]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/infiniband/sw/rdmavt/qp.c
Merge tag 'linux-kselftest-4.13-rc6-fixes' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / sw / rdmavt / qp.c
1 /*
2 * Copyright(c) 2016, 2017 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include "qp.h"
56 #include "vt.h"
57 #include "trace.h"
58
59 static void rvt_rc_timeout(unsigned long arg);
60
61 /*
62 * Convert the AETH RNR timeout code into the number of microseconds.
63 */
64 static const u32 ib_rvt_rnr_table[32] = {
65 655360, /* 00: 655.36 */
66 10, /* 01: .01 */
67 20, /* 02 .02 */
68 30, /* 03: .03 */
69 40, /* 04: .04 */
70 60, /* 05: .06 */
71 80, /* 06: .08 */
72 120, /* 07: .12 */
73 160, /* 08: .16 */
74 240, /* 09: .24 */
75 320, /* 0A: .32 */
76 480, /* 0B: .48 */
77 640, /* 0C: .64 */
78 960, /* 0D: .96 */
79 1280, /* 0E: 1.28 */
80 1920, /* 0F: 1.92 */
81 2560, /* 10: 2.56 */
82 3840, /* 11: 3.84 */
83 5120, /* 12: 5.12 */
84 7680, /* 13: 7.68 */
85 10240, /* 14: 10.24 */
86 15360, /* 15: 15.36 */
87 20480, /* 16: 20.48 */
88 30720, /* 17: 30.72 */
89 40960, /* 18: 40.96 */
90 61440, /* 19: 61.44 */
91 81920, /* 1A: 81.92 */
92 122880, /* 1B: 122.88 */
93 163840, /* 1C: 163.84 */
94 245760, /* 1D: 245.76 */
95 327680, /* 1E: 327.68 */
96 491520 /* 1F: 491.52 */
97 };
98
99 /*
100 * Note that it is OK to post send work requests in the SQE and ERR
101 * states; rvt_do_send() will process them and generate error
102 * completions as per IB 1.2 C10-96.
103 */
104 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
105 [IB_QPS_RESET] = 0,
106 [IB_QPS_INIT] = RVT_POST_RECV_OK,
107 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
108 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
109 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
110 RVT_PROCESS_NEXT_SEND_OK,
111 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
112 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
113 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
114 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
115 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
116 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
117 };
118 EXPORT_SYMBOL(ib_rvt_state_ops);
119
120 static void get_map_page(struct rvt_qpn_table *qpt,
121 struct rvt_qpn_map *map)
122 {
123 unsigned long page = get_zeroed_page(GFP_KERNEL);
124
125 /*
126 * Free the page if someone raced with us installing it.
127 */
128
129 spin_lock(&qpt->lock);
130 if (map->page)
131 free_page(page);
132 else
133 map->page = (void *)page;
134 spin_unlock(&qpt->lock);
135 }
136
137 /**
138 * init_qpn_table - initialize the QP number table for a device
139 * @qpt: the QPN table
140 */
141 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
142 {
143 u32 offset, i;
144 struct rvt_qpn_map *map;
145 int ret = 0;
146
147 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
148 return -EINVAL;
149
150 spin_lock_init(&qpt->lock);
151
152 qpt->last = rdi->dparms.qpn_start;
153 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
154
155 /*
156 * Drivers may want some QPs beyond what we need for verbs let them use
157 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
158 * for those. The reserved range must be *after* the range which verbs
159 * will pick from.
160 */
161
162 /* Figure out number of bit maps needed before reserved range */
163 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
164
165 /* This should always be zero */
166 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
167
168 /* Starting with the first reserved bit map */
169 map = &qpt->map[qpt->nmaps];
170
171 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
172 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
173 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
174 if (!map->page) {
175 get_map_page(qpt, map);
176 if (!map->page) {
177 ret = -ENOMEM;
178 break;
179 }
180 }
181 set_bit(offset, map->page);
182 offset++;
183 if (offset == RVT_BITS_PER_PAGE) {
184 /* next page */
185 qpt->nmaps++;
186 map++;
187 offset = 0;
188 }
189 }
190 return ret;
191 }
192
193 /**
194 * free_qpn_table - free the QP number table for a device
195 * @qpt: the QPN table
196 */
197 static void free_qpn_table(struct rvt_qpn_table *qpt)
198 {
199 int i;
200
201 for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
202 free_page((unsigned long)qpt->map[i].page);
203 }
204
205 /**
206 * rvt_driver_qp_init - Init driver qp resources
207 * @rdi: rvt dev strucutre
208 *
209 * Return: 0 on success
210 */
211 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
212 {
213 int i;
214 int ret = -ENOMEM;
215
216 if (!rdi->dparms.qp_table_size)
217 return -EINVAL;
218
219 /*
220 * If driver is not doing any QP allocation then make sure it is
221 * providing the necessary QP functions.
222 */
223 if (!rdi->driver_f.free_all_qps ||
224 !rdi->driver_f.qp_priv_alloc ||
225 !rdi->driver_f.qp_priv_free ||
226 !rdi->driver_f.notify_qp_reset ||
227 !rdi->driver_f.notify_restart_rc)
228 return -EINVAL;
229
230 /* allocate parent object */
231 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
232 rdi->dparms.node);
233 if (!rdi->qp_dev)
234 return -ENOMEM;
235
236 /* allocate hash table */
237 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
238 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
239 rdi->qp_dev->qp_table =
240 kmalloc_node(rdi->qp_dev->qp_table_size *
241 sizeof(*rdi->qp_dev->qp_table),
242 GFP_KERNEL, rdi->dparms.node);
243 if (!rdi->qp_dev->qp_table)
244 goto no_qp_table;
245
246 for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
247 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
248
249 spin_lock_init(&rdi->qp_dev->qpt_lock);
250
251 /* initialize qpn map */
252 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
253 goto fail_table;
254
255 spin_lock_init(&rdi->n_qps_lock);
256
257 return 0;
258
259 fail_table:
260 kfree(rdi->qp_dev->qp_table);
261 free_qpn_table(&rdi->qp_dev->qpn_table);
262
263 no_qp_table:
264 kfree(rdi->qp_dev);
265
266 return ret;
267 }
268
269 /**
270 * free_all_qps - check for QPs still in use
271 * @qpt: the QP table to empty
272 *
273 * There should not be any QPs still in use.
274 * Free memory for table.
275 */
276 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
277 {
278 unsigned long flags;
279 struct rvt_qp *qp;
280 unsigned n, qp_inuse = 0;
281 spinlock_t *ql; /* work around too long line below */
282
283 if (rdi->driver_f.free_all_qps)
284 qp_inuse = rdi->driver_f.free_all_qps(rdi);
285
286 qp_inuse += rvt_mcast_tree_empty(rdi);
287
288 if (!rdi->qp_dev)
289 return qp_inuse;
290
291 ql = &rdi->qp_dev->qpt_lock;
292 spin_lock_irqsave(ql, flags);
293 for (n = 0; n < rdi->qp_dev->qp_table_size; n++) {
294 qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n],
295 lockdep_is_held(ql));
296 RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL);
297
298 for (; qp; qp = rcu_dereference_protected(qp->next,
299 lockdep_is_held(ql)))
300 qp_inuse++;
301 }
302 spin_unlock_irqrestore(ql, flags);
303 synchronize_rcu();
304 return qp_inuse;
305 }
306
307 /**
308 * rvt_qp_exit - clean up qps on device exit
309 * @rdi: rvt dev structure
310 *
311 * Check for qp leaks and free resources.
