1280 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1281 goto inval;
1282
1283 switch (new_state) {
1284 case IB_QPS_RESET:
1285 if (qp->state != IB_QPS_RESET)
1286 rvt_reset_qp(rdi, qp, ibqp->qp_type);
1287 break;
1288
1289 case IB_QPS_RTR:
1290 /* Allow event to re-trigger if QP set to RTR more than once */
1291 qp->r_flags &= ~RVT_R_COMM_EST;
1292 qp->state = new_state;
1293 break;
1294
1295 case IB_QPS_SQD:
1296 qp->s_draining = qp->s_last != qp->s_cur;
1297 qp->state = new_state;
1298 break;
1299
1300 case IB_QPS_SQE:
1301 if (qp->ibqp.qp_type == IB_QPT_RC)
1302 goto inval;
1303 qp->state = new_state;
1304 break;
1305
1306 case IB_QPS_ERR:
1307 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1308 break;
1309
1310 default:
1311 qp->state = new_state;
1312 break;
1313 }
1314
1315 if (attr_mask & IB_QP_PKEY_INDEX)
1316 qp->s_pkey_index = attr->pkey_index;
1317
1318 if (attr_mask & IB_QP_PORT)
1319 qp->port_num = attr->port_num;
1320
1321 if (attr_mask & IB_QP_DEST_QPN)
1322 qp->remote_qpn = attr->dest_qp_num;
1323
1324 if (attr_mask & IB_QP_SQ_PSN) {
1325 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1326 qp->s_psn = qp->s_next_psn;
1327 qp->s_sending_psn = qp->s_next_psn;
1328 qp->s_last_psn = qp->s_next_psn - 1;
1329 qp->s_sending_hpsn = qp->s_last_psn;
1330 }
1331
1332 if (attr_mask & IB_QP_RQ_PSN)
1333 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1334
1335 if (attr_mask & IB_QP_ACCESS_FLAGS)
1336 qp->qp_access_flags = attr->qp_access_flags;
1337
1338 if (attr_mask & IB_QP_AV) {
1339 qp->remote_ah_attr = attr->ah_attr;
1340 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1341 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1342 }
1343
1344 if (attr_mask & IB_QP_ALT_PATH) {
1345 qp->alt_ah_attr = attr->alt_ah_attr;
1346 qp->s_alt_pkey_index = attr->alt_pkey_index;
1347 }
1348
1349 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1350 qp->s_mig_state = attr->path_mig_state;
1351 if (mig) {
1352 qp->remote_ah_attr = qp->alt_ah_attr;
1353 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1354 qp->s_pkey_index = qp->s_alt_pkey_index;
1355 }
1356 }
1357
1358 if (attr_mask & IB_QP_PATH_MTU) {
1359 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1360 qp->log_pmtu = ilog2(qp->pmtu);
1361 }
1362
1363 if (attr_mask & IB_QP_RETRY_CNT) {
1364 qp->s_retry_cnt = attr->retry_cnt;
1365 qp->s_retry = attr->retry_cnt;
1366 }
1367
1368 if (attr_mask & IB_QP_RNR_RETRY) {
1369 qp->s_rnr_retry_cnt = attr->rnr_retry;
1370 qp->s_rnr_retry = attr->rnr_retry;
1371 }
1372
1373 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1374 qp->r_min_rnr_timer = attr->min_rnr_timer;
1375
1376 if (attr_mask & IB_QP_TIMEOUT) {
1377 qp->timeout = attr->timeout;
1378 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1379 }
1380
1381 if (attr_mask & IB_QP_QKEY)
1382 qp->qkey = attr->qkey;
1383
1384 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1385 qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1386
1387 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1388 qp->s_max_rd_atomic = attr->max_rd_atomic;
1389
1390 if (rdi->driver_f.modify_qp)
1391 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1392
1393 spin_unlock(&qp->s_lock);
1394 spin_unlock(&qp->s_hlock);
1395 spin_unlock_irq(&qp->r_lock);
1396
1397 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1398 rvt_insert_qp(rdi, qp);
1399
1400 if (lastwqe) {
1401 ev.device = qp->ibqp.device;
1402 ev.element.qp = &qp->ibqp;
1403 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1404 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1405 }
1406 if (mig) {
1407 ev.device = qp->ibqp.device;
1408 ev.element.qp = &qp->ibqp;
1409 ev.event = IB_EVENT_PATH_MIG;
1410 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1411 }
1412 return 0;
1413
1414 inval:
1415 spin_unlock(&qp->s_lock);
1416 spin_unlock(&qp->s_hlock);
1417 spin_unlock_irq(&qp->r_lock);
1418 return -EINVAL;
1419 }
1420
1421 /**
1422 * rvt_destroy_qp - destroy a queue pair
1423 * @ibqp: the queue pair to destroy
1424 *
1425 * Note that this can be called while the QP is actively sending or
1426 * receiving!
1427 *
1428 * Return: 0 on success.
