]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/infiniband/sw/rdmavt/qp.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / sw / rdmavt / qp.c
1 /*
2 * Copyright(c) 2016, 2017 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include "qp.h"
56 #include "vt.h"
57 #include "trace.h"
58
59 static void rvt_rc_timeout(unsigned long arg);
60
61 /*
62 * Convert the AETH RNR timeout code into the number of microseconds.
63 */
64 static const u32 ib_rvt_rnr_table[32] = {
65 655360, /* 00: 655.36 */
66 10, /* 01: .01 */
67 20, /* 02 .02 */
68 30, /* 03: .03 */
69 40, /* 04: .04 */
70 60, /* 05: .06 */
71 80, /* 06: .08 */
72 120, /* 07: .12 */
73 160, /* 08: .16 */
74 240, /* 09: .24 */
75 320, /* 0A: .32 */
76 480, /* 0B: .48 */
77 640, /* 0C: .64 */
78 960, /* 0D: .96 */
79 1280, /* 0E: 1.28 */
80 1920, /* 0F: 1.92 */
81 2560, /* 10: 2.56 */
82 3840, /* 11: 3.84 */
83 5120, /* 12: 5.12 */
84 7680, /* 13: 7.68 */
85 10240, /* 14: 10.24 */
86 15360, /* 15: 15.36 */
87 20480, /* 16: 20.48 */
88 30720, /* 17: 30.72 */
89 40960, /* 18: 40.96 */
90 61440, /* 19: 61.44 */
91 81920, /* 1A: 81.92 */
92 122880, /* 1B: 122.88 */
93 163840, /* 1C: 163.84 */
94 245760, /* 1D: 245.76 */
95 327680, /* 1E: 327.68 */
96 491520 /* 1F: 491.52 */
97 };
98
99 /*
100 * Note that it is OK to post send work requests in the SQE and ERR
101 * states; rvt_do_send() will process them and generate error
102 * completions as per IB 1.2 C10-96.
103 */
104 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
105 [IB_QPS_RESET] = 0,
106 [IB_QPS_INIT] = RVT_POST_RECV_OK,
107 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
108 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
109 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
110 RVT_PROCESS_NEXT_SEND_OK,
111 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
112 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
113 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
114 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
115 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
116 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
117 };
118 EXPORT_SYMBOL(ib_rvt_state_ops);
119
120 static void get_map_page(struct rvt_qpn_table *qpt,
121 struct rvt_qpn_map *map,
122 gfp_t gfp)
123 {
124 unsigned long page = get_zeroed_page(gfp);
125
126 /*
127 * Free the page if someone raced with us installing it.
128 */
129
130 spin_lock(&qpt->lock);
131 if (map->page)
132 free_page(page);
133 else
134 map->page = (void *)page;
135 spin_unlock(&qpt->lock);
136 }
137
138 /**
139 * init_qpn_table - initialize the QP number table for a device
140 * @qpt: the QPN table
141 */
142 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
143 {
144 u32 offset, i;
145 struct rvt_qpn_map *map;
146 int ret = 0;
147
148 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
149 return -EINVAL;
150
151 spin_lock_init(&qpt->lock);
152
153 qpt->last = rdi->dparms.qpn_start;
154 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
155
156 /*
157 * Drivers may want some QPs beyond what we need for verbs let them use
158 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
159 * for those. The reserved range must be *after* the range which verbs
160 * will pick from.
161 */
162
163 /* Figure out number of bit maps needed before reserved range */
164 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
165
166 /* This should always be zero */
167 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
168
169 /* Starting with the first reserved bit map */
170 map = &qpt->map[qpt->nmaps];
171
172 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
173 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
174 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
175 if (!map->page) {
176 get_map_page(qpt, map, GFP_KERNEL);
177 if (!map->page) {
178 ret = -ENOMEM;
179 break;
180 }
181 }
182 set_bit(offset, map->page);
183 offset++;
184 if (offset == RVT_BITS_PER_PAGE) {
185 /* next page */
186 qpt->nmaps++;
187 map++;
188 offset = 0;
189 }
190 }
191 return ret;
192 }
193
194 /**
195 * free_qpn_table - free the QP number table for a device
196 * @qpt: the QPN table
197 */
198 static void free_qpn_table(struct rvt_qpn_table *qpt)
199 {
200 int i;
201
202 for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
203 free_page((unsigned long)qpt->map[i].page);
204 }
205
206 /**
207 * rvt_driver_qp_init - Init driver qp resources
208 * @rdi: rvt dev strucutre
209 *
210 * Return: 0 on success
211 */
212 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
213 {
214 int i;
215 int ret = -ENOMEM;
216
217 if (!rdi->dparms.qp_table_size)
218 return -EINVAL;
219
220 /*
221 * If driver is not doing any QP allocation then make sure it is
222 * providing the necessary QP functions.
223 */
224 if (!rdi->driver_f.free_all_qps ||
225 !rdi->driver_f.qp_priv_alloc ||
226 !rdi->driver_f.qp_priv_free ||
227 !rdi->driver_f.notify_qp_reset ||
228 !rdi->driver_f.notify_restart_rc)
229 return -EINVAL;
230
231 /* allocate parent object */
232 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
233 rdi->dparms.node);
234 if (!rdi->qp_dev)
235 return -ENOMEM;
236
237 /* allocate hash table */
238 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
239 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
240 rdi->qp_dev->qp_table =
241 kmalloc_node(rdi->qp_dev->qp_table_size *
242 sizeof(*rdi->qp_dev->qp_table),
243 GFP_KERNEL, rdi->dparms.node);
244 if (!rdi->qp_dev->qp_table)
245 goto no_qp_table;
246
247 for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
248 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
249
250 spin_lock_init(&rdi->qp_dev->qpt_lock);
251
252 /* initialize qpn map */
253 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
254 goto fail_table;
255
256 spin_lock_init(&rdi->n_qps_lock);
257
258 return 0;
259
260 fail_table:
261 kfree(rdi->qp_dev->qp_table);
262 free_qpn_table(&rdi->qp_dev->qpn_table);
263
264 no_qp_table:
265 kfree(rdi->qp_dev);
266
267 return ret;
268 }
269
270 /**
271 * free_all_qps - check for QPs still in use
272 * @qpt: the QP table to empty
273 *
274 * There should not be any QPs still in use.
275 * Free memory for table.
276 */
277 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
278 {
279 unsigned long flags;
280 struct rvt_qp *qp;
281 unsigned n, qp_inuse = 0;
282 spinlock_t *ql; /* work around too long line below */
283
284 if (rdi->driver_f.free_all_qps)
285 qp_inuse = rdi->driver_f.free_all_qps(rdi);
286
287 qp_inuse += rvt_mcast_tree_empty(rdi);
288
289 if (!rdi->qp_dev)
290 return qp_inuse;
291
292 ql = &rdi->qp_dev->qpt_lock;
293 spin_lock_irqsave(ql, flags);
294 for (n = 0; n < rdi->qp_dev->qp_table_size; n++) {
295 qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n],
296 lockdep_is_held(ql));
297 RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL);
298
299 for (; qp; qp = rcu_dereference_protected(qp->next,
300 lockdep_is_held(ql)))
301 qp_inuse++;
302 }
303 spin_unlock_irqrestore(ql, flags);
304 synchronize_rcu();
305 return qp_inuse;
306 }
307
308 /**
309 * rvt_qp_exit - clean up qps on device exit
310 * @rdi: rvt dev structure
311 *
312 * Check for qp leaks and free resources.
