]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/infiniband/sw/rdmavt/qp.c
Merge branch 'am335x-phy-fixes' into omap-for-v5.0/fixes-v2
[mirror_ubuntu-eoan-kernel.git] / drivers / infiniband / sw / rdmavt / qp.c
1 /*
2 * Copyright(c) 2016 - 2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include "qp.h"
57 #include "vt.h"
58 #include "trace.h"
59
60 static void rvt_rc_timeout(struct timer_list *t);
61
62 /*
63 * Convert the AETH RNR timeout code into the number of microseconds.
64 */
65 static const u32 ib_rvt_rnr_table[32] = {
66 655360, /* 00: 655.36 */
67 10, /* 01: .01 */
68 20, /* 02 .02 */
69 30, /* 03: .03 */
70 40, /* 04: .04 */
71 60, /* 05: .06 */
72 80, /* 06: .08 */
73 120, /* 07: .12 */
74 160, /* 08: .16 */
75 240, /* 09: .24 */
76 320, /* 0A: .32 */
77 480, /* 0B: .48 */
78 640, /* 0C: .64 */
79 960, /* 0D: .96 */
80 1280, /* 0E: 1.28 */
81 1920, /* 0F: 1.92 */
82 2560, /* 10: 2.56 */
83 3840, /* 11: 3.84 */
84 5120, /* 12: 5.12 */
85 7680, /* 13: 7.68 */
86 10240, /* 14: 10.24 */
87 15360, /* 15: 15.36 */
88 20480, /* 16: 20.48 */
89 30720, /* 17: 30.72 */
90 40960, /* 18: 40.96 */
91 61440, /* 19: 61.44 */
92 81920, /* 1A: 81.92 */
93 122880, /* 1B: 122.88 */
94 163840, /* 1C: 163.84 */
95 245760, /* 1D: 245.76 */
96 327680, /* 1E: 327.68 */
97 491520 /* 1F: 491.52 */
98 };
99
100 /*
101 * Note that it is OK to post send work requests in the SQE and ERR
102 * states; rvt_do_send() will process them and generate error
103 * completions as per IB 1.2 C10-96.
104 */
105 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
106 [IB_QPS_RESET] = 0,
107 [IB_QPS_INIT] = RVT_POST_RECV_OK,
108 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
109 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
110 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
111 RVT_PROCESS_NEXT_SEND_OK,
112 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
113 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
114 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
115 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
116 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
117 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
118 };
119 EXPORT_SYMBOL(ib_rvt_state_ops);
120
121 /* platform specific: return the last level cache (llc) size, in KiB */
122 static int rvt_wss_llc_size(void)
123 {
124 /* assume that the boot CPU value is universal for all CPUs */
125 return boot_cpu_data.x86_cache_size;
126 }
127
128 /* platform specific: cacheless copy */
129 static void cacheless_memcpy(void *dst, void *src, size_t n)
130 {
131 /*
132 * Use the only available X64 cacheless copy. Add a __user cast
133 * to quiet sparse. The src agument is already in the kernel so
134 * there are no security issues. The extra fault recovery machinery
135 * is not invoked.
136 */
137 __copy_user_nocache(dst, (void __user *)src, n, 0);
138 }
139
140 void rvt_wss_exit(struct rvt_dev_info *rdi)
141 {
142 struct rvt_wss *wss = rdi->wss;
143
144 if (!wss)
145 return;
146
147 /* coded to handle partially initialized and repeat callers */
148 kfree(wss->entries);
149 wss->entries = NULL;
150 kfree(rdi->wss);
151 rdi->wss = NULL;
152 }
153
154 /**
155 * rvt_wss_init - Init wss data structures
156 *
157 * Return: 0 on success
158 */
159 int rvt_wss_init(struct rvt_dev_info *rdi)
160 {
161 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
162 unsigned int wss_threshold = rdi->dparms.wss_threshold;
163 unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
164 long llc_size;
165 long llc_bits;
166 long table_size;
167 long table_bits;
168 struct rvt_wss *wss;
169 int node = rdi->dparms.node;
170
171 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
172 rdi->wss = NULL;
173 return 0;
174 }
175
176 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
177 if (!rdi->wss)
178 return -ENOMEM;
179 wss = rdi->wss;
180
181 /* check for a valid percent range - default to 80 if none or invalid */
182 if (wss_threshold < 1 || wss_threshold > 100)
183 wss_threshold = 80;
184
185 /* reject a wildly large period */
186 if (wss_clean_period > 1000000)
187 wss_clean_period = 256;
188
189 /* reject a zero period */
190 if (wss_clean_period == 0)
191 wss_clean_period = 1;
192
193 /*
194 * Calculate the table size - the next power of 2 larger than the
195 * LLC size. LLC size is in KiB.
196 */
197 llc_size = rvt_wss_llc_size() * 1024;
198 table_size = roundup_pow_of_two(llc_size);
199
200 /* one bit per page in rounded up table */
201 llc_bits = llc_size / PAGE_SIZE;
202 table_bits = table_size / PAGE_SIZE;
203 wss->pages_mask = table_bits - 1;
204 wss->num_entries = table_bits / BITS_PER_LONG;
205
206 wss->threshold = (llc_bits * wss_threshold) / 100;
207 if (wss->threshold == 0)
208 wss->threshold = 1;
209
210 wss->clean_period = wss_clean_period;
211 atomic_set(&wss->clean_counter, wss_clean_period);
212
213 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
214 GFP_KERNEL, node);
215 if (!wss->entries) {
216 rvt_wss_exit(rdi);
217 return -ENOMEM;
218 }
219
220 return 0;
221 }
222
223 /*
224 * Advance the clean counter. When the clean period has expired,
225 * clean an entry.
226 *
227 * This is implemented in atomics to avoid locking. Because multiple
228 * variables are involved, it can be racy which can lead to slightly
229 * inaccurate information. Since this is only a heuristic, this is
230 * OK. Any innaccuracies will clean themselves out as the counter
231 * advances. That said, it is unlikely the entry clean operation will
232 * race - the next possible racer will not start until the next clean
233 * period.
234 *
235 * The clean counter is implemented as a decrement to zero. When zero
236 * is reached an entry is cleaned.
237 */
238 static void wss_advance_clean_counter(struct rvt_wss *wss)
239 {
240 int entry;
241 int weight;
242 unsigned long bits;
243
244 /* become the cleaner if we decrement the counter to zero */
245 if (atomic_dec_and_test(&wss->clean_counter)) {
246 /*
247 * Set, not add, the clean period. This avoids an issue
248 * where the counter could decrement below the clean period.
249 * Doing a set can result in lost decrements, slowing the
250 * clean advance. Since this a heuristic, this possible
251 * slowdown is OK.
252 *
253 * An alternative is to loop, advancing the counter by a
254 * clean period until the result is > 0. However, this could
255 * lead to several threads keeping another in the clean loop.
256 * This could be mitigated by limiting the number of times
257 * we stay in the loop.
258 */
259 atomic_set(&wss->clean_counter, wss->clean_period);
260
261 /*
262 * Uniquely grab the entry to clean and move to next.
263 * The current entry is always the lower bits of
264 * wss.clean_entry. The table size, wss.num_entries,
265 * is always a power-of-2.
266 */
267 entry = (atomic_inc_return(&wss->clean_entry) - 1)
268 & (wss->num_entries - 1);
269
270 /* clear the entry and count the bits */
271 bits = xchg(&wss->entries[entry], 0);
272 weight = hweight64((u64)bits);
273 /* only adjust the contended total count if needed */
274 if (weight)
275 atomic_sub(weight, &wss->total_count);
276 }
277 }
278
279 /*
280 * Insert the given address into the working set array.
281 */
282 static void wss_insert(struct rvt_wss *wss, void *address)
283 {
284 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
285 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
286 u32 nr = page & (BITS_PER_LONG - 1);
287
288 if (!test_and_set_bit(nr, &wss->entries[entry]))
289 atomic_inc(&wss->total_count);
290
291 wss_advance_clean_counter(wss);
292 }
293
294 /*
295 * Is the working set larger than the threshold?
296 */
297 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
298 {
299 return atomic_read(&wss->total_count) >= wss->threshold;
300 }
301
302 static void get_map_page(struct rvt_qpn_table *qpt,
303 struct rvt_qpn_map *map)
304 {
305 unsigned long page = get_zeroed_page(GFP_KERNEL);
306
307 /*
308 * Free the page if someone raced with us installing it.
309 */
310
311 spin_lock(&qpt->lock);
312 if (map->page)
313 free_page(page);
314 else
315 map->page = (void *)page;
316 spin_unlock(&qpt->lock);
317 }
318
319 /**
320 * init_qpn_table - initialize the QP number table for a device
321 * @qpt: the QPN table
322 */
323 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
324 {
325 u32 offset, i;
326 struct rvt_qpn_map *map;
327 int ret = 0;
328
329 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
330 return -EINVAL;
331
332 spin_lock_init(&qpt->lock);
333
334 qpt->last = rdi->dparms.qpn_start;
335 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
336
337 /*
338 * Drivers may want some QPs beyond what we need for verbs let them use
339 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
340 * for those. The reserved range must be *after* the range which verbs
341 * will pick from.
342 */
343
344 /* Figure out number of bit maps needed before reserved range */
345 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
346
347 /* This should always be zero */
348 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
349
350 /* Starting with the first reserved bit map */
351 map = &qpt->map[qpt->nmaps];
352
353 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
354 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
355 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
356 if (!map->page) {
357 get_map_page(qpt, map);
358 if (!map->page) {
359 ret = -ENOMEM;
360 break;
361 }
362 }
363 set_bit(offset, map->page);
364 offset++;
365 if (offset == RVT_BITS_PER_PAGE) {
366 /* next page */
367 qpt->nmaps++;
368 map++;
369 offset = 0;
370 }
371 }
372 return ret;
373 }
374
375 /**
376 * free_qpn_table - free the QP number table for a device
377 * @qpt: the QPN table
378 */
379 static void free_qpn_table(struct rvt_qpn_table *qpt)
380 {
381 int i;
382
383 for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
384 free_page((unsigned long)qpt->map[i].page);
385 }
386
387 /**
388 * rvt_driver_qp_init - Init driver qp resources
389 * @rdi: rvt dev strucutre
390 *
391 * Return: 0 on success
392 */
393 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
394 {
395 int i;
396 int ret = -ENOMEM;
397
398 if (!rdi->dparms.qp_table_size)
399 return -EINVAL;
400
401 /*
402 * If driver is not doing any QP allocation then make sure it is
403 * providing the necessary QP functions.
404 */
405 if (!rdi->driver_f.free_all_qps ||
406 !rdi->driver_f.qp_priv_alloc ||
407 !rdi->driver_f.qp_priv_free ||
408 !rdi->driver_f.notify_qp_reset ||
409 !rdi->driver_f.notify_restart_rc)
410 return -EINVAL;
411
412 /* allocate parent object */
413 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
414 rdi->dparms.node);
415 if (!rdi->qp_dev)
416 return -ENOMEM;
417
418 /* allocate hash table */
419 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
420 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
421 rdi->qp_dev->qp_table =
422 kmalloc_array_node(rdi->qp_dev->qp_table_size,
423 sizeof(*rdi->qp_dev->qp_table),
424 GFP_KERNEL, rdi->dparms.node);
425 if (!rdi->qp_dev->qp_table)
426 goto no_qp_table;
427
428 for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
429 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
430
431 spin_lock_init(&rdi->qp_dev->qpt_lock);
432
433 /* initialize qpn map */
434 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
435 goto fail_table;
436
437 spin_lock_init(&rdi->n_qps_lock);
438
439 return 0;
440
441 fail_table:
442 kfree(rdi->qp_dev->qp_table);
443 free_qpn_table(&rdi->qp_dev->qpn_table);
444
445 no_qp_table:
446 kfree(rdi->qp_dev);
447
448 return ret;
449 }
450
451 /**
452 * free_all_qps - check for QPs still in use
453 * @rdi: rvt device info structure
454 *
455 * There should not be any QPs still in use.
456 * Free memory for table.
