]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/infiniband/ulp/iser/iser_verbs.c
Merge remote-tracking branches 'asoc/topic/wm8904', 'asoc/topic/wm8955' and 'asoc...
[mirror_ubuntu-zesty-kernel.git] / drivers / infiniband / ulp / iser / iser_verbs.c
1 /*
2 * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
3 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
4 * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/delay.h>
38
39 #include "iscsi_iser.h"
40
41 #define ISCSI_ISER_MAX_CONN 8
42 #define ISER_MAX_RX_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
43 #define ISER_MAX_TX_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN)
44 #define ISER_MAX_CQ_LEN (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \
45 ISCSI_ISER_MAX_CONN)
46
47 static int iser_cq_poll_limit = 512;
48
49 static void iser_cq_tasklet_fn(unsigned long data);
50 static void iser_cq_callback(struct ib_cq *cq, void *cq_context);
51
52 static void iser_cq_event_callback(struct ib_event *cause, void *context)
53 {
54 iser_err("cq event %s (%d)\n",
55 ib_event_msg(cause->event), cause->event);
56 }
57
58 static void iser_qp_event_callback(struct ib_event *cause, void *context)
59 {
60 iser_err("qp event %s (%d)\n",
61 ib_event_msg(cause->event), cause->event);
62 }
63
64 static void iser_event_handler(struct ib_event_handler *handler,
65 struct ib_event *event)
66 {
67 iser_err("async event %s (%d) on device %s port %d\n",
68 ib_event_msg(event->event), event->event,
69 event->device->name, event->element.port_num);
70 }
71
72 /**
73 * iser_create_device_ib_res - creates Protection Domain (PD), Completion
74 * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
75 * the adapator.
76 *
77 * returns 0 on success, -1 on failure
78 */
79 static int iser_create_device_ib_res(struct iser_device *device)
80 {
81 struct ib_device_attr *dev_attr = &device->dev_attr;
82 int ret, i, max_cqe;
83
84 ret = ib_query_device(device->ib_device, dev_attr);
85 if (ret) {
86 pr_warn("Query device failed for %s\n", device->ib_device->name);
87 return ret;
88 }
89
90 ret = iser_assign_reg_ops(device);
91 if (ret)
92 return ret;
93
94 device->comps_used = min_t(int, num_online_cpus(),
95 device->ib_device->num_comp_vectors);
96
97 device->comps = kcalloc(device->comps_used, sizeof(*device->comps),
98 GFP_KERNEL);
99 if (!device->comps)
100 goto comps_err;
101
102 max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe);
103
104 iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n",
105 device->comps_used, device->ib_device->name,
106 device->ib_device->num_comp_vectors, max_cqe);
107
108 device->pd = ib_alloc_pd(device->ib_device);
109 if (IS_ERR(device->pd))
110 goto pd_err;
111
112 for (i = 0; i < device->comps_used; i++) {
113 struct ib_cq_init_attr cq_attr = {};
114 struct iser_comp *comp = &device->comps[i];
115
116 comp->device = device;
117 cq_attr.cqe = max_cqe;
118 cq_attr.comp_vector = i;
119 comp->cq = ib_create_cq(device->ib_device,
120 iser_cq_callback,
121 iser_cq_event_callback,
122 (void *)comp,
123 &cq_attr);
124 if (IS_ERR(comp->cq)) {
125 comp->cq = NULL;
126 goto cq_err;
127 }
128
129 if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP))
130 goto cq_err;
131
132 tasklet_init(&comp->tasklet, iser_cq_tasklet_fn,
133 (unsigned long)comp);
134 }
135
136 if (!iser_always_reg) {
137 int access = IB_ACCESS_LOCAL_WRITE |
138 IB_ACCESS_REMOTE_WRITE |
139 IB_ACCESS_REMOTE_READ;
140
141 device->mr = ib_get_dma_mr(device->pd, access);
142 if (IS_ERR(device->mr))
143 goto dma_mr_err;
144 }
145
146 INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device,
147 iser_event_handler);
148 if (ib_register_event_handler(&device->event_handler))
149 goto handler_err;
150
151 return 0;
152
153 handler_err:
154 if (device->mr)
155 ib_dereg_mr(device->mr);
156 dma_mr_err:
157 for (i = 0; i < device->comps_used; i++)
158 tasklet_kill(&device->comps[i].tasklet);
159 cq_err:
160 for (i = 0; i < device->comps_used; i++) {
161 struct iser_comp *comp = &device->comps[i];
162
163 if (comp->cq)
164 ib_destroy_cq(comp->cq);
165 }
166 ib_dealloc_pd(device->pd);
167 pd_err:
168 kfree(device->comps);
169 comps_err:
170 iser_err("failed to allocate an IB resource\n");
171 return -1;
172 }
173
174 /**
175 * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
176 * CQ and PD created with the device associated with the adapator.