313 */
314 void rvt_qp_exit(struct rvt_dev_info *rdi)
315 {
316 u32 qps_inuse = rvt_free_all_qps(rdi);
317
318 if (qps_inuse)
319 rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
320 qps_inuse);
321 if (!rdi->qp_dev)
322 return;
323
324 kfree(rdi->qp_dev->qp_table);
325 free_qpn_table(&rdi->qp_dev->qpn_table);
326 kfree(rdi->qp_dev);
327 }
328
329 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
330 struct rvt_qpn_map *map, unsigned off)
331 {
332 return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
333 }
334
335 /**
336 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
337 * IB_QPT_SMI/IB_QPT_GSI
338 *@rdi: rvt device info structure
339 *@qpt: queue pair number table pointer
340 *@port_num: IB port number, 1 based, comes from core
341 *
342 * Return: The queue pair number
343 */
344 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
345 enum ib_qp_type type, u8 port_num, gfp_t gfp)
346 {
347 u32 i, offset, max_scan, qpn;
348 struct rvt_qpn_map *map;
349 u32 ret;
350
351 if (rdi->driver_f.alloc_qpn)
352 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num, gfp);
353
354 if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
355 unsigned n;
356
357 ret = type == IB_QPT_GSI;
358 n = 1 << (ret + 2 * (port_num - 1));
359 spin_lock(&qpt->lock);
360 if (qpt->flags & n)
361 ret = -EINVAL;
362 else
363 qpt->flags |= n;
364 spin_unlock(&qpt->lock);
365 goto bail;
366 }
367
368 qpn = qpt->last + qpt->incr;
369 if (qpn >= RVT_QPN_MAX)
370 qpn = qpt->incr | ((qpt->last & 1) ^ 1);
371 /* offset carries bit 0 */
372 offset = qpn & RVT_BITS_PER_PAGE_MASK;
373 map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
374 max_scan = qpt->nmaps - !offset;
375 for (i = 0;;) {
376 if (unlikely(!map->page)) {
377 get_map_page(qpt, map, gfp);
378 if (unlikely(!map->page))
379 break;
380 }
381 do {
382 if (!test_and_set_bit(offset, map->page)) {
383 qpt->last = qpn;
384 ret = qpn;
385 goto bail;
386 }
387 offset += qpt->incr;
388 /*
389 * This qpn might be bogus if offset >= BITS_PER_PAGE.
390 * That is OK. It gets re-assigned below
391 */
392 qpn = mk_qpn(qpt, map, offset);
393 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
394 /*
395 * In order to keep the number of pages allocated to a
396 * minimum, we scan the all existing pages before increasing
397 * the size of the bitmap table.
398 */
399 if (++i > max_scan) {
400 if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
401 break;
402 map = &qpt->map[qpt->nmaps++];
403 /* start at incr with current bit 0 */
404 offset = qpt->incr | (offset & 1);
405 } else if (map < &qpt->map[qpt->nmaps]) {
406 ++map;
407 /* start at incr with current bit 0 */
408 offset = qpt->incr | (offset & 1);
409 } else {
410 map = &qpt->map[0];
411 /* wrap to first map page, invert bit 0 */
412 offset = qpt->incr | ((offset & 1) ^ 1);
413 }
414 /* there can be no set bits in low-order QoS bits */
415 WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1));
416 qpn = mk_qpn(qpt, map, offset);
417 }
418
419 ret = -ENOMEM;
420
421 bail:
422 return ret;
423 }
424
425 static void free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
426 {
427 struct rvt_qpn_map *map;
428
429 map = qpt->map + qpn / RVT_BITS_PER_PAGE;
430 if (map->page)
431 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
432 }
433
434 /**
435 * rvt_clear_mr_refs - Drop help mr refs
436 * @qp: rvt qp data structure
437 * @clr_sends: If shoudl clear send side or not
438 */
439 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
440 {
441 unsigned n;
442 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
443
444 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
445 rvt_put_ss(&qp->s_rdma_read_sge);
446
447 rvt_put_ss(&qp->r_sge);
448
449 if (clr_sends) {
450 while (qp->s_last != qp->s_head) {
451 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
452 unsigned i;
453
454 for (i = 0; i < wqe->wr.num_sge; i++) {
455 struct rvt_sge *sge = &wqe->sg_list[i];
456
457 rvt_put_mr(sge->mr);
458 }
459 if (qp->ibqp.qp_type == IB_QPT_UD ||
460 qp->ibqp.qp_type == IB_QPT_SMI ||
461 qp->ibqp.qp_type == IB_QPT_GSI)
462 atomic_dec(&ibah_to_rvtah(
463 wqe->ud_wr.ah)->refcount);
464 if (++qp->s_last >= qp->s_size)
465 qp->s_last = 0;
466 smp_wmb(); /* see qp_set_savail */
467 }
468 if (qp->s_rdma_mr) {
469 rvt_put_mr(qp->s_rdma_mr);
470 qp->s_rdma_mr = NULL;
471 }
472 }
473
474 if (qp->ibqp.qp_type != IB_QPT_RC)
475 return;
476
477 for (n = 0; n < rvt_max_atomic(rdi); n++) {
478 struct rvt_ack_entry *e = &qp->s_ack_queue[n];
479
480 if (e->rdma_sge.mr) {
481 rvt_put_mr(e->rdma_sge.mr);
482 e->rdma_sge.mr = NULL;
483 }
484 }
485 }
486
487 /**
488 * rvt_remove_qp - remove qp form table
489 * @rdi: rvt dev struct
490 * @qp: qp to remove
491 *
492 * Remove the QP from the table so it can't be found asynchronously by
493 * the receive routine.
494 */
495 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
496 {
497 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
498 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
499 unsigned long flags;
500 int removed = 1;
501
502 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
503
504 if (rcu_dereference_protected(rvp->qp[0],
505 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
506 RCU_INIT_POINTER(rvp->qp[0], NULL);
507 } else if (rcu_dereference_protected(rvp->qp[1],
508 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
509 RCU_INIT_POINTER(rvp->qp[1], NULL);
510 } else {
511 struct rvt_qp *q;
512 struct rvt_qp __rcu **qpp;
513
514 removed = 0;
515 qpp = &rdi->qp_dev->qp_table[n];
516 for (; (q = rcu_dereference_protected(*qpp,
517 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
518 qpp = &q->next) {
519 if (q == qp) {
520 RCU_INIT_POINTER(*qpp,
521 rcu_dereference_protected(qp->next,
522 lockdep_is_held(&rdi->qp_dev->qpt_lock)));
523 removed = 1;
524 trace_rvt_qpremove(qp, n);
525 break;
526 }
527 }
528 }
529
530 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
531 if (removed) {
532 synchronize_rcu();
533 rvt_put_qp(qp);
534 }
535 }
536
537 /**
538 * rvt_init_qp - initialize the QP state to the reset state
539 * @qp: the QP to init or reinit
540 * @type: the QP type
541 *
542 * This function is called from both rvt_create_qp() and
543 * rvt_reset_qp(). The difference is that the reset
544 * patch the necessary locks to protect against concurent
545 * access.
546 */
547 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
548 enum ib_qp_type type)
549 {
550 qp->remote_qpn = 0;
551 qp->qkey = 0;
552 qp->qp_access_flags = 0;
553 qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
554 qp->s_hdrwords = 0;
555 qp->s_wqe = NULL;
556 qp->s_draining = 0;
557 qp->s_next_psn = 0;
558 qp->s_last_psn = 0;
559 qp->s_sending_psn = 0;
560 qp->s_sending_hpsn = 0;
561 qp->s_psn = 0;
562 qp->r_psn = 0;
563 qp->r_msn = 0;
564 if (type == IB_QPT_RC) {
565 qp->s_state = IB_OPCODE_RC_SEND_LAST;
566 qp->r_state = IB_OPCODE_RC_SEND_LAST;
567 } else {
568 qp->s_state = IB_OPCODE_UC_SEND_LAST;
569 qp->r_state = IB_OPCODE_UC_SEND_LAST;
570 }
571 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
572 qp->r_nak_state = 0;
573 qp->r_aflags = 0;
574 qp->r_flags = 0;
575 qp->s_head = 0;
576 qp->s_tail = 0;
577 qp->s_cur = 0;
578 qp->s_acked = 0;
579 qp->s_last = 0;
580 qp->s_ssn = 1;
581 qp->s_lsn = 0;
582 qp->s_mig_state = IB_MIG_MIGRATED;
583 qp->r_head_ack_queue = 0;
584 qp->s_tail_ack_queue = 0;
585 qp->s_num_rd_atomic = 0;
586 if (qp->r_rq.wq) {
587 qp->r_rq.wq->head = 0;
588 qp->r_rq.wq->tail = 0;
589 }
590 qp->r_sge.num_sge = 0;
591 atomic_set(&qp->s_reserved_used, 0);
592 }
593
594 /**
595 * rvt_reset_qp - initialize the QP state to the reset state
596 * @qp: the QP to reset
597 * @type: the QP type
598 *
599 * r_lock, s_hlock, and s_lock are required to be held by the caller
600 */
601 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
602 enum ib_qp_type type)
603 __must_hold(&qp->s_lock)
604 __must_hold(&qp->s_hlock)
605 __must_hold(&qp->r_lock)
606 {
607 lockdep_assert_held(&qp->r_lock);
608 lockdep_assert_held(&qp->s_hlock);
609 lockdep_assert_held(&qp->s_lock);
610 if (qp->state != IB_QPS_RESET) {
611 qp->state = IB_QPS_RESET;
612
613 /* Let drivers flush their waitlist */
614 rdi->driver_f.flush_qp_waiters(qp);
615 rvt_stop_rc_timers(qp);
616 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
617 spin_unlock(&qp->s_lock);
618 spin_unlock(&qp->s_hlock);
619 spin_unlock_irq(&qp->r_lock);
620
621 /* Stop the send queue and the retry timer */
622 rdi->driver_f.stop_send_queue(qp);
623 rvt_del_timers_sync(qp);
624 /* Wait for things to stop */
625 rdi->driver_f.quiesce_qp(qp);
626
627 /* take qp out the hash and wait for it to be unused */
628 rvt_remove_qp(rdi, qp);
629 wait_event(qp->wait, !atomic_read(&qp->refcount));
630
631 /* grab the lock b/c it was locked at call time */
632 spin_lock_irq(&qp->r_lock);
633 spin_lock(&qp->s_hlock);
634 spin_lock(&qp->s_lock);
635
636 rvt_clear_mr_refs(qp, 1);
637 /*
638 * Let the driver do any tear down or re-init it needs to for
639 * a qp that has been reset
640 */
641 rdi->driver_f.notify_qp_reset(qp);
642 }
643 rvt_init_qp(rdi, qp, type);
644 lockdep_assert_held(&qp->r_lock);
645 lockdep_assert_held(&qp->s_hlock);
646 lockdep_assert_held(&qp->s_lock);
647 }
648
649 /**
650 * rvt_create_qp - create a queue pair for a device
651 * @ibpd: the protection domain who's device we create the queue pair for
652 * @init_attr: the attributes of the queue pair
653 * @udata: user data for libibverbs.so
654 *
655 * Queue pair creation is mostly an rvt issue. However, drivers have their own
656 * unique idea of what queue pair numbers mean. For instance there is a reserved
657 * range for PSM.