457 */
458 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
459 {
460 unsigned long flags;
461 struct rvt_qp *qp;
462 unsigned n, qp_inuse = 0;
463 spinlock_t *ql; /* work around too long line below */
464
465 if (rdi->driver_f.free_all_qps)
466 qp_inuse = rdi->driver_f.free_all_qps(rdi);
467
468 qp_inuse += rvt_mcast_tree_empty(rdi);
469
470 if (!rdi->qp_dev)
471 return qp_inuse;
472
473 ql = &rdi->qp_dev->qpt_lock;
474 spin_lock_irqsave(ql, flags);
475 for (n = 0; n < rdi->qp_dev->qp_table_size; n++) {
476 qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n],
477 lockdep_is_held(ql));
478 RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL);
479
480 for (; qp; qp = rcu_dereference_protected(qp->next,
481 lockdep_is_held(ql)))
482 qp_inuse++;
483 }
484 spin_unlock_irqrestore(ql, flags);
485 synchronize_rcu();
486 return qp_inuse;
487 }
488
489 /**
490 * rvt_qp_exit - clean up qps on device exit
491 * @rdi: rvt dev structure
492 *
493 * Check for qp leaks and free resources.
494 */
495 void rvt_qp_exit(struct rvt_dev_info *rdi)
496 {
497 u32 qps_inuse = rvt_free_all_qps(rdi);
498
499 if (qps_inuse)
500 rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
501 qps_inuse);
502 if (!rdi->qp_dev)
503 return;
504
505 kfree(rdi->qp_dev->qp_table);
506 free_qpn_table(&rdi->qp_dev->qpn_table);
507 kfree(rdi->qp_dev);
508 }
509
510 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
511 struct rvt_qpn_map *map, unsigned off)
512 {
513 return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
514 }
515
516 /**
517 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
518 * IB_QPT_SMI/IB_QPT_GSI
519 * @rdi: rvt device info structure
520 * @qpt: queue pair number table pointer
521 * @port_num: IB port number, 1 based, comes from core
522 *
523 * Return: The queue pair number
524 */
525 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
526 enum ib_qp_type type, u8 port_num)
527 {
528 u32 i, offset, max_scan, qpn;
529 struct rvt_qpn_map *map;
530 u32 ret;
531
532 if (rdi->driver_f.alloc_qpn)
533 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
534
535 if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
536 unsigned n;
537
538 ret = type == IB_QPT_GSI;
539 n = 1 << (ret + 2 * (port_num - 1));
540 spin_lock(&qpt->lock);
541 if (qpt->flags & n)
542 ret = -EINVAL;
543 else
544 qpt->flags |= n;
545 spin_unlock(&qpt->lock);
546 goto bail;
547 }
548
549 qpn = qpt->last + qpt->incr;
550 if (qpn >= RVT_QPN_MAX)
551 qpn = qpt->incr | ((qpt->last & 1) ^ 1);
552 /* offset carries bit 0 */
553 offset = qpn & RVT_BITS_PER_PAGE_MASK;
554 map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
555 max_scan = qpt->nmaps - !offset;
556 for (i = 0;;) {
557 if (unlikely(!map->page)) {
558 get_map_page(qpt, map);
559 if (unlikely(!map->page))
560 break;
561 }
562 do {
563 if (!test_and_set_bit(offset, map->page)) {
564 qpt->last = qpn;
565 ret = qpn;
566 goto bail;
567 }
568 offset += qpt->incr;
569 /*
570 * This qpn might be bogus if offset >= BITS_PER_PAGE.
571 * That is OK. It gets re-assigned below
572 */
573 qpn = mk_qpn(qpt, map, offset);
574 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
575 /*
576 * In order to keep the number of pages allocated to a
577 * minimum, we scan the all existing pages before increasing
578 * the size of the bitmap table.
579 */
580 if (++i > max_scan) {
581 if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
582 break;
583 map = &qpt->map[qpt->nmaps++];
584 /* start at incr with current bit 0 */
585 offset = qpt->incr | (offset & 1);
586 } else if (map < &qpt->map[qpt->nmaps]) {
587 ++map;
588 /* start at incr with current bit 0 */
589 offset = qpt->incr | (offset & 1);
590 } else {
591 map = &qpt->map[0];
592 /* wrap to first map page, invert bit 0 */
593 offset = qpt->incr | ((offset & 1) ^ 1);
594 }
595 /* there can be no set bits in low-order QoS bits */
596 WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1));
597 qpn = mk_qpn(qpt, map, offset);
598 }
599
600 ret = -ENOMEM;
601
602 bail:
603 return ret;
604 }
605
606 /**
607 * rvt_clear_mr_refs - Drop help mr refs
608 * @qp: rvt qp data structure
609 * @clr_sends: If shoudl clear send side or not
610 */
611 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
612 {
613 unsigned n;
614 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
615
616 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
617 rvt_put_ss(&qp->s_rdma_read_sge);
618
619 rvt_put_ss(&qp->r_sge);
620
621 if (clr_sends) {
622 while (qp->s_last != qp->s_head) {
623 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
624
625 rvt_put_swqe(wqe);
626
627 if (qp->ibqp.qp_type == IB_QPT_UD ||
628 qp->ibqp.qp_type == IB_QPT_SMI ||
629 qp->ibqp.qp_type == IB_QPT_GSI)
630 atomic_dec(&ibah_to_rvtah(
631 wqe->ud_wr.ah)->refcount);
632 if (++qp->s_last >= qp->s_size)
633 qp->s_last = 0;
634 smp_wmb(); /* see qp_set_savail */
635 }
636 if (qp->s_rdma_mr) {
637 rvt_put_mr(qp->s_rdma_mr);
638 qp->s_rdma_mr = NULL;
639 }
640 }
641
642 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
643 struct rvt_ack_entry *e = &qp->s_ack_queue[n];
644
645 if (e->rdma_sge.mr) {
646 rvt_put_mr(e->rdma_sge.mr);
647 e->rdma_sge.mr = NULL;
648 }
649 }
650 }
651
652 /**
653 * rvt_swqe_has_lkey - return true if lkey is used by swqe
654 * @wqe - the send wqe
655 * @lkey - the lkey
656 *
657 * Test the swqe for using lkey
658 */
659 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
660 {
661 int i;
662
663 for (i = 0; i < wqe->wr.num_sge; i++) {
664 struct rvt_sge *sge = &wqe->sg_list[i];
665
666 if (rvt_mr_has_lkey(sge->mr, lkey))
667 return true;
668 }
669 return false;
670 }
671
672 /**
673 * rvt_qp_sends_has_lkey - return true is qp sends use lkey
674 * @qp - the rvt_qp
675 * @lkey - the lkey
676 */
677 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
678 {
679 u32 s_last = qp->s_last;
680
681 while (s_last != qp->s_head) {
682 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
683
684 if (rvt_swqe_has_lkey(wqe, lkey))
685 return true;
686
687 if (++s_last >= qp->s_size)
688 s_last = 0;
689 }
690 if (qp->s_rdma_mr)
691 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
692 return true;
693 return false;
694 }
695
696 /**
697 * rvt_qp_acks_has_lkey - return true if acks have lkey
698 * @qp - the qp
699 * @lkey - the lkey
700 */
701 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
702 {
703 int i;
704 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
705
706 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
707 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
708
709 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
710 return true;
711 }
712 return false;
713 }
714
715 /*
716 * rvt_qp_mr_clean - clean up remote ops for lkey
717 * @qp - the qp
718 * @lkey - the lkey that is being de-registered
719 *
720 * This routine checks if the lkey is being used by
721 * the qp.
722 *
723 * If so, the qp is put into an error state to elminate
724 * any references from the qp.
725 */
726 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
727 {
728 bool lastwqe = false;
729
730 if (qp->ibqp.qp_type == IB_QPT_SMI ||
731 qp->ibqp.qp_type == IB_QPT_GSI)
732 /* avoid special QPs */
733 return;
734 spin_lock_irq(&qp->r_lock);
735 spin_lock(&qp->s_hlock);
736 spin_lock(&qp->s_lock);
737
738 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
739 goto check_lwqe;
740
741 if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
742 rvt_qp_sends_has_lkey(qp, lkey) ||
743 rvt_qp_acks_has_lkey(qp, lkey))
744 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
745 check_lwqe:
746 spin_unlock(&qp->s_lock);
747 spin_unlock(&qp->s_hlock);
748 spin_unlock_irq(&qp->r_lock);
749 if (lastwqe) {
750 struct ib_event ev;
751
752 ev.device = qp->ibqp.device;
753 ev.element.qp = &qp->ibqp;
754 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
755 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
756 }
757 }
758
759 /**
760 * rvt_remove_qp - remove qp form table
761 * @rdi: rvt dev struct
762 * @qp: qp to remove
763 *
764 * Remove the QP from the table so it can't be found asynchronously by
765 * the receive routine.
766 */
767 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
768 {
769 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
770 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
771 unsigned long flags;
772 int removed = 1;
773
774 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
775
776 if (rcu_dereference_protected(rvp->qp[0],
777 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
778 RCU_INIT_POINTER(rvp->qp[0], NULL);
779 } else if (rcu_dereference_protected(rvp->qp[1],
780 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
781 RCU_INIT_POINTER(rvp->qp[1], NULL);
782 } else {
783 struct rvt_qp *q;
784 struct rvt_qp __rcu **qpp;
785
786 removed = 0;
787 qpp = &rdi->qp_dev->qp_table[n];
788 for (; (q = rcu_dereference_protected(*qpp,
789 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
790 qpp = &q->next) {
791 if (q == qp) {
792 RCU_INIT_POINTER(*qpp,
793 rcu_dereference_protected(qp->next,
794 lockdep_is_held(&rdi->qp_dev->qpt_lock)));
795 removed = 1;
796 trace_rvt_qpremove(qp, n);
797 break;
798 }
799 }
800 }
801
802 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
803 if (removed) {
804 synchronize_rcu();
805 rvt_put_qp(qp);
806 }
807 }
808
809 /**
810 * rvt_init_qp - initialize the QP state to the reset state
811 * @qp: the QP to init or reinit
812 * @type: the QP type
813 *
814 * This function is called from both rvt_create_qp() and
815 * rvt_reset_qp(). The difference is that the reset
816 * patch the necessary locks to protect against concurent
817 * access.