312 */
313 void rvt_qp_exit(struct rvt_dev_info *rdi)
314 {
315 u32 qps_inuse = rvt_free_all_qps(rdi);
316
317 if (qps_inuse)
318 rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
319 qps_inuse);
320 if (!rdi->qp_dev)
321 return;
322
323 kfree(rdi->qp_dev->qp_table);
324 free_qpn_table(&rdi->qp_dev->qpn_table);
325 kfree(rdi->qp_dev);
326 }
327
328 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
329 struct rvt_qpn_map *map, unsigned off)
330 {
331 return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
332 }
333
334 /**
335 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
336 * IB_QPT_SMI/IB_QPT_GSI
337 *@rdi: rvt device info structure
338 *@qpt: queue pair number table pointer
339 *@port_num: IB port number, 1 based, comes from core
340 *
341 * Return: The queue pair number
342 */
343 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
344 enum ib_qp_type type, u8 port_num)
345 {
346 u32 i, offset, max_scan, qpn;
347 struct rvt_qpn_map *map;
348 u32 ret;
349
350 if (rdi->driver_f.alloc_qpn)
351 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
352
353 if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
354 unsigned n;
355
356 ret = type == IB_QPT_GSI;
357 n = 1 << (ret + 2 * (port_num - 1));
358 spin_lock(&qpt->lock);
359 if (qpt->flags & n)
360 ret = -EINVAL;
361 else
362 qpt->flags |= n;
363 spin_unlock(&qpt->lock);
364 goto bail;
365 }
366
367 qpn = qpt->last + qpt->incr;
368 if (qpn >= RVT_QPN_MAX)
369 qpn = qpt->incr | ((qpt->last & 1) ^ 1);
370 /* offset carries bit 0 */
371 offset = qpn & RVT_BITS_PER_PAGE_MASK;
372 map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
373 max_scan = qpt->nmaps - !offset;
374 for (i = 0;;) {
375 if (unlikely(!map->page)) {
376 get_map_page(qpt, map);
377 if (unlikely(!map->page))
378 break;
379 }
380 do {
381 if (!test_and_set_bit(offset, map->page)) {
382 qpt->last = qpn;
383 ret = qpn;
384 goto bail;
385 }
386 offset += qpt->incr;
387 /*
388 * This qpn might be bogus if offset >= BITS_PER_PAGE.
389 * That is OK. It gets re-assigned below
390 */
391 qpn = mk_qpn(qpt, map, offset);
392 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
393 /*
394 * In order to keep the number of pages allocated to a
395 * minimum, we scan the all existing pages before increasing
396 * the size of the bitmap table.
397 */
398 if (++i > max_scan) {
399 if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
400 break;
401 map = &qpt->map[qpt->nmaps++];
402 /* start at incr with current bit 0 */
403 offset = qpt->incr | (offset & 1);
404 } else if (map < &qpt->map[qpt->nmaps]) {
405 ++map;
406 /* start at incr with current bit 0 */
407 offset = qpt->incr | (offset & 1);
408 } else {
409 map = &qpt->map[0];
410 /* wrap to first map page, invert bit 0 */
411 offset = qpt->incr | ((offset & 1) ^ 1);
412 }
413 /* there can be no set bits in low-order QoS bits */
414 WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1));
415 qpn = mk_qpn(qpt, map, offset);
416 }
417
418 ret = -ENOMEM;
419
420 bail:
421 return ret;
422 }
423
424 static void free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
425 {
426 struct rvt_qpn_map *map;
427
428 map = qpt->map + qpn / RVT_BITS_PER_PAGE;
429 if (map->page)
430 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
431 }
432
433 /**
434 * rvt_clear_mr_refs - Drop help mr refs
435 * @qp: rvt qp data structure
436 * @clr_sends: If shoudl clear send side or not
437 */
438 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
439 {
440 unsigned n;
441 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
442
443 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
444 rvt_put_ss(&qp->s_rdma_read_sge);
445
446 rvt_put_ss(&qp->r_sge);
447
448 if (clr_sends) {
449 while (qp->s_last != qp->s_head) {
450 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
451 unsigned i;
452
453 for (i = 0; i < wqe->wr.num_sge; i++) {
454 struct rvt_sge *sge = &wqe->sg_list[i];
455
456 rvt_put_mr(sge->mr);
457 }
458 if (qp->ibqp.qp_type == IB_QPT_UD ||
459 qp->ibqp.qp_type == IB_QPT_SMI ||
460 qp->ibqp.qp_type == IB_QPT_GSI)
461 atomic_dec(&ibah_to_rvtah(
462 wqe->ud_wr.ah)->refcount);
463 if (++qp->s_last >= qp->s_size)
464 qp->s_last = 0;
465 smp_wmb(); /* see qp_set_savail */
466 }
467 if (qp->s_rdma_mr) {
468 rvt_put_mr(qp->s_rdma_mr);
469 qp->s_rdma_mr = NULL;
470 }
471 }
472
473 if (qp->ibqp.qp_type != IB_QPT_RC)
474 return;
475
476 for (n = 0; n < rvt_max_atomic(rdi); n++) {
477 struct rvt_ack_entry *e = &qp->s_ack_queue[n];
478
479 if (e->rdma_sge.mr) {
480 rvt_put_mr(e->rdma_sge.mr);
481 e->rdma_sge.mr = NULL;
482 }
483 }
484 }
485
486 /**
487 * rvt_remove_qp - remove qp form table
488 * @rdi: rvt dev struct
489 * @qp: qp to remove
490 *
491 * Remove the QP from the table so it can't be found asynchronously by
492 * the receive routine.
493 */
494 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
495 {
496 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
497 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
498 unsigned long flags;
499 int removed = 1;
500
501 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
502
503 if (rcu_dereference_protected(rvp->qp[0],
504 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
505 RCU_INIT_POINTER(rvp->qp[0], NULL);
506 } else if (rcu_dereference_protected(rvp->qp[1],
507 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
508 RCU_INIT_POINTER(rvp->qp[1], NULL);
509 } else {
510 struct rvt_qp *q;
511 struct rvt_qp __rcu **qpp;
512
513 removed = 0;
514 qpp = &rdi->qp_dev->qp_table[n];
515 for (; (q = rcu_dereference_protected(*qpp,
516 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
517 qpp = &q->next) {
518 if (q == qp) {
519 RCU_INIT_POINTER(*qpp,
520 rcu_dereference_protected(qp->next,
521 lockdep_is_held(&rdi->qp_dev->qpt_lock)));
522 removed = 1;
523 trace_rvt_qpremove(qp, n);
524 break;
525 }
526 }
527 }
528
529 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
530 if (removed) {
531 synchronize_rcu();
532 rvt_put_qp(qp);
533 }
534 }
535
536 /**
537 * rvt_init_qp - initialize the QP state to the reset state
538 * @qp: the QP to init or reinit
539 * @type: the QP type
540 *
541 * This function is called from both rvt_create_qp() and
542 * rvt_reset_qp(). The difference is that the reset
543 * patch the necessary locks to protect against concurent
544 * access.
