]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/infiniband/ulp/srp/ib_srp.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / drivers / infiniband / ulp / srp / ib_srp.c
1 /*
2 * Copyright (c) 2005 Cisco Systems. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44
45 #include <linux/atomic.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53
54 #include "ib_srp.h"
55
56 #define DRV_NAME "ib_srp"
57 #define PFX DRV_NAME ": "
58 #define DRV_VERSION "2.0"
59 #define DRV_RELDATE "July 26, 2015"
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65 MODULE_INFO(release_date, DRV_RELDATE);
66
67 #if !defined(CONFIG_DYNAMIC_DEBUG)
68 #define DEFINE_DYNAMIC_DEBUG_METADATA(name, fmt)
69 #define DYNAMIC_DEBUG_BRANCH(descriptor) false
70 #endif
71
72 static unsigned int srp_sg_tablesize;
73 static unsigned int cmd_sg_entries;
74 static unsigned int indirect_sg_entries;
75 static bool allow_ext_sg;
76 static bool prefer_fr = true;
77 static bool register_always = true;
78 static bool never_register;
79 static int topspin_workarounds = 1;
80
81 module_param(srp_sg_tablesize, uint, 0444);
82 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
83
84 module_param(cmd_sg_entries, uint, 0444);
85 MODULE_PARM_DESC(cmd_sg_entries,
86 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
87
88 module_param(indirect_sg_entries, uint, 0444);
89 MODULE_PARM_DESC(indirect_sg_entries,
90 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SG_MAX_SEGMENTS) ")");
91
92 module_param(allow_ext_sg, bool, 0444);
93 MODULE_PARM_DESC(allow_ext_sg,
94 "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
95
96 module_param(topspin_workarounds, int, 0444);
97 MODULE_PARM_DESC(topspin_workarounds,
98 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
99
100 module_param(prefer_fr, bool, 0444);
101 MODULE_PARM_DESC(prefer_fr,
102 "Whether to use fast registration if both FMR and fast registration are supported");
103
104 module_param(register_always, bool, 0444);
105 MODULE_PARM_DESC(register_always,
106 "Use memory registration even for contiguous memory regions");
107
108 module_param(never_register, bool, 0444);
109 MODULE_PARM_DESC(never_register, "Never register memory");
110
111 static const struct kernel_param_ops srp_tmo_ops;
112
113 static int srp_reconnect_delay = 10;
114 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
115 S_IRUGO | S_IWUSR);
116 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
117
118 static int srp_fast_io_fail_tmo = 15;
119 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
120 S_IRUGO | S_IWUSR);
121 MODULE_PARM_DESC(fast_io_fail_tmo,
122 "Number of seconds between the observation of a transport"
123 " layer error and failing all I/O. \"off\" means that this"
124 " functionality is disabled.");
125
126 static int srp_dev_loss_tmo = 600;
127 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
128 S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(dev_loss_tmo,
130 "Maximum number of seconds that the SRP transport should"
131 " insulate transport layer errors. After this time has been"
132 " exceeded the SCSI host is removed. Should be"
133 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
134 " if fast_io_fail_tmo has not been set. \"off\" means that"
135 " this functionality is disabled.");
136
137 static unsigned ch_count;
138 module_param(ch_count, uint, 0444);
139 MODULE_PARM_DESC(ch_count,
140 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
141
142 static void srp_add_one(struct ib_device *device);
143 static void srp_remove_one(struct ib_device *device, void *client_data);
144 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc);
145 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
146 const char *opname);
147 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
148
149 static struct scsi_transport_template *ib_srp_transport_template;
150 static struct workqueue_struct *srp_remove_wq;
151
152 static struct ib_client srp_client = {
153 .name = "srp",
154 .add = srp_add_one,
155 .remove = srp_remove_one
156 };
157
158 static struct ib_sa_client srp_sa_client;
159
160 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
161 {
162 int tmo = *(int *)kp->arg;
163
164 if (tmo >= 0)
165 return sprintf(buffer, "%d", tmo);
166 else
167 return sprintf(buffer, "off");
168 }
169
170 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
171 {
172 int tmo, res;
173
174 res = srp_parse_tmo(&tmo, val);
175 if (res)
176 goto out;
177
178 if (kp->arg == &srp_reconnect_delay)
179 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
180 srp_dev_loss_tmo);
181 else if (kp->arg == &srp_fast_io_fail_tmo)
182 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
183 else
184 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
185 tmo);
186 if (res)
187 goto out;
188 *(int *)kp->arg = tmo;
189
190 out:
191 return res;
192 }
193
194 static const struct kernel_param_ops srp_tmo_ops = {
195 .get = srp_tmo_get,
196 .set = srp_tmo_set,
197 };
198
199 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
200 {
201 return (struct srp_target_port *) host->hostdata;
202 }
203
204 static const char *srp_target_info(struct Scsi_Host *host)
205 {
206 return host_to_target(host)->target_name;
207 }
208
209 static int srp_target_is_topspin(struct srp_target_port *target)
210 {
211 static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
212 static const u8 cisco_oui[3] = { 0x00, 0x1b, 0x0d };
213
214 return topspin_workarounds &&
215 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
216 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
217 }
218
219 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
220 gfp_t gfp_mask,
221 enum dma_data_direction direction)
222 {
223 struct srp_iu *iu;
224
225 iu = kmalloc(sizeof *iu, gfp_mask);
226 if (!iu)
227 goto out;
228
229 iu->buf = kzalloc(size, gfp_mask);
230 if (!iu->buf)
231 goto out_free_iu;
232
233 iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
234 direction);
235 if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
236 goto out_free_buf;
237
238 iu->size = size;
239 iu->direction = direction;
240
241 return iu;
242