818 */
819 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
820 enum ib_qp_type type)
821 {
822 qp->remote_qpn = 0;
823 qp->qkey = 0;
824 qp->qp_access_flags = 0;
825 qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
826 qp->s_hdrwords = 0;
827 qp->s_wqe = NULL;
828 qp->s_draining = 0;
829 qp->s_next_psn = 0;
830 qp->s_last_psn = 0;
831 qp->s_sending_psn = 0;
832 qp->s_sending_hpsn = 0;
833 qp->s_psn = 0;
834 qp->r_psn = 0;
835 qp->r_msn = 0;
836 if (type == IB_QPT_RC) {
837 qp->s_state = IB_OPCODE_RC_SEND_LAST;
838 qp->r_state = IB_OPCODE_RC_SEND_LAST;
839 } else {
840 qp->s_state = IB_OPCODE_UC_SEND_LAST;
841 qp->r_state = IB_OPCODE_UC_SEND_LAST;
842 }
843 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
844 qp->r_nak_state = 0;
845 qp->r_aflags = 0;
846 qp->r_flags = 0;
847 qp->s_head = 0;
848 qp->s_tail = 0;
849 qp->s_cur = 0;
850 qp->s_acked = 0;
851 qp->s_last = 0;
852 qp->s_ssn = 1;
853 qp->s_lsn = 0;
854 qp->s_mig_state = IB_MIG_MIGRATED;
855 qp->r_head_ack_queue = 0;
856 qp->s_tail_ack_queue = 0;
857 qp->s_num_rd_atomic = 0;
858 if (qp->r_rq.wq) {
859 qp->r_rq.wq->head = 0;
860 qp->r_rq.wq->tail = 0;
861 }
862 qp->r_sge.num_sge = 0;
863 atomic_set(&qp->s_reserved_used, 0);
864 }
865
866 /**
867 * rvt_reset_qp - initialize the QP state to the reset state
868 * @qp: the QP to reset
869 * @type: the QP type
870 *
871 * r_lock, s_hlock, and s_lock are required to be held by the caller
872 */
873 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
874 enum ib_qp_type type)
875 __must_hold(&qp->s_lock)
876 __must_hold(&qp->s_hlock)
877 __must_hold(&qp->r_lock)
878 {
879 lockdep_assert_held(&qp->r_lock);
880 lockdep_assert_held(&qp->s_hlock);
881 lockdep_assert_held(&qp->s_lock);
882 if (qp->state != IB_QPS_RESET) {
883 qp->state = IB_QPS_RESET;
884
885 /* Let drivers flush their waitlist */
886 rdi->driver_f.flush_qp_waiters(qp);
887 rvt_stop_rc_timers(qp);
888 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
889 spin_unlock(&qp->s_lock);
890 spin_unlock(&qp->s_hlock);
891 spin_unlock_irq(&qp->r_lock);
892
893 /* Stop the send queue and the retry timer */
894 rdi->driver_f.stop_send_queue(qp);
895 rvt_del_timers_sync(qp);
896 /* Wait for things to stop */
897 rdi->driver_f.quiesce_qp(qp);
898
899 /* take qp out the hash and wait for it to be unused */
900 rvt_remove_qp(rdi, qp);
901
902 /* grab the lock b/c it was locked at call time */
903 spin_lock_irq(&qp->r_lock);
904 spin_lock(&qp->s_hlock);
905 spin_lock(&qp->s_lock);
906
907 rvt_clear_mr_refs(qp, 1);
908 /*
909 * Let the driver do any tear down or re-init it needs to for
910 * a qp that has been reset
911 */
912 rdi->driver_f.notify_qp_reset(qp);
913 }
914 rvt_init_qp(rdi, qp, type);
915 lockdep_assert_held(&qp->r_lock);
916 lockdep_assert_held(&qp->s_hlock);
917 lockdep_assert_held(&qp->s_lock);
918 }
919
920 /** rvt_free_qpn - Free a qpn from the bit map
921 * @qpt: QP table
922 * @qpn: queue pair number to free
923 */
924 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
925 {
926 struct rvt_qpn_map *map;
927
928 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
929 if (map->page)
930 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
931 }
932
933 /**
934 * rvt_create_qp - create a queue pair for a device
935 * @ibpd: the protection domain who's device we create the queue pair for
936 * @init_attr: the attributes of the queue pair
937 * @udata: user data for libibverbs.so
938 *
939 * Queue pair creation is mostly an rvt issue. However, drivers have their own
940 * unique idea of what queue pair numbers mean. For instance there is a reserved
941 * range for PSM.
942 *
943 * Return: the queue pair on success, otherwise returns an errno.
944 *
945 * Called by the ib_create_qp() core verbs function.
946 */
947 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
948 struct ib_qp_init_attr *init_attr,
949 struct ib_udata *udata)
950 {
951 struct rvt_qp *qp;
952 int err;
953 struct rvt_swqe *swq = NULL;
954 size_t sz;
955 size_t sg_list_sz;
956 struct ib_qp *ret = ERR_PTR(-ENOMEM);
957 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
958 void *priv = NULL;
959 size_t sqsize;
960
961 if (!rdi)
962 return ERR_PTR(-EINVAL);
963
964 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
965 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
966 init_attr->create_flags)
967 return ERR_PTR(-EINVAL);
968
969 /* Check receive queue parameters if no SRQ is specified. */
970 if (!init_attr->srq) {
971 if (init_attr->cap.max_recv_sge >
972 rdi->dparms.props.max_recv_sge ||
973 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
974 return ERR_PTR(-EINVAL);
975
976 if (init_attr->cap.max_send_sge +
977 init_attr->cap.max_send_wr +
978 init_attr->cap.max_recv_sge +
979 init_attr->cap.max_recv_wr == 0)
980 return ERR_PTR(-EINVAL);
981 }
982 sqsize =
983 init_attr->cap.max_send_wr + 1 +
984 rdi->dparms.reserved_operations;
985 switch (init_attr->qp_type) {
986 case IB_QPT_SMI:
987 case IB_QPT_GSI:
988 if (init_attr->port_num == 0 ||
989 init_attr->port_num > ibpd->device->phys_port_cnt)
990 return ERR_PTR(-EINVAL);
991 /* fall through */
992 case IB_QPT_UC:
993 case IB_QPT_RC:
994 case IB_QPT_UD:
995 sz = sizeof(struct rvt_sge) *
996 init_attr->cap.max_send_sge +
997 sizeof(struct rvt_swqe);
998 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
999 if (!swq)
1000 return ERR_PTR(-ENOMEM);
1001
1002 sz = sizeof(*qp);
1003 sg_list_sz = 0;
1004 if (init_attr->srq) {
1005 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1006
1007 if (srq->rq.max_sge > 1)
1008 sg_list_sz = sizeof(*qp->r_sg_list) *
1009 (srq->rq.max_sge - 1);
1010 } else if (init_attr->cap.max_recv_sge > 1)
1011 sg_list_sz = sizeof(*qp->r_sg_list) *
1012 (init_attr->cap.max_recv_sge - 1);
1013 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1014 rdi->dparms.node);
1015 if (!qp)
1016 goto bail_swq;
1017
1018 RCU_INIT_POINTER(qp->next, NULL);
1019 if (init_attr->qp_type == IB_QPT_RC) {
1020 qp->s_ack_queue =
1021 kcalloc_node(rvt_max_atomic(rdi),
1022 sizeof(*qp->s_ack_queue),
1023 GFP_KERNEL,
1024 rdi->dparms.node);
1025 if (!qp->s_ack_queue)
1026 goto bail_qp;
1027 }
1028 /* initialize timers needed for rc qp */
1029 timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1030 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1031 HRTIMER_MODE_REL);
1032 qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1033
1034 /*
1035 * Driver needs to set up it's private QP structure and do any
1036 * initialization that is needed.
1037 */
1038 priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1039 if (IS_ERR(priv)) {
1040 ret = priv;
1041 goto bail_qp;
1042 }
1043 qp->priv = priv;
1044 qp->timeout_jiffies =
1045 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1046 1000UL);
1047 if (init_attr->srq) {
1048 sz = 0;
1049 } else {
1050 qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1051 qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1052 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1053 sizeof(struct rvt_rwqe);
1054 if (udata)
1055 qp->r_rq.wq = vmalloc_user(
1056 sizeof(struct rvt_rwq) +
1057 qp->r_rq.size * sz);
1058 else
1059 qp->r_rq.wq = vzalloc_node(
1060 sizeof(struct rvt_rwq) +
1061 qp->r_rq.size * sz,
1062 rdi->dparms.node);
1063 if (!qp->r_rq.wq)
1064 goto bail_driver_priv;
1065 }
1066
1067 /*
1068 * ib_create_qp() will initialize qp->ibqp
1069 * except for qp->ibqp.qp_num.
1070 */
1071 spin_lock_init(&qp->r_lock);
1072 spin_lock_init(&qp->s_hlock);
1073 spin_lock_init(&qp->s_lock);
1074 spin_lock_init(&qp->r_rq.lock);
1075 atomic_set(&qp->refcount, 0);
1076 atomic_set(&qp->local_ops_pending, 0);
1077 init_waitqueue_head(&qp->wait);
1078 INIT_LIST_HEAD(&qp->rspwait);
1079 qp->state = IB_QPS_RESET;
1080 qp->s_wq = swq;
1081 qp->s_size = sqsize;
1082 qp->s_avail = init_attr->cap.max_send_wr;
1083 qp->s_max_sge = init_attr->cap.max_send_sge;
1084 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1085 qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1086
1087 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1088 init_attr->qp_type,
1089 init_attr->port_num);
1090 if (err < 0) {
1091 ret = ERR_PTR(err);
1092 goto bail_rq_wq;
1093 }
1094 qp->ibqp.qp_num = err;
1095 qp->port_num = init_attr->port_num;
1096 rvt_init_qp(rdi, qp, init_attr->qp_type);
1097 if (rdi->driver_f.qp_priv_init) {
1098 err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1099 if (err) {
1100 ret = ERR_PTR(err);
1101 goto bail_rq_wq;
1102 }
1103 }
1104 break;
1105
1106 default:
1107 /* Don't support raw QPs */
1108 return ERR_PTR(-EINVAL);
1109 }
1110
1111 init_attr->cap.max_inline_data = 0;
1112
1113 /*
1114 * Return the address of the RWQ as the offset to mmap.
1115 * See rvt_mmap() for details.
1116 */
1117 if (udata && udata->outlen >= sizeof(__u64)) {
1118 if (!qp->r_rq.wq) {
1119 __u64 offset = 0;
1120
1121 err = ib_copy_to_udata(udata, &offset,
1122 sizeof(offset));
1123 if (err) {
1124 ret = ERR_PTR(err);
1125 goto bail_qpn;
1126 }
1127 } else {
1128 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1129
1130 qp->ip = rvt_create_mmap_info(rdi, s,
1131 ibpd->uobject->context,
1132 qp->r_rq.wq);
1133 if (!qp->ip) {
1134 ret = ERR_PTR(-ENOMEM);
1135 goto bail_qpn;
1136 }
1137
1138 err = ib_copy_to_udata(udata, &qp->ip->offset,
1139 sizeof(qp->ip->offset));
1140 if (err) {
1141 ret = ERR_PTR(err);
1142 goto bail_ip;
1143 }
1144 }
1145 qp->pid = current->pid;
1146 }
1147
1148 spin_lock(&rdi->n_qps_lock);
1149 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1150 spin_unlock(&rdi->n_qps_lock);
1151 ret = ERR_PTR(-ENOMEM);
1152 goto bail_ip;
1153 }
1154
1155 rdi->n_qps_allocated++;
1156 /*
1157 * Maintain a busy_jiffies variable that will be added to the timeout
1158 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1159 * is scaled by the number of rc qps created for the device to reduce
1160 * the number of timeouts occurring when there is a large number of
1161 * qps. busy_jiffies is incremented every rc qp scaling interval.
1162 * The scaling interval is selected based on extensive performance
1163 * evaluation of targeted workloads.
1164 */
1165 if (init_attr->qp_type == IB_QPT_RC) {
1166 rdi->n_rc_qps++;
1167 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1168 }
1169 spin_unlock(&rdi->n_qps_lock);
1170
1171 if (qp->ip) {
1172 spin_lock_irq(&rdi->pending_lock);
1173 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1174 spin_unlock_irq(&rdi->pending_lock);
1175 }
1176
1177 ret = &qp->ibqp;
1178
1179 /*
1180 * We have our QP and its good, now keep track of what types of opcodes
1181 * can be processed on this QP. We do this by keeping track of what the
1182 * 3 high order bits of the opcode are.
1183 */
1184 switch (init_attr->qp_type) {
1185 case IB_QPT_SMI:
1186 case IB_QPT_GSI:
1187 case IB_QPT_UD:
1188 qp->allowed_ops = IB_OPCODE_UD;
1189 break;
1190 case IB_QPT_RC:
1191 qp->allowed_ops = IB_OPCODE_RC;
1192 break;
1193 case IB_QPT_UC:
1194 qp->allowed_ops = IB_OPCODE_UC;
1195 break;
1196 default:
1197 ret = ERR_PTR(-EINVAL);
1198 goto bail_ip;
1199 }
1200
1201 return ret;
1202
1203 bail_ip:
1204 if (qp->ip)
1205 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1206
1207 bail_qpn:
1208 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1209
1210 bail_rq_wq:
1211 if (!qp->ip)
1212 vfree(qp->r_rq.wq);
1213
1214 bail_driver_priv:
1215 rdi->driver_f.qp_priv_free(rdi, qp);
1216
1217 bail_qp:
1218 kfree(qp->s_ack_queue);
1219 kfree(qp);
1220
1221 bail_swq:
1222 vfree(swq);
1223
1224 return ret;
1225 }
1226
1227 /**
1228 * rvt_error_qp - put a QP into the error state
1229 * @qp: the QP to put into the error state
1230 * @err: the receive completion error to signal if a RWQE is active
1231 *
1232 * Flushes both send and receive work queues.
1233 *
1234 * Return: true if last WQE event should be generated.
1235 * The QP r_lock and s_lock should be held and interrupts disabled.
1236 * If we are already in error state, just return.