1429 */
1430 int rvt_destroy_qp(struct ib_qp *ibqp)
1431 {
1432 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1433 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1434
1435 spin_lock_irq(&qp->r_lock);
1436 spin_lock(&qp->s_hlock);
1437 spin_lock(&qp->s_lock);
1438 rvt_reset_qp(rdi, qp, ibqp->qp_type);
1439 spin_unlock(&qp->s_lock);
1440 spin_unlock(&qp->s_hlock);
1441 spin_unlock_irq(&qp->r_lock);
1442
1443 wait_event(qp->wait, !atomic_read(&qp->refcount));
1444 /* qpn is now available for use again */
1445 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1446
1447 spin_lock(&rdi->n_qps_lock);
1448 rdi->n_qps_allocated--;
1449 if (qp->ibqp.qp_type == IB_QPT_RC) {
1450 rdi->n_rc_qps--;
1451 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1452 }
1453 spin_unlock(&rdi->n_qps_lock);
1454
1455 if (qp->ip)
1456 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1457 else
1458 vfree(qp->r_rq.wq);
1459 vfree(qp->s_wq);
1460 rdi->driver_f.qp_priv_free(rdi, qp);
1461 kfree(qp->s_ack_queue);
1462 kfree(qp);
1463 return 0;
1464 }
1465
1466 /**
1467 * rvt_query_qp - query an ipbq
1468 * @ibqp: IB qp to query
1469 * @attr: attr struct to fill in
1470 * @attr_mask: attr mask ignored
1471 * @init_attr: struct to fill in
1472 *
1473 * Return: always 0
1474 */
1475 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1476 int attr_mask, struct ib_qp_init_attr *init_attr)
1477 {
1478 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1479 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1480
1481 attr->qp_state = qp->state;
1482 attr->cur_qp_state = attr->qp_state;
1483 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1484 attr->path_mig_state = qp->s_mig_state;
1485 attr->qkey = qp->qkey;
1486 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1487 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1488 attr->dest_qp_num = qp->remote_qpn;
1489 attr->qp_access_flags = qp->qp_access_flags;
1490 attr->cap.max_send_wr = qp->s_size - 1 -
1491 rdi->dparms.reserved_operations;
1492 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1493 attr->cap.max_send_sge = qp->s_max_sge;
1494 attr->cap.max_recv_sge = qp->r_rq.max_sge;
1495 attr->cap.max_inline_data = 0;
1496 attr->ah_attr = qp->remote_ah_attr;
1497 attr->alt_ah_attr = qp->alt_ah_attr;
1498 attr->pkey_index = qp->s_pkey_index;
1499 attr->alt_pkey_index = qp->s_alt_pkey_index;
1500 attr->en_sqd_async_notify = 0;
1501 attr->sq_draining = qp->s_draining;
1502 attr->max_rd_atomic = qp->s_max_rd_atomic;
1503 attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1504 attr->min_rnr_timer = qp->r_min_rnr_timer;
1505 attr->port_num = qp->port_num;
1506 attr->timeout = qp->timeout;
1507 attr->retry_cnt = qp->s_retry_cnt;
1508 attr->rnr_retry = qp->s_rnr_retry_cnt;
1509 attr->alt_port_num =
1510 rdma_ah_get_port_num(&qp->alt_ah_attr);
1511 attr->alt_timeout = qp->alt_timeout;
1512
1513 init_attr->event_handler = qp->ibqp.event_handler;
1514 init_attr->qp_context = qp->ibqp.qp_context;
1515 init_attr->send_cq = qp->ibqp.send_cq;
1516 init_attr->recv_cq = qp->ibqp.recv_cq;
1517 init_attr->srq = qp->ibqp.srq;
1518 init_attr->cap = attr->cap;
1519 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1520 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1521 else
1522 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1523 init_attr->qp_type = qp->ibqp.qp_type;
1524 init_attr->port_num = qp->port_num;
1525 return 0;
1526 }
1527
1528 /**
1529 * rvt_post_receive - post a receive on a QP
1530 * @ibqp: the QP to post the receive on
1531 * @wr: the WR to post
1532 * @bad_wr: the first bad WR is put here
1533 *
1534 * This may be called from interrupt context.