243 out_free_buf:
244 kfree(iu->buf);
245 out_free_iu:
246 kfree(iu);
247 out:
248 return NULL;
249 }
250
251 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
252 {
253 if (!iu)
254 return;
255
256 ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
257 iu->direction);
258 kfree(iu->buf);
259 kfree(iu);
260 }
261
262 static void srp_qp_event(struct ib_event *event, void *context)
263 {
264 pr_debug("QP event %s (%d)\n",
265 ib_event_msg(event->event), event->event);
266 }
267
268 static int srp_init_qp(struct srp_target_port *target,
269 struct ib_qp *qp)
270 {
271 struct ib_qp_attr *attr;
272 int ret;
273
274 attr = kmalloc(sizeof *attr, GFP_KERNEL);
275 if (!attr)
276 return -ENOMEM;
277
278 ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
279 target->srp_host->port,
280 be16_to_cpu(target->pkey),
281 &attr->pkey_index);
282 if (ret)
283 goto out;
284
285 attr->qp_state = IB_QPS_INIT;
286 attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
287 IB_ACCESS_REMOTE_WRITE);
288 attr->port_num = target->srp_host->port;
289
290 ret = ib_modify_qp(qp, attr,
291 IB_QP_STATE |
292 IB_QP_PKEY_INDEX |
293 IB_QP_ACCESS_FLAGS |
294 IB_QP_PORT);
295
296 out:
297 kfree(attr);
298 return ret;
299 }
300
301 static int srp_new_cm_id(struct srp_rdma_ch *ch)
302 {
303 struct srp_target_port *target = ch->target;
304 struct ib_cm_id *new_cm_id;
305
306 new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
307 srp_cm_handler, ch);
308 if (IS_ERR(new_cm_id))
309 return PTR_ERR(new_cm_id);
310
311 if (ch->cm_id)
312 ib_destroy_cm_id(ch->cm_id);
313 ch->cm_id = new_cm_id;
314 ch->path.sgid = target->sgid;
315 ch->path.dgid = target->orig_dgid;
316 ch->path.pkey = target->pkey;
317 ch->path.service_id = target->service_id;
318
319 return 0;
320 }
321
322 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
323 {
324 struct srp_device *dev = target->srp_host->srp_dev;
325 struct ib_fmr_pool_param fmr_param;
326
327 memset(&fmr_param, 0, sizeof(fmr_param));
328 fmr_param.pool_size = target->mr_pool_size;
329 fmr_param.dirty_watermark = fmr_param.pool_size / 4;
330 fmr_param.cache = 1;
331 fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
332 fmr_param.page_shift = ilog2(dev->mr_page_size);
333 fmr_param.access = (IB_ACCESS_LOCAL_WRITE |
334 IB_ACCESS_REMOTE_WRITE |
335 IB_ACCESS_REMOTE_READ);
336
337 return ib_create_fmr_pool(dev->pd, &fmr_param);
338 }
339
340 /**
341 * srp_destroy_fr_pool() - free the resources owned by a pool
342 * @pool: Fast registration pool to be destroyed.
343 */
344 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
345 {
346 int i;
347 struct srp_fr_desc *d;
348
349 if (!pool)
350 return;
351
352 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
353 if (d->mr)
354 ib_dereg_mr(d->mr);
355 }
356 kfree(pool);
357 }
358
359 /**
360 * srp_create_fr_pool() - allocate and initialize a pool for fast registration
361 * @device: IB device to allocate fast registration descriptors for.
362 * @pd: Protection domain associated with the FR descriptors.
363 * @pool_size: Number of descriptors to allocate.
364 * @max_page_list_len: Maximum fast registration work request page list length.
365 */
366 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
367 struct ib_pd *pd, int pool_size,
368 int max_page_list_len)
369 {
370 struct srp_fr_pool *pool;
371 struct srp_fr_desc *d;
372 struct ib_mr *mr;
373 int i, ret = -EINVAL;
374 enum ib_mr_type mr_type;
375
376 if (pool_size <= 0)
377 goto err;
378 ret = -ENOMEM;
379 pool = kzalloc(sizeof(struct srp_fr_pool) +
380 pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
381 if (!pool)
382 goto err;
383 pool->size = pool_size;
384 pool->max_page_list_len = max_page_list_len;
385 spin_lock_init(&pool->lock);
386 INIT_LIST_HEAD(&pool->free_list);
387
388 if (device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
389 mr_type = IB_MR_TYPE_SG_GAPS;
390 else
391 mr_type = IB_MR_TYPE_MEM_REG;
392
393 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
394 mr = ib_alloc_mr(pd, mr_type, max_page_list_len);
395 if (IS_ERR(mr)) {
396 ret = PTR_ERR(mr);
397 if (ret == -ENOMEM)
398 pr_info("%s: ib_alloc_mr() failed. Try to reduce max_cmd_per_lun, max_sect or ch_count\n",
399 dev_name(&device->dev));
400 goto destroy_pool;
401 }
402 d->mr = mr;
403 list_add_tail(&d->entry, &pool->free_list);
404 }
405
406 out:
407 return pool;
408
409 destroy_pool:
410 srp_destroy_fr_pool(pool);
411
412 err:
413 pool = ERR_PTR(ret);
414 goto out;
415 }
416
417 /**
418 * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
419 * @pool: Pool to obtain descriptor from.
420 */
421 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
422 {
423 struct srp_fr_desc *d = NULL;
424 unsigned long flags;
425
426 spin_lock_irqsave(&pool->lock, flags);
427 if (!list_empty(&pool->free_list)) {
428 d = list_first_entry(&pool->free_list, typeof(*d), entry);
429 list_del(&d->entry);
430 }
431 spin_unlock_irqrestore(&pool->lock, flags);
432
433 return d;
434 }
435
436 /**
437 * srp_fr_pool_put() - put an FR descriptor back in the free list
438 * @pool: Pool the descriptor was allocated from.
439 * @desc: Pointer to an array of fast registration descriptor pointers.
440 * @n: Number of descriptors to put back.
441 *
442 * Note: The caller must already have queued an invalidation request for
443 * desc->mr->rkey before calling this function.
444 */
445 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
446 int n)
447 {
448 unsigned long flags;
449 int i;
450
451 spin_lock_irqsave(&pool->lock, flags);
452 for (i = 0; i < n; i++)
453 list_add(&desc[i]->entry, &pool->free_list);
454 spin_unlock_irqrestore(&pool->lock, flags);
455 }
456
457 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
458 {
459 struct srp_device *dev = target->srp_host->srp_dev;
460
461 return srp_create_fr_pool(dev->dev, dev->pd, target->mr_pool_size,
462 dev->max_pages_per_mr);
463 }
464
465 /**
466 * srp_destroy_qp() - destroy an RDMA queue pair
467 * @qp: RDMA queue pair.
468 *
469 * Drain the qp before destroying it. This avoids that the receive
470 * completion handler can access the queue pair while it is
471 * being destroyed.