177 */
178 static void iser_free_device_ib_res(struct iser_device *device)
179 {
180 int i;
181
182 for (i = 0; i < device->comps_used; i++) {
183 struct iser_comp *comp = &device->comps[i];
184
185 tasklet_kill(&comp->tasklet);
186 ib_destroy_cq(comp->cq);
187 comp->cq = NULL;
188 }
189
190 (void)ib_unregister_event_handler(&device->event_handler);
191 if (device->mr)
192 (void)ib_dereg_mr(device->mr);
193 ib_dealloc_pd(device->pd);
194
195 kfree(device->comps);
196 device->comps = NULL;
197
198 device->mr = NULL;
199 device->pd = NULL;
200 }
201
202 /**
203 * iser_alloc_fmr_pool - Creates FMR pool and page_vector
204 *
205 * returns 0 on success, or errno code on failure
206 */
207 int iser_alloc_fmr_pool(struct ib_conn *ib_conn,
208 unsigned cmds_max,
209 unsigned int size)
210 {
211 struct iser_device *device = ib_conn->device;
212 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
213 struct iser_page_vec *page_vec;
214 struct iser_fr_desc *desc;
215 struct ib_fmr_pool *fmr_pool;
216 struct ib_fmr_pool_param params;
217 int ret;
218
219 INIT_LIST_HEAD(&fr_pool->list);
220 spin_lock_init(&fr_pool->lock);
221
222 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
223 if (!desc)
224 return -ENOMEM;
225
226 page_vec = kmalloc(sizeof(*page_vec) + (sizeof(u64) * size),
227 GFP_KERNEL);
228 if (!page_vec) {
229 ret = -ENOMEM;
230 goto err_frpl;
231 }
232
233 page_vec->pages = (u64 *)(page_vec + 1);
234
235 params.page_shift = SHIFT_4K;
236 params.max_pages_per_fmr = size;
237 /* make the pool size twice the max number of SCSI commands *
238 * the ML is expected to queue, watermark for unmap at 50% */
239 params.pool_size = cmds_max * 2;
240 params.dirty_watermark = cmds_max;
241 params.cache = 0;
242 params.flush_function = NULL;
243 params.access = (IB_ACCESS_LOCAL_WRITE |
244 IB_ACCESS_REMOTE_WRITE |
245 IB_ACCESS_REMOTE_READ);
246
247 fmr_pool = ib_create_fmr_pool(device->pd, &params);
248 if (IS_ERR(fmr_pool)) {
249 ret = PTR_ERR(fmr_pool);
250 iser_err("FMR allocation failed, err %d\n", ret);
251 goto err_fmr;
252 }
253
254 desc->rsc.page_vec = page_vec;
255 desc->rsc.fmr_pool = fmr_pool;
256 list_add(&desc->list, &fr_pool->list);
257
258 return 0;
259
260 err_fmr:
261 kfree(page_vec);
262 err_frpl:
263 kfree(desc);
264
265 return ret;
266 }
267
268 /**
269 * iser_free_fmr_pool - releases the FMR pool and page vec
270 */
271 void iser_free_fmr_pool(struct ib_conn *ib_conn)
272 {
273 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
274 struct iser_fr_desc *desc;
275
276 desc = list_first_entry(&fr_pool->list,
277 struct iser_fr_desc, list);
278 list_del(&desc->list);
279
280 iser_info("freeing conn %p fmr pool %p\n",
281 ib_conn, desc->rsc.fmr_pool);
282
283 ib_destroy_fmr_pool(desc->rsc.fmr_pool);
284 kfree(desc->rsc.page_vec);
285 kfree(desc);
286 }
287
288 static int
289 iser_alloc_reg_res(struct ib_device *ib_device,
290 struct ib_pd *pd,
291 struct iser_reg_resources *res,
292 unsigned int size)
293 {
294 int ret;
295
296 res->frpl = ib_alloc_fast_reg_page_list(ib_device, size);
297 if (IS_ERR(res->frpl)) {
298 ret = PTR_ERR(res->frpl);
299 iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n",
300 ret);
301 return PTR_ERR(res->frpl);
302 }
303
304 res->mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, size);
305 if (IS_ERR(res->mr)) {
306 ret = PTR_ERR(res->mr);
307 iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret);
308 goto fast_reg_mr_failure;
309 }
310 res->mr_valid = 1;
311
312 return 0;
313
314 fast_reg_mr_failure:
315 ib_free_fast_reg_page_list(res->frpl);
316
317 return ret;
318 }
319
320 static void
321 iser_free_reg_res(struct iser_reg_resources *rsc)
322 {
323 ib_dereg_mr(rsc->mr);
324 ib_free_fast_reg_page_list(rsc->frpl);
325 }
326
327 static int
328 iser_alloc_pi_ctx(struct ib_device *ib_device,
329 struct ib_pd *pd,
330 struct iser_fr_desc *desc,
331 unsigned int size)
332 {
333 struct iser_pi_context *pi_ctx = NULL;
334 int ret;
335
336 desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL);
337 if (!desc->pi_ctx)
338 return -ENOMEM;
339
340 pi_ctx = desc->pi_ctx;
341
342 ret = iser_alloc_reg_res(ib_device, pd, &pi_ctx->rsc, size);
343 if (ret) {
344 iser_err("failed to allocate reg_resources\n");
345 goto alloc_reg_res_err;
346 }
347
348 pi_ctx->sig_mr = ib_alloc_mr(pd, IB_MR_TYPE_SIGNATURE, 2);
349 if (IS_ERR(pi_ctx->sig_mr)) {
350 ret = PTR_ERR(pi_ctx->sig_mr);
351 goto sig_mr_failure;
352 }
353 pi_ctx->sig_mr_valid = 1;
354 desc->pi_ctx->sig_protected = 0;
355
356 return 0;
357
358 sig_mr_failure:
359 iser_free_reg_res(&pi_ctx->rsc);
360 alloc_reg_res_err:
361 kfree(desc->pi_ctx);
362
363 return ret;
364 }
365
366 static void
367 iser_free_pi_ctx(struct iser_pi_context *pi_ctx)
368 {
369 iser_free_reg_res(&pi_ctx->rsc);
370 ib_dereg_mr(pi_ctx->sig_mr);
371 kfree(pi_ctx);
372 }
373
374 static struct iser_fr_desc *
375 iser_create_fastreg_desc(struct ib_device *ib_device,
376 struct ib_pd *pd,
377 bool pi_enable,
378 unsigned int size)
379 {
380 struct iser_fr_desc *desc;
381 int ret;
382
383 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
384 if (!desc)
385 return ERR_PTR(-ENOMEM);
386
387 ret = iser_alloc_reg_res(ib_device, pd, &desc->rsc, size);
388 if (ret)
389 goto reg_res_alloc_failure;
390
391 if (pi_enable) {
392 ret = iser_alloc_pi_ctx(ib_device, pd, desc, size);
393 if (ret)
394 goto pi_ctx_alloc_failure;
395 }
396
397 return desc;
398
399 pi_ctx_alloc_failure:
400 iser_free_reg_res(&desc->rsc);
401 reg_res_alloc_failure:
402 kfree(desc);
403
404 return ERR_PTR(ret);
405 }
406
407 /**
408 * iser_alloc_fastreg_pool - Creates pool of fast_reg descriptors
409 * for fast registration work requests.