658 *
659 * Return: the queue pair on success, otherwise returns an errno.
660 *
661 * Called by the ib_create_qp() core verbs function.
662 */
663 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
664 struct ib_qp_init_attr *init_attr,
665 struct ib_udata *udata)
666 {
667 struct rvt_qp *qp;
668 int err;
669 struct rvt_swqe *swq = NULL;
670 size_t sz;
671 size_t sg_list_sz;
672 struct ib_qp *ret = ERR_PTR(-ENOMEM);
673 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
674 void *priv = NULL;
675 gfp_t gfp;
676 size_t sqsize;
677
678 if (!rdi)
679 return ERR_PTR(-EINVAL);
680
681 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_sge ||
682 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
683 init_attr->create_flags & ~(IB_QP_CREATE_USE_GFP_NOIO))
684 return ERR_PTR(-EINVAL);
685
686 /* GFP_NOIO is applicable to RC QP's only */
687
688 if (init_attr->create_flags & IB_QP_CREATE_USE_GFP_NOIO &&
689 init_attr->qp_type != IB_QPT_RC)
690 return ERR_PTR(-EINVAL);
691
692 gfp = init_attr->create_flags & IB_QP_CREATE_USE_GFP_NOIO ?
693 GFP_NOIO : GFP_KERNEL;
694
695 /* Check receive queue parameters if no SRQ is specified. */
696 if (!init_attr->srq) {
697 if (init_attr->cap.max_recv_sge > rdi->dparms.props.max_sge ||
698 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
699 return ERR_PTR(-EINVAL);
700
701 if (init_attr->cap.max_send_sge +
702 init_attr->cap.max_send_wr +
703 init_attr->cap.max_recv_sge +
704 init_attr->cap.max_recv_wr == 0)
705 return ERR_PTR(-EINVAL);
706 }
707 sqsize =
708 init_attr->cap.max_send_wr + 1 +
709 rdi->dparms.reserved_operations;
710 switch (init_attr->qp_type) {
711 case IB_QPT_SMI:
712 case IB_QPT_GSI:
713 if (init_attr->port_num == 0 ||
714 init_attr->port_num > ibpd->device->phys_port_cnt)
715 return ERR_PTR(-EINVAL);
716 case IB_QPT_UC:
717 case IB_QPT_RC:
718 case IB_QPT_UD:
719 sz = sizeof(struct rvt_sge) *
720 init_attr->cap.max_send_sge +
721 sizeof(struct rvt_swqe);
722 if (gfp == GFP_NOIO)
723 swq = __vmalloc(
724 sqsize * sz,
725 gfp | __GFP_ZERO, PAGE_KERNEL);
726 else
727 swq = vzalloc_node(
728 sqsize * sz,
729 rdi->dparms.node);
730 if (!swq)
731 return ERR_PTR(-ENOMEM);
732
733 sz = sizeof(*qp);
734 sg_list_sz = 0;
735 if (init_attr->srq) {
736 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
737
738 if (srq->rq.max_sge > 1)
739 sg_list_sz = sizeof(*qp->r_sg_list) *
740 (srq->rq.max_sge - 1);
741 } else if (init_attr->cap.max_recv_sge > 1)
742 sg_list_sz = sizeof(*qp->r_sg_list) *
743 (init_attr->cap.max_recv_sge - 1);
744 qp = kzalloc_node(sz + sg_list_sz, gfp, rdi->dparms.node);
745 if (!qp)
746 goto bail_swq;
747
748 RCU_INIT_POINTER(qp->next, NULL);
749 if (init_attr->qp_type == IB_QPT_RC) {
750 qp->s_ack_queue =
751 kzalloc_node(
752 sizeof(*qp->s_ack_queue) *
753 rvt_max_atomic(rdi),
754 gfp,
755 rdi->dparms.node);
756 if (!qp->s_ack_queue)
757 goto bail_qp;
758 }
759 /* initialize timers needed for rc qp */
760 setup_timer(&qp->s_timer, rvt_rc_timeout, (unsigned long)qp);
761 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
762 HRTIMER_MODE_REL);
763 qp->s_rnr_timer.function = rvt_rc_rnr_retry;
764
765 /*
766 * Driver needs to set up it's private QP structure and do any
767 * initialization that is needed.
768 */
769 priv = rdi->driver_f.qp_priv_alloc(rdi, qp, gfp);
770 if (IS_ERR(priv)) {
771 ret = priv;
772 goto bail_qp;
773 }
774 qp->priv = priv;
775 qp->timeout_jiffies =
776 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
777 1000UL);
778 if (init_attr->srq) {
779 sz = 0;
780 } else {
781 qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
782 qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
783 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
784 sizeof(struct rvt_rwqe);
785 if (udata)
786 qp->r_rq.wq = vmalloc_user(
787 sizeof(struct rvt_rwq) +
788 qp->r_rq.size * sz);
789 else if (gfp == GFP_NOIO)
790 qp->r_rq.wq = __vmalloc(
791 sizeof(struct rvt_rwq) +
792 qp->r_rq.size * sz,
793 gfp | __GFP_ZERO, PAGE_KERNEL);
794 else
795 qp->r_rq.wq = vzalloc_node(
796 sizeof(struct rvt_rwq) +
797 qp->r_rq.size * sz,
798 rdi->dparms.node);
799 if (!qp->r_rq.wq)
800 goto bail_driver_priv;
801 }
802
803 /*
804 * ib_create_qp() will initialize qp->ibqp
805 * except for qp->ibqp.qp_num.
806 */
807 spin_lock_init(&qp->r_lock);
808 spin_lock_init(&qp->s_hlock);
809 spin_lock_init(&qp->s_lock);
810 spin_lock_init(&qp->r_rq.lock);
811 atomic_set(&qp->refcount, 0);
812 atomic_set(&qp->local_ops_pending, 0);
813 init_waitqueue_head(&qp->wait);
814 init_timer(&qp->s_timer);
815 qp->s_timer.data = (unsigned long)qp;
816 INIT_LIST_HEAD(&qp->rspwait);
817 qp->state = IB_QPS_RESET;
818 qp->s_wq = swq;
819 qp->s_size = sqsize;
820 qp->s_avail = init_attr->cap.max_send_wr;
821 qp->s_max_sge = init_attr->cap.max_send_sge;
822 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
823 qp->s_flags = RVT_S_SIGNAL_REQ_WR;
824
825 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
826 init_attr->qp_type,
827 init_attr->port_num, gfp);
828 if (err < 0) {
829 ret = ERR_PTR(err);
830 goto bail_rq_wq;
831 }
832 qp->ibqp.qp_num = err;
833 qp->port_num = init_attr->port_num;
834 rvt_init_qp(rdi, qp, init_attr->qp_type);
835 break;
836
837 default:
838 /* Don't support raw QPs */
839 return ERR_PTR(-EINVAL);
840 }
841
842 init_attr->cap.max_inline_data = 0;
843
844 /*
845 * Return the address of the RWQ as the offset to mmap.