472 */
473 static void srp_destroy_qp(struct ib_qp *qp)
474 {
475 ib_drain_rq(qp);
476 ib_destroy_qp(qp);
477 }
478
479 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
480 {
481 struct srp_target_port *target = ch->target;
482 struct srp_device *dev = target->srp_host->srp_dev;
483 struct ib_qp_init_attr *init_attr;
484 struct ib_cq *recv_cq, *send_cq;
485 struct ib_qp *qp;
486 struct ib_fmr_pool *fmr_pool = NULL;
487 struct srp_fr_pool *fr_pool = NULL;
488 const int m = 1 + dev->use_fast_reg * target->mr_per_cmd * 2;
489 int ret;
490
491 init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
492 if (!init_attr)
493 return -ENOMEM;
494
495 /* queue_size + 1 for ib_drain_rq() */
496 recv_cq = ib_alloc_cq(dev->dev, ch, target->queue_size + 1,
497 ch->comp_vector, IB_POLL_SOFTIRQ);
498 if (IS_ERR(recv_cq)) {
499 ret = PTR_ERR(recv_cq);
500 goto err;
501 }
502
503 send_cq = ib_alloc_cq(dev->dev, ch, m * target->queue_size,
504 ch->comp_vector, IB_POLL_DIRECT);
505 if (IS_ERR(send_cq)) {
506 ret = PTR_ERR(send_cq);
507 goto err_recv_cq;
508 }
509
510 init_attr->event_handler = srp_qp_event;
511 init_attr->cap.max_send_wr = m * target->queue_size;
512 init_attr->cap.max_recv_wr = target->queue_size + 1;
513 init_attr->cap.max_recv_sge = 1;
514 init_attr->cap.max_send_sge = 1;
515 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
516 init_attr->qp_type = IB_QPT_RC;
517 init_attr->send_cq = send_cq;
518 init_attr->recv_cq = recv_cq;
519
520 qp = ib_create_qp(dev->pd, init_attr);
521 if (IS_ERR(qp)) {
522 ret = PTR_ERR(qp);
523 goto err_send_cq;
524 }
525
526 ret = srp_init_qp(target, qp);
527 if (ret)
528 goto err_qp;
529
530 if (dev->use_fast_reg) {
531 fr_pool = srp_alloc_fr_pool(target);
532 if (IS_ERR(fr_pool)) {
533 ret = PTR_ERR(fr_pool);
534 shost_printk(KERN_WARNING, target->scsi_host, PFX
535 "FR pool allocation failed (%d)\n", ret);
536 goto err_qp;
537 }
538 } else if (dev->use_fmr) {
539 fmr_pool = srp_alloc_fmr_pool(target);
540 if (IS_ERR(fmr_pool)) {
541 ret = PTR_ERR(fmr_pool);
542 shost_printk(KERN_WARNING, target->scsi_host, PFX
543 "FMR pool allocation failed (%d)\n", ret);
544 goto err_qp;
545 }
546 }
547
548 if (ch->qp)
549 srp_destroy_qp(ch->qp);
550 if (ch->recv_cq)
551 ib_free_cq(ch->recv_cq);
552 if (ch->send_cq)
553 ib_free_cq(ch->send_cq);
554
555 ch->qp = qp;
556 ch->recv_cq = recv_cq;
557 ch->send_cq = send_cq;
558
559 if (dev->use_fast_reg) {
560 if (ch->fr_pool)
561 srp_destroy_fr_pool(ch->fr_pool);
562 ch->fr_pool = fr_pool;
563 } else if (dev->use_fmr) {
564 if (ch->fmr_pool)
565 ib_destroy_fmr_pool(ch->fmr_pool);
566 ch->fmr_pool = fmr_pool;
567 }
568
569 kfree(init_attr);
570 return 0;
571
572 err_qp:
573 srp_destroy_qp(qp);
574
575 err_send_cq:
576 ib_free_cq(send_cq);
577
578 err_recv_cq:
579 ib_free_cq(recv_cq);
580
581 err:
582 kfree(init_attr);
583 return ret;
584 }
585
586 /*
587 * Note: this function may be called without srp_alloc_iu_bufs() having been
588 * invoked. Hence the ch->[rt]x_ring checks.
589 */
590 static void srp_free_ch_ib(struct srp_target_port *target,
591 struct srp_rdma_ch *ch)
592 {
593 struct srp_device *dev = target->srp_host->srp_dev;
594 int i;
595
596 if (!ch->target)
597 return;
598
599 if (ch->cm_id) {
600 ib_destroy_cm_id(ch->cm_id);
601 ch->cm_id = NULL;
602 }
603
604 /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
605 if (!ch->qp)
606 return;
607
608 if (dev->use_fast_reg) {
609 if (ch->fr_pool)
610 srp_destroy_fr_pool(ch->fr_pool);
611 } else if (dev->use_fmr) {
612 if (ch->fmr_pool)
613 ib_destroy_fmr_pool(ch->fmr_pool);
614 }
615
616 srp_destroy_qp(ch->qp);
617 ib_free_cq(ch->send_cq);
618 ib_free_cq(ch->recv_cq);
619
620 /*
621 * Avoid that the SCSI error handler tries to use this channel after
622 * it has been freed. The SCSI error handler can namely continue
623 * trying to perform recovery actions after scsi_remove_host()
624 * returned.