410 * returns 0 on success, or errno code on failure
411 */
412 int iser_alloc_fastreg_pool(struct ib_conn *ib_conn,
413 unsigned cmds_max,
414 unsigned int size)
415 {
416 struct iser_device *device = ib_conn->device;
417 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
418 struct iser_fr_desc *desc;
419 int i, ret;
420
421 INIT_LIST_HEAD(&fr_pool->list);
422 spin_lock_init(&fr_pool->lock);
423 fr_pool->size = 0;
424 for (i = 0; i < cmds_max; i++) {
425 desc = iser_create_fastreg_desc(device->ib_device, device->pd,
426 ib_conn->pi_support, size);
427 if (IS_ERR(desc)) {
428 ret = PTR_ERR(desc);
429 goto err;
430 }
431
432 list_add_tail(&desc->list, &fr_pool->list);
433 fr_pool->size++;
434 }
435
436 return 0;
437
438 err:
439 iser_free_fastreg_pool(ib_conn);
440 return ret;
441 }
442
443 /**
444 * iser_free_fastreg_pool - releases the pool of fast_reg descriptors
445 */
446 void iser_free_fastreg_pool(struct ib_conn *ib_conn)
447 {
448 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
449 struct iser_fr_desc *desc, *tmp;
450 int i = 0;
451
452 if (list_empty(&fr_pool->list))
453 return;
454
455 iser_info("freeing conn %p fr pool\n", ib_conn);
456
457 list_for_each_entry_safe(desc, tmp, &fr_pool->list, list) {
458 list_del(&desc->list);
459 iser_free_reg_res(&desc->rsc);
460 if (desc->pi_ctx)
461 iser_free_pi_ctx(desc->pi_ctx);
462 kfree(desc);
463 ++i;
464 }
465
466 if (i < fr_pool->size)
467 iser_warn("pool still has %d regions registered\n",
468 fr_pool->size - i);
469 }
470
471 /**
472 * iser_create_ib_conn_res - Queue-Pair (QP)
473 *
474 * returns 0 on success, -1 on failure
475 */
476 static int iser_create_ib_conn_res(struct ib_conn *ib_conn)
477 {
478 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
479 ib_conn);
480 struct iser_device *device;
481 struct ib_device_attr *dev_attr;
482 struct ib_qp_init_attr init_attr;
483 int ret = -ENOMEM;
484 int index, min_index = 0;
485
486 BUG_ON(ib_conn->device == NULL);
487
488 device = ib_conn->device;
489 dev_attr = &device->dev_attr;
490
491 memset(&init_attr, 0, sizeof init_attr);
492
493 mutex_lock(&ig.connlist_mutex);
494 /* select the CQ with the minimal number of usages */
495 for (index = 0; index < device->comps_used; index++) {
496 if (device->comps[index].active_qps <
497 device->comps[min_index].active_qps)
498 min_index = index;
499 }
500 ib_conn->comp = &device->comps[min_index];
501 ib_conn->comp->active_qps++;
502 mutex_unlock(&ig.connlist_mutex);
503 iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn);
504
505 init_attr.event_handler = iser_qp_event_callback;
506 init_attr.qp_context = (void *)ib_conn;
507 init_attr.send_cq = ib_conn->comp->cq;
508 init_attr.recv_cq = ib_conn->comp->cq;
509 init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS;
510 init_attr.cap.max_send_sge = 2;
511 init_attr.cap.max_recv_sge = 1;
512 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
513 init_attr.qp_type = IB_QPT_RC;
514 if (ib_conn->pi_support) {
515 init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1;
516 init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN;
517 iser_conn->max_cmds =
518 ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS);
519 } else {
520 if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) {
521 init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS + 1;
522 iser_conn->max_cmds =
523 ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS);
524 } else {
525 init_attr.cap.max_send_wr = dev_attr->max_qp_wr;
526 iser_conn->max_cmds =
527 ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr);
528 iser_dbg("device %s supports max_send_wr %d\n",
529 device->ib_device->name, dev_attr->max_qp_wr);
530 }
531 }
532
533 ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
534 if (ret)
535 goto out_err;
536
537 ib_conn->qp = ib_conn->cma_id->qp;
538 iser_info("setting conn %p cma_id %p qp %p\n",
539 ib_conn, ib_conn->cma_id,
540 ib_conn->cma_id->qp);
541 return ret;
542
543 out_err:
544 mutex_lock(&ig.connlist_mutex);
545 ib_conn->comp->active_qps--;
546 mutex_unlock(&ig.connlist_mutex);
547 iser_err("unable to alloc mem or create resource, err %d\n", ret);
548
549 return ret;
550 }
551
552 /**
553 * based on the resolved device node GUID see if there already allocated
554 * device for this device. If there's no such, create one.