846 * See rvt_mmap() for details.
847 */
848 if (udata && udata->outlen >= sizeof(__u64)) {
849 if (!qp->r_rq.wq) {
850 __u64 offset = 0;
851
852 err = ib_copy_to_udata(udata, &offset,
853 sizeof(offset));
854 if (err) {
855 ret = ERR_PTR(err);
856 goto bail_qpn;
857 }
858 } else {
859 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
860
861 qp->ip = rvt_create_mmap_info(rdi, s,
862 ibpd->uobject->context,
863 qp->r_rq.wq);
864 if (!qp->ip) {
865 ret = ERR_PTR(-ENOMEM);
866 goto bail_qpn;
867 }
868
869 err = ib_copy_to_udata(udata, &qp->ip->offset,
870 sizeof(qp->ip->offset));
871 if (err) {
872 ret = ERR_PTR(err);
873 goto bail_ip;
874 }
875 }
876 qp->pid = current->pid;
877 }
878
879 spin_lock(&rdi->n_qps_lock);
880 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
881 spin_unlock(&rdi->n_qps_lock);
882 ret = ERR_PTR(-ENOMEM);
883 goto bail_ip;
884 }
885
886 rdi->n_qps_allocated++;
887 /*
888 * Maintain a busy_jiffies variable that will be added to the timeout
889 * period in mod_retry_timer and add_retry_timer. This busy jiffies
890 * is scaled by the number of rc qps created for the device to reduce
891 * the number of timeouts occurring when there is a large number of
892 * qps. busy_jiffies is incremented every rc qp scaling interval.
893 * The scaling interval is selected based on extensive performance
894 * evaluation of targeted workloads.
895 */
896 if (init_attr->qp_type == IB_QPT_RC) {
897 rdi->n_rc_qps++;
898 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
899 }
900 spin_unlock(&rdi->n_qps_lock);
901
902 if (qp->ip) {
903 spin_lock_irq(&rdi->pending_lock);
904 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
905 spin_unlock_irq(&rdi->pending_lock);
906 }
907
908 ret = &qp->ibqp;
909
910 /*
911 * We have our QP and its good, now keep track of what types of opcodes
912 * can be processed on this QP. We do this by keeping track of what the
913 * 3 high order bits of the opcode are.
914 */
915 switch (init_attr->qp_type) {
916 case IB_QPT_SMI:
917 case IB_QPT_GSI:
918 case IB_QPT_UD:
919 qp->allowed_ops = IB_OPCODE_UD;
920 break;
921 case IB_QPT_RC:
922 qp->allowed_ops = IB_OPCODE_RC;
923 break;
924 case IB_QPT_UC:
925 qp->allowed_ops = IB_OPCODE_UC;
926 break;
927 default:
928 ret = ERR_PTR(-EINVAL);
929 goto bail_ip;
930 }
931
932 return ret;
933
934 bail_ip:
935 if (qp->ip)
936 kref_put(&qp->ip->ref, rvt_release_mmap_info);
937
938 bail_qpn:
939 free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
940
941 bail_rq_wq:
942 if (!qp->ip)
943 vfree(qp->r_rq.wq);
944
945 bail_driver_priv:
946 rdi->driver_f.qp_priv_free(rdi, qp);
947
948 bail_qp:
949 kfree(qp->s_ack_queue);
950 kfree(qp);
951
952 bail_swq:
953 vfree(swq);
954
955 return ret;
956 }
957
958 /**
959 * rvt_error_qp - put a QP into the error state
960 * @qp: the QP to put into the error state
961 * @err: the receive completion error to signal if a RWQE is active
962 *
963 * Flushes both send and receive work queues.
964 *
965 * Return: true if last WQE event should be generated.
966 * The QP r_lock and s_lock should be held and interrupts disabled.
967 * If we are already in error state, just return.
968 */
969 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
970 {
971 struct ib_wc wc;
972 int ret = 0;
973 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
974
975 lockdep_assert_held(&qp->r_lock);
976 lockdep_assert_held(&qp->s_lock);
977 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
978 goto bail;
979
980 qp->state = IB_QPS_ERR;
981
982 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
983 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
984 del_timer(&qp->s_timer);
985 }
986
987 if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
988 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
989
990 rdi->driver_f.notify_error_qp(qp);
991
992 /* Schedule the sending tasklet to drain the send work queue. */
993 if (ACCESS_ONCE(qp->s_last) != qp->s_head)
994 rdi->driver_f.schedule_send(qp);
995
996 rvt_clear_mr_refs(qp, 0);
997
998 memset(&wc, 0, sizeof(wc));
999 wc.qp = &qp->ibqp;
1000 wc.opcode = IB_WC_RECV;
1001
1002 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1003 wc.wr_id = qp->r_wr_id;
1004 wc.status = err;
1005 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1006 }
1007 wc.status = IB_WC_WR_FLUSH_ERR;
1008
1009 if (qp->r_rq.wq) {
1010 struct rvt_rwq *wq;
1011 u32 head;
1012 u32 tail;
1013
1014 spin_lock(&qp->r_rq.lock);
1015
1016 /* sanity check pointers before trusting them */
1017 wq = qp->r_rq.wq;
1018 head = wq->head;
1019 if (head >= qp->r_rq.size)
1020 head = 0;
1021 tail = wq->tail;
1022 if (tail >= qp->r_rq.size)
1023 tail = 0;
1024 while (tail != head) {
1025 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1026 if (++tail >= qp->r_rq.size)
1027 tail = 0;
1028 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1029 }
1030 wq->tail = tail;
1031
1032 spin_unlock(&qp->r_rq.lock);
1033 } else if (qp->ibqp.event_handler) {
1034 ret = 1;
1035 }
1036
1037 bail:
1038 return ret;
1039 }
1040 EXPORT_SYMBOL(rvt_error_qp);
1041
1042 /*
1043 * Put the QP into the hash table.
1044 * The hash table holds a reference to the QP.
1045 */
1046 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1047 {
1048 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1049 unsigned long flags;
1050
1051 rvt_get_qp(qp);
1052 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1053
1054 if (qp->ibqp.qp_num <= 1) {
1055 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1056 } else {
1057 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1058
1059 qp->next = rdi->qp_dev->qp_table[n];
1060 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1061 trace_rvt_qpinsert(qp, n);
1062 }
1063
1064 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1065 }
1066
1067 /**
1068 * rvt_modify_qp - modify the attributes of a queue pair
1069 * @ibqp: the queue pair who's attributes we're modifying
1070 * @attr: the new attributes
1071 * @attr_mask: the mask of attributes to modify
1072 * @udata: user data for libibverbs.so
1073 *
1074 * Return: 0 on success, otherwise returns an errno.
1075 */
1076 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1077 int attr_mask, struct ib_udata *udata)
1078 {
1079 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1080 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1081 enum ib_qp_state cur_state, new_state;
1082 struct ib_event ev;
1083 int lastwqe = 0;
1084 int mig = 0;
1085 int pmtu = 0; /* for gcc warning only */
1086 enum rdma_link_layer link;
1087
1088 link = rdma_port_get_link_layer(ibqp->device, qp->port_num);
1089
1090 spin_lock_irq(&qp->r_lock);
1091 spin_lock(&qp->s_hlock);
1092 spin_lock(&qp->s_lock);
1093
1094 cur_state = attr_mask & IB_QP_CUR_STATE ?