1535 *
1536 * Return: 0 on success otherwise errno
1537 */
1538 int rvt_post_recv(struct ib_qp *ibqp, struct ib_recv_wr *wr,
1539 struct ib_recv_wr **bad_wr)
1540 {
1541 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1542 struct rvt_rwq *wq = qp->r_rq.wq;
1543 unsigned long flags;
1544 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1545 !qp->ibqp.srq;
1546
1547 /* Check that state is OK to post receive. */
1548 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1549 *bad_wr = wr;
1550 return -EINVAL;
1551 }
1552
1553 for (; wr; wr = wr->next) {
1554 struct rvt_rwqe *wqe;
1555 u32 next;
1556 int i;
1557
1558 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1559 *bad_wr = wr;
1560 return -EINVAL;
1561 }
1562
1563 spin_lock_irqsave(&qp->r_rq.lock, flags);
1564 next = wq->head + 1;
1565 if (next >= qp->r_rq.size)
1566 next = 0;
1567 if (next == wq->tail) {
1568 spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1569 *bad_wr = wr;
1570 return -ENOMEM;
1571 }
1572 if (unlikely(qp_err_flush)) {
1573 struct ib_wc wc;
1574
1575 memset(&wc, 0, sizeof(wc));
1576 wc.qp = &qp->ibqp;
1577 wc.opcode = IB_WC_RECV;
1578 wc.wr_id = wr->wr_id;
1579 wc.status = IB_WC_WR_FLUSH_ERR;
1580 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1581 } else {
1582 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1583 wqe->wr_id = wr->wr_id;
1584 wqe->num_sge = wr->num_sge;
1585 for (i = 0; i < wr->num_sge; i++)
1586 wqe->sg_list[i] = wr->sg_list[i];
1587 /*
1588 * Make sure queue entry is written
1589 * before the head index.
1590 */
1591 smp_wmb();
1592 wq->head = next;
1593 }
1594 spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1595 }
1596 return 0;
1597 }
1598
1599 /**
1600 * rvt_qp_valid_operation - validate post send wr request
1601 * @qp - the qp
1602 * @post-parms - the post send table for the driver
1603 * @wr - the work request
1604 *
1605 * The routine validates the operation based on the
1606 * validation table an returns the length of the operation
1607 * which can extend beyond the ib_send_bw. Operation
1608 * dependent flags key atomic operation validation.
1609 *
1610 * There is an exception for UD qps that validates the pd and
1611 * overrides the length to include the additional UD specific
1612 * length.
1613 *
1614 * Returns a negative error or the length of the work request
1615 * for building the swqe.
1616 */
1617 static inline int rvt_qp_valid_operation(
1618 struct rvt_qp *qp,
1619 const struct rvt_operation_params *post_parms,
1620 struct ib_send_wr *wr)
1621 {
1622 int len;
1623
1624 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1625 return -EINVAL;
1626 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1627 return -EINVAL;
1628 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1629 ibpd_to_rvtpd(qp->ibqp.pd)->user)
1630 return -EINVAL;
1631 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1632 (wr->num_sge == 0 ||
1633 wr->sg_list[0].length < sizeof(u64) ||
1634 wr->sg_list[0].addr & (sizeof(u64) - 1)))
1635 return -EINVAL;
1636 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1637 !qp->s_max_rd_atomic)
1638 return -EINVAL;
1639 len = post_parms[wr->opcode].length;
1640 /* UD specific */
1641 if (qp->ibqp.qp_type != IB_QPT_UC &&
1642 qp->ibqp.qp_type != IB_QPT_RC) {
1643 if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1644 return -EINVAL;
1645 len = sizeof(struct ib_ud_wr);
1646 }
1647 return len;
1648 }
1649
1650 /**
1651 * rvt_qp_is_avail - determine queue capacity
1652 * @qp: the qp
1653 * @rdi: the rdmavt device
1654 * @reserved_op: is reserved operation
1655 *
1656 * This assumes the s_hlock is held but the s_last
1657 * qp variable is uncontrolled.
1658 *
1659 * For non reserved operations, the qp->s_avail
1660 * may be changed.
1661 *
1662 * The return value is zero or a -ENOMEM.
1663 */
1664 static inline int rvt_qp_is_avail(
1665 struct rvt_qp *qp,
1666 struct rvt_dev_info *rdi,
1667 bool reserved_op)
1668 {
1669 u32 slast;
1670 u32 avail;
1671 u32 reserved_used;
1672
1673 /* see rvt_qp_wqe_unreserve() */
1674 smp_mb__before_atomic();
1675 reserved_used = atomic_read(&qp->s_reserved_used);
1676 if (unlikely(reserved_op)) {
1677 /* see rvt_qp_wqe_unreserve() */
1678 smp_mb__before_atomic();
1679 if (reserved_used >= rdi->dparms.reserved_operations)
1680 return -ENOMEM;
1681 return 0;
1682 }
1683 /* non-reserved operations */
1684 if (likely(qp->s_avail))
1685 return 0;
1686 slast = READ_ONCE(qp->s_last);
1687 if (qp->s_head >= slast)
1688 avail = qp->s_size - (qp->s_head - slast);
1689 else
1690 avail = slast - qp->s_head;
1691
1692 /* see rvt_qp_wqe_unreserve() */
1693 smp_mb__before_atomic();
1694 reserved_used = atomic_read(&qp->s_reserved_used);
1695 avail = avail - 1 -
1696 (rdi->dparms.reserved_operations - reserved_used);
1697 /* insure we don't assign a negative s_avail */
1698 if ((s32)avail <= 0)
1699 return -ENOMEM;
1700 qp->s_avail = avail;
1701 if (WARN_ON(qp->s_avail >
1702 (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1703 rvt_pr_err(rdi,
1704 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1705 qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1706 qp->s_head, qp->s_tail, qp->s_cur,
1707 qp->s_acked, qp->s_last);
1708 return 0;
1709 }
1710
1711 /**
1712 * rvt_post_one_wr - post one RC, UC, or UD send work request
1713 * @qp: the QP to post on
1714 * @wr: the work request to send
1715 */
1716 static int rvt_post_one_wr(struct rvt_qp *qp,
1717 struct ib_send_wr *wr,
1718 int *call_send)
1719 {
1720 struct rvt_swqe *wqe;
1721 u32 next;
1722 int i;
1723 int j;
1724 int acc;
1725 struct rvt_lkey_table *rkt;
1726 struct rvt_pd *pd;
1727 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1728 u8 log_pmtu;
1729 int ret;
1730 size_t cplen;
1731 bool reserved_op;
1732 int local_ops_delayed = 0;
1733
1734 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1735
1736 /* IB spec says that num_sge == 0 is OK. */
1737 if (unlikely(wr->num_sge > qp->s_max_sge))
1738 return -EINVAL;
1739
1740 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1741 if (ret < 0)
1742 return ret;
1743 cplen = ret;
1744
1745 /*
1746 * Local operations include fast register and local invalidate.