545 */
546 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
547 enum ib_qp_type type)
548 {
549 qp->remote_qpn = 0;
550 qp->qkey = 0;
551 qp->qp_access_flags = 0;
552 qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
553 qp->s_hdrwords = 0;
554 qp->s_wqe = NULL;
555 qp->s_draining = 0;
556 qp->s_next_psn = 0;
557 qp->s_last_psn = 0;
558 qp->s_sending_psn = 0;
559 qp->s_sending_hpsn = 0;
560 qp->s_psn = 0;
561 qp->r_psn = 0;
562 qp->r_msn = 0;
563 if (type == IB_QPT_RC) {
564 qp->s_state = IB_OPCODE_RC_SEND_LAST;
565 qp->r_state = IB_OPCODE_RC_SEND_LAST;
566 } else {
567 qp->s_state = IB_OPCODE_UC_SEND_LAST;
568 qp->r_state = IB_OPCODE_UC_SEND_LAST;
569 }
570 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
571 qp->r_nak_state = 0;
572 qp->r_aflags = 0;
573 qp->r_flags = 0;
574 qp->s_head = 0;
575 qp->s_tail = 0;
576 qp->s_cur = 0;
577 qp->s_acked = 0;
578 qp->s_last = 0;
579 qp->s_ssn = 1;
580 qp->s_lsn = 0;
581 qp->s_mig_state = IB_MIG_MIGRATED;
582 qp->r_head_ack_queue = 0;
583 qp->s_tail_ack_queue = 0;
584 qp->s_num_rd_atomic = 0;
585 if (qp->r_rq.wq) {
586 qp->r_rq.wq->head = 0;
587 qp->r_rq.wq->tail = 0;
588 }
589 qp->r_sge.num_sge = 0;
590 atomic_set(&qp->s_reserved_used, 0);
591 }
592
593 /**
594 * rvt_reset_qp - initialize the QP state to the reset state
595 * @qp: the QP to reset
596 * @type: the QP type
597 *
598 * r_lock, s_hlock, and s_lock are required to be held by the caller
599 */
600 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
601 enum ib_qp_type type)
602 __must_hold(&qp->s_lock)
603 __must_hold(&qp->s_hlock)
604 __must_hold(&qp->r_lock)
605 {
606 lockdep_assert_held(&qp->r_lock);
607 lockdep_assert_held(&qp->s_hlock);
608 lockdep_assert_held(&qp->s_lock);
609 if (qp->state != IB_QPS_RESET) {
610 qp->state = IB_QPS_RESET;
611
612 /* Let drivers flush their waitlist */
613 rdi->driver_f.flush_qp_waiters(qp);
614 rvt_stop_rc_timers(qp);
615 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
616 spin_unlock(&qp->s_lock);
617 spin_unlock(&qp->s_hlock);
618 spin_unlock_irq(&qp->r_lock);
619
620 /* Stop the send queue and the retry timer */
621 rdi->driver_f.stop_send_queue(qp);
622 rvt_del_timers_sync(qp);
623 /* Wait for things to stop */
624 rdi->driver_f.quiesce_qp(qp);
625
626 /* take qp out the hash and wait for it to be unused */
627 rvt_remove_qp(rdi, qp);
628 wait_event(qp->wait, !atomic_read(&qp->refcount));
629
630 /* grab the lock b/c it was locked at call time */
631 spin_lock_irq(&qp->r_lock);
632 spin_lock(&qp->s_hlock);
633 spin_lock(&qp->s_lock);
634
635 rvt_clear_mr_refs(qp, 1);
636 /*
637 * Let the driver do any tear down or re-init it needs to for
638 * a qp that has been reset
639 */
640 rdi->driver_f.notify_qp_reset(qp);
641 }
642 rvt_init_qp(rdi, qp, type);
643 lockdep_assert_held(&qp->r_lock);
644 lockdep_assert_held(&qp->s_hlock);
645 lockdep_assert_held(&qp->s_lock);
646 }
647
648 /**
649 * rvt_create_qp - create a queue pair for a device
650 * @ibpd: the protection domain who's device we create the queue pair for
651 * @init_attr: the attributes of the queue pair
652 * @udata: user data for libibverbs.so
653 *
654 * Queue pair creation is mostly an rvt issue. However, drivers have their own
655 * unique idea of what queue pair numbers mean. For instance there is a reserved
656 * range for PSM.
657 *
658 * Return: the queue pair on success, otherwise returns an errno.
659 *
660 * Called by the ib_create_qp() core verbs function.
661 */
662 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
663 struct ib_qp_init_attr *init_attr,
664 struct ib_udata *udata)
665 {
666 struct rvt_qp *qp;
667 int err;
668 struct rvt_swqe *swq = NULL;
669 size_t sz;
670 size_t sg_list_sz;
671 struct ib_qp *ret = ERR_PTR(-ENOMEM);
672 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
673 void *priv = NULL;
674 size_t sqsize;
675
676 if (!rdi)
677 return ERR_PTR(-EINVAL);
678
679 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_sge ||
680 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
681 init_attr->create_flags)
682 return ERR_PTR(-EINVAL);
683
684 /* Check receive queue parameters if no SRQ is specified. */
685 if (!init_attr->srq) {
686 if (init_attr->cap.max_recv_sge > rdi->dparms.props.max_sge ||
687 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
688 return ERR_PTR(-EINVAL);
689
690 if (init_attr->cap.max_send_sge +
691 init_attr->cap.max_send_wr +
692 init_attr->cap.max_recv_sge +
693 init_attr->cap.max_recv_wr == 0)
694 return ERR_PTR(-EINVAL);
695 }
696 sqsize =
697 init_attr->cap.max_send_wr + 1 +
698 rdi->dparms.reserved_operations;
699 switch (init_attr->qp_type) {
700 case IB_QPT_SMI:
701 case IB_QPT_GSI:
702 if (init_attr->port_num == 0 ||
703 init_attr->port_num > ibpd->device->phys_port_cnt)
704 return ERR_PTR(-EINVAL);
705 case IB_QPT_UC:
706 case IB_QPT_RC:
707 case IB_QPT_UD:
708 sz = sizeof(struct rvt_sge) *
709 init_attr->cap.max_send_sge +
710 sizeof(struct rvt_swqe);
711 swq = vzalloc_node(sqsize * sz, rdi->dparms.node);
712 if (!swq)
713 return ERR_PTR(-ENOMEM);
714
715 sz = sizeof(*qp);
716 sg_list_sz = 0;
717 if (init_attr->srq) {
718 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
719
720 if (srq->rq.max_sge > 1)
721 sg_list_sz = sizeof(*qp->r_sg_list) *
722 (srq->rq.max_sge - 1);
723 } else if (init_attr->cap.max_recv_sge > 1)
724 sg_list_sz = sizeof(*qp->r_sg_list) *
725 (init_attr->cap.max_recv_sge - 1);
726 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
727 rdi->dparms.node);
728 if (!qp)
729 goto bail_swq;
730
731 RCU_INIT_POINTER(qp->next, NULL);
732 if (init_attr->qp_type == IB_QPT_RC) {
733 qp->s_ack_queue =
734 kzalloc_node(
735 sizeof(*qp->s_ack_queue) *
736 rvt_max_atomic(rdi),
737 GFP_KERNEL,
738 rdi->dparms.node);
739 if (!qp->s_ack_queue)
740 goto bail_qp;
741 }
742 /* initialize timers needed for rc qp */
743 setup_timer(&qp->s_timer, rvt_rc_timeout, (unsigned long)qp);
744 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
745 HRTIMER_MODE_REL);
746 qp->s_rnr_timer.function = rvt_rc_rnr_retry;
747
748 /*
749 * Driver needs to set up it's private QP structure and do any
750 * initialization that is needed.
751 */
752 priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
753 if (IS_ERR(priv)) {
754 ret = priv;
755 goto bail_qp;
756 }
757 qp->priv = priv;
758 qp->timeout_jiffies =
759 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
760 1000UL);
761 if (init_attr->srq) {
762 sz = 0;
763 } else {
764 qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
765 qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
766 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
767 sizeof(struct rvt_rwqe);
768 if (udata)
769 qp->r_rq.wq = vmalloc_user(
770 sizeof(struct rvt_rwq) +
771 qp->r_rq.size * sz);
772 else
773 qp->r_rq.wq = vzalloc_node(
774 sizeof(struct rvt_rwq) +
775 qp->r_rq.size * sz,
776 rdi->dparms.node);
777 if (!qp->r_rq.wq)
778 goto bail_driver_priv;
779 }
780
781 /*
782 * ib_create_qp() will initialize qp->ibqp
783 * except for qp->ibqp.qp_num.
784 */
785 spin_lock_init(&qp->r_lock);
786 spin_lock_init(&qp->s_hlock);
787 spin_lock_init(&qp->s_lock);
788 spin_lock_init(&qp->r_rq.lock);
789 atomic_set(&qp->refcount, 0);
790 atomic_set(&qp->local_ops_pending, 0);
791 init_waitqueue_head(&qp->wait);
792 init_timer(&qp->s_timer);
793 qp->s_timer.data = (unsigned long)qp;
794 INIT_LIST_HEAD(&qp->rspwait);
795 qp->state = IB_QPS_RESET;
796 qp->s_wq = swq;
797 qp->s_size = sqsize;
798 qp->s_avail = init_attr->cap.max_send_wr;
799 qp->s_max_sge = init_attr->cap.max_send_sge;
800 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
801 qp->s_flags = RVT_S_SIGNAL_REQ_WR;
802
803 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
804 init_attr->qp_type,
805 init_attr->port_num);
806 if (err < 0) {
807 ret = ERR_PTR(err);
808 goto bail_rq_wq;
809 }
810 qp->ibqp.qp_num = err;
811 qp->port_num = init_attr->port_num;
812 rvt_init_qp(rdi, qp, init_attr->qp_type);
813 break;
814
815 default:
816 /* Don't support raw QPs */
817 return ERR_PTR(-EINVAL);
818 }
819
820 init_attr->cap.max_inline_data = 0;
821
822 /*
823 * Return the address of the RWQ as the offset to mmap.