625 */
626 ch->target = NULL;
627
628 ch->qp = NULL;
629 ch->send_cq = ch->recv_cq = NULL;
630
631 if (ch->rx_ring) {
632 for (i = 0; i < target->queue_size; ++i)
633 srp_free_iu(target->srp_host, ch->rx_ring[i]);
634 kfree(ch->rx_ring);
635 ch->rx_ring = NULL;
636 }
637 if (ch->tx_ring) {
638 for (i = 0; i < target->queue_size; ++i)
639 srp_free_iu(target->srp_host, ch->tx_ring[i]);
640 kfree(ch->tx_ring);
641 ch->tx_ring = NULL;
642 }
643 }
644
645 static void srp_path_rec_completion(int status,
646 struct ib_sa_path_rec *pathrec,
647 void *ch_ptr)
648 {
649 struct srp_rdma_ch *ch = ch_ptr;
650 struct srp_target_port *target = ch->target;
651
652 ch->status = status;
653 if (status)
654 shost_printk(KERN_ERR, target->scsi_host,
655 PFX "Got failed path rec status %d\n", status);
656 else
657 ch->path = *pathrec;
658 complete(&ch->done);
659 }
660
661 static int srp_lookup_path(struct srp_rdma_ch *ch)
662 {
663 struct srp_target_port *target = ch->target;
664 int ret;
665
666 ch->path.numb_path = 1;
667
668 init_completion(&ch->done);
669
670 ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
671 target->srp_host->srp_dev->dev,
672 target->srp_host->port,
673 &ch->path,
674 IB_SA_PATH_REC_SERVICE_ID |
675 IB_SA_PATH_REC_DGID |
676 IB_SA_PATH_REC_SGID |
677 IB_SA_PATH_REC_NUMB_PATH |
678 IB_SA_PATH_REC_PKEY,
679 SRP_PATH_REC_TIMEOUT_MS,
680 GFP_KERNEL,
681 srp_path_rec_completion,
682 ch, &ch->path_query);
683 if (ch->path_query_id < 0)
684 return ch->path_query_id;
685
686 ret = wait_for_completion_interruptible(&ch->done);
687 if (ret < 0)
688 return ret;
689
690 if (ch->status < 0)
691 shost_printk(KERN_WARNING, target->scsi_host,
692 PFX "Path record query failed\n");
693
694 return ch->status;
695 }
696
697 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
698 {
699 struct srp_target_port *target = ch->target;
700 struct {
701 struct ib_cm_req_param param;
702 struct srp_login_req priv;
703 } *req = NULL;
704 int status;
705
706 req = kzalloc(sizeof *req, GFP_KERNEL);
707 if (!req)
708 return -ENOMEM;
709
710 req->param.primary_path = &ch->path;
711 req->param.alternate_path = NULL;
712 req->param.service_id = target->service_id;
713 req->param.qp_num = ch->qp->qp_num;
714 req->param.qp_type = ch->qp->qp_type;
715 req->param.private_data = &req->priv;
716 req->param.private_data_len = sizeof req->priv;
717 req->param.flow_control = 1;
718
719 get_random_bytes(&req->param.starting_psn, 4);
720 req->param.starting_psn &= 0xffffff;
721
722 /*
723 * Pick some arbitrary defaults here; we could make these
724 * module parameters if anyone cared about setting them.
725 */
726 req->param.responder_resources = 4;
727 req->param.remote_cm_response_timeout = 20;
728 req->param.local_cm_response_timeout = 20;
729 req->param.retry_count = target->tl_retry_count;
730 req->param.rnr_retry_count = 7;
731 req->param.max_cm_retries = 15;
732
733 req->priv.opcode = SRP_LOGIN_REQ;
734 req->priv.tag = 0;
735 req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
736 req->priv.req_buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
737 SRP_BUF_FORMAT_INDIRECT);
738 req->priv.req_flags = (multich ? SRP_MULTICHAN_MULTI :
739 SRP_MULTICHAN_SINGLE);
740 /*
741 * In the published SRP specification (draft rev. 16a), the
742 * port identifier format is 8 bytes of ID extension followed
743 * by 8 bytes of GUID. Older drafts put the two halves in the
744 * opposite order, so that the GUID comes first.
745 *
746 * Targets conforming to these obsolete drafts can be
747 * recognized by the I/O Class they report.
748 */
749 if (target->io_class == SRP_REV10_IB_IO_CLASS) {
750 memcpy(req->priv.initiator_port_id,
751 &target->sgid.global.interface_id, 8);
752 memcpy(req->priv.initiator_port_id + 8,
753 &target->initiator_ext, 8);
754 memcpy(req->priv.target_port_id, &target->ioc_guid, 8);
755 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
756 } else {
757 memcpy(req->priv.initiator_port_id,
758 &target->initiator_ext, 8);
759 memcpy(req->priv.initiator_port_id + 8,
760 &target->sgid.global.interface_id, 8);
761 memcpy(req->priv.target_port_id, &target->id_ext, 8);
762 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
763 }
764
765 /*
766 * Topspin/Cisco SRP targets will reject our login unless we
767 * zero out the first 8 bytes of our initiator port ID and set
768 * the second 8 bytes to the local node GUID.
769 */
770 if (srp_target_is_topspin(target)) {
771 shost_printk(KERN_DEBUG, target->scsi_host,
772 PFX "Topspin/Cisco initiator port ID workaround "
773 "activated for target GUID %016llx\n",
774 be64_to_cpu(target->ioc_guid));
775 memset(req->priv.initiator_port_id, 0, 8);
776 memcpy(req->priv.initiator_port_id + 8,
777 &target->srp_host->srp_dev->dev->node_guid, 8);
778 }
779
780 status = ib_send_cm_req(ch->cm_id, &req->param);
781
782 kfree(req);
783
784 return status;
785 }
786
787 static bool srp_queue_remove_work(struct srp_target_port *target)
788 {
789 bool changed = false;
790
791 spin_lock_irq(&target->lock);
792 if (target->state != SRP_TARGET_REMOVED) {
793 target->state = SRP_TARGET_REMOVED;
794 changed = true;
795 }
796 spin_unlock_irq(&target->lock);
797
798 if (changed)
799 queue_work(srp_remove_wq, &target->remove_work);
800
801 return changed;
802 }
803
804 static void srp_disconnect_target(struct srp_target_port *target)
805 {
806 struct srp_rdma_ch *ch;
807 int i;
808
809 /* XXX should send SRP_I_LOGOUT request */
810
811 for (i = 0; i < target->ch_count; i++) {
812 ch = &target->ch[i];
813 ch->connected = false;
814 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
815 shost_printk(KERN_DEBUG, target->scsi_host,
816 PFX "Sending CM DREQ failed\n");
817 }
818 }
819 }
820
821 static void srp_free_req_data(struct srp_target_port *target,
822 struct srp_rdma_ch *ch)
823 {
824 struct srp_device *dev = target->srp_host->srp_dev;
825 struct ib_device *ibdev = dev->dev;
826 struct srp_request *req;
827 int i;
828
829 if (!ch->req_ring)
830 return;
831
832 for (i = 0; i < target->req_ring_size; ++i) {
833 req = &ch->req_ring[i];
834 if (dev->use_fast_reg) {
835 kfree(req->fr_list);
836 } else {
837 kfree(req->fmr_list);
838 kfree(req->map_page);
839 }
840 if (req->indirect_dma_addr) {
841 ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
842 target->indirect_size,
843 DMA_TO_DEVICE);
844 }
845 kfree(req->indirect_desc);
846 }
847
848 kfree(ch->req_ring);
849 ch->req_ring = NULL;
850 }
851
852 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
853 {
854 struct srp_target_port *target = ch->target;
855 struct srp_device *srp_dev = target->srp_host->srp_dev;
856 struct ib_device *ibdev = srp_dev->dev;
857 struct srp_request *req;
858 void *mr_list;
859 dma_addr_t dma_addr;
860 int i, ret = -ENOMEM;
861
862 ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
863 GFP_KERNEL);
864 if (!ch->req_ring)
865 goto out;
866
867 for (i = 0; i < target->req_ring_size; ++i) {
868 req = &ch->req_ring[i];
869 mr_list = kmalloc(target->mr_per_cmd * sizeof(void *),
870 GFP_KERNEL);
871 if (!mr_list)
872 goto out;
873 if (srp_dev->use_fast_reg) {
874 req->fr_list = mr_list;
875 } else {
876 req->fmr_list = mr_list;
877 req->map_page = kmalloc(srp_dev->max_pages_per_mr *
878 sizeof(void *), GFP_KERNEL);
879 if (!req->map_page)
880 goto out;
881 }
882 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
883 if (!req->indirect_desc)
884 goto out;
885
886 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
887 target->indirect_size,
888 DMA_TO_DEVICE);
889 if (ib_dma_mapping_error(ibdev, dma_addr))
890 goto out;
891
892 req->indirect_dma_addr = dma_addr;
893 }
894 ret = 0;
895
896 out:
897 return ret;
898 }
899
900 /**
901 * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
902 * @shost: SCSI host whose attributes to remove from sysfs.