1747 * Fast register needs to be processed immediately because the
1748 * registered lkey may be used by following work requests and the
1749 * lkey needs to be valid at the time those requests are posted.
1750 * Local invalidate can be processed immediately if fencing is
1751 * not required and no previous local invalidate ops are pending.
1752 * Signaled local operations that have been processed immediately
1753 * need to have requests with "completion only" flags set posted
1754 * to the send queue in order to generate completions.
1755 */
1756 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
1757 switch (wr->opcode) {
1758 case IB_WR_REG_MR:
1759 ret = rvt_fast_reg_mr(qp,
1760 reg_wr(wr)->mr,
1761 reg_wr(wr)->key,
1762 reg_wr(wr)->access);
1763 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1764 return ret;
1765 break;
1766 case IB_WR_LOCAL_INV:
1767 if ((wr->send_flags & IB_SEND_FENCE) ||
1768 atomic_read(&qp->local_ops_pending)) {
1769 local_ops_delayed = 1;
1770 } else {
1771 ret = rvt_invalidate_rkey(
1772 qp, wr->ex.invalidate_rkey);
1773 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1774 return ret;
1775 }
1776 break;
1777 default:
1778 return -EINVAL;
1779 }
1780 }
1781
1782 reserved_op = rdi->post_parms[wr->opcode].flags &
1783 RVT_OPERATION_USE_RESERVE;
1784 /* check for avail */
1785 ret = rvt_qp_is_avail(qp, rdi, reserved_op);
1786 if (ret)
1787 return ret;
1788 next = qp->s_head + 1;
1789 if (next >= qp->s_size)
1790 next = 0;
1791
1792 rkt = &rdi->lkey_table;
1793 pd = ibpd_to_rvtpd(qp->ibqp.pd);
1794 wqe = rvt_get_swqe_ptr(qp, qp->s_head);
1795
1796 /* cplen has length from above */
1797 memcpy(&wqe->wr, wr, cplen);
1798
1799 wqe->length = 0;
1800 j = 0;
1801 if (wr->num_sge) {
1802 struct rvt_sge *last_sge = NULL;
1803
1804 acc = wr->opcode >= IB_WR_RDMA_READ ?
1805 IB_ACCESS_LOCAL_WRITE : 0;
1806 for (i = 0; i < wr->num_sge; i++) {
1807 u32 length = wr->sg_list[i].length;
1808
1809 if (length == 0)
1810 continue;
1811 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
1812 &wr->sg_list[i], acc);
1813 if (unlikely(ret < 0))
1814 goto bail_inval_free;
1815 wqe->length += length;
1816 if (ret)
1817 last_sge = &wqe->sg_list[j];
1818 j += ret;
1819 }
1820 wqe->wr.num_sge = j;
1821 }
1822
1823 /* general part of wqe valid - allow for driver checks */
1824 if (rdi->driver_f.check_send_wqe) {
1825 ret = rdi->driver_f.check_send_wqe(qp, wqe);
1826 if (ret < 0)
1827 goto bail_inval_free;
1828 if (ret)
1829 *call_send = ret;
1830 }
1831
1832 log_pmtu = qp->log_pmtu;
1833 if (qp->ibqp.qp_type != IB_QPT_UC &&
1834 qp->ibqp.qp_type != IB_QPT_RC) {
1835 struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah);
1836
1837 log_pmtu = ah->log_pmtu;
1838 atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
1839 }
1840
1841 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
1842 if (local_ops_delayed)
1843 atomic_inc(&qp->local_ops_pending);
1844 else
1845 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
1846 wqe->ssn = 0;
1847 wqe->psn = 0;
1848 wqe->lpsn = 0;
1849 } else {
1850 wqe->ssn = qp->s_ssn++;
1851 wqe->psn = qp->s_next_psn;
1852 wqe->lpsn = wqe->psn +
1853 (wqe->length ?