824 * See rvt_mmap() for details.
825 */
826 if (udata && udata->outlen >= sizeof(__u64)) {
827 if (!qp->r_rq.wq) {
828 __u64 offset = 0;
829
830 err = ib_copy_to_udata(udata, &offset,
831 sizeof(offset));
832 if (err) {
833 ret = ERR_PTR(err);
834 goto bail_qpn;
835 }
836 } else {
837 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
838
839 qp->ip = rvt_create_mmap_info(rdi, s,
840 ibpd->uobject->context,
841 qp->r_rq.wq);
842 if (!qp->ip) {
843 ret = ERR_PTR(-ENOMEM);
844 goto bail_qpn;
845 }
846
847 err = ib_copy_to_udata(udata, &qp->ip->offset,
848 sizeof(qp->ip->offset));
849 if (err) {
850 ret = ERR_PTR(err);
851 goto bail_ip;
852 }
853 }
854 qp->pid = current->pid;
855 }
856
857 spin_lock(&rdi->n_qps_lock);
858 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
859 spin_unlock(&rdi->n_qps_lock);
860 ret = ERR_PTR(-ENOMEM);
861 goto bail_ip;
862 }
863
864 rdi->n_qps_allocated++;
865 /*
866 * Maintain a busy_jiffies variable that will be added to the timeout
867 * period in mod_retry_timer and add_retry_timer. This busy jiffies
868 * is scaled by the number of rc qps created for the device to reduce
869 * the number of timeouts occurring when there is a large number of
870 * qps. busy_jiffies is incremented every rc qp scaling interval.
871 * The scaling interval is selected based on extensive performance
872 * evaluation of targeted workloads.
873 */
874 if (init_attr->qp_type == IB_QPT_RC) {
875 rdi->n_rc_qps++;
876 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
877 }
878 spin_unlock(&rdi->n_qps_lock);
879
880 if (qp->ip) {
881 spin_lock_irq(&rdi->pending_lock);
882 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
883 spin_unlock_irq(&rdi->pending_lock);
884 }
885
886 ret = &qp->ibqp;
887
888 /*
889 * We have our QP and its good, now keep track of what types of opcodes
890 * can be processed on this QP. We do this by keeping track of what the
891 * 3 high order bits of the opcode are.
892 */
893 switch (init_attr->qp_type) {
894 case IB_QPT_SMI:
895 case IB_QPT_GSI:
896 case IB_QPT_UD:
897 qp->allowed_ops = IB_OPCODE_UD;
898 break;
899 case IB_QPT_RC:
900 qp->allowed_ops = IB_OPCODE_RC;
901 break;
902 case IB_QPT_UC:
903 qp->allowed_ops = IB_OPCODE_UC;
904 break;
905 default:
906 ret = ERR_PTR(-EINVAL);
907 goto bail_ip;
908 }
909
910 return ret;
911
912 bail_ip:
913 if (qp->ip)
914 kref_put(&qp->ip->ref, rvt_release_mmap_info);
915
916 bail_qpn:
917 free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
918
919 bail_rq_wq:
920 if (!qp->ip)
921 vfree(qp->r_rq.wq);
922
923 bail_driver_priv:
924 rdi->driver_f.qp_priv_free(rdi, qp);
925
926 bail_qp:
927 kfree(qp->s_ack_queue);
928 kfree(qp);
929
930 bail_swq:
931 vfree(swq);
932
933 return ret;
934 }
935
936 /**
937 * rvt_error_qp - put a QP into the error state
938 * @qp: the QP to put into the error state
939 * @err: the receive completion error to signal if a RWQE is active
940 *
941 * Flushes both send and receive work queues.
942 *
943 * Return: true if last WQE event should be generated.
944 * The QP r_lock and s_lock should be held and interrupts disabled.
945 * If we are already in error state, just return.
946 */
947 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
948 {
949 struct ib_wc wc;
950 int ret = 0;
951 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
952
953 lockdep_assert_held(&qp->r_lock);
954 lockdep_assert_held(&qp->s_lock);
955 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
956 goto bail;
957
958 qp->state = IB_QPS_ERR;
959
960 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
961 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
962 del_timer(&qp->s_timer);
963 }
964
965 if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
966 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
967
968 rdi->driver_f.notify_error_qp(qp);
969
970 /* Schedule the sending tasklet to drain the send work queue. */
971 if (ACCESS_ONCE(qp->s_last) != qp->s_head)
972 rdi->driver_f.schedule_send(qp);
973
974 rvt_clear_mr_refs(qp, 0);
975
976 memset(&wc, 0, sizeof(wc));
977 wc.qp = &qp->ibqp;
978 wc.opcode = IB_WC_RECV;
979
980 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
981 wc.wr_id = qp->r_wr_id;
982 wc.status = err;
983 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
984 }
985 wc.status = IB_WC_WR_FLUSH_ERR;
986
987 if (qp->r_rq.wq) {
988 struct rvt_rwq *wq;
989 u32 head;
990 u32 tail;
991
992 spin_lock(&qp->r_rq.lock);
993
994 /* sanity check pointers before trusting them */
995 wq = qp->r_rq.wq;
996 head = wq->head;
997 if (head >= qp->r_rq.size)
998 head = 0;
999 tail = wq->tail;
1000 if (tail >= qp->r_rq.size)
1001 tail = 0;
1002 while (tail != head) {
1003 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1004 if (++tail >= qp->r_rq.size)
1005 tail = 0;
1006 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1007 }
1008 wq->tail = tail;
1009
1010 spin_unlock(&qp->r_rq.lock);
1011 } else if (qp->ibqp.event_handler) {
1012 ret = 1;
1013 }
1014
1015 bail:
1016 return ret;
1017 }
1018 EXPORT_SYMBOL(rvt_error_qp);
1019
1020 /*
1021 * Put the QP into the hash table.
1022 * The hash table holds a reference to the QP.
1023 */
1024 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1025 {
1026 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1027 unsigned long flags;
1028
1029 rvt_get_qp(qp);
1030 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1031
1032 if (qp->ibqp.qp_num <= 1) {
1033 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1034 } else {
1035 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1036
1037 qp->next = rdi->qp_dev->qp_table[n];
1038 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1039 trace_rvt_qpinsert(qp, n);
1040 }
1041
1042 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1043 }
1044
1045 /**
1046 * rvt_modify_qp - modify the attributes of a queue pair
1047 * @ibqp: the queue pair who's attributes we're modifying
1048 * @attr: the new attributes
1049 * @attr_mask: the mask of attributes to modify
1050 * @udata: user data for libibverbs.so
1051 *
1052 * Return: 0 on success, otherwise returns an errno.
1053 */
1054 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1055 int attr_mask, struct ib_udata *udata)
1056 {
1057 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1058 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1059 enum ib_qp_state cur_state, new_state;
1060 struct ib_event ev;
1061 int lastwqe = 0;
1062 int mig = 0;
1063 int pmtu = 0; /* for gcc warning only */
1064 enum rdma_link_layer link;
1065
1066 link = rdma_port_get_link_layer(ibqp->device, qp->port_num);
1067
1068 spin_lock_irq(&qp->r_lock);
1069 spin_lock(&qp->s_hlock);
1070 spin_lock(&qp->s_lock);
1071
1072 cur_state = attr_mask & IB_QP_CUR_STATE ?