903 *
904 * Note: Any attributes defined in the host template and that did not exist
905 * before invocation of this function will be ignored.
906 */
907 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
908 {
909 struct device_attribute **attr;
910
911 for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
912 device_remove_file(&shost->shost_dev, *attr);
913 }
914
915 static void srp_remove_target(struct srp_target_port *target)
916 {
917 struct srp_rdma_ch *ch;
918 int i;
919
920 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
921
922 srp_del_scsi_host_attr(target->scsi_host);
923 srp_rport_get(target->rport);
924 srp_remove_host(target->scsi_host);
925 scsi_remove_host(target->scsi_host);
926 srp_stop_rport_timers(target->rport);
927 srp_disconnect_target(target);
928 for (i = 0; i < target->ch_count; i++) {
929 ch = &target->ch[i];
930 srp_free_ch_ib(target, ch);
931 }
932 cancel_work_sync(&target->tl_err_work);
933 srp_rport_put(target->rport);
934 for (i = 0; i < target->ch_count; i++) {
935 ch = &target->ch[i];
936 srp_free_req_data(target, ch);
937 }
938 kfree(target->ch);
939 target->ch = NULL;
940
941 spin_lock(&target->srp_host->target_lock);
942 list_del(&target->list);
943 spin_unlock(&target->srp_host->target_lock);
944
945 scsi_host_put(target->scsi_host);
946 }
947
948 static void srp_remove_work(struct work_struct *work)
949 {
950 struct srp_target_port *target =
951 container_of(work, struct srp_target_port, remove_work);
952
953 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
954
955 srp_remove_target(target);
956 }
957
958 static void srp_rport_delete(struct srp_rport *rport)
959 {
960 struct srp_target_port *target = rport->lld_data;
961
962 srp_queue_remove_work(target);
963 }
964
965 /**
966 * srp_connected_ch() - number of connected channels
967 * @target: SRP target port.
968 */
969 static int srp_connected_ch(struct srp_target_port *target)
970 {
971 int i, c = 0;
972
973 for (i = 0; i < target->ch_count; i++)
974 c += target->ch[i].connected;
975
976 return c;
977 }
978
979 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
980 {
981 struct srp_target_port *target = ch->target;
982 int ret;
983
984 WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
985
986 ret = srp_lookup_path(ch);
987 if (ret)
988 goto out;
989
990 while (1) {
991 init_completion(&ch->done);
992 ret = srp_send_req(ch, multich);
993 if (ret)
994 goto out;
995 ret = wait_for_completion_interruptible(&ch->done);
996 if (ret < 0)
997 goto out;
998
999 /*
1000 * The CM event handling code will set status to
1001 * SRP_PORT_REDIRECT if we get a port redirect REJ
1002 * back, or SRP_DLID_REDIRECT if we get a lid/qp
1003 * redirect REJ back.
1004 */
1005 ret = ch->status;
1006 switch (ret) {
1007 case 0:
1008 ch->connected = true;
1009 goto out;
1010
1011 case SRP_PORT_REDIRECT:
1012 ret = srp_lookup_path(ch);
1013 if (ret)
1014 goto out;
1015 break;
1016
1017 case SRP_DLID_REDIRECT:
1018 break;
1019
1020 case SRP_STALE_CONN:
1021 shost_printk(KERN_ERR, target->scsi_host, PFX
1022 "giving up on stale connection\n");
1023 ret = -ECONNRESET;
1024 goto out;
1025
1026 default:
1027 goto out;
1028 }
1029 }
1030
1031 out:
1032 return ret <= 0 ? ret : -ENODEV;
1033 }
1034
1035 static void srp_inv_rkey_err_done(struct ib_cq *cq, struct ib_wc *wc)
1036 {
1037 srp_handle_qp_err(cq, wc, "INV RKEY");
1038 }
1039
1040 static int srp_inv_rkey(struct srp_request *req, struct srp_rdma_ch *ch,
1041 u32 rkey)
1042 {
1043 struct ib_send_wr *bad_wr;
1044 struct ib_send_wr wr = {
1045 .opcode = IB_WR_LOCAL_INV,
1046 .next = NULL,
1047 .num_sge = 0,
1048 .send_flags = 0,
1049 .ex.invalidate_rkey = rkey,
1050 };
1051
1052 wr.wr_cqe = &req->reg_cqe;
1053 req->reg_cqe.done = srp_inv_rkey_err_done;
1054 return ib_post_send(ch->qp, &wr, &bad_wr);
1055 }
1056
1057 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1058 struct srp_rdma_ch *ch,
1059 struct srp_request *req)
1060 {
1061 struct srp_target_port *target = ch->target;
1062 struct srp_device *dev = target->srp_host->srp_dev;
1063 struct ib_device *ibdev = dev->dev;
1064 int i, res;
1065
1066 if (!scsi_sglist(scmnd) ||
1067 (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1068 scmnd->sc_data_direction != DMA_FROM_DEVICE))
1069 return;
1070
1071 if (dev->use_fast_reg) {
1072 struct srp_fr_desc **pfr;
1073
1074 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1075 res = srp_inv_rkey(req, ch, (*pfr)->mr->rkey);
1076 if (res < 0) {
1077 shost_printk(KERN_ERR, target->scsi_host, PFX
1078 "Queueing INV WR for rkey %#x failed (%d)\n",
1079 (*pfr)->mr->rkey, res);
1080 queue_work(system_long_wq,
1081 &target->tl_err_work);
1082 }
1083 }
1084 if (req->nmdesc)
1085 srp_fr_pool_put(ch->fr_pool, req->fr_list,
1086 req->nmdesc);
1087 } else if (dev->use_fmr) {
1088 struct ib_pool_fmr **pfmr;
1089
1090 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1091 ib_fmr_pool_unmap(*pfmr);
1092 }
1093
1094 ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1095 scmnd->sc_data_direction);
1096 }
1097
1098 /**
1099 * srp_claim_req - Take ownership of the scmnd associated with a request.