1854 ((wqe->length - 1) >> log_pmtu) :
1855 0);
1856 qp->s_next_psn = wqe->lpsn + 1;
1857 }
1858 if (unlikely(reserved_op)) {
1859 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
1860 rvt_qp_wqe_reserve(qp, wqe);
1861 } else {
1862 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
1863 qp->s_avail--;
1864 }
1865 trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
1866 smp_wmb(); /* see request builders */
1867 qp->s_head = next;
1868
1869 return 0;
1870
1871 bail_inval_free:
1872 /* release mr holds */
1873 while (j) {
1874 struct rvt_sge *sge = &wqe->sg_list[--j];
1875
1876 rvt_put_mr(sge->mr);
1877 }
1878 return ret;
1879 }
1880
1881 /**
1882 * rvt_post_send - post a send on a QP
1883 * @ibqp: the QP to post the send on
1884 * @wr: the list of work requests to post
1885 * @bad_wr: the first bad WR is put here
1886 *
1887 * This may be called from interrupt context.
1888 *
1889 * Return: 0 on success else errno
1890 */
1891 int rvt_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
1892 struct ib_send_wr **bad_wr)
1893 {
1894 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1895 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1896 unsigned long flags = 0;
1897 int call_send;
1898 unsigned nreq = 0;
1899 int err = 0;
1900
1901 spin_lock_irqsave(&qp->s_hlock, flags);
1902
1903 /*
1904 * Ensure QP state is such that we can send. If not bail out early,
1905 * there is no need to do this every time we post a send.
1906 */
1907 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
1908 spin_unlock_irqrestore(&qp->s_hlock, flags);
1909 return -EINVAL;
1910 }
1911
1912 /*
1913 * If the send queue is empty, and we only have a single WR then just go
1914 * ahead and kick the send engine into gear. Otherwise we will always
1915 * just schedule the send to happen later.
1916 */
1917 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
1918
1919 for (; wr; wr = wr->next) {
1920 err = rvt_post_one_wr(qp, wr, &call_send);
1921 if (unlikely(err)) {
1922 *bad_wr = wr;
1923 goto bail;
1924 }
1925 nreq++;
1926 }
1927 bail:
1928 spin_unlock_irqrestore(&qp->s_hlock, flags);
1929 if (nreq) {
1930 if (call_send)
1931 rdi->driver_f.do_send(qp);
1932 else
1933 rdi->driver_f.schedule_send_no_lock(qp);
1934 }
1935 return err;
1936 }
1937
1938 /**
1939 * rvt_post_srq_receive - post a receive on a shared receive queue
1940 * @ibsrq: the SRQ to post the receive on
1941 * @wr: the list of work requests to post
1942 * @bad_wr: A pointer to the first WR to cause a problem is put here
1943 *
1944 * This may be called from interrupt context.
1945 *
1946 * Return: 0 on success else errno
1947 */
1948 int rvt_post_srq_recv(struct ib_srq *ibsrq, struct ib_recv_wr *wr,
1949 struct ib_recv_wr **bad_wr)
1950 {
1951 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
1952 struct rvt_rwq *wq;
1953 unsigned long flags;
1954
1955 for (; wr; wr = wr->next) {
1956 struct rvt_rwqe *wqe;
1957 u32 next;
1958 int i;
1959
1960 if ((unsigned)wr->num_sge > srq->rq.max_sge) {
1961 *bad_wr = wr;
1962 return -EINVAL;
1963 }
1964
1965 spin_lock_irqsave(&srq->rq.lock, flags);
1966 wq = srq->rq.wq;
1967 next = wq->head + 1;
1968 if (next >= srq->rq.size)
1969 next = 0;
1970 if (next == wq->tail) {
1971 spin_unlock_irqrestore(&srq->rq.lock, flags);
1972 *bad_wr = wr;
1973 return -ENOMEM;
1974 }
1975
1976 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
1977 wqe->wr_id = wr->wr_id;
1978 wqe->num_sge = wr->num_sge;
1979 for (i = 0; i < wr->num_sge; i++)
1980 wqe->sg_list[i] = wr->sg_list[i];
1981 /* Make sure queue entry is written before the head index. */
1982 smp_wmb();
1983 wq->head = next;
1984 spin_unlock_irqrestore(&srq->rq.lock, flags);
1985 }
1986 return 0;
1987 }
1988
1989 /*
1990 * Validate a RWQE and fill in the SGE state.
1991 * Return 1 if OK.