1073 attr->cur_qp_state : qp->state;
1074 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1075
1076 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1077 attr_mask, link))
1078 goto inval;
1079
1080 if (rdi->driver_f.check_modify_qp &&
1081 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1082 goto inval;
1083
1084 if (attr_mask & IB_QP_AV) {
1085 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1086 be16_to_cpu(IB_MULTICAST_LID_BASE))
1087 goto inval;
1088 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1089 goto inval;
1090 }
1091
1092 if (attr_mask & IB_QP_ALT_PATH) {
1093 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1094 be16_to_cpu(IB_MULTICAST_LID_BASE))
1095 goto inval;
1096 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1097 goto inval;
1098 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1099 goto inval;
1100 }
1101
1102 if (attr_mask & IB_QP_PKEY_INDEX)
1103 if (attr->pkey_index >= rvt_get_npkeys(rdi))
1104 goto inval;
1105
1106 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1107 if (attr->min_rnr_timer > 31)
1108 goto inval;
1109
1110 if (attr_mask & IB_QP_PORT)
1111 if (qp->ibqp.qp_type == IB_QPT_SMI ||
1112 qp->ibqp.qp_type == IB_QPT_GSI ||
1113 attr->port_num == 0 ||
1114 attr->port_num > ibqp->device->phys_port_cnt)
1115 goto inval;
1116
1117 if (attr_mask & IB_QP_DEST_QPN)
1118 if (attr->dest_qp_num > RVT_QPN_MASK)
1119 goto inval;
1120
1121 if (attr_mask & IB_QP_RETRY_CNT)
1122 if (attr->retry_cnt > 7)
1123 goto inval;
1124
1125 if (attr_mask & IB_QP_RNR_RETRY)
1126 if (attr->rnr_retry > 7)
1127 goto inval;
1128
1129 /*
1130 * Don't allow invalid path_mtu values. OK to set greater
1131 * than the active mtu (or even the max_cap, if we have tuned
1132 * that to a small mtu. We'll set qp->path_mtu
1133 * to the lesser of requested attribute mtu and active,
1134 * for packetizing messages.
1135 * Note that the QP port has to be set in INIT and MTU in RTR.
1136 */
1137 if (attr_mask & IB_QP_PATH_MTU) {
1138 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1139 if (pmtu < 0)
1140 goto inval;
1141 }
1142
1143 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1144 if (attr->path_mig_state == IB_MIG_REARM) {
1145 if (qp->s_mig_state == IB_MIG_ARMED)
1146 goto inval;
1147 if (new_state != IB_QPS_RTS)
1148 goto inval;
1149 } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1150 if (qp->s_mig_state == IB_MIG_REARM)
1151 goto inval;
1152 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1153 goto inval;
1154 if (qp->s_mig_state == IB_MIG_ARMED)
1155 mig = 1;
1156 } else {
1157 goto inval;
1158 }
1159 }
1160
1161 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1162 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1163 goto inval;
1164
1165 switch (new_state) {
1166 case IB_QPS_RESET:
1167 if (qp->state != IB_QPS_RESET)
1168 rvt_reset_qp(rdi, qp, ibqp->qp_type);
1169 break;
1170
1171 case IB_QPS_RTR:
1172 /* Allow event to re-trigger if QP set to RTR more than once */
1173 qp->r_flags &= ~RVT_R_COMM_EST;
1174 qp->state = new_state;
1175 break;
1176
1177 case IB_QPS_SQD:
1178 qp->s_draining = qp->s_last != qp->s_cur;
1179 qp->state = new_state;
1180 break;
1181
1182 case IB_QPS_SQE:
1183 if (qp->ibqp.qp_type == IB_QPT_RC)
1184 goto inval;
1185 qp->state = new_state;
1186 break;
1187
1188 case IB_QPS_ERR:
1189 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1190 break;
1191
1192 default:
1193 qp->state = new_state;
1194 break;
1195 }
1196
1197 if (attr_mask & IB_QP_PKEY_INDEX)
1198 qp->s_pkey_index = attr->pkey_index;
1199
1200 if (attr_mask & IB_QP_PORT)
1201 qp->port_num = attr->port_num;
1202
1203 if (attr_mask & IB_QP_DEST_QPN)
1204 qp->remote_qpn = attr->dest_qp_num;
1205
1206 if (attr_mask & IB_QP_SQ_PSN) {
1207 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1208 qp->s_psn = qp->s_next_psn;
1209 qp->s_sending_psn = qp->s_next_psn;
1210 qp->s_last_psn = qp->s_next_psn - 1;
1211 qp->s_sending_hpsn = qp->s_last_psn;
1212 }
1213
1214 if (attr_mask & IB_QP_RQ_PSN)
1215 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1216
1217 if (attr_mask & IB_QP_ACCESS_FLAGS)
1218 qp->qp_access_flags = attr->qp_access_flags;
1219
1220 if (attr_mask & IB_QP_AV) {
1221 qp->remote_ah_attr = attr->ah_attr;
1222 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1223 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1224 }
1225
1226 if (attr_mask & IB_QP_ALT_PATH) {
1227 qp->alt_ah_attr = attr->alt_ah_attr;
1228 qp->s_alt_pkey_index = attr->alt_pkey_index;
1229 }
1230
1231 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1232 qp->s_mig_state = attr->path_mig_state;
1233 if (mig) {
1234 qp->remote_ah_attr = qp->alt_ah_attr;
1235 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1236 qp->s_pkey_index = qp->s_alt_pkey_index;
1237 }
1238 }
1239
1240 if (attr_mask & IB_QP_PATH_MTU) {
1241 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1242 qp->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1243 qp->log_pmtu = ilog2(qp->pmtu);
1244 }
1245
1246 if (attr_mask & IB_QP_RETRY_CNT) {
1247 qp->s_retry_cnt = attr->retry_cnt;
1248 qp->s_retry = attr->retry_cnt;
1249 }
1250
1251 if (attr_mask & IB_QP_RNR_RETRY) {
1252 qp->s_rnr_retry_cnt = attr->rnr_retry;
1253 qp->s_rnr_retry = attr->rnr_retry;
1254 }
1255
1256 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1257 qp->r_min_rnr_timer = attr->min_rnr_timer;
1258
1259 if (attr_mask & IB_QP_TIMEOUT) {
1260 qp->timeout = attr->timeout;
1261 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1262 }
1263
1264 if (attr_mask & IB_QP_QKEY)
1265 qp->qkey = attr->qkey;
1266
1267 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1268 qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1269
1270 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1271 qp->s_max_rd_atomic = attr->max_rd_atomic;
1272
1273 if (rdi->driver_f.modify_qp)
1274 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1275
1276 spin_unlock(&qp->s_lock);
1277 spin_unlock(&qp->s_hlock);
1278 spin_unlock_irq(&qp->r_lock);
1279
1280 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1281 rvt_insert_qp(rdi, qp);
1282
1283 if (lastwqe) {
1284 ev.device = qp->ibqp.device;
1285 ev.element.qp = &qp->ibqp;
1286 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1287 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1288 }
1289 if (mig) {
1290 ev.device = qp->ibqp.device;
1291 ev.element.qp = &qp->ibqp;
1292 ev.event = IB_EVENT_PATH_MIG;
1293 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1294 }
1295 return 0;
1296
1297 inval:
1298 spin_unlock(&qp->s_lock);
1299 spin_unlock(&qp->s_hlock);
1300 spin_unlock_irq(&qp->r_lock);
1301 return -EINVAL;
1302 }
1303
1304 /** rvt_free_qpn - Free a qpn from the bit map
1305 * @qpt: QP table
1306 * @qpn: queue pair number to free
1307 */
1308 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
1309 {
1310 struct rvt_qpn_map *map;
1311
1312 map = qpt->map + qpn / RVT_BITS_PER_PAGE;
1313 if (map->page)
1314 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
1315 }
1316
1317 /**
1318 * rvt_destroy_qp - destroy a queue pair
1319 * @ibqp: the queue pair to destroy
1320 *
1321 * Note that this can be called while the QP is actively sending or
1322 * receiving!
1323 *
1324 * Return: 0 on success.