1095 attr->cur_qp_state : qp->state;
1096 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1097
1098 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1099 attr_mask, link))
1100 goto inval;
1101
1102 if (rdi->driver_f.check_modify_qp &&
1103 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1104 goto inval;
1105
1106 if (attr_mask & IB_QP_AV) {
1107 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1108 be16_to_cpu(IB_MULTICAST_LID_BASE))
1109 goto inval;
1110 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1111 goto inval;
1112 }
1113
1114 if (attr_mask & IB_QP_ALT_PATH) {
1115 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1116 be16_to_cpu(IB_MULTICAST_LID_BASE))
1117 goto inval;
1118 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1119 goto inval;
1120 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1121 goto inval;
1122 }
1123
1124 if (attr_mask & IB_QP_PKEY_INDEX)
1125 if (attr->pkey_index >= rvt_get_npkeys(rdi))
1126 goto inval;
1127
1128 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1129 if (attr->min_rnr_timer > 31)
1130 goto inval;
1131
1132 if (attr_mask & IB_QP_PORT)
1133 if (qp->ibqp.qp_type == IB_QPT_SMI ||
1134 qp->ibqp.qp_type == IB_QPT_GSI ||
1135 attr->port_num == 0 ||
1136 attr->port_num > ibqp->device->phys_port_cnt)
1137 goto inval;
1138
1139 if (attr_mask & IB_QP_DEST_QPN)
1140 if (attr->dest_qp_num > RVT_QPN_MASK)
1141 goto inval;
1142
1143 if (attr_mask & IB_QP_RETRY_CNT)
1144 if (attr->retry_cnt > 7)
1145 goto inval;
1146
1147 if (attr_mask & IB_QP_RNR_RETRY)
1148 if (attr->rnr_retry > 7)
1149 goto inval;
1150
1151 /*
1152 * Don't allow invalid path_mtu values. OK to set greater
1153 * than the active mtu (or even the max_cap, if we have tuned
1154 * that to a small mtu. We'll set qp->path_mtu
1155 * to the lesser of requested attribute mtu and active,
1156 * for packetizing messages.
1157 * Note that the QP port has to be set in INIT and MTU in RTR.
1158 */
1159 if (attr_mask & IB_QP_PATH_MTU) {
1160 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1161 if (pmtu < 0)
1162 goto inval;
1163 }
1164
1165 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1166 if (attr->path_mig_state == IB_MIG_REARM) {
1167 if (qp->s_mig_state == IB_MIG_ARMED)
1168 goto inval;
1169 if (new_state != IB_QPS_RTS)
1170 goto inval;
1171 } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1172 if (qp->s_mig_state == IB_MIG_REARM)
1173 goto inval;
1174 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1175 goto inval;
1176 if (qp->s_mig_state == IB_MIG_ARMED)
1177 mig = 1;
1178 } else {
1179 goto inval;
1180 }
1181 }
1182
1183 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1184 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1185 goto inval;
1186
1187 switch (new_state) {
1188 case IB_QPS_RESET:
1189 if (qp->state != IB_QPS_RESET)
1190 rvt_reset_qp(rdi, qp, ibqp->qp_type);
1191 break;
1192
1193 case IB_QPS_RTR:
1194 /* Allow event to re-trigger if QP set to RTR more than once */
1195 qp->r_flags &= ~RVT_R_COMM_EST;
1196 qp->state = new_state;
1197 break;
1198
1199 case IB_QPS_SQD:
1200 qp->s_draining = qp->s_last != qp->s_cur;
1201 qp->state = new_state;
1202 break;
1203
1204 case IB_QPS_SQE:
1205 if (qp->ibqp.qp_type == IB_QPT_RC)
1206 goto inval;
1207 qp->state = new_state;
1208 break;
1209
1210 case IB_QPS_ERR:
1211 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1212 break;
1213
1214 default:
1215 qp->state = new_state;
1216 break;
1217 }
1218
1219 if (attr_mask & IB_QP_PKEY_INDEX)
1220 qp->s_pkey_index = attr->pkey_index;
1221
1222 if (attr_mask & IB_QP_PORT)
1223 qp->port_num = attr->port_num;
1224
1225 if (attr_mask & IB_QP_DEST_QPN)
1226 qp->remote_qpn = attr->dest_qp_num;
1227
1228 if (attr_mask & IB_QP_SQ_PSN) {
1229 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1230 qp->s_psn = qp->s_next_psn;
1231 qp->s_sending_psn = qp->s_next_psn;
1232 qp->s_last_psn = qp->s_next_psn - 1;
1233 qp->s_sending_hpsn = qp->s_last_psn;
1234 }
1235
1236 if (attr_mask & IB_QP_RQ_PSN)
1237 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1238
1239 if (attr_mask & IB_QP_ACCESS_FLAGS)
1240 qp->qp_access_flags = attr->qp_access_flags;
1241
1242 if (attr_mask & IB_QP_AV) {
1243 qp->remote_ah_attr = attr->ah_attr;
1244 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1245 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1246 }
1247
1248 if (attr_mask & IB_QP_ALT_PATH) {
1249 qp->alt_ah_attr = attr->alt_ah_attr;
1250 qp->s_alt_pkey_index = attr->alt_pkey_index;
1251 }
1252
1253 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1254 qp->s_mig_state = attr->path_mig_state;
1255 if (mig) {
1256 qp->remote_ah_attr = qp->alt_ah_attr;
1257 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1258 qp->s_pkey_index = qp->s_alt_pkey_index;
1259 }
1260 }
1261
1262 if (attr_mask & IB_QP_PATH_MTU) {
1263 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1264 qp->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1265 qp->log_pmtu = ilog2(qp->pmtu);
1266 }
1267
1268 if (attr_mask & IB_QP_RETRY_CNT) {
1269 qp->s_retry_cnt = attr->retry_cnt;
1270 qp->s_retry = attr->retry_cnt;
1271 }
1272
1273 if (attr_mask & IB_QP_RNR_RETRY) {
1274 qp->s_rnr_retry_cnt = attr->rnr_retry;
1275 qp->s_rnr_retry = attr->rnr_retry;
1276 }
1277
1278 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1279 qp->r_min_rnr_timer = attr->min_rnr_timer;
1280
1281 if (attr_mask & IB_QP_TIMEOUT) {
1282 qp->timeout = attr->timeout;
1283 qp->timeout_jiffies =
1284 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1285 1000UL);
1286 }
1287
1288 if (attr_mask & IB_QP_QKEY)
1289 qp->qkey = attr->qkey;
1290
1291 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1292 qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1293
1294 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1295 qp->s_max_rd_atomic = attr->max_rd_atomic;
1296
1297 if (rdi->driver_f.modify_qp)
1298 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1299
1300 spin_unlock(&qp->s_lock);
1301 spin_unlock(&qp->s_hlock);
1302 spin_unlock_irq(&qp->r_lock);
1303
1304 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1305 rvt_insert_qp(rdi, qp);
1306
1307 if (lastwqe) {
1308 ev.device = qp->ibqp.device;
1309 ev.element.qp = &qp->ibqp;
1310 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1311 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1312 }
1313 if (mig) {
1314 ev.device = qp->ibqp.device;
1315 ev.element.qp = &qp->ibqp;
1316 ev.event = IB_EVENT_PATH_MIG;
1317 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1318 }
1319 return 0;
1320
1321 inval:
1322 spin_unlock(&qp->s_lock);
1323 spin_unlock(&qp->s_hlock);
1324 spin_unlock_irq(&qp->r_lock);
1325 return -EINVAL;
1326 }
1327
1328 /** rvt_free_qpn - Free a qpn from the bit map
1329 * @qpt: QP table
1330 * @qpn: queue pair number to free
1331 */
1332 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
1333 {
1334 struct rvt_qpn_map *map;
1335
1336 map = qpt->map + qpn / RVT_BITS_PER_PAGE;
1337 if (map->page)
1338 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
1339 }
1340
1341 /**
1342 * rvt_destroy_qp - destroy a queue pair
1343 * @ibqp: the queue pair to destroy
1344 *
1345 * Note that this can be called while the QP is actively sending or
1346 * receiving!
1347 *
1348 * Return: 0 on success.