555 */
556 static
557 struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
558 {
559 struct iser_device *device;
560
561 mutex_lock(&ig.device_list_mutex);
562
563 list_for_each_entry(device, &ig.device_list, ig_list)
564 /* find if there's a match using the node GUID */
565 if (device->ib_device->node_guid == cma_id->device->node_guid)
566 goto inc_refcnt;
567
568 device = kzalloc(sizeof *device, GFP_KERNEL);
569 if (device == NULL)
570 goto out;
571
572 /* assign this device to the device */
573 device->ib_device = cma_id->device;
574 /* init the device and link it into ig device list */
575 if (iser_create_device_ib_res(device)) {
576 kfree(device);
577 device = NULL;
578 goto out;
579 }
580 list_add(&device->ig_list, &ig.device_list);
581
582 inc_refcnt:
583 device->refcount++;
584 out:
585 mutex_unlock(&ig.device_list_mutex);
586 return device;
587 }
588
589 /* if there's no demand for this device, release it */
590 static void iser_device_try_release(struct iser_device *device)
591 {
592 mutex_lock(&ig.device_list_mutex);
593 device->refcount--;
594 iser_info("device %p refcount %d\n", device, device->refcount);
595 if (!device->refcount) {
596 iser_free_device_ib_res(device);
597 list_del(&device->ig_list);
598 kfree(device);
599 }
600 mutex_unlock(&ig.device_list_mutex);
601 }
602
603 /**
604 * Called with state mutex held
605 **/
606 static int iser_conn_state_comp_exch(struct iser_conn *iser_conn,
607 enum iser_conn_state comp,
608 enum iser_conn_state exch)
609 {
610 int ret;
611
612 ret = (iser_conn->state == comp);
613 if (ret)
614 iser_conn->state = exch;
615
616 return ret;
617 }
618
619 void iser_release_work(struct work_struct *work)
620 {
621 struct iser_conn *iser_conn;
622
623 iser_conn = container_of(work, struct iser_conn, release_work);
624
625 /* Wait for conn_stop to complete */
626 wait_for_completion(&iser_conn->stop_completion);
627 /* Wait for IB resouces cleanup to complete */
628 wait_for_completion(&iser_conn->ib_completion);
629
630 mutex_lock(&iser_conn->state_mutex);
631 iser_conn->state = ISER_CONN_DOWN;
632 mutex_unlock(&iser_conn->state_mutex);
633
634 iser_conn_release(iser_conn);
635 }
636
637 /**
638 * iser_free_ib_conn_res - release IB related resources
639 * @iser_conn: iser connection struct
640 * @destroy: indicator if we need to try to release the
641 * iser device and memory regoins pool (only iscsi
642 * shutdown and DEVICE_REMOVAL will use this).
643 *
644 * This routine is called with the iser state mutex held
645 * so the cm_id removal is out of here. It is Safe to
646 * be invoked multiple times.
647 */
648 static void iser_free_ib_conn_res(struct iser_conn *iser_conn,
649 bool destroy)
650 {
651 struct ib_conn *ib_conn = &iser_conn->ib_conn;
652 struct iser_device *device = ib_conn->device;
653
654 iser_info("freeing conn %p cma_id %p qp %p\n",
655 iser_conn, ib_conn->cma_id, ib_conn->qp);
656
657 if (ib_conn->qp != NULL) {
658 ib_conn->comp->active_qps--;
659 rdma_destroy_qp(ib_conn->cma_id);
660 ib_conn->qp = NULL;
661 }
662
663 if (destroy) {
664 if (iser_conn->rx_descs)
665 iser_free_rx_descriptors(iser_conn);
666
667 if (device != NULL) {
668 iser_device_try_release(device);
669 ib_conn->device = NULL;
670 }
671 }
672 }
673
674 /**
675 * Frees all conn objects and deallocs conn descriptor
676 */
677 void iser_conn_release(struct iser_conn *iser_conn)
678 {
679 struct ib_conn *ib_conn = &iser_conn->ib_conn;
680
681 mutex_lock(&ig.connlist_mutex);
682 list_del(&iser_conn->conn_list);
683 mutex_unlock(&ig.connlist_mutex);
684
685 mutex_lock(&iser_conn->state_mutex);
686 /* In case we endup here without ep_disconnect being invoked. */
687 if (iser_conn->state != ISER_CONN_DOWN) {
688 iser_warn("iser conn %p state %d, expected state down.\n",
689 iser_conn, iser_conn->state);
690 iscsi_destroy_endpoint(iser_conn->ep);
691 iser_conn->state = ISER_CONN_DOWN;
692 }
693 /*
694 * In case we never got to bind stage, we still need to
695 * release IB resources (which is safe to call more than once).
696 */
697 iser_free_ib_conn_res(iser_conn, true);
698 mutex_unlock(&iser_conn->state_mutex);
699
700 if (ib_conn->cma_id != NULL) {
701 rdma_destroy_id(ib_conn->cma_id);
702 ib_conn->cma_id = NULL;
703 }
704
705 kfree(iser_conn);
706 }
707
708 /**
709 * triggers start of the disconnect procedures and wait for them to be done
710 * Called with state mutex held
711 */
712 int iser_conn_terminate(struct iser_conn *iser_conn)
713 {
714 struct ib_conn *ib_conn = &iser_conn->ib_conn;
715 struct ib_send_wr *bad_wr;
716 int err = 0;
717
718 /* terminate the iser conn only if the conn state is UP */
719 if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP,
720 ISER_CONN_TERMINATING))
721 return 0;
722
723 iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state);
724
725 /* suspend queuing of new iscsi commands */
726 if (iser_conn->iscsi_conn)
727 iscsi_suspend_queue(iser_conn->iscsi_conn);
728
729 /*
730 * In case we didn't already clean up the cma_id (peer initiated
731 * a disconnection), we need to Cause the CMA to change the QP
732 * state to ERROR.