1325 */
1326 int rvt_destroy_qp(struct ib_qp *ibqp)
1327 {
1328 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1329 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1330
1331 spin_lock_irq(&qp->r_lock);
1332 spin_lock(&qp->s_hlock);
1333 spin_lock(&qp->s_lock);
1334 rvt_reset_qp(rdi, qp, ibqp->qp_type);
1335 spin_unlock(&qp->s_lock);
1336 spin_unlock(&qp->s_hlock);
1337 spin_unlock_irq(&qp->r_lock);
1338
1339 /* qpn is now available for use again */
1340 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1341
1342 spin_lock(&rdi->n_qps_lock);
1343 rdi->n_qps_allocated--;
1344 if (qp->ibqp.qp_type == IB_QPT_RC) {
1345 rdi->n_rc_qps--;
1346 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1347 }
1348 spin_unlock(&rdi->n_qps_lock);
1349
1350 if (qp->ip)
1351 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1352 else
1353 vfree(qp->r_rq.wq);
1354 vfree(qp->s_wq);
1355 rdi->driver_f.qp_priv_free(rdi, qp);
1356 kfree(qp->s_ack_queue);
1357 kfree(qp);
1358 return 0;
1359 }
1360
1361 /**
1362 * rvt_query_qp - query an ipbq
1363 * @ibqp: IB qp to query
1364 * @attr: attr struct to fill in
1365 * @attr_mask: attr mask ignored
1366 * @init_attr: struct to fill in
1367 *
1368 * Return: always 0
1369 */
1370 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1371 int attr_mask, struct ib_qp_init_attr *init_attr)
1372 {
1373 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1374 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1375
1376 attr->qp_state = qp->state;
1377 attr->cur_qp_state = attr->qp_state;
1378 attr->path_mtu = qp->path_mtu;
1379 attr->path_mig_state = qp->s_mig_state;
1380 attr->qkey = qp->qkey;
1381 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1382 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1383 attr->dest_qp_num = qp->remote_qpn;
1384 attr->qp_access_flags = qp->qp_access_flags;
1385 attr->cap.max_send_wr = qp->s_size - 1 -
1386 rdi->dparms.reserved_operations;
1387 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1388 attr->cap.max_send_sge = qp->s_max_sge;
1389 attr->cap.max_recv_sge = qp->r_rq.max_sge;
1390 attr->cap.max_inline_data = 0;
1391 attr->ah_attr = qp->remote_ah_attr;
1392 attr->alt_ah_attr = qp->alt_ah_attr;
1393 attr->pkey_index = qp->s_pkey_index;
1394 attr->alt_pkey_index = qp->s_alt_pkey_index;
1395 attr->en_sqd_async_notify = 0;
1396 attr->sq_draining = qp->s_draining;
1397 attr->max_rd_atomic = qp->s_max_rd_atomic;
1398 attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1399 attr->min_rnr_timer = qp->r_min_rnr_timer;
1400 attr->port_num = qp->port_num;
1401 attr->timeout = qp->timeout;
1402 attr->retry_cnt = qp->s_retry_cnt;
1403 attr->rnr_retry = qp->s_rnr_retry_cnt;
1404 attr->alt_port_num =
1405 rdma_ah_get_port_num(&qp->alt_ah_attr);
1406 attr->alt_timeout = qp->alt_timeout;
1407
1408 init_attr->event_handler = qp->ibqp.event_handler;
1409 init_attr->qp_context = qp->ibqp.qp_context;
1410 init_attr->send_cq = qp->ibqp.send_cq;
1411 init_attr->recv_cq = qp->ibqp.recv_cq;
1412 init_attr->srq = qp->ibqp.srq;
1413 init_attr->cap = attr->cap;
1414 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1415 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1416 else
1417 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1418 init_attr->qp_type = qp->ibqp.qp_type;
1419 init_attr->port_num = qp->port_num;
1420 return 0;
1421 }
1422
1423 /**
1424 * rvt_post_receive - post a receive on a QP
1425 * @ibqp: the QP to post the receive on
1426 * @wr: the WR to post
1427 * @bad_wr: the first bad WR is put here
1428 *
1429 * This may be called from interrupt context.
1430 *
1431 * Return: 0 on success otherwise errno
1432 */
1433 int rvt_post_recv(struct ib_qp *ibqp, struct ib_recv_wr *wr,
1434 struct ib_recv_wr **bad_wr)
1435 {
1436 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1437 struct rvt_rwq *wq = qp->r_rq.wq;
1438 unsigned long flags;
1439 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1440 !qp->ibqp.srq;
1441
1442 /* Check that state is OK to post receive. */
1443 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1444 *bad_wr = wr;
1445 return -EINVAL;
1446 }
1447
1448 for (; wr; wr = wr->next) {
1449 struct rvt_rwqe *wqe;
1450 u32 next;
1451 int i;
1452
1453 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1454 *bad_wr = wr;
1455 return -EINVAL;
1456 }
1457
1458 spin_lock_irqsave(&qp->r_rq.lock, flags);
1459 next = wq->head + 1;
1460 if (next >= qp->r_rq.size)
1461 next = 0;
1462 if (next == wq->tail) {
1463 spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1464 *bad_wr = wr;
1465 return -ENOMEM;
1466 }
1467 if (unlikely(qp_err_flush)) {
1468 struct ib_wc wc;
1469
1470 memset(&wc, 0, sizeof(wc));
1471 wc.qp = &qp->ibqp;
1472 wc.opcode = IB_WC_RECV;
1473 wc.wr_id = wr->wr_id;
1474 wc.status = IB_WC_WR_FLUSH_ERR;
1475 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1476 } else {
1477 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1478 wqe->wr_id = wr->wr_id;
1479 wqe->num_sge = wr->num_sge;
1480 for (i = 0; i < wr->num_sge; i++)
1481 wqe->sg_list[i] = wr->sg_list[i];
1482 /*
1483 * Make sure queue entry is written
1484 * before the head index.
1485 */
1486 smp_wmb();
1487 wq->head = next;
1488 }
1489 spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1490 }
1491 return 0;
1492 }
1493
1494 /**
1495 * rvt_qp_valid_operation - validate post send wr request
1496 * @qp - the qp
1497 * @post-parms - the post send table for the driver
1498 * @wr - the work request
1499 *
1500 * The routine validates the operation based on the
1501 * validation table an returns the length of the operation
1502 * which can extend beyond the ib_send_bw. Operation
1503 * dependent flags key atomic operation validation.
1504 *
1505 * There is an exception for UD qps that validates the pd and
1506 * overrides the length to include the additional UD specific
1507 * length.
1508 *
1509 * Returns a negative error or the length of the work request
1510 * for building the swqe.
1511 */
1512 static inline int rvt_qp_valid_operation(
1513 struct rvt_qp *qp,
1514 const struct rvt_operation_params *post_parms,
1515 struct ib_send_wr *wr)
1516 {
1517 int len;
1518
1519 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1520 return -EINVAL;
1521 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1522 return -EINVAL;
1523 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1524 ibpd_to_rvtpd(qp->ibqp.pd)->user)
1525 return -EINVAL;
1526 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1527 (wr->num_sge == 0 ||
1528 wr->sg_list[0].length < sizeof(u64) ||
1529 wr->sg_list[0].addr & (sizeof(u64) - 1)))
1530 return -EINVAL;
1531 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1532 !qp->s_max_rd_atomic)
1533 return -EINVAL;
1534 len = post_parms[wr->opcode].length;
1535 /* UD specific */
1536 if (qp->ibqp.qp_type != IB_QPT_UC &&
1537 qp->ibqp.qp_type != IB_QPT_RC) {
1538 if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1539 return -EINVAL;
1540 len = sizeof(struct ib_ud_wr);
1541 }
1542 return len;
1543 }
1544
1545 /**
1546 * rvt_qp_is_avail - determine queue capacity
1547 * @qp - the qp
1548 * @rdi - the rdmavt device
1549 * @reserved_op - is reserved operation
1550 *
1551 * This assumes the s_hlock is held but the s_last
1552 * qp variable is uncontrolled.
1553 *
1554 * For non reserved operations, the qp->s_avail
1555 * may be changed.
1556 *
1557 * The return value is zero or a -ENOMEM.