1349 */
1350 int rvt_destroy_qp(struct ib_qp *ibqp)
1351 {
1352 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1353 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1354
1355 spin_lock_irq(&qp->r_lock);
1356 spin_lock(&qp->s_hlock);
1357 spin_lock(&qp->s_lock);
1358 rvt_reset_qp(rdi, qp, ibqp->qp_type);
1359 spin_unlock(&qp->s_lock);
1360 spin_unlock(&qp->s_hlock);
1361 spin_unlock_irq(&qp->r_lock);
1362
1363 /* qpn is now available for use again */
1364 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1365
1366 spin_lock(&rdi->n_qps_lock);
1367 rdi->n_qps_allocated--;
1368 if (qp->ibqp.qp_type == IB_QPT_RC) {
1369 rdi->n_rc_qps--;
1370 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1371 }
1372 spin_unlock(&rdi->n_qps_lock);
1373
1374 if (qp->ip)
1375 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1376 else
1377 vfree(qp->r_rq.wq);
1378 vfree(qp->s_wq);
1379 rdi->driver_f.qp_priv_free(rdi, qp);
1380 kfree(qp->s_ack_queue);
1381 kfree(qp);
1382 return 0;
1383 }
1384
1385 /**
1386 * rvt_query_qp - query an ipbq
1387 * @ibqp: IB qp to query
1388 * @attr: attr struct to fill in
1389 * @attr_mask: attr mask ignored
1390 * @init_attr: struct to fill in
1391 *
1392 * Return: always 0
1393 */
1394 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1395 int attr_mask, struct ib_qp_init_attr *init_attr)
1396 {
1397 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1398 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1399
1400 attr->qp_state = qp->state;
1401 attr->cur_qp_state = attr->qp_state;
1402 attr->path_mtu = qp->path_mtu;
1403 attr->path_mig_state = qp->s_mig_state;
1404 attr->qkey = qp->qkey;
1405 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1406 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1407 attr->dest_qp_num = qp->remote_qpn;
1408 attr->qp_access_flags = qp->qp_access_flags;
1409 attr->cap.max_send_wr = qp->s_size - 1 -
1410 rdi->dparms.reserved_operations;
1411 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1412 attr->cap.max_send_sge = qp->s_max_sge;
1413 attr->cap.max_recv_sge = qp->r_rq.max_sge;
1414 attr->cap.max_inline_data = 0;
1415 attr->ah_attr = qp->remote_ah_attr;
1416 attr->alt_ah_attr = qp->alt_ah_attr;
1417 attr->pkey_index = qp->s_pkey_index;
1418 attr->alt_pkey_index = qp->s_alt_pkey_index;
1419 attr->en_sqd_async_notify = 0;
1420 attr->sq_draining = qp->s_draining;
1421 attr->max_rd_atomic = qp->s_max_rd_atomic;
1422 attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1423 attr->min_rnr_timer = qp->r_min_rnr_timer;
1424 attr->port_num = qp->port_num;
1425 attr->timeout = qp->timeout;
1426 attr->retry_cnt = qp->s_retry_cnt;
1427 attr->rnr_retry = qp->s_rnr_retry_cnt;
1428 attr->alt_port_num =
1429 rdma_ah_get_port_num(&qp->alt_ah_attr);
1430 attr->alt_timeout = qp->alt_timeout;
1431
1432 init_attr->event_handler = qp->ibqp.event_handler;
1433 init_attr->qp_context = qp->ibqp.qp_context;
1434 init_attr->send_cq = qp->ibqp.send_cq;
1435 init_attr->recv_cq = qp->ibqp.recv_cq;
1436 init_attr->srq = qp->ibqp.srq;
1437 init_attr->cap = attr->cap;
1438 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1439 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1440 else
1441 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1442 init_attr->qp_type = qp->ibqp.qp_type;
1443 init_attr->port_num = qp->port_num;
1444 return 0;
1445 }
1446
1447 /**
1448 * rvt_post_receive - post a receive on a QP
1449 * @ibqp: the QP to post the receive on
1450 * @wr: the WR to post
1451 * @bad_wr: the first bad WR is put here
1452 *
1453 * This may be called from interrupt context.
1454 *
1455 * Return: 0 on success otherwise errno
1456 */
1457 int rvt_post_recv(struct ib_qp *ibqp, struct ib_recv_wr *wr,
1458 struct ib_recv_wr **bad_wr)
1459 {
1460 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1461 struct rvt_rwq *wq = qp->r_rq.wq;
1462 unsigned long flags;
1463 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1464 !qp->ibqp.srq;
1465
1466 /* Check that state is OK to post receive. */
1467 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1468 *bad_wr = wr;
1469 return -EINVAL;
1470 }
1471
1472 for (; wr; wr = wr->next) {
1473 struct rvt_rwqe *wqe;
1474 u32 next;
1475 int i;
1476
1477 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1478 *bad_wr = wr;
1479 return -EINVAL;
1480 }
1481
1482 spin_lock_irqsave(&qp->r_rq.lock, flags);
1483 next = wq->head + 1;
1484 if (next >= qp->r_rq.size)
1485 next = 0;
1486 if (next == wq->tail) {
1487 spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1488 *bad_wr = wr;
1489 return -ENOMEM;
1490 }
1491 if (unlikely(qp_err_flush)) {
1492 struct ib_wc wc;
1493
1494 memset(&wc, 0, sizeof(wc));
1495 wc.qp = &qp->ibqp;
1496 wc.opcode = IB_WC_RECV;
1497 wc.wr_id = wr->wr_id;
1498 wc.status = IB_WC_WR_FLUSH_ERR;
1499 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1500 } else {
1501 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1502 wqe->wr_id = wr->wr_id;
1503 wqe->num_sge = wr->num_sge;
1504 for (i = 0; i < wr->num_sge; i++)
1505 wqe->sg_list[i] = wr->sg_list[i];
1506 /*
1507 * Make sure queue entry is written
1508 * before the head index.
1509 */
1510 smp_wmb();
1511 wq->head = next;
1512 }
1513 spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1514 }
1515 return 0;
1516 }
1517
1518 /**
1519 * rvt_qp_valid_operation - validate post send wr request
1520 * @qp - the qp
1521 * @post-parms - the post send table for the driver
1522 * @wr - the work request
1523 *
1524 * The routine validates the operation based on the
1525 * validation table an returns the length of the operation
1526 * which can extend beyond the ib_send_bw. Operation
1527 * dependent flags key atomic operation validation.
1528 *
1529 * There is an exception for UD qps that validates the pd and
1530 * overrides the length to include the additional UD specific
1531 * length.
1532 *
1533 * Returns a negative error or the length of the work request
1534 * for building the swqe.
1535 */
1536 static inline int rvt_qp_valid_operation(
1537 struct rvt_qp *qp,
1538 const struct rvt_operation_params *post_parms,
1539 struct ib_send_wr *wr)
1540 {
1541 int len;
1542
1543 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1544 return -EINVAL;
1545 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1546 return -EINVAL;
1547 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1548 ibpd_to_rvtpd(qp->ibqp.pd)->user)
1549 return -EINVAL;
1550 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1551 (wr->num_sge == 0 ||
1552 wr->sg_list[0].length < sizeof(u64) ||
1553 wr->sg_list[0].addr & (sizeof(u64) - 1)))
1554 return -EINVAL;
1555 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1556 !qp->s_max_rd_atomic)
1557 return -EINVAL;
1558 len = post_parms[wr->opcode].length;
1559 /* UD specific */
1560 if (qp->ibqp.qp_type != IB_QPT_UC &&
1561 qp->ibqp.qp_type != IB_QPT_RC) {
1562 if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1563 return -EINVAL;
1564 len = sizeof(struct ib_ud_wr);
1565 }
1566 return len;
1567 }
1568
1569 /**
1570 * rvt_qp_is_avail - determine queue capacity
1571 * @qp - the qp
1572 * @rdi - the rdmavt device
1573 * @reserved_op - is reserved operation
1574 *
1575 * This assumes the s_hlock is held but the s_last
1576 * qp variable is uncontrolled.
1577 *
1578 * For non reserved operations, the qp->s_avail
1579 * may be changed.
1580 *
1581 * The return value is zero or a -ENOMEM.