1237 */
1238 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1239 {
1240 struct ib_wc wc;
1241 int ret = 0;
1242 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1243
1244 lockdep_assert_held(&qp->r_lock);
1245 lockdep_assert_held(&qp->s_lock);
1246 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1247 goto bail;
1248
1249 qp->state = IB_QPS_ERR;
1250
1251 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1252 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1253 del_timer(&qp->s_timer);
1254 }
1255
1256 if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1257 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1258
1259 rdi->driver_f.notify_error_qp(qp);
1260
1261 /* Schedule the sending tasklet to drain the send work queue. */
1262 if (READ_ONCE(qp->s_last) != qp->s_head)
1263 rdi->driver_f.schedule_send(qp);
1264
1265 rvt_clear_mr_refs(qp, 0);
1266
1267 memset(&wc, 0, sizeof(wc));
1268 wc.qp = &qp->ibqp;
1269 wc.opcode = IB_WC_RECV;
1270
1271 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1272 wc.wr_id = qp->r_wr_id;
1273 wc.status = err;
1274 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1275 }
1276 wc.status = IB_WC_WR_FLUSH_ERR;
1277
1278 if (qp->r_rq.wq) {
1279 struct rvt_rwq *wq;
1280 u32 head;
1281 u32 tail;
1282
1283 spin_lock(&qp->r_rq.lock);
1284
1285 /* sanity check pointers before trusting them */
1286 wq = qp->r_rq.wq;
1287 head = wq->head;
1288 if (head >= qp->r_rq.size)
1289 head = 0;
1290 tail = wq->tail;
1291 if (tail >= qp->r_rq.size)
1292 tail = 0;
1293 while (tail != head) {
1294 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1295 if (++tail >= qp->r_rq.size)
1296 tail = 0;
1297 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1298 }
1299 wq->tail = tail;
1300
1301 spin_unlock(&qp->r_rq.lock);
1302 } else if (qp->ibqp.event_handler) {
1303 ret = 1;
1304 }
1305
1306 bail:
1307 return ret;
1308 }
1309 EXPORT_SYMBOL(rvt_error_qp);
1310
1311 /*
1312 * Put the QP into the hash table.
1313 * The hash table holds a reference to the QP.
1314 */
1315 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1316 {
1317 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1318 unsigned long flags;
1319
1320 rvt_get_qp(qp);
1321 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1322
1323 if (qp->ibqp.qp_num <= 1) {
1324 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1325 } else {
1326 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1327
1328 qp->next = rdi->qp_dev->qp_table[n];
1329 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1330 trace_rvt_qpinsert(qp, n);
1331 }
1332
1333 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1334 }
1335
1336 /**
1337 * rvt_modify_qp - modify the attributes of a queue pair
1338 * @ibqp: the queue pair who's attributes we're modifying
1339 * @attr: the new attributes
1340 * @attr_mask: the mask of attributes to modify
1341 * @udata: user data for libibverbs.so
1342 *
1343 * Return: 0 on success, otherwise returns an errno.
1344 */
1345 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1346 int attr_mask, struct ib_udata *udata)
1347 {
1348 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1349 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1350 enum ib_qp_state cur_state, new_state;
1351 struct ib_event ev;
1352 int lastwqe = 0;
1353 int mig = 0;
1354 int pmtu = 0; /* for gcc warning only */
1355 int opa_ah;
1356
1357 spin_lock_irq(&qp->r_lock);
1358 spin_lock(&qp->s_hlock);
1359 spin_lock(&qp->s_lock);
1360
1361 cur_state = attr_mask & IB_QP_CUR_STATE ?
1362 attr->cur_qp_state : qp->state;
1363 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1364 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1365
1366 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1367 attr_mask))
1368 goto inval;
1369
1370 if (rdi->driver_f.check_modify_qp &&
1371 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1372 goto inval;
1373
1374 if (attr_mask & IB_QP_AV) {
1375 if (opa_ah) {
1376 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1377 opa_get_mcast_base(OPA_MCAST_NR))
1378 goto inval;
1379 } else {
1380 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1381 be16_to_cpu(IB_MULTICAST_LID_BASE))
1382 goto inval;
1383 }
1384
1385 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1386 goto inval;
1387 }
1388
1389 if (attr_mask & IB_QP_ALT_PATH) {
1390 if (opa_ah) {
1391 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1392 opa_get_mcast_base(OPA_MCAST_NR))
1393 goto inval;
1394 } else {
1395 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1396 be16_to_cpu(IB_MULTICAST_LID_BASE))
1397 goto inval;
1398 }
1399
1400 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1401 goto inval;
1402 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1403 goto inval;
1404 }
1405
1406 if (attr_mask & IB_QP_PKEY_INDEX)
1407 if (attr->pkey_index >= rvt_get_npkeys(rdi))
1408 goto inval;
1409
1410 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1411 if (attr->min_rnr_timer > 31)
1412 goto inval;
1413
1414 if (attr_mask & IB_QP_PORT)
1415 if (qp->ibqp.qp_type == IB_QPT_SMI ||
1416 qp->ibqp.qp_type == IB_QPT_GSI ||
1417 attr->port_num == 0 ||
1418 attr->port_num > ibqp->device->phys_port_cnt)
1419 goto inval;
1420
1421 if (attr_mask & IB_QP_DEST_QPN)
1422 if (attr->dest_qp_num > RVT_QPN_MASK)
1423 goto inval;
1424
1425 if (attr_mask & IB_QP_RETRY_CNT)
1426 if (attr->retry_cnt > 7)
1427 goto inval;
1428
1429 if (attr_mask & IB_QP_RNR_RETRY)
1430 if (attr->rnr_retry > 7)
1431 goto inval;
1432
1433 /*
1434 * Don't allow invalid path_mtu values. OK to set greater
1435 * than the active mtu (or even the max_cap, if we have tuned
1436 * that to a small mtu. We'll set qp->path_mtu
1437 * to the lesser of requested attribute mtu and active,
1438 * for packetizing messages.
1439 * Note that the QP port has to be set in INIT and MTU in RTR.
1440 */
1441 if (attr_mask & IB_QP_PATH_MTU) {
1442 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1443 if (pmtu < 0)
1444 goto inval;
1445 }
1446
1447 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1448 if (attr->path_mig_state == IB_MIG_REARM) {
1449 if (qp->s_mig_state == IB_MIG_ARMED)
1450 goto inval;
1451 if (new_state != IB_QPS_RTS)
1452 goto inval;
1453 } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1454 if (qp->s_mig_state == IB_MIG_REARM)
1455 goto inval;
1456 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1457 goto inval;
1458 if (qp->s_mig_state == IB_MIG_ARMED)
1459 mig = 1;
1460 } else {
1461 goto inval;
1462 }
1463 }
1464
1465 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1466 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1467 goto inval;
1468
1469 switch (new_state) {
1470 case IB_QPS_RESET:
1471 if (qp->state != IB_QPS_RESET)
1472 rvt_reset_qp(rdi, qp, ibqp->qp_type);
1473 break;
1474
1475 case IB_QPS_RTR:
1476 /* Allow event to re-trigger if QP set to RTR more than once */
1477 qp->r_flags &= ~RVT_R_COMM_EST;
1478 qp->state = new_state;
1479 break;
1480
1481 case IB_QPS_SQD:
1482 qp->s_draining = qp->s_last != qp->s_cur;
1483 qp->state = new_state;
1484 break;
1485
1486 case IB_QPS_SQE:
1487 if (qp->ibqp.qp_type == IB_QPT_RC)
1488 goto inval;
1489 qp->state = new_state;
1490 break;
1491
1492 case IB_QPS_ERR:
1493 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1494 break;
1495
1496 default:
1497 qp->state = new_state;
1498 break;
1499 }
1500
1501 if (attr_mask & IB_QP_PKEY_INDEX)
1502 qp->s_pkey_index = attr->pkey_index;
1503
1504 if (attr_mask & IB_QP_PORT)
1505 qp->port_num = attr->port_num;
1506
1507 if (attr_mask & IB_QP_DEST_QPN)
1508 qp->remote_qpn = attr->dest_qp_num;
1509
1510 if (attr_mask & IB_QP_SQ_PSN) {
1511 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1512 qp->s_psn = qp->s_next_psn;
1513 qp->s_sending_psn = qp->s_next_psn;
1514 qp->s_last_psn = qp->s_next_psn - 1;
1515 qp->s_sending_hpsn = qp->s_last_psn;
1516 }
1517
1518 if (attr_mask & IB_QP_RQ_PSN)
1519 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1520
1521 if (attr_mask & IB_QP_ACCESS_FLAGS)
1522 qp->qp_access_flags = attr->qp_access_flags;
1523
1524 if (attr_mask & IB_QP_AV) {
1525 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1526 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1527 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1528 }
1529
1530 if (attr_mask & IB_QP_ALT_PATH) {
1531 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1532 qp->s_alt_pkey_index = attr->alt_pkey_index;
1533 }
1534
1535 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1536 qp->s_mig_state = attr->path_mig_state;
1537 if (mig) {
1538 qp->remote_ah_attr = qp->alt_ah_attr;
1539 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1540 qp->s_pkey_index = qp->s_alt_pkey_index;
1541 }
1542 }
1543
1544 if (attr_mask & IB_QP_PATH_MTU) {
1545 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1546 qp->log_pmtu = ilog2(qp->pmtu);
1547 }
1548
1549 if (attr_mask & IB_QP_RETRY_CNT) {
1550 qp->s_retry_cnt = attr->retry_cnt;
1551 qp->s_retry = attr->retry_cnt;
1552 }
1553
1554 if (attr_mask & IB_QP_RNR_RETRY) {
1555 qp->s_rnr_retry_cnt = attr->rnr_retry;
1556 qp->s_rnr_retry = attr->rnr_retry;
1557 }
1558
1559 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1560 qp->r_min_rnr_timer = attr->min_rnr_timer;
1561
1562 if (attr_mask & IB_QP_TIMEOUT) {
1563 qp->timeout = attr->timeout;
1564 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1565 }
1566
1567 if (attr_mask & IB_QP_QKEY)
1568 qp->qkey = attr->qkey;
1569
1570 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1571 qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1572
1573 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1574 qp->s_max_rd_atomic = attr->max_rd_atomic;
1575
1576 if (rdi->driver_f.modify_qp)
1577 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1578
1579 spin_unlock(&qp->s_lock);
1580 spin_unlock(&qp->s_hlock);
1581 spin_unlock_irq(&qp->r_lock);
1582
1583 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1584 rvt_insert_qp(rdi, qp);
1585
1586 if (lastwqe) {
1587 ev.device = qp->ibqp.device;
1588 ev.element.qp = &qp->ibqp;
1589 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1590 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1591 }
1592 if (mig) {
1593 ev.device = qp->ibqp.device;
1594 ev.element.qp = &qp->ibqp;
1595 ev.event = IB_EVENT_PATH_MIG;
1596 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1597 }
1598 return 0;
1599
1600 inval:
1601 spin_unlock(&qp->s_lock);
1602 spin_unlock(&qp->s_hlock);
1603 spin_unlock_irq(&qp->r_lock);
1604 return -EINVAL;
1605 }
1606
1607 /**
1608 * rvt_destroy_qp - destroy a queue pair
1609 * @ibqp: the queue pair to destroy
1610 *
1611 * Note that this can be called while the QP is actively sending or
1612 * receiving!
1613 *
1614 * Return: 0 on success.