1558 */
1559 static inline int rvt_qp_is_avail(
1560 struct rvt_qp *qp,
1561 struct rvt_dev_info *rdi,
1562 bool reserved_op)
1563 {
1564 u32 slast;
1565 u32 avail;
1566 u32 reserved_used;
1567
1568 /* see rvt_qp_wqe_unreserve() */
1569 smp_mb__before_atomic();
1570 reserved_used = atomic_read(&qp->s_reserved_used);
1571 if (unlikely(reserved_op)) {
1572 /* see rvt_qp_wqe_unreserve() */
1573 smp_mb__before_atomic();
1574 if (reserved_used >= rdi->dparms.reserved_operations)
1575 return -ENOMEM;
1576 return 0;
1577 }
1578 /* non-reserved operations */
1579 if (likely(qp->s_avail))
1580 return 0;
1581 smp_read_barrier_depends(); /* see rc.c */
1582 slast = ACCESS_ONCE(qp->s_last);
1583 if (qp->s_head >= slast)
1584 avail = qp->s_size - (qp->s_head - slast);
1585 else
1586 avail = slast - qp->s_head;
1587
1588 /* see rvt_qp_wqe_unreserve() */
1589 smp_mb__before_atomic();
1590 reserved_used = atomic_read(&qp->s_reserved_used);
1591 avail = avail - 1 -
1592 (rdi->dparms.reserved_operations - reserved_used);
1593 /* insure we don't assign a negative s_avail */
1594 if ((s32)avail <= 0)
1595 return -ENOMEM;
1596 qp->s_avail = avail;
1597 if (WARN_ON(qp->s_avail >
1598 (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1599 rvt_pr_err(rdi,
1600 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1601 qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1602 qp->s_head, qp->s_tail, qp->s_cur,
1603 qp->s_acked, qp->s_last);
1604 return 0;
1605 }
1606
1607 /**
1608 * rvt_post_one_wr - post one RC, UC, or UD send work request
1609 * @qp: the QP to post on
1610 * @wr: the work request to send
1611 */
1612 static int rvt_post_one_wr(struct rvt_qp *qp,
1613 struct ib_send_wr *wr,
1614 int *call_send)
1615 {
1616 struct rvt_swqe *wqe;
1617 u32 next;
1618 int i;
1619 int j;
1620 int acc;
1621 struct rvt_lkey_table *rkt;
1622 struct rvt_pd *pd;
1623 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1624 u8 log_pmtu;
1625 int ret;
1626 size_t cplen;
1627 bool reserved_op;
1628 int local_ops_delayed = 0;
1629
1630 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1631
1632 /* IB spec says that num_sge == 0 is OK. */
1633 if (unlikely(wr->num_sge > qp->s_max_sge))
1634 return -EINVAL;
1635
1636 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1637 if (ret < 0)
1638 return ret;
1639 cplen = ret;
1640
1641 /*
1642 * Local operations include fast register and local invalidate.
1643 * Fast register needs to be processed immediately because the
1644 * registered lkey may be used by following work requests and the
1645 * lkey needs to be valid at the time those requests are posted.
1646 * Local invalidate can be processed immediately if fencing is
1647 * not required and no previous local invalidate ops are pending.
1648 * Signaled local operations that have been processed immediately
1649 * need to have requests with "completion only" flags set posted
1650 * to the send queue in order to generate completions.
1651 */
1652 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
1653 switch (wr->opcode) {
1654 case IB_WR_REG_MR:
1655 ret = rvt_fast_reg_mr(qp,
1656 reg_wr(wr)->mr,
1657 reg_wr(wr)->key,
1658 reg_wr(wr)->access);
1659 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1660 return ret;
1661 break;
1662 case IB_WR_LOCAL_INV:
1663 if ((wr->send_flags & IB_SEND_FENCE) ||
1664 atomic_read(&qp->local_ops_pending)) {
1665 local_ops_delayed = 1;
1666 } else {
1667 ret = rvt_invalidate_rkey(
1668 qp, wr->ex.invalidate_rkey);
1669 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1670 return ret;
1671 }
1672 break;
1673 default:
1674 return -EINVAL;
1675 }
1676 }
1677
1678 reserved_op = rdi->post_parms[wr->opcode].flags &
1679 RVT_OPERATION_USE_RESERVE;
1680 /* check for avail */
1681 ret = rvt_qp_is_avail(qp, rdi, reserved_op);
1682 if (ret)
1683 return ret;
1684 next = qp->s_head + 1;
1685 if (next >= qp->s_size)
1686 next = 0;
1687
1688 rkt = &rdi->lkey_table;
1689 pd = ibpd_to_rvtpd(qp->ibqp.pd);
1690 wqe = rvt_get_swqe_ptr(qp, qp->s_head);
1691
1692 /* cplen has length from above */
1693 memcpy(&wqe->wr, wr, cplen);
1694
1695 wqe->length = 0;
1696 j = 0;
1697 if (wr->num_sge) {
1698 acc = wr->opcode >= IB_WR_RDMA_READ ?
1699 IB_ACCESS_LOCAL_WRITE : 0;
1700 for (i = 0; i < wr->num_sge; i++) {
1701 u32 length = wr->sg_list[i].length;
1702 int ok;
1703
1704 if (length == 0)
1705 continue;
1706 ok = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j],
1707 &wr->sg_list[i], acc);
1708 if (!ok) {
1709 ret = -EINVAL;
1710 goto bail_inval_free;
1711 }
1712 wqe->length += length;
1713 j++;
1714 }
1715 wqe->wr.num_sge = j;
1716 }
1717
1718 /* general part of wqe valid - allow for driver checks */
1719 if (rdi->driver_f.check_send_wqe) {
1720 ret = rdi->driver_f.check_send_wqe(qp, wqe);
1721 if (ret < 0)
1722 goto bail_inval_free;
1723 if (ret)
1724 *call_send = ret;
1725 }
1726
1727 log_pmtu = qp->log_pmtu;
1728 if (qp->ibqp.qp_type != IB_QPT_UC &&
1729 qp->ibqp.qp_type != IB_QPT_RC) {
1730 struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah);
1731
1732 log_pmtu = ah->log_pmtu;
1733 atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
1734 }
1735
1736 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
1737 if (local_ops_delayed)
1738 atomic_inc(&qp->local_ops_pending);
1739 else
1740 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
1741 wqe->ssn = 0;
1742 wqe->psn = 0;
1743 wqe->lpsn = 0;
1744 } else {
1745 wqe->ssn = qp->s_ssn++;
1746 wqe->psn = qp->s_next_psn;
1747 wqe->lpsn = wqe->psn +
1748 (wqe->length ?
1749 ((wqe->length - 1) >> log_pmtu) :
1750 0);
1751 qp->s_next_psn = wqe->lpsn + 1;
1752 }
1753 if (unlikely(reserved_op)) {
1754 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
1755 rvt_qp_wqe_reserve(qp, wqe);
1756 } else {
1757 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
1758 qp->s_avail--;
1759 }
1760 trace_rvt_post_one_wr(qp, wqe);
1761 smp_wmb(); /* see request builders */
1762 qp->s_head = next;
1763
1764 return 0;
1765
1766 bail_inval_free:
1767 /* release mr holds */
1768 while (j) {
1769 struct rvt_sge *sge = &wqe->sg_list[--j];
1770
1771 rvt_put_mr(sge->mr);
1772 }
1773 return ret;
1774 }
1775
1776 /**
1777 * rvt_post_send - post a send on a QP
1778 * @ibqp: the QP to post the send on
1779 * @wr: the list of work requests to post
1780 * @bad_wr: the first bad WR is put here
1781 *
1782 * This may be called from interrupt context.
1783 *
1784 * Return: 0 on success else errno
1785 */
1786 int rvt_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
1787 struct ib_send_wr **bad_wr)
1788 {
1789 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1790 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1791 unsigned long flags = 0;
1792 int call_send;
1793 unsigned nreq = 0;
1794 int err = 0;
1795
1796 spin_lock_irqsave(&qp->s_hlock, flags);
1797
1798 /*
1799 * Ensure QP state is such that we can send. If not bail out early,
1800 * there is no need to do this every time we post a send.
1801 */
1802 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
1803 spin_unlock_irqrestore(&qp->s_hlock, flags);
1804 return -EINVAL;
1805 }
1806
1807 /*
1808 * If the send queue is empty, and we only have a single WR then just go
1809 * ahead and kick the send engine into gear. Otherwise we will always
1810 * just schedule the send to happen later.
1811 */
1812 call_send = qp->s_head == ACCESS_ONCE(qp->s_last) && !wr->next;
1813
1814 for (; wr; wr = wr->next) {
1815 err = rvt_post_one_wr(qp, wr, &call_send);
1816 if (unlikely(err)) {
1817 *bad_wr = wr;
1818 goto bail;
1819 }
1820 nreq++;
1821 }
1822 bail:
1823 spin_unlock_irqrestore(&qp->s_hlock, flags);
1824 if (nreq) {
1825 if (call_send)
1826 rdi->driver_f.do_send(qp);
1827 else
1828 rdi->driver_f.schedule_send_no_lock(qp);
1829 }
1830 return err;
1831 }
1832
1833 /**
1834 * rvt_post_srq_receive - post a receive on a shared receive queue
1835 * @ibsrq: the SRQ to post the receive on
1836 * @wr: the list of work requests to post
1837 * @bad_wr: A pointer to the first WR to cause a problem is put here
1838 *
1839 * This may be called from interrupt context.