1992 */
1993 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
1994 {
1995 int i, j, ret;
1996 struct ib_wc wc;
1997 struct rvt_lkey_table *rkt;
1998 struct rvt_pd *pd;
1999 struct rvt_sge_state *ss;
2000 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2001
2002 rkt = &rdi->lkey_table;
2003 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2004 ss = &qp->r_sge;
2005 ss->sg_list = qp->r_sg_list;
2006 qp->r_len = 0;
2007 for (i = j = 0; i < wqe->num_sge; i++) {
2008 if (wqe->sg_list[i].length == 0)
2009 continue;
2010 /* Check LKEY */
2011 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2012 NULL, &wqe->sg_list[i],
2013 IB_ACCESS_LOCAL_WRITE);
2014 if (unlikely(ret <= 0))
2015 goto bad_lkey;
2016 qp->r_len += wqe->sg_list[i].length;
2017 j++;
2018 }
2019 ss->num_sge = j;
2020 ss->total_len = qp->r_len;
2021 return 1;
2022
2023 bad_lkey:
2024 while (j) {
2025 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2026
2027 rvt_put_mr(sge->mr);
2028 }
2029 ss->num_sge = 0;
2030 memset(&wc, 0, sizeof(wc));
2031 wc.wr_id = wqe->wr_id;
2032 wc.status = IB_WC_LOC_PROT_ERR;
2033 wc.opcode = IB_WC_RECV;
2034 wc.qp = &qp->ibqp;
2035 /* Signal solicited completion event. */
2036 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2037 return 0;
2038 }
2039
2040 /**
2041 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2042 * @qp: the QP
2043 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2044 *
2045 * Return -1 if there is a local error, 0 if no RWQE is available,
2046 * otherwise return 1.
2047 *
2048 * Can be called from interrupt level.
2049 */
2050 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2051 {
2052 unsigned long flags;
2053 struct rvt_rq *rq;
2054 struct rvt_rwq *wq;
2055 struct rvt_srq *srq;
2056 struct rvt_rwqe *wqe;
2057 void (*handler)(struct ib_event *, void *);
2058 u32 tail;
2059 int ret;
2060
2061 if (qp->ibqp.srq) {
2062 srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2063 handler = srq->ibsrq.event_handler;
2064 rq = &srq->rq;
2065 } else {
2066 srq = NULL;
2067 handler = NULL;
2068 rq = &qp->r_rq;
2069 }
2070
2071 spin_lock_irqsave(&rq->lock, flags);
2072 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2073 ret = 0;
2074 goto unlock;
2075 }
2076
2077 wq = rq->wq;
2078 tail = wq->tail;
2079 /* Validate tail before using it since it is user writable. */
2080 if (tail >= rq->size)
2081 tail = 0;
2082 if (unlikely(tail == wq->head)) {
2083 ret = 0;
2084 goto unlock;
2085 }
2086 /* Make sure entry is read after head index is read. */
2087 smp_rmb();
2088 wqe = rvt_get_rwqe_ptr(rq, tail);
2089 /*
2090 * Even though we update the tail index in memory, the verbs
2091 * consumer is not supposed to post more entries until a
2092 * completion is generated.
2093 */
2094 if (++tail >= rq->size)
2095 tail = 0;
2096 wq->tail = tail;
2097 if (!wr_id_only && !init_sge(qp, wqe)) {
2098 ret = -1;
2099 goto unlock;
2100 }
2101 qp->r_wr_id = wqe->wr_id;
2102
2103 ret = 1;
2104 set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2105 if (handler) {
2106 u32 n;
2107
2108 /*
2109 * Validate head pointer value and compute
2110 * the number of remaining WQEs.
2111 */
2112 n = wq->head;
2113 if (n >= rq->size)
2114 n = 0;
2115 if (n < tail)
2116 n += rq->size - tail;
2117 else
2118 n -= tail;
2119 if (n < srq->limit) {
2120 struct ib_event ev;
2121
2122 srq->limit = 0;
2123 spin_unlock_irqrestore(&rq->lock, flags);
2124 ev.device = qp->ibqp.device;
2125 ev.element.srq = qp->ibqp.srq;
2126 ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2127 handler(&ev, srq->ibsrq.srq_context);
2128 goto bail;
2129 }
2130 }
2131 unlock:
2132 spin_unlock_irqrestore(&rq->lock, flags);
2133 bail:
2134 return ret;
2135 }
2136 EXPORT_SYMBOL(rvt_get_rwqe);
2137
2138 /**
2139 * qp_comm_est - handle trap with QP established
2140 * @qp: the QP
2141 */
2142 void rvt_comm_est(struct rvt_qp *qp)
2143 {
2144 qp->r_flags |= RVT_R_COMM_EST;
2145 if (qp->ibqp.event_handler) {
2146 struct ib_event ev;
2147
2148 ev.device = qp->ibqp.device;
2149 ev.element.qp = &qp->ibqp;
2150 ev.event = IB_EVENT_COMM_EST;
2151 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2152 }
2153 }
2154 EXPORT_SYMBOL(rvt_comm_est);
2155
2156 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2157 {