1582 */
1583 static inline int rvt_qp_is_avail(
1584 struct rvt_qp *qp,
1585 struct rvt_dev_info *rdi,
1586 bool reserved_op)
1587 {
1588 u32 slast;
1589 u32 avail;
1590 u32 reserved_used;
1591
1592 /* see rvt_qp_wqe_unreserve() */
1593 smp_mb__before_atomic();
1594 reserved_used = atomic_read(&qp->s_reserved_used);
1595 if (unlikely(reserved_op)) {
1596 /* see rvt_qp_wqe_unreserve() */
1597 smp_mb__before_atomic();
1598 if (reserved_used >= rdi->dparms.reserved_operations)
1599 return -ENOMEM;
1600 return 0;
1601 }
1602 /* non-reserved operations */
1603 if (likely(qp->s_avail))
1604 return 0;
1605 smp_read_barrier_depends(); /* see rc.c */
1606 slast = ACCESS_ONCE(qp->s_last);
1607 if (qp->s_head >= slast)
1608 avail = qp->s_size - (qp->s_head - slast);
1609 else
1610 avail = slast - qp->s_head;
1611
1612 /* see rvt_qp_wqe_unreserve() */
1613 smp_mb__before_atomic();
1614 reserved_used = atomic_read(&qp->s_reserved_used);
1615 avail = avail - 1 -
1616 (rdi->dparms.reserved_operations - reserved_used);
1617 /* insure we don't assign a negative s_avail */
1618 if ((s32)avail <= 0)
1619 return -ENOMEM;
1620 qp->s_avail = avail;
1621 if (WARN_ON(qp->s_avail >
1622 (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1623 rvt_pr_err(rdi,
1624 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1625 qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1626 qp->s_head, qp->s_tail, qp->s_cur,
1627 qp->s_acked, qp->s_last);
1628 return 0;
1629 }
1630
1631 /**
1632 * rvt_post_one_wr - post one RC, UC, or UD send work request
1633 * @qp: the QP to post on
1634 * @wr: the work request to send
1635 */
1636 static int rvt_post_one_wr(struct rvt_qp *qp,
1637 struct ib_send_wr *wr,
1638 int *call_send)
1639 {
1640 struct rvt_swqe *wqe;
1641 u32 next;
1642 int i;
1643 int j;
1644 int acc;
1645 struct rvt_lkey_table *rkt;
1646 struct rvt_pd *pd;
1647 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1648 u8 log_pmtu;
1649 int ret;
1650 size_t cplen;
1651 bool reserved_op;
1652 int local_ops_delayed = 0;
1653
1654 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1655
1656 /* IB spec says that num_sge == 0 is OK. */
1657 if (unlikely(wr->num_sge > qp->s_max_sge))
1658 return -EINVAL;
1659
1660 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1661 if (ret < 0)
1662 return ret;
1663 cplen = ret;
1664
1665 /*
1666 * Local operations include fast register and local invalidate.
1667 * Fast register needs to be processed immediately because the
1668 * registered lkey may be used by following work requests and the
1669 * lkey needs to be valid at the time those requests are posted.
1670 * Local invalidate can be processed immediately if fencing is
1671 * not required and no previous local invalidate ops are pending.
1672 * Signaled local operations that have been processed immediately
1673 * need to have requests with "completion only" flags set posted
1674 * to the send queue in order to generate completions.
1675 */
1676 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
1677 switch (wr->opcode) {
1678 case IB_WR_REG_MR:
1679 ret = rvt_fast_reg_mr(qp,
1680 reg_wr(wr)->mr,
1681 reg_wr(wr)->key,
1682 reg_wr(wr)->access);
1683 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1684 return ret;
1685 break;
1686 case IB_WR_LOCAL_INV:
1687 if ((wr->send_flags & IB_SEND_FENCE) ||
1688 atomic_read(&qp->local_ops_pending)) {
1689 local_ops_delayed = 1;
1690 } else {
1691 ret = rvt_invalidate_rkey(
1692 qp, wr->ex.invalidate_rkey);
1693 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1694 return ret;
1695 }
1696 break;
1697 default:
1698 return -EINVAL;
1699 }
1700 }
1701
1702 reserved_op = rdi->post_parms[wr->opcode].flags &
1703 RVT_OPERATION_USE_RESERVE;
1704 /* check for avail */
1705 ret = rvt_qp_is_avail(qp, rdi, reserved_op);
1706 if (ret)
1707 return ret;
1708 next = qp->s_head + 1;
1709 if (next >= qp->s_size)
1710 next = 0;
1711
1712 rkt = &rdi->lkey_table;
1713 pd = ibpd_to_rvtpd(qp->ibqp.pd);
1714 wqe = rvt_get_swqe_ptr(qp, qp->s_head);
1715
1716 /* cplen has length from above */
1717 memcpy(&wqe->wr, wr, cplen);
1718
1719 wqe->length = 0;
1720 j = 0;
1721 if (wr->num_sge) {
1722 acc = wr->opcode >= IB_WR_RDMA_READ ?
1723 IB_ACCESS_LOCAL_WRITE : 0;
1724 for (i = 0; i < wr->num_sge; i++) {
1725 u32 length = wr->sg_list[i].length;
1726 int ok;
1727
1728 if (length == 0)
1729 continue;
1730 ok = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j],
1731 &wr->sg_list[i], acc);
1732 if (!ok) {
1733 ret = -EINVAL;
1734 goto bail_inval_free;
1735 }
1736 wqe->length += length;
1737 j++;
1738 }
1739 wqe->wr.num_sge = j;
1740 }
1741
1742 /* general part of wqe valid - allow for driver checks */
1743 if (rdi->driver_f.check_send_wqe) {
1744 ret = rdi->driver_f.check_send_wqe(qp, wqe);
1745 if (ret < 0)
1746 goto bail_inval_free;
1747 if (ret)
1748 *call_send = ret;
1749 }
1750
1751 log_pmtu = qp->log_pmtu;
1752 if (qp->ibqp.qp_type != IB_QPT_UC &&
1753 qp->ibqp.qp_type != IB_QPT_RC) {
1754 struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah);
1755
1756 log_pmtu = ah->log_pmtu;
1757 atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
1758 }
1759
1760 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
1761 if (local_ops_delayed)
1762 atomic_inc(&qp->local_ops_pending);
1763 else
1764 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
1765 wqe->ssn = 0;
1766 wqe->psn = 0;
1767 wqe->lpsn = 0;
1768 } else {
1769 wqe->ssn = qp->s_ssn++;
1770 wqe->psn = qp->s_next_psn;
1771 wqe->lpsn = wqe->psn +
1772 (wqe->length ?
1773 ((wqe->length - 1) >> log_pmtu) :
1774 0);
1775 qp->s_next_psn = wqe->lpsn + 1;
1776 }
1777 if (unlikely(reserved_op)) {
1778 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
1779 rvt_qp_wqe_reserve(qp, wqe);
1780 } else {
1781 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
1782 qp->s_avail--;
1783 }
1784 trace_rvt_post_one_wr(qp, wqe);
1785 smp_wmb(); /* see request builders */
1786 qp->s_head = next;
1787
1788 return 0;
1789
1790 bail_inval_free:
1791 /* release mr holds */
1792 while (j) {
1793 struct rvt_sge *sge = &wqe->sg_list[--j];
1794
1795 rvt_put_mr(sge->mr);
1796 }
1797 return ret;
1798 }
1799
1800 /**
1801 * rvt_post_send - post a send on a QP
1802 * @ibqp: the QP to post the send on
1803 * @wr: the list of work requests to post
1804 * @bad_wr: the first bad WR is put here
1805 *
1806 * This may be called from interrupt context.
1807 *
1808 * Return: 0 on success else errno
1809 */
1810 int rvt_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
1811 struct ib_send_wr **bad_wr)
1812 {
1813 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1814 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1815 unsigned long flags = 0;
1816 int call_send;
1817 unsigned nreq = 0;
1818 int err = 0;
1819
1820 spin_lock_irqsave(&qp->s_hlock, flags);
1821
1822 /*
1823 * Ensure QP state is such that we can send. If not bail out early,
1824 * there is no need to do this every time we post a send.
1825 */
1826 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
1827 spin_unlock_irqrestore(&qp->s_hlock, flags);
1828 return -EINVAL;
1829 }
1830
1831 /*
1832 * If the send queue is empty, and we only have a single WR then just go
1833 * ahead and kick the send engine into gear. Otherwise we will always
1834 * just schedule the send to happen later.