1100 * @ch: SRP RDMA channel.
1101 * @req: SRP request.
1102 * @sdev: If not NULL, only take ownership for this SCSI device.
1103 * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1104 * ownership of @req->scmnd if it equals @scmnd.
1105 *
1106 * Return value:
1107 * Either NULL or a pointer to the SCSI command the caller became owner of.
1108 */
1109 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1110 struct srp_request *req,
1111 struct scsi_device *sdev,
1112 struct scsi_cmnd *scmnd)
1113 {
1114 unsigned long flags;
1115
1116 spin_lock_irqsave(&ch->lock, flags);
1117 if (req->scmnd &&
1118 (!sdev || req->scmnd->device == sdev) &&
1119 (!scmnd || req->scmnd == scmnd)) {
1120 scmnd = req->scmnd;
1121 req->scmnd = NULL;
1122 } else {
1123 scmnd = NULL;
1124 }
1125 spin_unlock_irqrestore(&ch->lock, flags);
1126
1127 return scmnd;
1128 }
1129
1130 /**
1131 * srp_free_req() - Unmap data and adjust ch->req_lim.
1132 * @ch: SRP RDMA channel.
1133 * @req: Request to be freed.
1134 * @scmnd: SCSI command associated with @req.
1135 * @req_lim_delta: Amount to be added to @target->req_lim.
1136 */
1137 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1138 struct scsi_cmnd *scmnd, s32 req_lim_delta)
1139 {
1140 unsigned long flags;
1141
1142 srp_unmap_data(scmnd, ch, req);
1143
1144 spin_lock_irqsave(&ch->lock, flags);
1145 ch->req_lim += req_lim_delta;
1146 spin_unlock_irqrestore(&ch->lock, flags);
1147 }
1148
1149 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1150 struct scsi_device *sdev, int result)
1151 {
1152 struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1153
1154 if (scmnd) {
1155 srp_free_req(ch, req, scmnd, 0);
1156 scmnd->result = result;
1157 scmnd->scsi_done(scmnd);
1158 }
1159 }
1160
1161 static void srp_terminate_io(struct srp_rport *rport)
1162 {
1163 struct srp_target_port *target = rport->lld_data;
1164 struct srp_rdma_ch *ch;
1165 struct Scsi_Host *shost = target->scsi_host;
1166 struct scsi_device *sdev;
1167 int i, j;
1168
1169 /*
1170 * Invoking srp_terminate_io() while srp_queuecommand() is running
1171 * is not safe. Hence the warning statement below.
1172 */
1173 shost_for_each_device(sdev, shost)
1174 WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1175
1176 for (i = 0; i < target->ch_count; i++) {
1177 ch = &target->ch[i];
1178
1179 for (j = 0; j < target->req_ring_size; ++j) {
1180 struct srp_request *req = &ch->req_ring[j];
1181
1182 srp_finish_req(ch, req, NULL,
1183 DID_TRANSPORT_FAILFAST << 16);
1184 }
1185 }
1186 }
1187
1188 /*
1189 * It is up to the caller to ensure that srp_rport_reconnect() calls are
1190 * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1191 * srp_reset_device() or srp_reset_host() calls will occur while this function
1192 * is in progress. One way to realize that is not to call this function
1193 * directly but to call srp_reconnect_rport() instead since that last function
1194 * serializes calls of this function via rport->mutex and also blocks
1195 * srp_queuecommand() calls before invoking this function.
1196 */
1197 static int srp_rport_reconnect(struct srp_rport *rport)
1198 {
1199 struct srp_target_port *target = rport->lld_data;
1200 struct srp_rdma_ch *ch;
1201 int i, j, ret = 0;
1202 bool multich = false;
1203
1204 srp_disconnect_target(target);
1205
1206 if (target->state == SRP_TARGET_SCANNING)
1207 return -ENODEV;
1208
1209 /*
1210 * Now get a new local CM ID so that we avoid confusing the target in
1211 * case things are really fouled up. Doing so also ensures that all CM
1212 * callbacks will have finished before a new QP is allocated.
1213 */
1214 for (i = 0; i < target->ch_count; i++) {
1215 ch = &target->ch[i];
1216 ret += srp_new_cm_id(ch);
1217 }
1218 for (i = 0; i < target->ch_count; i++) {
1219 ch = &target->ch[i];
1220 for (j = 0; j < target->req_ring_size; ++j) {
1221 struct srp_request *req = &ch->req_ring[j];
1222
1223 srp_finish_req(ch, req, NULL, DID_RESET << 16);
1224 }
1225 }
1226 for (i = 0; i < target->ch_count; i++) {
1227 ch = &target->ch[i];
1228 /*
1229 * Whether or not creating a new CM ID succeeded, create a new
1230 * QP. This guarantees that all completion callback function
1231 * invocations have finished before request resetting starts.