2158 unsigned long flags;
2159 int lastwqe;
2160
2161 spin_lock_irqsave(&qp->s_lock, flags);
2162 lastwqe = rvt_error_qp(qp, err);
2163 spin_unlock_irqrestore(&qp->s_lock, flags);
2164
2165 if (lastwqe) {
2166 struct ib_event ev;
2167
2168 ev.device = qp->ibqp.device;
2169 ev.element.qp = &qp->ibqp;
2170 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2171 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2172 }
2173 }
2174 EXPORT_SYMBOL(rvt_rc_error);
2175
2176 /*
2177 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2178 * @index - the index
2179 * return usec from an index into ib_rvt_rnr_table
2180 */
2181 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2182 {
2183 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2184 }
2185 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2186
2187 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2188 {
2189 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2190 IB_AETH_CREDIT_MASK];
2191 }
2192
2193 /*
2194 * rvt_add_retry_timer - add/start a retry timer
2195 * @qp - the QP
2196 * add a retry timer on the QP
2197 */
2198 void rvt_add_retry_timer(struct rvt_qp *qp)
2199 {
2200 struct ib_qp *ibqp = &qp->ibqp;
2201 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2202
2203 lockdep_assert_held(&qp->s_lock);
2204 qp->s_flags |= RVT_S_TIMER;
2205 /* 4.096 usec. * (1 << qp->timeout) */
2206 qp->s_timer.expires = jiffies + qp->timeout_jiffies +
2207 rdi->busy_jiffies;
2208 add_timer(&qp->s_timer);
2209 }
2210 EXPORT_SYMBOL(rvt_add_retry_timer);
2211
2212 /**
2213 * rvt_add_rnr_timer - add/start an rnr timer
2214 * @qp - the QP
2215 * @aeth - aeth of RNR timeout, simulated aeth for loopback
2216 * add an rnr timer on the QP
2217 */
2218 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2219 {
2220 u32 to;
2221
2222 lockdep_assert_held(&qp->s_lock);
2223 qp->s_flags |= RVT_S_WAIT_RNR;
2224 to = rvt_aeth_to_usec(aeth);
2225 trace_rvt_rnrnak_add(qp, to);
2226 hrtimer_start(&qp->s_rnr_timer,
2227 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2228 }
2229 EXPORT_SYMBOL(rvt_add_rnr_timer);
2230
2231 /**
2232 * rvt_stop_rc_timers - stop all timers
2233 * @qp - the QP
2234 * stop any pending timers
2235 */
2236 void rvt_stop_rc_timers(struct rvt_qp *qp)
2237 {
2238 lockdep_assert_held(&qp->s_lock);
2239 /* Remove QP from all timers */
2240 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2241 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2242 del_timer(&qp->s_timer);
2243 hrtimer_try_to_cancel(&qp->s_rnr_timer);
2244 }
2245 }
2246 EXPORT_SYMBOL(rvt_stop_rc_timers);
2247
2248 /**
2249 * rvt_stop_rnr_timer - stop an rnr timer
2250 * @qp - the QP
2251 *
2252 * stop an rnr timer and return if the timer
2253 * had been pending.
2254 */
2255 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2256 {
2257 lockdep_assert_held(&qp->s_lock);
2258 /* Remove QP from rnr timer */
2259 if (qp->s_flags & RVT_S_WAIT_RNR) {
2260 qp->s_flags &= ~RVT_S_WAIT_RNR;
2261 trace_rvt_rnrnak_stop(qp, 0);
2262 }
2263 }
2264
2265 /**
2266 * rvt_del_timers_sync - wait for any timeout routines to exit
2267 * @qp - the QP
2268 */
2269 void rvt_del_timers_sync(struct rvt_qp *qp)
2270 {
2271 del_timer_sync(&qp->s_timer);
2272 hrtimer_cancel(&qp->s_rnr_timer);
2273 }
2274 EXPORT_SYMBOL(rvt_del_timers_sync);
2275
2276 /**
2277 * This is called from s_timer for missing responses.
2278 */
2279 static void rvt_rc_timeout(struct timer_list *t)
2280 {
2281 struct rvt_qp *qp = from_timer(qp, t, s_timer);
2282 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2283 unsigned long flags;
2284
2285 spin_lock_irqsave(&qp->r_lock, flags);
2286 spin_lock(&qp->s_lock);
2287 if (qp->s_flags & RVT_S_TIMER) {
2288 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2289
2290 qp->s_flags &= ~RVT_S_TIMER;
2291 rvp->n_rc_timeouts++;
2292 del_timer(&qp->s_timer);
2293 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2294 if (rdi->driver_f.notify_restart_rc)
2295 rdi->driver_f.notify_restart_rc(qp,
2296 qp->s_last_psn + 1,
2297 1);
2298 rdi->driver_f.schedule_send(qp);
2299 }
2300 spin_unlock(&qp->s_lock);
2301 spin_unlock_irqrestore(&qp->r_lock, flags);
2302 }
2303
2304 /*
2305 * This is called from s_timer for RNR timeouts.