1615 */
1616 int rvt_destroy_qp(struct ib_qp *ibqp)
1617 {
1618 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1619 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1620
1621 spin_lock_irq(&qp->r_lock);
1622 spin_lock(&qp->s_hlock);
1623 spin_lock(&qp->s_lock);
1624 rvt_reset_qp(rdi, qp, ibqp->qp_type);
1625 spin_unlock(&qp->s_lock);
1626 spin_unlock(&qp->s_hlock);
1627 spin_unlock_irq(&qp->r_lock);
1628
1629 wait_event(qp->wait, !atomic_read(&qp->refcount));
1630 /* qpn is now available for use again */
1631 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1632
1633 spin_lock(&rdi->n_qps_lock);
1634 rdi->n_qps_allocated--;
1635 if (qp->ibqp.qp_type == IB_QPT_RC) {
1636 rdi->n_rc_qps--;
1637 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1638 }
1639 spin_unlock(&rdi->n_qps_lock);
1640
1641 if (qp->ip)
1642 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1643 else
1644 vfree(qp->r_rq.wq);
1645 vfree(qp->s_wq);
1646 rdi->driver_f.qp_priv_free(rdi, qp);
1647 kfree(qp->s_ack_queue);
1648 rdma_destroy_ah_attr(&qp->remote_ah_attr);
1649 rdma_destroy_ah_attr(&qp->alt_ah_attr);
1650 kfree(qp);
1651 return 0;
1652 }
1653
1654 /**
1655 * rvt_query_qp - query an ipbq
1656 * @ibqp: IB qp to query
1657 * @attr: attr struct to fill in
1658 * @attr_mask: attr mask ignored
1659 * @init_attr: struct to fill in
1660 *
1661 * Return: always 0
1662 */
1663 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1664 int attr_mask, struct ib_qp_init_attr *init_attr)
1665 {
1666 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1667 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1668
1669 attr->qp_state = qp->state;
1670 attr->cur_qp_state = attr->qp_state;
1671 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1672 attr->path_mig_state = qp->s_mig_state;
1673 attr->qkey = qp->qkey;
1674 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1675 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1676 attr->dest_qp_num = qp->remote_qpn;
1677 attr->qp_access_flags = qp->qp_access_flags;
1678 attr->cap.max_send_wr = qp->s_size - 1 -
1679 rdi->dparms.reserved_operations;
1680 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1681 attr->cap.max_send_sge = qp->s_max_sge;
1682 attr->cap.max_recv_sge = qp->r_rq.max_sge;
1683 attr->cap.max_inline_data = 0;
1684 attr->ah_attr = qp->remote_ah_attr;
1685 attr->alt_ah_attr = qp->alt_ah_attr;
1686 attr->pkey_index = qp->s_pkey_index;
1687 attr->alt_pkey_index = qp->s_alt_pkey_index;
1688 attr->en_sqd_async_notify = 0;
1689 attr->sq_draining = qp->s_draining;
1690 attr->max_rd_atomic = qp->s_max_rd_atomic;
1691 attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1692 attr->min_rnr_timer = qp->r_min_rnr_timer;
1693 attr->port_num = qp->port_num;
1694 attr->timeout = qp->timeout;
1695 attr->retry_cnt = qp->s_retry_cnt;
1696 attr->rnr_retry = qp->s_rnr_retry_cnt;
1697 attr->alt_port_num =
1698 rdma_ah_get_port_num(&qp->alt_ah_attr);
1699 attr->alt_timeout = qp->alt_timeout;
1700
1701 init_attr->event_handler = qp->ibqp.event_handler;
1702 init_attr->qp_context = qp->ibqp.qp_context;
1703 init_attr->send_cq = qp->ibqp.send_cq;
1704 init_attr->recv_cq = qp->ibqp.recv_cq;
1705 init_attr->srq = qp->ibqp.srq;
1706 init_attr->cap = attr->cap;
1707 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1708 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1709 else
1710 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1711 init_attr->qp_type = qp->ibqp.qp_type;
1712 init_attr->port_num = qp->port_num;
1713 return 0;
1714 }
1715
1716 /**
1717 * rvt_post_receive - post a receive on a QP
1718 * @ibqp: the QP to post the receive on
1719 * @wr: the WR to post
1720 * @bad_wr: the first bad WR is put here
1721 *
1722 * This may be called from interrupt context.
1723 *
1724 * Return: 0 on success otherwise errno
1725 */
1726 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1727 const struct ib_recv_wr **bad_wr)
1728 {
1729 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1730 struct rvt_rwq *wq = qp->r_rq.wq;
1731 unsigned long flags;
1732 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1733 !qp->ibqp.srq;
1734
1735 /* Check that state is OK to post receive. */
1736 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1737 *bad_wr = wr;
1738 return -EINVAL;
1739 }
1740
1741 for (; wr; wr = wr->next) {
1742 struct rvt_rwqe *wqe;
1743 u32 next;
1744 int i;
1745
1746 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1747 *bad_wr = wr;
1748 return -EINVAL;
1749 }
1750
1751 spin_lock_irqsave(&qp->r_rq.lock, flags);
1752 next = wq->head + 1;
1753 if (next >= qp->r_rq.size)
1754 next = 0;
1755 if (next == wq->tail) {
1756 spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1757 *bad_wr = wr;
1758 return -ENOMEM;
1759 }
1760 if (unlikely(qp_err_flush)) {
1761 struct ib_wc wc;
1762
1763 memset(&wc, 0, sizeof(wc));
1764 wc.qp = &qp->ibqp;
1765 wc.opcode = IB_WC_RECV;
1766 wc.wr_id = wr->wr_id;
1767 wc.status = IB_WC_WR_FLUSH_ERR;
1768 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1769 } else {
1770 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1771 wqe->wr_id = wr->wr_id;
1772 wqe->num_sge = wr->num_sge;
1773 for (i = 0; i < wr->num_sge; i++)
1774 wqe->sg_list[i] = wr->sg_list[i];
1775 /*
1776 * Make sure queue entry is written
1777 * before the head index.
1778 */
1779 smp_wmb();
1780 wq->head = next;
1781 }
1782 spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1783 }
1784 return 0;
1785 }
1786
1787 /**
1788 * rvt_qp_valid_operation - validate post send wr request
1789 * @qp - the qp
1790 * @post-parms - the post send table for the driver
1791 * @wr - the work request
1792 *
1793 * The routine validates the operation based on the
1794 * validation table an returns the length of the operation
1795 * which can extend beyond the ib_send_bw. Operation
1796 * dependent flags key atomic operation validation.
1797 *
1798 * There is an exception for UD qps that validates the pd and
1799 * overrides the length to include the additional UD specific
1800 * length.
1801 *
1802 * Returns a negative error or the length of the work request
1803 * for building the swqe.
1804 */
1805 static inline int rvt_qp_valid_operation(
1806 struct rvt_qp *qp,
1807 const struct rvt_operation_params *post_parms,
1808 const struct ib_send_wr *wr)
1809 {
1810 int len;
1811
1812 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1813 return -EINVAL;
1814 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1815 return -EINVAL;
1816 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1817 ibpd_to_rvtpd(qp->ibqp.pd)->user)
1818 return -EINVAL;
1819 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1820 (wr->num_sge == 0 ||
1821 wr->sg_list[0].length < sizeof(u64) ||
1822 wr->sg_list[0].addr & (sizeof(u64) - 1)))
1823 return -EINVAL;
1824 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1825 !qp->s_max_rd_atomic)
1826 return -EINVAL;
1827 len = post_parms[wr->opcode].length;
1828 /* UD specific */
1829 if (qp->ibqp.qp_type != IB_QPT_UC &&
1830 qp->ibqp.qp_type != IB_QPT_RC) {
1831 if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1832 return -EINVAL;
1833 len = sizeof(struct ib_ud_wr);
1834 }
1835 return len;
1836 }
1837
1838 /**
1839 * rvt_qp_is_avail - determine queue capacity
1840 * @qp: the qp
1841 * @rdi: the rdmavt device
1842 * @reserved_op: is reserved operation
1843 *
1844 * This assumes the s_hlock is held but the s_last
1845 * qp variable is uncontrolled.
1846 *
1847 * For non reserved operations, the qp->s_avail
1848 * may be changed.
1849 *
1850 * The return value is zero or a -ENOMEM.
1851 */
1852 static inline int rvt_qp_is_avail(
1853 struct rvt_qp *qp,
1854 struct rvt_dev_info *rdi,
1855 bool reserved_op)
1856 {
1857 u32 slast;
1858 u32 avail;
1859 u32 reserved_used;
1860
1861 /* see rvt_qp_wqe_unreserve() */
1862 smp_mb__before_atomic();
1863 reserved_used = atomic_read(&qp->s_reserved_used);
1864 if (unlikely(reserved_op)) {
1865 /* see rvt_qp_wqe_unreserve() */
1866 smp_mb__before_atomic();
1867 if (reserved_used >= rdi->dparms.reserved_operations)
1868 return -ENOMEM;
1869 return 0;
1870 }
1871 /* non-reserved operations */
1872 if (likely(qp->s_avail))
1873 return 0;
1874 slast = READ_ONCE(qp->s_last);
1875 if (qp->s_head >= slast)
1876 avail = qp->s_size - (qp->s_head - slast);
1877 else
1878 avail = slast - qp->s_head;
1879
1880 /* see rvt_qp_wqe_unreserve() */
1881 smp_mb__before_atomic();
1882 reserved_used = atomic_read(&qp->s_reserved_used);
1883 avail = avail - 1 -
1884 (rdi->dparms.reserved_operations - reserved_used);
1885 /* insure we don't assign a negative s_avail */
1886 if ((s32)avail <= 0)
1887 return -ENOMEM;
1888 qp->s_avail = avail;
1889 if (WARN_ON(qp->s_avail >
1890 (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1891 rvt_pr_err(rdi,
1892 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1893 qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1894 qp->s_head, qp->s_tail, qp->s_cur,
1895 qp->s_acked, qp->s_last);
1896 return 0;
1897 }
1898
1899 /**
1900 * rvt_post_one_wr - post one RC, UC, or UD send work request
1901 * @qp: the QP to post on
1902 * @wr: the work request to send
1903 */
1904 static int rvt_post_one_wr(struct rvt_qp *qp,
1905 const struct ib_send_wr *wr,
1906 bool *call_send)
1907 {
1908 struct rvt_swqe *wqe;
1909 u32 next;
1910 int i;
1911 int j;
1912 int acc;
1913 struct rvt_lkey_table *rkt;
1914 struct rvt_pd *pd;
1915 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1916 u8 log_pmtu;
1917 int ret;
1918 size_t cplen;
1919 bool reserved_op;
1920 int local_ops_delayed = 0;
1921
1922 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1923
1924 /* IB spec says that num_sge == 0 is OK. */
1925 if (unlikely(wr->num_sge > qp->s_max_sge))
1926 return -EINVAL;
1927
1928 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1929 if (ret < 0)
1930 return ret;
1931 cplen = ret;
1932
1933 /*
1934 * Local operations include fast register and local invalidate.
1935 * Fast register needs to be processed immediately because the
1936 * registered lkey may be used by following work requests and the
1937 * lkey needs to be valid at the time those requests are posted.
1938 * Local invalidate can be processed immediately if fencing is
1939 * not required and no previous local invalidate ops are pending.
1940 * Signaled local operations that have been processed immediately
1941 * need to have requests with "completion only" flags set posted
1942 * to the send queue in order to generate completions.
1943 */
1944 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
1945 switch (wr->opcode) {
1946 case IB_WR_REG_MR:
1947 ret = rvt_fast_reg_mr(qp,
1948 reg_wr(wr)->mr,
1949 reg_wr(wr)->key,
1950 reg_wr(wr)->access);
1951 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1952 return ret;
1953 break;
1954 case IB_WR_LOCAL_INV:
1955 if ((wr->send_flags & IB_SEND_FENCE) ||
1956 atomic_read(&qp->local_ops_pending)) {
1957 local_ops_delayed = 1;
1958 } else {
1959 ret = rvt_invalidate_rkey(
1960 qp, wr->ex.invalidate_rkey);
1961 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1962 return ret;
1963 }
1964 break;
1965 default:
1966 return -EINVAL;
1967 }
1968 }
1969
1970 reserved_op = rdi->post_parms[wr->opcode].flags &
1971 RVT_OPERATION_USE_RESERVE;
1972 /* check for avail */
1973 ret = rvt_qp_is_avail(qp, rdi, reserved_op);
1974 if (ret)
1975 return ret;
1976 next = qp->s_head + 1;
1977 if (next >= qp->s_size)
1978 next = 0;
1979
1980 rkt = &rdi->lkey_table;
1981 pd = ibpd_to_rvtpd(qp->ibqp.pd);
1982 wqe = rvt_get_swqe_ptr(qp, qp->s_head);
1983
1984 /* cplen has length from above */
1985 memcpy(&wqe->wr, wr, cplen);
1986
1987 wqe->length = 0;
1988 j = 0;
1989 if (wr->num_sge) {
1990 struct rvt_sge *last_sge = NULL;
1991
1992 acc = wr->opcode >= IB_WR_RDMA_READ ?