1840 *
1841 * Return: 0 on success else errno
1842 */
1843 int rvt_post_srq_recv(struct ib_srq *ibsrq, struct ib_recv_wr *wr,
1844 struct ib_recv_wr **bad_wr)
1845 {
1846 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
1847 struct rvt_rwq *wq;
1848 unsigned long flags;
1849
1850 for (; wr; wr = wr->next) {
1851 struct rvt_rwqe *wqe;
1852 u32 next;
1853 int i;
1854
1855 if ((unsigned)wr->num_sge > srq->rq.max_sge) {
1856 *bad_wr = wr;
1857 return -EINVAL;
1858 }
1859
1860 spin_lock_irqsave(&srq->rq.lock, flags);
1861 wq = srq->rq.wq;
1862 next = wq->head + 1;
1863 if (next >= srq->rq.size)
1864 next = 0;
1865 if (next == wq->tail) {
1866 spin_unlock_irqrestore(&srq->rq.lock, flags);
1867 *bad_wr = wr;
1868 return -ENOMEM;
1869 }
1870
1871 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
1872 wqe->wr_id = wr->wr_id;
1873 wqe->num_sge = wr->num_sge;
1874 for (i = 0; i < wr->num_sge; i++)
1875 wqe->sg_list[i] = wr->sg_list[i];
1876 /* Make sure queue entry is written before the head index. */
1877 smp_wmb();
1878 wq->head = next;
1879 spin_unlock_irqrestore(&srq->rq.lock, flags);
1880 }
1881 return 0;
1882 }
1883
1884 /**
1885 * qp_comm_est - handle trap with QP established
1886 * @qp: the QP
1887 */
1888 void rvt_comm_est(struct rvt_qp *qp)
1889 {
1890 qp->r_flags |= RVT_R_COMM_EST;
1891 if (qp->ibqp.event_handler) {
1892 struct ib_event ev;
1893
1894 ev.device = qp->ibqp.device;
1895 ev.element.qp = &qp->ibqp;
1896 ev.event = IB_EVENT_COMM_EST;
1897 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1898 }
1899 }
1900 EXPORT_SYMBOL(rvt_comm_est);
1901
1902 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
1903 {
1904 unsigned long flags;
1905 int lastwqe;
1906
1907 spin_lock_irqsave(&qp->s_lock, flags);
1908 lastwqe = rvt_error_qp(qp, err);
1909 spin_unlock_irqrestore(&qp->s_lock, flags);
1910
1911 if (lastwqe) {
1912 struct ib_event ev;
1913
1914 ev.device = qp->ibqp.device;
1915 ev.element.qp = &qp->ibqp;
1916 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1917 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1918 }
1919 }
1920 EXPORT_SYMBOL(rvt_rc_error);
1921
1922 /*
1923 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
1924 * @index - the index
1925 * return usec from an index into ib_rvt_rnr_table
1926 */
1927 unsigned long rvt_rnr_tbl_to_usec(u32 index)
1928 {
1929 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
1930 }
1931 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
1932
1933 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
1934 {
1935 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
1936 IB_AETH_CREDIT_MASK];
1937 }
1938
1939 /*
1940 * rvt_add_retry_timer - add/start a retry timer
1941 * @qp - the QP
1942 * add a retry timer on the QP
1943 */
1944 void rvt_add_retry_timer(struct rvt_qp *qp)
1945 {
1946 struct ib_qp *ibqp = &qp->ibqp;
1947 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1948
1949 lockdep_assert_held(&qp->s_lock);
1950 qp->s_flags |= RVT_S_TIMER;
1951 /* 4.096 usec. * (1 << qp->timeout) */
1952 qp->s_timer.expires = jiffies + qp->timeout_jiffies +
1953 rdi->busy_jiffies;
1954 add_timer(&qp->s_timer);
1955 }
1956 EXPORT_SYMBOL(rvt_add_retry_timer);
1957
1958 /**
1959 * rvt_add_rnr_timer - add/start an rnr timer
1960 * @qp - the QP
1961 * @aeth - aeth of RNR timeout, simulated aeth for loopback
1962 * add an rnr timer on the QP
1963 */
1964 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
1965 {
1966 u32 to;
1967
1968 lockdep_assert_held(&qp->s_lock);
1969 qp->s_flags |= RVT_S_WAIT_RNR;
1970 to = rvt_aeth_to_usec(aeth);
1971 hrtimer_start(&qp->s_rnr_timer,
1972 ns_to_ktime(1000 * to), HRTIMER_MODE_REL);
1973 }
1974 EXPORT_SYMBOL(rvt_add_rnr_timer);
1975
1976 /**
1977 * rvt_stop_rc_timers - stop all timers
1978 * @qp - the QP
1979 * stop any pending timers
1980 */
1981 void rvt_stop_rc_timers(struct rvt_qp *qp)
1982 {
1983 lockdep_assert_held(&qp->s_lock);
1984 /* Remove QP from all timers */
1985 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1986 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1987 del_timer(&qp->s_timer);
1988 hrtimer_try_to_cancel(&qp->s_rnr_timer);
1989 }
1990 }
1991 EXPORT_SYMBOL(rvt_stop_rc_timers);
1992
1993 /**
1994 * rvt_stop_rnr_timer - stop an rnr timer
1995 * @qp - the QP
1996 *
1997 * stop an rnr timer and return if the timer
1998 * had been pending.
1999 */
2000 static int rvt_stop_rnr_timer(struct rvt_qp *qp)
2001 {
2002 int rval = 0;
2003
2004 lockdep_assert_held(&qp->s_lock);
2005 /* Remove QP from rnr timer */
2006 if (qp->s_flags & RVT_S_WAIT_RNR) {
2007 qp->s_flags &= ~RVT_S_WAIT_RNR;
2008 rval = hrtimer_try_to_cancel(&qp->s_rnr_timer);
2009 }
2010 return rval;
2011 }
2012
2013 /**
2014 * rvt_del_timers_sync - wait for any timeout routines to exit
2015 * @qp - the QP
2016 */
2017 void rvt_del_timers_sync(struct rvt_qp *qp)
2018 {
2019 del_timer_sync(&qp->s_timer);
2020 hrtimer_cancel(&qp->s_rnr_timer);
2021 }
2022 EXPORT_SYMBOL(rvt_del_timers_sync);
2023
2024 /**
2025 * This is called from s_timer for missing responses.
2026 */
2027 static void rvt_rc_timeout(unsigned long arg)
2028 {
2029 struct rvt_qp *qp = (struct rvt_qp *)arg;
2030 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2031 unsigned long flags;
2032
2033 spin_lock_irqsave(&qp->r_lock, flags);
2034 spin_lock(&qp->s_lock);
2035 if (qp->s_flags & RVT_S_TIMER) {
2036 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2037
2038 qp->s_flags &= ~RVT_S_TIMER;
2039 rvp->n_rc_timeouts++;
2040 del_timer(&qp->s_timer);
2041 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2042 if (rdi->driver_f.notify_restart_rc)
2043 rdi->driver_f.notify_restart_rc(qp,
2044 qp->s_last_psn + 1,
2045 1);
2046 rdi->driver_f.schedule_send(qp);
2047 }
2048 spin_unlock(&qp->s_lock);
2049 spin_unlock_irqrestore(&qp->r_lock, flags);
2050 }
2051
2052 /*
2053 * This is called from s_timer for RNR timeouts.
2054 */
2055 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2056 {
2057 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2058 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2059 unsigned long flags;
2060
2061 spin_lock_irqsave(&qp->s_lock, flags);
2062 rvt_stop_rnr_timer(qp);
2063 rdi->driver_f.schedule_send(qp);
2064 spin_unlock_irqrestore(&qp->s_lock, flags);
2065 return HRTIMER_NORESTART;
2066 }
2067 EXPORT_SYMBOL(rvt_rc_rnr_retry);