2306 */
2307 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2308 {
2309 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2310 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2311 unsigned long flags;
2312
2313 spin_lock_irqsave(&qp->s_lock, flags);
2314 rvt_stop_rnr_timer(qp);
2315 trace_rvt_rnrnak_timeout(qp, 0);
2316 rdi->driver_f.schedule_send(qp);
2317 spin_unlock_irqrestore(&qp->s_lock, flags);
2318 return HRTIMER_NORESTART;
2319 }
2320 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2321
2322 /**
2323 * rvt_qp_iter_init - initial for QP iteration
2324 * @rdi: rvt devinfo
2325 * @v: u64 value
2326 *
2327 * This returns an iterator suitable for iterating QPs
2328 * in the system.
2329 *
2330 * The @cb is a user defined callback and @v is a 64
2331 * bit value passed to and relevant for processing in the
2332 * @cb. An example use case would be to alter QP processing
2333 * based on criteria not part of the rvt_qp.
2334 *
2335 * Use cases that require memory allocation to succeed
2336 * must preallocate appropriately.
2337 *
2338 * Return: a pointer to an rvt_qp_iter or NULL
2339 */
2340 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2341 u64 v,
2342 void (*cb)(struct rvt_qp *qp, u64 v))
2343 {
2344 struct rvt_qp_iter *i;
2345
2346 i = kzalloc(sizeof(*i), GFP_KERNEL);
2347 if (!i)
2348 return NULL;
2349
2350 i->rdi = rdi;
2351 /* number of special QPs (SMI/GSI) for device */
2352 i->specials = rdi->ibdev.phys_port_cnt * 2;
2353 i->v = v;
2354 i->cb = cb;
2355
2356 return i;
2357 }
2358 EXPORT_SYMBOL(rvt_qp_iter_init);
2359
2360 /**
2361 * rvt_qp_iter_next - return the next QP in iter
2362 * @iter - the iterator
2363 *
2364 * Fine grained QP iterator suitable for use
2365 * with debugfs seq_file mechanisms.
2366 *
2367 * Updates iter->qp with the current QP when the return
2368 * value is 0.
2369 *
2370 * Return: 0 - iter->qp is valid 1 - no more QPs
2371 */
2372 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2373 __must_hold(RCU)
2374 {
2375 int n = iter->n;
2376 int ret = 1;
2377 struct rvt_qp *pqp = iter->qp;
2378 struct rvt_qp *qp;
2379 struct rvt_dev_info *rdi = iter->rdi;
2380
2381 /*
2382 * The approach is to consider the special qps
2383 * as additional table entries before the
2384 * real hash table. Since the qp code sets
2385 * the qp->next hash link to NULL, this works just fine.
2386 *
2387 * iter->specials is 2 * # ports
2388 *
2389 * n = 0..iter->specials is the special qp indices
2390 *
2391 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2392 * the potential hash bucket entries
2393 *
2394 */
2395 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) {
2396 if (pqp) {
2397 qp = rcu_dereference(pqp->next);
2398 } else {
2399 if (n < iter->specials) {
2400 struct rvt_ibport *rvp;
2401 int pidx;
2402
2403 pidx = n % rdi->ibdev.phys_port_cnt;
2404 rvp = rdi->ports[pidx];
2405 qp = rcu_dereference(rvp->qp[n & 1]);
2406 } else {
2407 qp = rcu_dereference(
2408 rdi->qp_dev->qp_table[
2409 (n - iter->specials)]);
2410 }
2411 }
2412 pqp = qp;
2413 if (qp) {
2414 iter->qp = qp;
2415 iter->n = n;
2416 return 0;
2417 }
2418 }
2419 return ret;
2420 }
2421 EXPORT_SYMBOL(rvt_qp_iter_next);
2422
2423 /**
2424 * rvt_qp_iter - iterate all QPs
2425 * @rdi - rvt devinfo
2426 * @v - a 64 bit value
2427 * @cb - a callback
2428 *
2429 * This provides a way for iterating all QPs.
2430 *
2431 * The @cb is a user defined callback and @v is a 64
2432 * bit value passed to and relevant for processing in the
2433 * cb. An example use case would be to alter QP processing
2434 * based on criteria not part of the rvt_qp.
2435 *
2436 * The code has an internal iterator to simplify
2437 * non seq_file use cases.
2438 */
2439 void rvt_qp_iter(struct rvt_dev_info *rdi,
2440 u64 v,
2441 void (*cb)(struct rvt_qp *qp, u64 v))
2442 {
2443 int ret;
2444 struct rvt_qp_iter i = {
2445 .rdi = rdi,
2446 .specials = rdi->ibdev.phys_port_cnt * 2,
2447 .v = v,
2448 .cb = cb
2449 };
2450
2451 rcu_read_lock();
2452 do {
2453 ret = rvt_qp_iter_next(&i);
2454 if (!ret) {
2455 rvt_get_qp(i.qp);
2456 rcu_read_unlock();
2457 i.cb(i.qp, i.v);
2458 rcu_read_lock();
2459 rvt_put_qp(i.qp);
2460 }
2461 } while (!ret);
2462 rcu_read_unlock();
2463 }
2464 EXPORT_SYMBOL(rvt_qp_iter);