1835 */
1836 call_send = qp->s_head == ACCESS_ONCE(qp->s_last) && !wr->next;
1837
1838 for (; wr; wr = wr->next) {
1839 err = rvt_post_one_wr(qp, wr, &call_send);
1840 if (unlikely(err)) {
1841 *bad_wr = wr;
1842 goto bail;
1843 }
1844 nreq++;
1845 }
1846 bail:
1847 spin_unlock_irqrestore(&qp->s_hlock, flags);
1848 if (nreq) {
1849 if (call_send)
1850 rdi->driver_f.do_send(qp);
1851 else
1852 rdi->driver_f.schedule_send_no_lock(qp);
1853 }
1854 return err;
1855 }
1856
1857 /**
1858 * rvt_post_srq_receive - post a receive on a shared receive queue
1859 * @ibsrq: the SRQ to post the receive on
1860 * @wr: the list of work requests to post
1861 * @bad_wr: A pointer to the first WR to cause a problem is put here
1862 *
1863 * This may be called from interrupt context.
1864 *
1865 * Return: 0 on success else errno
1866 */
1867 int rvt_post_srq_recv(struct ib_srq *ibsrq, struct ib_recv_wr *wr,
1868 struct ib_recv_wr **bad_wr)
1869 {
1870 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
1871 struct rvt_rwq *wq;
1872 unsigned long flags;
1873
1874 for (; wr; wr = wr->next) {
1875 struct rvt_rwqe *wqe;
1876 u32 next;
1877 int i;
1878
1879 if ((unsigned)wr->num_sge > srq->rq.max_sge) {
1880 *bad_wr = wr;
1881 return -EINVAL;
1882 }
1883
1884 spin_lock_irqsave(&srq->rq.lock, flags);
1885 wq = srq->rq.wq;
1886 next = wq->head + 1;
1887 if (next >= srq->rq.size)
1888 next = 0;
1889 if (next == wq->tail) {
1890 spin_unlock_irqrestore(&srq->rq.lock, flags);
1891 *bad_wr = wr;
1892 return -ENOMEM;
1893 }
1894
1895 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
1896 wqe->wr_id = wr->wr_id;
1897 wqe->num_sge = wr->num_sge;
1898 for (i = 0; i < wr->num_sge; i++)
1899 wqe->sg_list[i] = wr->sg_list[i];
1900 /* Make sure queue entry is written before the head index. */
1901 smp_wmb();
1902 wq->head = next;
1903 spin_unlock_irqrestore(&srq->rq.lock, flags);
1904 }
1905 return 0;
1906 }
1907
1908 /**
1909 * qp_comm_est - handle trap with QP established
1910 * @qp: the QP
1911 */
1912 void rvt_comm_est(struct rvt_qp *qp)
1913 {
1914 qp->r_flags |= RVT_R_COMM_EST;
1915 if (qp->ibqp.event_handler) {
1916 struct ib_event ev;
1917
1918 ev.device = qp->ibqp.device;
1919 ev.element.qp = &qp->ibqp;
1920 ev.event = IB_EVENT_COMM_EST;
1921 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1922 }
1923 }
1924 EXPORT_SYMBOL(rvt_comm_est);
1925
1926 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
1927 {
1928 unsigned long flags;
1929 int lastwqe;
1930
1931 spin_lock_irqsave(&qp->s_lock, flags);
1932 lastwqe = rvt_error_qp(qp, err);
1933 spin_unlock_irqrestore(&qp->s_lock, flags);
1934
1935 if (lastwqe) {
1936 struct ib_event ev;
1937
1938 ev.device = qp->ibqp.device;
1939 ev.element.qp = &qp->ibqp;
1940 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1941 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1942 }
1943 }
1944 EXPORT_SYMBOL(rvt_rc_error);
1945
1946 /*
1947 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
1948 * @index - the index
1949 * return usec from an index into ib_rvt_rnr_table
1950 */
1951 unsigned long rvt_rnr_tbl_to_usec(u32 index)
1952 {
1953 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
1954 }
1955 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
1956
1957 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
1958 {
1959 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
1960 IB_AETH_CREDIT_MASK];
1961 }
1962
1963 /*
1964 * rvt_add_retry_timer - add/start a retry timer
1965 * @qp - the QP
1966 * add a retry timer on the QP
1967 */
1968 void rvt_add_retry_timer(struct rvt_qp *qp)
1969 {
1970 struct ib_qp *ibqp = &qp->ibqp;
1971 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1972
1973 lockdep_assert_held(&qp->s_lock);
1974 qp->s_flags |= RVT_S_TIMER;
1975 /* 4.096 usec. * (1 << qp->timeout) */
1976 qp->s_timer.expires = jiffies + qp->timeout_jiffies +
1977 rdi->busy_jiffies;
1978 add_timer(&qp->s_timer);
1979 }
1980 EXPORT_SYMBOL(rvt_add_retry_timer);
1981
1982 /**
1983 * rvt_add_rnr_timer - add/start an rnr timer
1984 * @qp - the QP
1985 * @aeth - aeth of RNR timeout, simulated aeth for loopback
1986 * add an rnr timer on the QP
1987 */
1988 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
1989 {
1990 u32 to;
1991
1992 lockdep_assert_held(&qp->s_lock);
1993 qp->s_flags |= RVT_S_WAIT_RNR;
1994 to = rvt_aeth_to_usec(aeth);
1995 hrtimer_start(&qp->s_rnr_timer,
1996 ns_to_ktime(1000 * to), HRTIMER_MODE_REL);
1997 }
1998 EXPORT_SYMBOL(rvt_add_rnr_timer);
1999
2000 /**
2001 * rvt_stop_rc_timers - stop all timers
2002 * @qp - the QP
2003 * stop any pending timers
2004 */
2005 void rvt_stop_rc_timers(struct rvt_qp *qp)
2006 {
2007 lockdep_assert_held(&qp->s_lock);
2008 /* Remove QP from all timers */
2009 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2010 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2011 del_timer(&qp->s_timer);
2012 hrtimer_try_to_cancel(&qp->s_rnr_timer);
2013 }
2014 }
2015 EXPORT_SYMBOL(rvt_stop_rc_timers);
2016
2017 /**
2018 * rvt_stop_rnr_timer - stop an rnr timer
2019 * @qp - the QP
2020 *
2021 * stop an rnr timer and return if the timer
2022 * had been pending.
2023 */
2024 static int rvt_stop_rnr_timer(struct rvt_qp *qp)
2025 {
2026 int rval = 0;
2027
2028 lockdep_assert_held(&qp->s_lock);
2029 /* Remove QP from rnr timer */
2030 if (qp->s_flags & RVT_S_WAIT_RNR) {
2031 qp->s_flags &= ~RVT_S_WAIT_RNR;
2032 rval = hrtimer_try_to_cancel(&qp->s_rnr_timer);
2033 }
2034 return rval;
2035 }
2036
2037 /**
2038 * rvt_del_timers_sync - wait for any timeout routines to exit
2039 * @qp - the QP
2040 */
2041 void rvt_del_timers_sync(struct rvt_qp *qp)
2042 {
2043 del_timer_sync(&qp->s_timer);
2044 hrtimer_cancel(&qp->s_rnr_timer);
2045 }
2046 EXPORT_SYMBOL(rvt_del_timers_sync);
2047
2048 /**
2049 * This is called from s_timer for missing responses.
2050 */
2051 static void rvt_rc_timeout(unsigned long arg)
2052 {
2053 struct rvt_qp *qp = (struct rvt_qp *)arg;
2054 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2055 unsigned long flags;
2056
2057 spin_lock_irqsave(&qp->r_lock, flags);
2058 spin_lock(&qp->s_lock);
2059 if (qp->s_flags & RVT_S_TIMER) {
2060 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2061
2062 qp->s_flags &= ~RVT_S_TIMER;
2063 rvp->n_rc_timeouts++;
2064 del_timer(&qp->s_timer);
2065 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2066 if (rdi->driver_f.notify_restart_rc)
2067 rdi->driver_f.notify_restart_rc(qp,
2068 qp->s_last_psn + 1,
2069 1);
2070 rdi->driver_f.schedule_send(qp);
2071 }
2072 spin_unlock(&qp->s_lock);
2073 spin_unlock_irqrestore(&qp->r_lock, flags);
2074 }
2075
2076 /*
2077 * This is called from s_timer for RNR timeouts.
2078 */
2079 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2080 {
2081 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2082 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2083 unsigned long flags;
2084
2085 spin_lock_irqsave(&qp->s_lock, flags);
2086 rvt_stop_rnr_timer(qp);
2087 rdi->driver_f.schedule_send(qp);
2088 spin_unlock_irqrestore(&qp->s_lock, flags);
2089 return HRTIMER_NORESTART;
2090 }
2091 EXPORT_SYMBOL(rvt_rc_rnr_retry);