733 */
734 if (ib_conn->cma_id) {
735 err = rdma_disconnect(ib_conn->cma_id);
736 if (err)
737 iser_err("Failed to disconnect, conn: 0x%p err %d\n",
738 iser_conn, err);
739
740 /* post an indication that all flush errors were consumed */
741 err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr);
742 if (err) {
743 iser_err("conn %p failed to post beacon", ib_conn);
744 return 1;
745 }
746
747 wait_for_completion(&ib_conn->flush_comp);
748 }
749
750 return 1;
751 }
752
753 /**
754 * Called with state mutex held
755 **/
756 static void iser_connect_error(struct rdma_cm_id *cma_id)
757 {
758 struct iser_conn *iser_conn;
759
760 iser_conn = (struct iser_conn *)cma_id->context;
761 iser_conn->state = ISER_CONN_TERMINATING;
762 }
763
764 static void
765 iser_calc_scsi_params(struct iser_conn *iser_conn,
766 unsigned int max_sectors)
767 {
768 struct iser_device *device = iser_conn->ib_conn.device;
769 unsigned short sg_tablesize, sup_sg_tablesize;
770
771 sg_tablesize = DIV_ROUND_UP(max_sectors * 512, SIZE_4K);
772 sup_sg_tablesize = min_t(unsigned, ISCSI_ISER_MAX_SG_TABLESIZE,
773 device->dev_attr.max_fast_reg_page_list_len);
774
775 if (sg_tablesize > sup_sg_tablesize) {
776 sg_tablesize = sup_sg_tablesize;
777 iser_conn->scsi_max_sectors = sg_tablesize * SIZE_4K / 512;
778 } else {
779 iser_conn->scsi_max_sectors = max_sectors;
780 }
781
782 iser_conn->scsi_sg_tablesize = sg_tablesize;
783
784 iser_dbg("iser_conn %p, sg_tablesize %u, max_sectors %u\n",
785 iser_conn, iser_conn->scsi_sg_tablesize,
786 iser_conn->scsi_max_sectors);
787 }
788
789 /**
790 * Called with state mutex held
791 **/
792 static void iser_addr_handler(struct rdma_cm_id *cma_id)
793 {
794 struct iser_device *device;
795 struct iser_conn *iser_conn;
796 struct ib_conn *ib_conn;
797 int ret;
798
799 iser_conn = (struct iser_conn *)cma_id->context;
800 if (iser_conn->state != ISER_CONN_PENDING)
801 /* bailout */
802 return;
803
804 ib_conn = &iser_conn->ib_conn;
805 device = iser_device_find_by_ib_device(cma_id);
806 if (!device) {
807 iser_err("device lookup/creation failed\n");
808 iser_connect_error(cma_id);
809 return;
810 }
811
812 ib_conn->device = device;
813
814 /* connection T10-PI support */
815 if (iser_pi_enable) {
816 if (!(device->dev_attr.device_cap_flags &
817 IB_DEVICE_SIGNATURE_HANDOVER)) {
818 iser_warn("T10-PI requested but not supported on %s, "
819 "continue without T10-PI\n",
820 ib_conn->device->ib_device->name);
821 ib_conn->pi_support = false;
822 } else {
823 ib_conn->pi_support = true;
824 }
825 }
826
827 iser_calc_scsi_params(iser_conn, iser_max_sectors);
828
829 ret = rdma_resolve_route(cma_id, 1000);
830 if (ret) {
831 iser_err("resolve route failed: %d\n", ret);
832 iser_connect_error(cma_id);
833 return;
834 }
835 }
836
837 /**
838 * Called with state mutex held
839 **/
840 static void iser_route_handler(struct rdma_cm_id *cma_id)
841 {
842 struct rdma_conn_param conn_param;
843 int ret;
844 struct iser_cm_hdr req_hdr;
845 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
846 struct ib_conn *ib_conn = &iser_conn->ib_conn;
847 struct iser_device *device = ib_conn->device;
848
849 if (iser_conn->state != ISER_CONN_PENDING)
850 /* bailout */
851 return;
852
853 ret = iser_create_ib_conn_res(ib_conn);
854 if (ret)
855 goto failure;
856
857 memset(&conn_param, 0, sizeof conn_param);
858 conn_param.responder_resources = device->dev_attr.max_qp_rd_atom;
859 conn_param.initiator_depth = 1;
860 conn_param.retry_count = 7;
861 conn_param.rnr_retry_count = 6;
862
863 memset(&req_hdr, 0, sizeof(req_hdr));
864 req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED |
865 ISER_SEND_W_INV_NOT_SUPPORTED);
866 conn_param.private_data = (void *)&req_hdr;
867 conn_param.private_data_len = sizeof(struct iser_cm_hdr);
868
869 ret = rdma_connect(cma_id, &conn_param);
870 if (ret) {
871 iser_err("failure connecting: %d\n", ret);
872 goto failure;
873 }
874
875 return;
876 failure:
877 iser_connect_error(cma_id);
878 }
879
880 static void iser_connected_handler(struct rdma_cm_id *cma_id)
881 {
882 struct iser_conn *iser_conn;
883 struct ib_qp_attr attr;
884 struct ib_qp_init_attr init_attr;
885
886 iser_conn = (struct iser_conn *)cma_id->context;
887 if (iser_conn->state != ISER_CONN_PENDING)
888 /* bailout */
889 return;
890
891 (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr);
892 iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num);
893
894 iser_conn->state = ISER_CONN_UP;
895 complete(&iser_conn->up_completion);
896 }
897
898 static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
899 {
900 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
901
902 if (iser_conn_terminate(iser_conn)) {
903 if (iser_conn->iscsi_conn)
904 iscsi_conn_failure(iser_conn->iscsi_conn,
905 ISCSI_ERR_CONN_FAILED);
906 else
907 iser_err("iscsi_iser connection isn't bound\n");
908 }
909 }
910
911 static void iser_cleanup_handler(struct rdma_cm_id *cma_id,
912 bool destroy)
913 {
914 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
915
916 /*
917 * We are not guaranteed that we visited disconnected_handler
918 * by now, call it here to be safe that we handle CM drep
919 * and flush errors.