1993 IB_ACCESS_LOCAL_WRITE : 0;
1994 for (i = 0; i < wr->num_sge; i++) {
1995 u32 length = wr->sg_list[i].length;
1996
1997 if (length == 0)
1998 continue;
1999 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2000 &wr->sg_list[i], acc);
2001 if (unlikely(ret < 0))
2002 goto bail_inval_free;
2003 wqe->length += length;
2004 if (ret)
2005 last_sge = &wqe->sg_list[j];
2006 j += ret;
2007 }
2008 wqe->wr.num_sge = j;
2009 }
2010
2011 /*
2012 * Calculate and set SWQE PSN values prior to handing it off
2013 * to the driver's check routine. This give the driver the
2014 * opportunity to adjust PSN values based on internal checks.
2015 */
2016 log_pmtu = qp->log_pmtu;
2017 if (qp->ibqp.qp_type != IB_QPT_UC &&
2018 qp->ibqp.qp_type != IB_QPT_RC) {
2019 struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah);
2020
2021 log_pmtu = ah->log_pmtu;
2022 atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
2023 }
2024
2025 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2026 if (local_ops_delayed)
2027 atomic_inc(&qp->local_ops_pending);
2028 else
2029 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2030 wqe->ssn = 0;
2031 wqe->psn = 0;
2032 wqe->lpsn = 0;
2033 } else {
2034 wqe->ssn = qp->s_ssn++;
2035 wqe->psn = qp->s_next_psn;
2036 wqe->lpsn = wqe->psn +
2037 (wqe->length ?
2038 ((wqe->length - 1) >> log_pmtu) :
2039 0);
2040 }
2041
2042 /* general part of wqe valid - allow for driver checks */
2043 if (rdi->driver_f.setup_wqe) {
2044 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2045 if (ret < 0)
2046 goto bail_inval_free_ref;
2047 }
2048
2049 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2050 qp->s_next_psn = wqe->lpsn + 1;
2051
2052 if (unlikely(reserved_op)) {
2053 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2054 rvt_qp_wqe_reserve(qp, wqe);
2055 } else {
2056 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2057 qp->s_avail--;
2058 }
2059 trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2060 smp_wmb(); /* see request builders */
2061 qp->s_head = next;
2062
2063 return 0;
2064
2065 bail_inval_free_ref:
2066 if (qp->ibqp.qp_type != IB_QPT_UC &&
2067 qp->ibqp.qp_type != IB_QPT_RC)
2068 atomic_dec(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
2069 bail_inval_free:
2070 /* release mr holds */
2071 while (j) {
2072 struct rvt_sge *sge = &wqe->sg_list[--j];
2073
2074 rvt_put_mr(sge->mr);
2075 }
2076 return ret;
2077 }
2078
2079 /**
2080 * rvt_post_send - post a send on a QP
2081 * @ibqp: the QP to post the send on
2082 * @wr: the list of work requests to post
2083 * @bad_wr: the first bad WR is put here
2084 *
2085 * This may be called from interrupt context.
2086 *
2087 * Return: 0 on success else errno
2088 */
2089 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2090 const struct ib_send_wr **bad_wr)
2091 {
2092 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2093 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2094 unsigned long flags = 0;
2095 bool call_send;
2096 unsigned nreq = 0;
2097 int err = 0;
2098
2099 spin_lock_irqsave(&qp->s_hlock, flags);
2100
2101 /*
2102 * Ensure QP state is such that we can send. If not bail out early,
2103 * there is no need to do this every time we post a send.
2104 */
2105 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2106 spin_unlock_irqrestore(&qp->s_hlock, flags);
2107 return -EINVAL;
2108 }
2109
2110 /*
2111 * If the send queue is empty, and we only have a single WR then just go
2112 * ahead and kick the send engine into gear. Otherwise we will always
2113 * just schedule the send to happen later.
2114 */
2115 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2116
2117 for (; wr; wr = wr->next) {
2118 err = rvt_post_one_wr(qp, wr, &call_send);
2119 if (unlikely(err)) {
2120 *bad_wr = wr;
2121 goto bail;
2122 }
2123 nreq++;
2124 }
2125 bail:
2126 spin_unlock_irqrestore(&qp->s_hlock, flags);
2127 if (nreq) {
2128 /*
2129 * Only call do_send if there is exactly one packet, and the
2130 * driver said it was ok.
2131 */
2132 if (nreq == 1 && call_send)
2133 rdi->driver_f.do_send(qp);
2134 else
2135 rdi->driver_f.schedule_send_no_lock(qp);
2136 }
2137 return err;
2138 }
2139
2140 /**
2141 * rvt_post_srq_receive - post a receive on a shared receive queue
2142 * @ibsrq: the SRQ to post the receive on
2143 * @wr: the list of work requests to post
2144 * @bad_wr: A pointer to the first WR to cause a problem is put here
2145 *
2146 * This may be called from interrupt context.
2147 *
2148 * Return: 0 on success else errno
2149 */
2150 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2151 const struct ib_recv_wr **bad_wr)
2152 {
2153 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2154 struct rvt_rwq *wq;
2155 unsigned long flags;
2156
2157 for (; wr; wr = wr->next) {
2158 struct rvt_rwqe *wqe;
2159 u32 next;
2160 int i;
2161
2162 if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2163 *bad_wr = wr;
2164 return -EINVAL;
2165 }
2166
2167 spin_lock_irqsave(&srq->rq.lock, flags);
2168 wq = srq->rq.wq;
2169 next = wq->head + 1;
2170 if (next >= srq->rq.size)
2171 next = 0;
2172 if (next == wq->tail) {
2173 spin_unlock_irqrestore(&srq->rq.lock, flags);
2174 *bad_wr = wr;
2175 return -ENOMEM;
2176 }
2177
2178 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2179 wqe->wr_id = wr->wr_id;
2180 wqe->num_sge = wr->num_sge;
2181 for (i = 0; i < wr->num_sge; i++)
2182 wqe->sg_list[i] = wr->sg_list[i];
2183 /* Make sure queue entry is written before the head index. */
2184 smp_wmb();
2185 wq->head = next;
2186 spin_unlock_irqrestore(&srq->rq.lock, flags);
2187 }
2188 return 0;
2189 }
2190
2191 /*
2192 * Validate a RWQE and fill in the SGE state.
2193 * Return 1 if OK.
2194 */
2195 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2196 {
2197 int i, j, ret;
2198 struct ib_wc wc;
2199 struct rvt_lkey_table *rkt;
2200 struct rvt_pd *pd;
2201 struct rvt_sge_state *ss;
2202 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2203
2204 rkt = &rdi->lkey_table;
2205 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2206 ss = &qp->r_sge;
2207 ss->sg_list = qp->r_sg_list;
2208 qp->r_len = 0;
2209 for (i = j = 0; i < wqe->num_sge; i++) {
2210 if (wqe->sg_list[i].length == 0)
2211 continue;
2212 /* Check LKEY */
2213 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2214 NULL, &wqe->sg_list[i],
2215 IB_ACCESS_LOCAL_WRITE);
2216 if (unlikely(ret <= 0))
2217 goto bad_lkey;
2218 qp->r_len += wqe->sg_list[i].length;
2219 j++;
2220 }
2221 ss->num_sge = j;
2222 ss->total_len = qp->r_len;
2223 return 1;
2224
2225 bad_lkey:
2226 while (j) {
2227 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2228
2229 rvt_put_mr(sge->mr);
2230 }
2231 ss->num_sge = 0;
2232 memset(&wc, 0, sizeof(wc));
2233 wc.wr_id = wqe->wr_id;
2234 wc.status = IB_WC_LOC_PROT_ERR;
2235 wc.opcode = IB_WC_RECV;
2236 wc.qp = &qp->ibqp;
2237 /* Signal solicited completion event. */
2238 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2239 return 0;
2240 }
2241
2242 /**
2243 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2244 * @qp: the QP
2245 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2246 *
2247 * Return -1 if there is a local error, 0 if no RWQE is available,
2248 * otherwise return 1.
2249 *
2250 * Can be called from interrupt level.
2251 */
2252 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2253 {
2254 unsigned long flags;
2255 struct rvt_rq *rq;
2256 struct rvt_rwq *wq;
2257 struct rvt_srq *srq;
2258 struct rvt_rwqe *wqe;
2259 void (*handler)(struct ib_event *, void *);
2260 u32 tail;
2261 int ret;
2262
2263 if (qp->ibqp.srq) {
2264 srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2265 handler = srq->ibsrq.event_handler;
2266 rq = &srq->rq;
2267 } else {
2268 srq = NULL;
2269 handler = NULL;
2270 rq = &qp->r_rq;
2271 }
2272
2273 spin_lock_irqsave(&rq->lock, flags);
2274 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2275 ret = 0;
2276 goto unlock;
2277 }
2278
2279 wq = rq->wq;
2280 tail = wq->tail;
2281 /* Validate tail before using it since it is user writable. */
2282 if (tail >= rq->size)
2283 tail = 0;
2284 if (unlikely(tail == wq->head)) {
2285 ret = 0;
2286 goto unlock;
2287 }
2288 /* Make sure entry is read after head index is read. */
2289 smp_rmb();
2290 wqe = rvt_get_rwqe_ptr(rq, tail);
2291 /*
2292 * Even though we update the tail index in memory, the verbs
2293 * consumer is not supposed to post more entries until a
2294 * completion is generated.
2295 */
2296 if (++tail >= rq->size)
2297 tail = 0;
2298 wq->tail = tail;
2299 if (!wr_id_only && !init_sge(qp, wqe)) {
2300 ret = -1;
2301 goto unlock;
2302 }
2303 qp->r_wr_id = wqe->wr_id;
2304
2305 ret = 1;
2306 set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2307 if (handler) {
2308 u32 n;
2309
2310 /*
2311 * Validate head pointer value and compute
2312 * the number of remaining WQEs.
2313 */
2314 n = wq->head;
2315 if (n >= rq->size)
2316 n = 0;
2317 if (n < tail)
2318 n += rq->size - tail;
2319 else
2320 n -= tail;
2321 if (n < srq->limit) {
2322 struct ib_event ev;
2323
2324 srq->limit = 0;
2325 spin_unlock_irqrestore(&rq->lock, flags);
2326 ev.device = qp->ibqp.device;
2327 ev.element.srq = qp->ibqp.srq;
2328 ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2329 handler(&ev, srq->ibsrq.srq_context);
2330 goto bail;
2331 }
2332 }
2333 unlock:
2334 spin_unlock_irqrestore(&rq->lock, flags);
2335 bail:
2336 return ret;
2337 }
2338 EXPORT_SYMBOL(rvt_get_rwqe);
2339
2340 /**
2341 * qp_comm_est - handle trap with QP established
2342 * @qp: the QP
2343 */
2344 void rvt_comm_est(struct rvt_qp *qp)
2345 {
2346 qp->r_flags |= RVT_R_COMM_EST;
2347 if (qp->ibqp.event_handler) {
2348 struct ib_event ev;
2349
2350 ev.device = qp->ibqp.device;
2351 ev.element.qp = &qp->ibqp;
2352 ev.event = IB_EVENT_COMM_EST;
2353 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2354 }
2355 }
2356 EXPORT_SYMBOL(rvt_comm_est);
2357
2358 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2359 {
2360 unsigned long flags;
2361 int lastwqe;
2362
2363 spin_lock_irqsave(&qp->s_lock, flags);
2364 lastwqe = rvt_error_qp(qp, err);
2365 spin_unlock_irqrestore(&qp->s_lock, flags);
2366
2367 if (lastwqe) {
2368 struct ib_event ev;
2369
2370 ev.device = qp->ibqp.device;
2371 ev.element.qp = &qp->ibqp;
2372 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2373 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2374 }
2375 }
2376 EXPORT_SYMBOL(rvt_rc_error);
2377
2378 /*
2379 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2380 * @index - the index
2381 * return usec from an index into ib_rvt_rnr_table
2382 */
2383 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2384 {
2385 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2386 }
2387 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2388
2389 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2390 {
2391 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2392 IB_AETH_CREDIT_MASK];
2393 }
2394
2395 /*
2396 * rvt_add_retry_timer - add/start a retry timer
2397 * @qp - the QP
2398 * add a retry timer on the QP
2399 */
2400 void rvt_add_retry_timer(struct rvt_qp *qp)
2401 {
2402 struct ib_qp *ibqp = &qp->ibqp;
2403 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2404
2405 lockdep_assert_held(&qp->s_lock);
2406 qp->s_flags |= RVT_S_TIMER;
2407 /* 4.096 usec. * (1 << qp->timeout) */
2408 qp->s_timer.expires = jiffies + qp->timeout_jiffies +
2409 rdi->busy_jiffies;
2410 add_timer(&qp->s_timer);
2411 }
2412 EXPORT_SYMBOL(rvt_add_retry_timer);
2413
2414 /**
2415 * rvt_add_rnr_timer - add/start an rnr timer
2416 * @qp - the QP
2417 * @aeth - aeth of RNR timeout, simulated aeth for loopback
2418 * add an rnr timer on the QP
2419 */
2420 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2421 {
2422 u32 to;
2423
2424 lockdep_assert_held(&qp->s_lock);
2425 qp->s_flags |= RVT_S_WAIT_RNR;
2426 to = rvt_aeth_to_usec(aeth);
2427 trace_rvt_rnrnak_add(qp, to);
2428 hrtimer_start(&qp->s_rnr_timer,
2429 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2430 }
2431 EXPORT_SYMBOL(rvt_add_rnr_timer);
2432
2433 /**
2434 * rvt_stop_rc_timers - stop all timers
2435 * @qp - the QP
2436 * stop any pending timers
2437 */
2438 void rvt_stop_rc_timers(struct rvt_qp *qp)
2439 {
2440 lockdep_assert_held(&qp->s_lock);
2441 /* Remove QP from all timers */
2442 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2443 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2444 del_timer(&qp->s_timer);
2445 hrtimer_try_to_cancel(&qp->s_rnr_timer);
2446 }
2447 }
2448 EXPORT_SYMBOL(rvt_stop_rc_timers);
2449
2450 /**
2451 * rvt_stop_rnr_timer - stop an rnr timer
2452 * @qp - the QP
2453 *
2454 * stop an rnr timer and return if the timer
2455 * had been pending.