1232 */
1233 ret += srp_create_ch_ib(ch);
1234
1235 INIT_LIST_HEAD(&ch->free_tx);
1236 for (j = 0; j < target->queue_size; ++j)
1237 list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1238 }
1239
1240 target->qp_in_error = false;
1241
1242 for (i = 0; i < target->ch_count; i++) {
1243 ch = &target->ch[i];
1244 if (ret)
1245 break;
1246 ret = srp_connect_ch(ch, multich);
1247 multich = true;
1248 }
1249
1250 if (ret == 0)
1251 shost_printk(KERN_INFO, target->scsi_host,
1252 PFX "reconnect succeeded\n");
1253
1254 return ret;
1255 }
1256
1257 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1258 unsigned int dma_len, u32 rkey)
1259 {
1260 struct srp_direct_buf *desc = state->desc;
1261
1262 WARN_ON_ONCE(!dma_len);
1263
1264 desc->va = cpu_to_be64(dma_addr);
1265 desc->key = cpu_to_be32(rkey);
1266 desc->len = cpu_to_be32(dma_len);
1267
1268 state->total_len += dma_len;
1269 state->desc++;
1270 state->ndesc++;
1271 }
1272
1273 static int srp_map_finish_fmr(struct srp_map_state *state,
1274 struct srp_rdma_ch *ch)
1275 {
1276 struct srp_target_port *target = ch->target;
1277 struct srp_device *dev = target->srp_host->srp_dev;
1278 struct ib_pd *pd = target->pd;
1279 struct ib_pool_fmr *fmr;
1280 u64 io_addr = 0;
1281
1282 if (state->fmr.next >= state->fmr.end) {
1283 shost_printk(KERN_ERR, ch->target->scsi_host,
1284 PFX "Out of MRs (mr_per_cmd = %d)\n",
1285 ch->target->mr_per_cmd);
1286 return -ENOMEM;
1287 }
1288
1289 WARN_ON_ONCE(!dev->use_fmr);
1290
1291 if (state->npages == 0)
1292 return 0;
1293
1294 if (state->npages == 1 && (pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) {
1295 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1296 pd->unsafe_global_rkey);
1297 goto reset_state;
1298 }
1299
1300 fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1301 state->npages, io_addr);
1302 if (IS_ERR(fmr))
1303 return PTR_ERR(fmr);
1304
1305 *state->fmr.next++ = fmr;
1306 state->nmdesc++;
1307
1308 srp_map_desc(state, state->base_dma_addr & ~dev->mr_page_mask,
1309 state->dma_len, fmr->fmr->rkey);
1310
1311 reset_state:
1312 state->npages = 0;
1313 state->dma_len = 0;
1314
1315 return 0;
1316 }
1317
1318 static void srp_reg_mr_err_done(struct ib_cq *cq, struct ib_wc *wc)
1319 {
1320 srp_handle_qp_err(cq, wc, "FAST REG");
1321 }
1322
1323 /*
1324 * Map up to sg_nents elements of state->sg where *sg_offset_p is the offset
1325 * where to start in the first element. If sg_offset_p != NULL then
1326 * *sg_offset_p is updated to the offset in state->sg[retval] of the first
1327 * byte that has not yet been mapped.
1328 */
1329 static int srp_map_finish_fr(struct srp_map_state *state,
1330 struct srp_request *req,
1331 struct srp_rdma_ch *ch, int sg_nents,
1332 unsigned int *sg_offset_p)
1333 {
1334 struct srp_target_port *target = ch->target;
1335 struct srp_device *dev = target->srp_host->srp_dev;
1336 struct ib_pd *pd = target->pd;
1337 struct ib_send_wr *bad_wr;
1338 struct ib_reg_wr wr;
1339 struct srp_fr_desc *desc;
1340 u32 rkey;
1341 int n, err;
1342
1343 if (state->fr.next >= state->fr.end) {
1344 shost_printk(KERN_ERR, ch->target->scsi_host,
1345 PFX "Out of MRs (mr_per_cmd = %d)\n",
1346 ch->target->mr_per_cmd);
1347 return -ENOMEM;
1348 }
1349
1350 WARN_ON_ONCE(!dev->use_fast_reg);
1351
1352 if (sg_nents == 1 && (pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) {
1353 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1354
1355 srp_map_desc(state, sg_dma_address(state->sg) + sg_offset,
1356 sg_dma_len(state->sg) - sg_offset,
1357 pd->unsafe_global_rkey);
1358 if (sg_offset_p)
1359 *sg_offset_p = 0;
1360 return 1;
1361 }
1362
1363 desc = srp_fr_pool_get(ch->fr_pool);
1364 if (!desc)
1365 return -ENOMEM;
1366
1367 rkey = ib_inc_rkey(desc->mr->rkey);
1368 ib_update_fast_reg_key(desc->mr, rkey);
1369
1370 n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, sg_offset_p,
1371 dev->mr_page_size);
1372 if (unlikely(n < 0)) {
1373 srp_fr_pool_put(ch->fr_pool, &desc, 1);
1374 pr_debug("%s: ib_map_mr_sg(%d, %d) returned %d.\n",
1375 dev_name(&req->scmnd->device->sdev_gendev), sg_nents,
1376 sg_offset_p ? *sg_offset_p : -1, n);
1377 return n;
1378 }
1379
1380 WARN_ON_ONCE(desc->mr->length == 0);
1381
1382 req->reg_cqe.done = srp_reg_mr_err_done;
1383
1384 wr.wr.next = NULL;
1385 wr.wr.opcode = IB_WR_REG_MR;
1386 wr.wr.wr_cqe = &req->reg_cqe;
1387 wr.wr.num_sge = 0;
1388 wr.wr.send_flags = 0;
1389 wr.mr = desc->mr;
1390 wr.key = desc->mr->rkey;
1391 wr.access = (IB_ACCESS_LOCAL_WRITE |
1392 IB_ACCESS_REMOTE_READ |
1393 IB_ACCESS_REMOTE_WRITE);
1394
1395 *state->fr.next++ = desc;
1396 state->nmdesc++;
1397
1398 srp_map_desc(state, desc->mr->iova,
1399 desc->mr->length, desc->mr->rkey);
1400
1401 err = ib_post_send(ch->qp, &wr.wr, &bad_wr);
1402 if (unlikely(err)) {
1403 WARN_ON_ONCE(err == -ENOMEM);
1404 return err;
1405 }
1406
1407 return n;
1408 }
1409
1410 static int srp_map_sg_entry(struct srp_map_state *state,
1411 struct srp_rdma_ch *ch,
1412 struct scatterlist *sg)
1413 {
1414 struct srp_target_port *target = ch->target;
1415 struct srp_device *dev = target->srp_host->srp_dev;
1416 struct ib_device *ibdev = dev->dev;
1417 dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1418 unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1419 unsigned int len = 0;
1420 int ret;
1421
1422 WARN_ON_ONCE(!dma_len);
1423
1424 while (dma_len) {
1425 unsigned offset = dma_addr & ~dev->mr_page_mask;
1426
1427 if (state->npages == dev->max_pages_per_mr ||
1428 (state->npages > 0 && offset != 0)) {
1429 ret = srp_map_finish_fmr(state, ch);
1430 if (ret)
1431 return ret;
1432 }
1433
1434 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1435
1436 if (!state->npages)
1437 state->base_dma_addr = dma_addr;
1438 state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1439 state->dma_len += len;
1440 dma_addr += len;
1441 dma_len -= len;
1442 }
1443
1444 /*
1445 * If the end of the MR is not on a page boundary then we need to
1446 * close it out and start a new one -- we can only merge at page
1447 * boundaries.