920 */
921 iser_disconnected_handler(cma_id);
922 iser_free_ib_conn_res(iser_conn, destroy);
923 complete(&iser_conn->ib_completion);
924 };
925
926 static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
927 {
928 struct iser_conn *iser_conn;
929 int ret = 0;
930
931 iser_conn = (struct iser_conn *)cma_id->context;
932 iser_info("%s (%d): status %d conn %p id %p\n",
933 rdma_event_msg(event->event), event->event,
934 event->status, cma_id->context, cma_id);
935
936 mutex_lock(&iser_conn->state_mutex);
937 switch (event->event) {
938 case RDMA_CM_EVENT_ADDR_RESOLVED:
939 iser_addr_handler(cma_id);
940 break;
941 case RDMA_CM_EVENT_ROUTE_RESOLVED:
942 iser_route_handler(cma_id);
943 break;
944 case RDMA_CM_EVENT_ESTABLISHED:
945 iser_connected_handler(cma_id);
946 break;
947 case RDMA_CM_EVENT_ADDR_ERROR:
948 case RDMA_CM_EVENT_ROUTE_ERROR:
949 case RDMA_CM_EVENT_CONNECT_ERROR:
950 case RDMA_CM_EVENT_UNREACHABLE:
951 case RDMA_CM_EVENT_REJECTED:
952 iser_connect_error(cma_id);
953 break;
954 case RDMA_CM_EVENT_DISCONNECTED:
955 case RDMA_CM_EVENT_ADDR_CHANGE:
956 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
957 iser_cleanup_handler(cma_id, false);
958 break;
959 case RDMA_CM_EVENT_DEVICE_REMOVAL:
960 /*
961 * we *must* destroy the device as we cannot rely
962 * on iscsid to be around to initiate error handling.
963 * also if we are not in state DOWN implicitly destroy
964 * the cma_id.
965 */
966 iser_cleanup_handler(cma_id, true);
967 if (iser_conn->state != ISER_CONN_DOWN) {
968 iser_conn->ib_conn.cma_id = NULL;
969 ret = 1;
970 }
971 break;
972 default:
973 iser_err("Unexpected RDMA CM event: %s (%d)\n",
974 rdma_event_msg(event->event), event->event);
975 break;
976 }
977 mutex_unlock(&iser_conn->state_mutex);
978
979 return ret;
980 }
981
982 void iser_conn_init(struct iser_conn *iser_conn)
983 {
984 iser_conn->state = ISER_CONN_INIT;
985 iser_conn->ib_conn.post_recv_buf_count = 0;
986 init_completion(&iser_conn->ib_conn.flush_comp);
987 init_completion(&iser_conn->stop_completion);
988 init_completion(&iser_conn->ib_completion);
989 init_completion(&iser_conn->up_completion);
990 INIT_LIST_HEAD(&iser_conn->conn_list);
991 mutex_init(&iser_conn->state_mutex);
992 }
993
994 /**
995 * starts the process of connecting to the target
996 * sleeps until the connection is established or rejected
997 */
998 int iser_connect(struct iser_conn *iser_conn,
999 struct sockaddr *src_addr,
1000 struct sockaddr *dst_addr,
1001 int non_blocking)
1002 {
1003 struct ib_conn *ib_conn = &iser_conn->ib_conn;
1004 int err = 0;
1005
1006 mutex_lock(&iser_conn->state_mutex);
1007
1008 sprintf(iser_conn->name, "%pISp", dst_addr);
1009
1010 iser_info("connecting to: %s\n", iser_conn->name);
1011
1012 /* the device is known only --after-- address resolution */
1013 ib_conn->device = NULL;
1014
1015 iser_conn->state = ISER_CONN_PENDING;
1016
1017 ib_conn->beacon.wr_id = ISER_BEACON_WRID;
1018 ib_conn->beacon.opcode = IB_WR_SEND;
1019
1020 ib_conn->cma_id = rdma_create_id(iser_cma_handler,
1021 (void *)iser_conn,
1022 RDMA_PS_TCP, IB_QPT_RC);
1023 if (IS_ERR(ib_conn->cma_id)) {
1024 err = PTR_ERR(ib_conn->cma_id);
1025 iser_err("rdma_create_id failed: %d\n", err);
1026 goto id_failure;
1027 }
1028
1029 err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000);
1030 if (err) {
1031 iser_err("rdma_resolve_addr failed: %d\n", err);
1032 goto addr_failure;
1033 }
1034
1035 if (!non_blocking) {
1036 wait_for_completion_interruptible(&iser_conn->up_completion);
1037
1038 if (iser_conn->state != ISER_CONN_UP) {
1039 err = -EIO;
1040 goto connect_failure;
1041 }
1042 }
1043 mutex_unlock(&iser_conn->state_mutex);
1044
1045 mutex_lock(&ig.connlist_mutex);
1046 list_add(&iser_conn->conn_list, &ig.connlist);
1047 mutex_unlock(&ig.connlist_mutex);
1048 return 0;
1049
1050 id_failure:
1051 ib_conn->cma_id = NULL;
1052 addr_failure:
1053 iser_conn->state = ISER_CONN_DOWN;
1054 connect_failure:
1055 mutex_unlock(&iser_conn->state_mutex);
1056 iser_conn_release(iser_conn);
1057 return err;
1058 }
1059
1060 int iser_post_recvl(struct iser_conn *iser_conn)
1061 {
1062 struct ib_recv_wr rx_wr, *rx_wr_failed;
1063 struct ib_conn *ib_conn = &iser_conn->ib_conn;
1064 struct ib_sge sge;
1065 int ib_ret;
1066
1067 sge.addr = iser_conn->login_resp_dma;
1068 sge.length = ISER_RX_LOGIN_SIZE;
1069 sge.lkey = ib_conn->device->pd->local_dma_lkey;
1070
1071 rx_wr.wr_id = (uintptr_t)iser_conn->login_resp_buf;
1072 rx_wr.sg_list = &sge;
1073 rx_wr.num_sge = 1;
1074 rx_wr.next = NULL;
1075
1076 ib_conn->post_recv_buf_count++;
1077 ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed);
1078 if (ib_ret) {
1079 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1080 ib_conn->post_recv_buf_count--;
1081 }
1082 return ib_ret;
1083 }
1084
1085 int iser_post_recvm(struct iser_conn *iser_conn, int count)
1086 {
1087 struct ib_recv_wr *rx_wr, *rx_wr_failed;
1088 int i, ib_ret;
1089 struct ib_conn *ib_conn = &iser_conn->ib_conn;
1090 unsigned int my_rx_head = iser_conn->rx_desc_head;
1091 struct iser_rx_desc *rx_desc;
1092
1093 for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) {
1094 rx_desc = &iser_conn->rx_descs[my_rx_head];
1095 rx_wr->wr_id = (uintptr_t)rx_desc;
1096 rx_wr->sg_list = &rx_desc->rx_sg;
1097 rx_wr->num_sge = 1;
1098 rx_wr->next = rx_wr + 1;
1099 my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask;
1100 }
1101
1102 rx_wr--;
1103 rx_wr->next = NULL; /* mark end of work requests list */
1104
1105 ib_conn->post_recv_buf_count += count;
1106 ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed);
1107 if (ib_ret) {
1108 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1109 ib_conn->post_recv_buf_count -= count;
1110 } else
1111 iser_conn->rx_desc_head = my_rx_head;
1112 return ib_ret;
1113 }
1114
1115
1116 /**
1117 * iser_start_send - Initiate a Send DTO operation
1118 *
1119 * returns 0 on success, -1 on failure
1120 */
1121 int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc,
1122 bool signal)
1123 {
1124 struct ib_send_wr *bad_wr, *wr = iser_tx_next_wr(tx_desc);
1125 int ib_ret;
1126
1127 ib_dma_sync_single_for_device(ib_conn->device->ib_device,
1128 tx_desc->dma_addr, ISER_HEADERS_LEN,
1129 DMA_TO_DEVICE);
1130
1131 wr->next = NULL;
1132 wr->wr_id = (uintptr_t)tx_desc;
1133 wr->sg_list = tx_desc->tx_sg;
1134 wr->num_sge = tx_desc->num_sge;
1135 wr->opcode = IB_WR_SEND;
1136 wr->send_flags = signal ? IB_SEND_SIGNALED : 0;
1137
1138 ib_ret = ib_post_send(ib_conn->qp, &tx_desc->wrs[0], &bad_wr);
1139 if (ib_ret)
1140 iser_err("ib_post_send failed, ret:%d opcode:%d\n",
1141 ib_ret, bad_wr->opcode);
1142
1143 return ib_ret;
1144 }
1145
1146 /**
1147 * is_iser_tx_desc - Indicate if the completion wr_id
1148 * is a TX descriptor or not.
1149 * @iser_conn: iser connection
1150 * @wr_id: completion WR identifier
1151 *
1152 * Since we cannot rely on wc opcode in FLUSH errors
1153 * we must work around it by checking if the wr_id address
1154 * falls in the iser connection rx_descs buffer. If so
1155 * it is an RX descriptor, otherwize it is a TX.
1156 */
1157 static inline bool
1158 is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id)
1159 {
1160 void *start = iser_conn->rx_descs;
1161 int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs);
1162
1163 if (wr_id >= start && wr_id < start + len)
1164 return false;
1165
1166 return true;
1167 }
1168
1169 /**
1170 * iser_handle_comp_error() - Handle error completion
1171 * @ib_conn: connection RDMA resources
1172 * @wc: work completion
1173 *
1174 * Notes: We may handle a FLUSH error completion and in this case
1175 * we only cleanup in case TX type was DATAOUT. For non-FLUSH
1176 * error completion we should also notify iscsi layer that
1177 * connection is failed (in case we passed bind stage).