2456 */
2457 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2458 {
2459 lockdep_assert_held(&qp->s_lock);
2460 /* Remove QP from rnr timer */
2461 if (qp->s_flags & RVT_S_WAIT_RNR) {
2462 qp->s_flags &= ~RVT_S_WAIT_RNR;
2463 trace_rvt_rnrnak_stop(qp, 0);
2464 }
2465 }
2466
2467 /**
2468 * rvt_del_timers_sync - wait for any timeout routines to exit
2469 * @qp - the QP
2470 */
2471 void rvt_del_timers_sync(struct rvt_qp *qp)
2472 {
2473 del_timer_sync(&qp->s_timer);
2474 hrtimer_cancel(&qp->s_rnr_timer);
2475 }
2476 EXPORT_SYMBOL(rvt_del_timers_sync);
2477
2478 /**
2479 * This is called from s_timer for missing responses.
2480 */
2481 static void rvt_rc_timeout(struct timer_list *t)
2482 {
2483 struct rvt_qp *qp = from_timer(qp, t, s_timer);
2484 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2485 unsigned long flags;
2486
2487 spin_lock_irqsave(&qp->r_lock, flags);
2488 spin_lock(&qp->s_lock);
2489 if (qp->s_flags & RVT_S_TIMER) {
2490 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2491
2492 qp->s_flags &= ~RVT_S_TIMER;
2493 rvp->n_rc_timeouts++;
2494 del_timer(&qp->s_timer);
2495 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2496 if (rdi->driver_f.notify_restart_rc)
2497 rdi->driver_f.notify_restart_rc(qp,
2498 qp->s_last_psn + 1,
2499 1);
2500 rdi->driver_f.schedule_send(qp);
2501 }
2502 spin_unlock(&qp->s_lock);
2503 spin_unlock_irqrestore(&qp->r_lock, flags);
2504 }
2505
2506 /*
2507 * This is called from s_timer for RNR timeouts.
2508 */
2509 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2510 {
2511 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2512 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2513 unsigned long flags;
2514
2515 spin_lock_irqsave(&qp->s_lock, flags);
2516 rvt_stop_rnr_timer(qp);
2517 trace_rvt_rnrnak_timeout(qp, 0);
2518 rdi->driver_f.schedule_send(qp);
2519 spin_unlock_irqrestore(&qp->s_lock, flags);
2520 return HRTIMER_NORESTART;
2521 }
2522 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2523
2524 /**
2525 * rvt_qp_iter_init - initial for QP iteration
2526 * @rdi: rvt devinfo
2527 * @v: u64 value
2528 *
2529 * This returns an iterator suitable for iterating QPs
2530 * in the system.
2531 *
2532 * The @cb is a user defined callback and @v is a 64
2533 * bit value passed to and relevant for processing in the
2534 * @cb. An example use case would be to alter QP processing
2535 * based on criteria not part of the rvt_qp.
2536 *
2537 * Use cases that require memory allocation to succeed
2538 * must preallocate appropriately.
2539 *
2540 * Return: a pointer to an rvt_qp_iter or NULL
2541 */
2542 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2543 u64 v,
2544 void (*cb)(struct rvt_qp *qp, u64 v))
2545 {
2546 struct rvt_qp_iter *i;
2547
2548 i = kzalloc(sizeof(*i), GFP_KERNEL);
2549 if (!i)
2550 return NULL;
2551
2552 i->rdi = rdi;
2553 /* number of special QPs (SMI/GSI) for device */
2554 i->specials = rdi->ibdev.phys_port_cnt * 2;
2555 i->v = v;
2556 i->cb = cb;
2557
2558 return i;
2559 }
2560 EXPORT_SYMBOL(rvt_qp_iter_init);
2561
2562 /**
2563 * rvt_qp_iter_next - return the next QP in iter
2564 * @iter - the iterator
2565 *
2566 * Fine grained QP iterator suitable for use
2567 * with debugfs seq_file mechanisms.
2568 *
2569 * Updates iter->qp with the current QP when the return
2570 * value is 0.
2571 *
2572 * Return: 0 - iter->qp is valid 1 - no more QPs
2573 */
2574 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2575 __must_hold(RCU)
2576 {
2577 int n = iter->n;
2578 int ret = 1;
2579 struct rvt_qp *pqp = iter->qp;
2580 struct rvt_qp *qp;
2581 struct rvt_dev_info *rdi = iter->rdi;
2582
2583 /*
2584 * The approach is to consider the special qps
2585 * as additional table entries before the
2586 * real hash table. Since the qp code sets
2587 * the qp->next hash link to NULL, this works just fine.
2588 *
2589 * iter->specials is 2 * # ports
2590 *
2591 * n = 0..iter->specials is the special qp indices
2592 *
2593 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2594 * the potential hash bucket entries
2595 *
2596 */
2597 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) {
2598 if (pqp) {
2599 qp = rcu_dereference(pqp->next);
2600 } else {
2601 if (n < iter->specials) {
2602 struct rvt_ibport *rvp;
2603 int pidx;
2604
2605 pidx = n % rdi->ibdev.phys_port_cnt;
2606 rvp = rdi->ports[pidx];
2607 qp = rcu_dereference(rvp->qp[n & 1]);
2608 } else {
2609 qp = rcu_dereference(
2610 rdi->qp_dev->qp_table[
2611 (n - iter->specials)]);
2612 }
2613 }
2614 pqp = qp;
2615 if (qp) {
2616 iter->qp = qp;
2617 iter->n = n;
2618 return 0;
2619 }
2620 }
2621 return ret;
2622 }
2623 EXPORT_SYMBOL(rvt_qp_iter_next);
2624
2625 /**
2626 * rvt_qp_iter - iterate all QPs
2627 * @rdi - rvt devinfo
2628 * @v - a 64 bit value
2629 * @cb - a callback
2630 *
2631 * This provides a way for iterating all QPs.
2632 *
2633 * The @cb is a user defined callback and @v is a 64
2634 * bit value passed to and relevant for processing in the
2635 * cb. An example use case would be to alter QP processing
2636 * based on criteria not part of the rvt_qp.
2637 *
2638 * The code has an internal iterator to simplify
2639 * non seq_file use cases.
2640 */
2641 void rvt_qp_iter(struct rvt_dev_info *rdi,
2642 u64 v,
2643 void (*cb)(struct rvt_qp *qp, u64 v))
2644 {
2645 int ret;
2646 struct rvt_qp_iter i = {
2647 .rdi = rdi,
2648 .specials = rdi->ibdev.phys_port_cnt * 2,
2649 .v = v,
2650 .cb = cb
2651 };
2652
2653 rcu_read_lock();
2654 do {
2655 ret = rvt_qp_iter_next(&i);
2656 if (!ret) {
2657 rvt_get_qp(i.qp);
2658 rcu_read_unlock();
2659 i.cb(i.qp, i.v);
2660 rcu_read_lock();
2661 rvt_put_qp(i.qp);
2662 }
2663 } while (!ret);
2664 rcu_read_unlock();
2665 }
2666 EXPORT_SYMBOL(rvt_qp_iter);
2667
2668 /*
2669 * This should be called with s_lock held.
2670 */
2671 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2672 enum ib_wc_status status)
2673 {
2674 u32 old_last, last;
2675 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2676
2677 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2678 return;
2679
2680 last = qp->s_last;
2681 old_last = last;
2682 trace_rvt_qp_send_completion(qp, wqe, last);
2683 if (++last >= qp->s_size)
2684 last = 0;
2685 trace_rvt_qp_send_completion(qp, wqe, last);
2686 qp->s_last = last;
2687 /* See post_send() */
2688 barrier();
2689 rvt_put_swqe(wqe);
2690 if (qp->ibqp.qp_type == IB_QPT_UD ||
2691 qp->ibqp.qp_type == IB_QPT_SMI ||
2692 qp->ibqp.qp_type == IB_QPT_GSI)
2693 atomic_dec(&ibah_to_rvtah(wqe->ud_wr.ah)->refcount);
2694
2695 rvt_qp_swqe_complete(qp,
2696 wqe,
2697 rdi->wc_opcode[wqe->wr.opcode],
2698 status);
2699
2700 if (qp->s_acked == old_last)
2701 qp->s_acked = last;
2702 if (qp->s_cur == old_last)
2703 qp->s_cur = last;
2704 if (qp->s_tail == old_last)
2705 qp->s_tail = last;
2706 if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2707 qp->s_draining = 0;
2708 }
2709 EXPORT_SYMBOL(rvt_send_complete);
2710
2711 /**
2712 * rvt_copy_sge - copy data to SGE memory
2713 * @qp: associated QP
2714 * @ss: the SGE state
2715 * @data: the data to copy
2716 * @length: the length of the data
2717 * @release: boolean to release MR
2718 * @copy_last: do a separate copy of the last 8 bytes
2719 */
2720 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2721 void *data, u32 length,
2722 bool release, bool copy_last)
2723 {
2724 struct rvt_sge *sge = &ss->sge;
2725 int i;
2726 bool in_last = false;
2727 bool cacheless_copy = false;
2728 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2729 struct rvt_wss *wss = rdi->wss;
2730 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2731
2732 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2733 cacheless_copy = length >= PAGE_SIZE;
2734 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2735 if (length >= PAGE_SIZE) {
2736 /*
2737 * NOTE: this *assumes*:
2738 * o The first vaddr is the dest.
2739 * o If multiple pages, then vaddr is sequential.
2740 */
2741 wss_insert(wss, sge->vaddr);
2742 if (length >= (2 * PAGE_SIZE))
2743 wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2744
2745 cacheless_copy = wss_exceeds_threshold(wss);
2746 } else {
2747 wss_advance_clean_counter(wss);
2748 }
2749 }
2750
2751 if (copy_last) {
2752 if (length > 8) {
2753 length -= 8;
2754 } else {
2755 copy_last = false;
2756 in_last = true;
2757 }
2758 }
2759
2760 again:
2761 while (length) {
2762 u32 len = rvt_get_sge_length(sge, length);
2763
2764 WARN_ON_ONCE(len == 0);
2765 if (unlikely(in_last)) {
2766 /* enforce byte transfer ordering */
2767 for (i = 0; i < len; i++)
2768 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2769 } else if (cacheless_copy) {
2770 cacheless_memcpy(sge->vaddr, data, len);
2771 } else {
2772 memcpy(sge->vaddr, data, len);
2773 }
2774 rvt_update_sge(ss, len, release);
2775 data += len;
2776 length -= len;
2777 }
2778
2779 if (copy_last) {
2780 copy_last = false;
2781 in_last = true;
2782 length = 8;
2783 goto again;
2784 }
2785 }
2786 EXPORT_SYMBOL(rvt_copy_sge);
2787
2788 /**
2789 * ruc_loopback - handle UC and RC loopback requests
2790 * @sqp: the sending QP
2791 *
2792 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2793 * Note that although we are single threaded due to the send engine, we still
2794 * have to protect against post_send(). We don't have to worry about
2795 * receive interrupts since this is a connected protocol and all packets
2796 * will pass through here.