1178 */
1179 static void
1180 iser_handle_comp_error(struct ib_conn *ib_conn,
1181 struct ib_wc *wc)
1182 {
1183 void *wr_id = (void *)(uintptr_t)wc->wr_id;
1184 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
1185 ib_conn);
1186
1187 if (wc->status != IB_WC_WR_FLUSH_ERR)
1188 if (iser_conn->iscsi_conn)
1189 iscsi_conn_failure(iser_conn->iscsi_conn,
1190 ISCSI_ERR_CONN_FAILED);
1191
1192 if (wc->wr_id == ISER_FASTREG_LI_WRID)
1193 return;
1194
1195 if (is_iser_tx_desc(iser_conn, wr_id)) {
1196 struct iser_tx_desc *desc = wr_id;
1197
1198 if (desc->type == ISCSI_TX_DATAOUT)
1199 kmem_cache_free(ig.desc_cache, desc);
1200 } else {
1201 ib_conn->post_recv_buf_count--;
1202 }
1203 }
1204
1205 /**
1206 * iser_handle_wc - handle a single work completion
1207 * @wc: work completion
1208 *
1209 * Soft-IRQ context, work completion can be either
1210 * SEND or RECV, and can turn out successful or
1211 * with error (or flush error).
1212 */
1213 static void iser_handle_wc(struct ib_wc *wc)
1214 {
1215 struct ib_conn *ib_conn;
1216 struct iser_tx_desc *tx_desc;
1217 struct iser_rx_desc *rx_desc;
1218
1219 ib_conn = wc->qp->qp_context;
1220 if (likely(wc->status == IB_WC_SUCCESS)) {
1221 if (wc->opcode == IB_WC_RECV) {
1222 rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id;
1223 iser_rcv_completion(rx_desc, wc->byte_len,
1224 ib_conn);
1225 } else
1226 if (wc->opcode == IB_WC_SEND) {
1227 tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id;
1228 iser_snd_completion(tx_desc, ib_conn);
1229 } else {
1230 iser_err("Unknown wc opcode %d\n", wc->opcode);
1231 }
1232 } else {
1233 if (wc->status != IB_WC_WR_FLUSH_ERR)
1234 iser_err("%s (%d): wr id %llx vend_err %x\n",
1235 ib_wc_status_msg(wc->status), wc->status,
1236 wc->wr_id, wc->vendor_err);
1237 else
1238 iser_dbg("%s (%d): wr id %llx\n",
1239 ib_wc_status_msg(wc->status), wc->status,
1240 wc->wr_id);
1241
1242 if (wc->wr_id == ISER_BEACON_WRID)
1243 /* all flush errors were consumed */
1244 complete(&ib_conn->flush_comp);
1245 else
1246 iser_handle_comp_error(ib_conn, wc);
1247 }
1248 }
1249
1250 /**
1251 * iser_cq_tasklet_fn - iSER completion polling loop
1252 * @data: iSER completion context
1253 *
1254 * Soft-IRQ context, polling connection CQ until
1255 * either CQ was empty or we exausted polling budget
1256 */
1257 static void iser_cq_tasklet_fn(unsigned long data)
1258 {
1259 struct iser_comp *comp = (struct iser_comp *)data;
1260 struct ib_cq *cq = comp->cq;
1261 struct ib_wc *const wcs = comp->wcs;
1262 int i, n, completed = 0;
1263
1264 while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) {
1265 for (i = 0; i < n; i++)
1266 iser_handle_wc(&wcs[i]);
1267
1268 completed += n;
1269 if (completed >= iser_cq_poll_limit)
1270 break;
1271 }
1272
1273 /*
1274 * It is assumed here that arming CQ only once its empty
1275 * would not cause interrupts to be missed.
1276 */
1277 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1278
1279 iser_dbg("got %d completions\n", completed);
1280 }
1281
1282 static void iser_cq_callback(struct ib_cq *cq, void *cq_context)
1283 {
1284 struct iser_comp *comp = cq_context;
1285
1286 tasklet_schedule(&comp->tasklet);
1287 }
1288
1289 u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task,
1290 enum iser_data_dir cmd_dir, sector_t *sector)
1291 {
1292 struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir];
1293 struct iser_fr_desc *desc = reg->mem_h;
1294 unsigned long sector_size = iser_task->sc->device->sector_size;
1295 struct ib_mr_status mr_status;
1296 int ret;
1297
1298 if (desc && desc->pi_ctx->sig_protected) {
1299 desc->pi_ctx->sig_protected = 0;
1300 ret = ib_check_mr_status(desc->pi_ctx->sig_mr,
1301 IB_MR_CHECK_SIG_STATUS, &mr_status);
1302 if (ret) {
1303 pr_err("ib_check_mr_status failed, ret %d\n", ret);
1304 goto err;
1305 }
1306
1307 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
1308 sector_t sector_off = mr_status.sig_err.sig_err_offset;
1309
1310 do_div(sector_off, sector_size + 8);
1311 *sector = scsi_get_lba(iser_task->sc) + sector_off;
1312
1313 pr_err("PI error found type %d at sector %llx "
1314 "expected %x vs actual %x\n",
1315 mr_status.sig_err.err_type,
1316 (unsigned long long)*sector,
1317 mr_status.sig_err.expected,
1318 mr_status.sig_err.actual);
1319
1320 switch (mr_status.sig_err.err_type) {
1321 case IB_SIG_BAD_GUARD:
1322 return 0x1;
1323 case IB_SIG_BAD_REFTAG:
1324 return 0x3;
1325 case IB_SIG_BAD_APPTAG:
1326 return 0x2;
1327 }
1328 }
1329 }
1330
1331 return 0;
1332 err:
1333 /* Not alot we can do here, return ambiguous guard error */
1334 return 0x1;
1335 }