2797 */
2798 void rvt_ruc_loopback(struct rvt_qp *sqp)
2799 {
2800 struct rvt_ibport *rvp = NULL;
2801 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2802 struct rvt_qp *qp;
2803 struct rvt_swqe *wqe;
2804 struct rvt_sge *sge;
2805 unsigned long flags;
2806 struct ib_wc wc;
2807 u64 sdata;
2808 atomic64_t *maddr;
2809 enum ib_wc_status send_status;
2810 bool release;
2811 int ret;
2812 bool copy_last = false;
2813 int local_ops = 0;
2814
2815 rcu_read_lock();
2816 rvp = rdi->ports[sqp->port_num - 1];
2817
2818 /*
2819 * Note that we check the responder QP state after
2820 * checking the requester's state.
2821 */
2822
2823 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2824 sqp->remote_qpn);
2825
2826 spin_lock_irqsave(&sqp->s_lock, flags);
2827
2828 /* Return if we are already busy processing a work request. */
2829 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2830 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2831 goto unlock;
2832
2833 sqp->s_flags |= RVT_S_BUSY;
2834
2835 again:
2836 if (sqp->s_last == READ_ONCE(sqp->s_head))
2837 goto clr_busy;
2838 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2839
2840 /* Return if it is not OK to start a new work request. */
2841 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2842 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2843 goto clr_busy;
2844 /* We are in the error state, flush the work request. */
2845 send_status = IB_WC_WR_FLUSH_ERR;
2846 goto flush_send;
2847 }
2848
2849 /*
2850 * We can rely on the entry not changing without the s_lock
2851 * being held until we update s_last.
2852 * We increment s_cur to indicate s_last is in progress.
2853 */
2854 if (sqp->s_last == sqp->s_cur) {
2855 if (++sqp->s_cur >= sqp->s_size)
2856 sqp->s_cur = 0;
2857 }
2858 spin_unlock_irqrestore(&sqp->s_lock, flags);
2859
2860 if (!qp || !(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
2861 qp->ibqp.qp_type != sqp->ibqp.qp_type) {
2862 rvp->n_pkt_drops++;
2863 /*
2864 * For RC, the requester would timeout and retry so
2865 * shortcut the timeouts and just signal too many retries.
2866 */
2867 if (sqp->ibqp.qp_type == IB_QPT_RC)
2868 send_status = IB_WC_RETRY_EXC_ERR;
2869 else
2870 send_status = IB_WC_SUCCESS;
2871 goto serr;
2872 }
2873
2874 memset(&wc, 0, sizeof(wc));
2875 send_status = IB_WC_SUCCESS;
2876
2877 release = true;
2878 sqp->s_sge.sge = wqe->sg_list[0];
2879 sqp->s_sge.sg_list = wqe->sg_list + 1;
2880 sqp->s_sge.num_sge = wqe->wr.num_sge;
2881 sqp->s_len = wqe->length;
2882 switch (wqe->wr.opcode) {
2883 case IB_WR_REG_MR:
2884 goto send_comp;
2885
2886 case IB_WR_LOCAL_INV:
2887 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
2888 if (rvt_invalidate_rkey(sqp,
2889 wqe->wr.ex.invalidate_rkey))
2890 send_status = IB_WC_LOC_PROT_ERR;
2891 local_ops = 1;
2892 }
2893 goto send_comp;
2894
2895 case IB_WR_SEND_WITH_INV:
2896 if (!rvt_invalidate_rkey(qp, wqe->wr.ex.invalidate_rkey)) {
2897 wc.wc_flags = IB_WC_WITH_INVALIDATE;
2898 wc.ex.invalidate_rkey = wqe->wr.ex.invalidate_rkey;
2899 }
2900 goto send;
2901
2902 case IB_WR_SEND_WITH_IMM:
2903 wc.wc_flags = IB_WC_WITH_IMM;
2904 wc.ex.imm_data = wqe->wr.ex.imm_data;
2905 /* FALLTHROUGH */
2906 case IB_WR_SEND:
2907 send:
2908 ret = rvt_get_rwqe(qp, false);
2909 if (ret < 0)
2910 goto op_err;
2911 if (!ret)
2912 goto rnr_nak;
2913 break;
2914
2915 case IB_WR_RDMA_WRITE_WITH_IMM:
2916 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
2917 goto inv_err;
2918 wc.wc_flags = IB_WC_WITH_IMM;
2919 wc.ex.imm_data = wqe->wr.ex.imm_data;
2920 ret = rvt_get_rwqe(qp, true);
2921 if (ret < 0)
2922 goto op_err;
2923 if (!ret)
2924 goto rnr_nak;
2925 /* skip copy_last set and qp_access_flags recheck */
2926 goto do_write;
2927 case IB_WR_RDMA_WRITE:
2928 copy_last = rvt_is_user_qp(qp);
2929 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
2930 goto inv_err;
2931 do_write:
2932 if (wqe->length == 0)
2933 break;
2934 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
2935 wqe->rdma_wr.remote_addr,
2936 wqe->rdma_wr.rkey,
2937 IB_ACCESS_REMOTE_WRITE)))
2938 goto acc_err;
2939 qp->r_sge.sg_list = NULL;
2940 qp->r_sge.num_sge = 1;
2941 qp->r_sge.total_len = wqe->length;
2942 break;
2943
2944 case IB_WR_RDMA_READ:
2945 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
2946 goto inv_err;
2947 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
2948 wqe->rdma_wr.remote_addr,
2949 wqe->rdma_wr.rkey,
2950 IB_ACCESS_REMOTE_READ)))
2951 goto acc_err;
2952 release = false;
2953 sqp->s_sge.sg_list = NULL;
2954 sqp->s_sge.num_sge = 1;
2955 qp->r_sge.sge = wqe->sg_list[0];
2956 qp->r_sge.sg_list = wqe->sg_list + 1;
2957 qp->r_sge.num_sge = wqe->wr.num_sge;
2958 qp->r_sge.total_len = wqe->length;
2959 break;
2960
2961 case IB_WR_ATOMIC_CMP_AND_SWP:
2962 case IB_WR_ATOMIC_FETCH_AND_ADD:
2963 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
2964 goto inv_err;
2965 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
2966 wqe->atomic_wr.remote_addr,
2967 wqe->atomic_wr.rkey,
2968 IB_ACCESS_REMOTE_ATOMIC)))
2969 goto acc_err;
2970 /* Perform atomic OP and save result. */
2971 maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
2972 sdata = wqe->atomic_wr.compare_add;
2973 *(u64 *)sqp->s_sge.sge.vaddr =
2974 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
2975 (u64)atomic64_add_return(sdata, maddr) - sdata :
2976 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
2977 sdata, wqe->atomic_wr.swap);
2978 rvt_put_mr(qp->r_sge.sge.mr);
2979 qp->r_sge.num_sge = 0;
2980 goto send_comp;
2981
2982 default:
2983 send_status = IB_WC_LOC_QP_OP_ERR;
2984 goto serr;
2985 }
2986
2987 sge = &sqp->s_sge.sge;
2988 while (sqp->s_len) {
2989 u32 len = sqp->s_len;
2990
2991 if (len > sge->length)
2992 len = sge->length;
2993 if (len > sge->sge_length)
2994 len = sge->sge_length;
2995 WARN_ON_ONCE(len == 0);
2996 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
2997 len, release, copy_last);
2998 sge->vaddr += len;
2999 sge->length -= len;
3000 sge->sge_length -= len;
3001 if (sge->sge_length == 0) {
3002 if (!release)
3003 rvt_put_mr(sge->mr);
3004 if (--sqp->s_sge.num_sge)
3005 *sge = *sqp->s_sge.sg_list++;
3006 } else if (sge->length == 0 && sge->mr->lkey) {
3007 if (++sge->n >= RVT_SEGSZ) {
3008 if (++sge->m >= sge->mr->mapsz)
3009 break;
3010 sge->n = 0;
3011 }
3012 sge->vaddr =
3013 sge->mr->map[sge->m]->segs[sge->n].vaddr;
3014 sge->length =
3015 sge->mr->map[sge->m]->segs[sge->n].length;
3016 }
3017 sqp->s_len -= len;
3018 }
3019 if (release)
3020 rvt_put_ss(&qp->r_sge);
3021
3022 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3023 goto send_comp;
3024
3025 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3026 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3027 else
3028 wc.opcode = IB_WC_RECV;
3029 wc.wr_id = qp->r_wr_id;
3030 wc.status = IB_WC_SUCCESS;
3031 wc.byte_len = wqe->length;
3032 wc.qp = &qp->ibqp;
3033 wc.src_qp = qp->remote_qpn;
3034 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3035 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3036 wc.port_num = 1;
3037 /* Signal completion event if the solicited bit is set. */
3038 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc,
3039 wqe->wr.send_flags & IB_SEND_SOLICITED);
3040
3041 send_comp:
3042 spin_lock_irqsave(&sqp->s_lock, flags);
3043 rvp->n_loop_pkts++;
3044 flush_send:
3045 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3046 rvt_send_complete(sqp, wqe, send_status);
3047 if (local_ops) {
3048 atomic_dec(&sqp->local_ops_pending);
3049 local_ops = 0;
3050 }
3051 goto again;
3052
3053 rnr_nak:
3054 /* Handle RNR NAK */
3055 if (qp->ibqp.qp_type == IB_QPT_UC)
3056 goto send_comp;
3057 rvp->n_rnr_naks++;
3058 /*
3059 * Note: we don't need the s_lock held since the BUSY flag
3060 * makes this single threaded.
3061 */
3062 if (sqp->s_rnr_retry == 0) {
3063 send_status = IB_WC_RNR_RETRY_EXC_ERR;
3064 goto serr;
3065 }
3066 if (sqp->s_rnr_retry_cnt < 7)
3067 sqp->s_rnr_retry--;
3068 spin_lock_irqsave(&sqp->s_lock, flags);
3069 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3070 goto clr_busy;
3071 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3072 IB_AETH_CREDIT_SHIFT);
3073 goto clr_busy;
3074
3075 op_err:
3076 send_status = IB_WC_REM_OP_ERR;
3077 wc.status = IB_WC_LOC_QP_OP_ERR;
3078 goto err;
3079
3080 inv_err:
3081 send_status = IB_WC_REM_INV_REQ_ERR;
3082 wc.status = IB_WC_LOC_QP_OP_ERR;
3083 goto err;
3084
3085 acc_err:
3086 send_status = IB_WC_REM_ACCESS_ERR;
3087 wc.status = IB_WC_LOC_PROT_ERR;
3088 err:
3089 /* responder goes to error state */
3090 rvt_rc_error(qp, wc.status);
3091
3092 serr:
3093 spin_lock_irqsave(&sqp->s_lock, flags);
3094 rvt_send_complete(sqp, wqe, send_status);
3095 if (sqp->ibqp.qp_type == IB_QPT_RC) {
3096 int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3097
3098 sqp->s_flags &= ~RVT_S_BUSY;
3099 spin_unlock_irqrestore(&sqp->s_lock, flags);
3100 if (lastwqe) {
3101 struct ib_event ev;
3102
3103 ev.device = sqp->ibqp.device;
3104 ev.element.qp = &sqp->ibqp;
3105 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3106 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3107 }
3108 goto done;
3109 }
3110 clr_busy:
3111 sqp->s_flags &= ~RVT_S_BUSY;
3112 unlock:
3113 spin_unlock_irqrestore(&sqp->s_lock, flags);
3114 done:
3115 rcu_read_unlock();
3116 }
3117 EXPORT_SYMBOL(rvt_ruc_loopback);