1448 */
1449 ret = 0;
1450 if ((dma_addr & ~dev->mr_page_mask) != 0)
1451 ret = srp_map_finish_fmr(state, ch);
1452 return ret;
1453 }
1454
1455 static int srp_map_sg_fmr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1456 struct srp_request *req, struct scatterlist *scat,
1457 int count)
1458 {
1459 struct scatterlist *sg;
1460 int i, ret;
1461
1462 state->pages = req->map_page;
1463 state->fmr.next = req->fmr_list;
1464 state->fmr.end = req->fmr_list + ch->target->mr_per_cmd;
1465
1466 for_each_sg(scat, sg, count, i) {
1467 ret = srp_map_sg_entry(state, ch, sg);
1468 if (ret)
1469 return ret;
1470 }
1471
1472 ret = srp_map_finish_fmr(state, ch);
1473 if (ret)
1474 return ret;
1475
1476 return 0;
1477 }
1478
1479 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1480 struct srp_request *req, struct scatterlist *scat,
1481 int count)
1482 {
1483 unsigned int sg_offset = 0;
1484
1485 state->fr.next = req->fr_list;
1486 state->fr.end = req->fr_list + ch->target->mr_per_cmd;
1487 state->sg = scat;
1488
1489 if (count == 0)
1490 return 0;
1491
1492 while (count) {
1493 int i, n;
1494
1495 n = srp_map_finish_fr(state, req, ch, count, &sg_offset);
1496 if (unlikely(n < 0))
1497 return n;
1498
1499 count -= n;
1500 for (i = 0; i < n; i++)
1501 state->sg = sg_next(state->sg);
1502 }
1503
1504 return 0;
1505 }
1506
1507 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch,
1508 struct srp_request *req, struct scatterlist *scat,
1509 int count)
1510 {
1511 struct srp_target_port *target = ch->target;
1512 struct srp_device *dev = target->srp_host->srp_dev;
1513 struct scatterlist *sg;
1514 int i;
1515
1516 for_each_sg(scat, sg, count, i) {
1517 srp_map_desc(state, ib_sg_dma_address(dev->dev, sg),
1518 ib_sg_dma_len(dev->dev, sg),
1519 target->pd->unsafe_global_rkey);
1520 }
1521
1522 return 0;
1523 }
1524
1525 /*
1526 * Register the indirect data buffer descriptor with the HCA.
1527 *
1528 * Note: since the indirect data buffer descriptor has been allocated with
1529 * kmalloc() it is guaranteed that this buffer is a physically contiguous
1530 * memory buffer.
1531 */
1532 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
1533 void **next_mr, void **end_mr, u32 idb_len,
1534 __be32 *idb_rkey)
1535 {
1536 struct srp_target_port *target = ch->target;
1537 struct srp_device *dev = target->srp_host->srp_dev;
1538 struct srp_map_state state;
1539 struct srp_direct_buf idb_desc;
1540 u64 idb_pages[1];
1541 struct scatterlist idb_sg[1];
1542 int ret;
1543
1544 memset(&state, 0, sizeof(state));
1545 memset(&idb_desc, 0, sizeof(idb_desc));
1546 state.gen.next = next_mr;
1547 state.gen.end = end_mr;
1548 state.desc = &idb_desc;
1549 state.base_dma_addr = req->indirect_dma_addr;
1550 state.dma_len = idb_len;
1551
1552 if (dev->use_fast_reg) {
1553 state.sg = idb_sg;
1554 sg_init_one(idb_sg, req->indirect_desc, idb_len);
1555 idb_sg->dma_address = req->indirect_dma_addr; /* hack! */
1556 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1557 idb_sg->dma_length = idb_sg->length; /* hack^2 */
1558 #endif
1559 ret = srp_map_finish_fr(&state, req, ch, 1, NULL);
1560 if (ret < 0)
1561 return ret;
1562 WARN_ON_ONCE(ret < 1);
1563 } else if (dev->use_fmr) {
1564 state.pages = idb_pages;
1565 state.pages[0] = (req->indirect_dma_addr &
1566 dev->mr_page_mask);
1567 state.npages = 1;
1568 ret = srp_map_finish_fmr(&state, ch);
1569 if (ret < 0)
1570 return ret;
1571 } else {
1572 return -EINVAL;
1573 }
1574
1575 *idb_rkey = idb_desc.key;
1576
1577 return 0;
1578 }
1579
1580 static void srp_check_mapping(struct srp_map_state *state,
1581 struct srp_rdma_ch *ch, struct srp_request *req,
1582 struct scatterlist *scat, int count)
1583 {
1584 struct srp_device *dev = ch->target->srp_host->srp_dev;
1585 struct srp_fr_desc **pfr;
1586 u64 desc_len = 0, mr_len = 0;
1587 int i;
1588
1589 for (i = 0; i < state->ndesc; i++)
1590 desc_len += be32_to_cpu(req->indirect_desc[i].len);
1591 if (dev->use_fast_reg)
1592 for (i = 0, pfr = req->fr_list; i < state->nmdesc; i++, pfr++)
1593 mr_len += (*pfr)->mr->length;
1594 else if (dev->use_fmr)
1595 for (i = 0; i < state->nmdesc; i++)
1596 mr_len += be32_to_cpu(req->indirect_desc[i].len);
1597 if (desc_len != scsi_bufflen(req->scmnd) ||
1598 mr_len > scsi_bufflen(req->scmnd))
1599 pr_err("Inconsistent: scsi len %d <> desc len %lld <> mr len %lld; ndesc %d; nmdesc = %d\n",
1600 scsi_bufflen(req->scmnd), desc_len, mr_len,
1601 state->ndesc, state->nmdesc);
1602 }
1603
1604 /**
1605 * srp_map_data() - map SCSI data buffer onto an SRP request
1606 * @scmnd: SCSI command to map
1607 * @ch: SRP RDMA channel
1608 * @req: SRP request
1609 *
1610 * Returns the length in bytes of the SRP_CMD IU or a negative value if
1611 * mapping failed.
1612 */
1613 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1614 struct srp_request *req)
1615 {
1616 struct srp_target_port *target = ch->target;
1617 struct ib_pd *pd = target->pd;
1618 struct scatterlist *scat;
1619 struct srp_cmd *cmd = req->cmd->buf;
1620 int len, nents, count, ret;
1621 struct srp_device *dev;
1622 struct ib_device *ibdev;
1623 struct srp_map_state state;
1624 struct srp_indirect_buf *indirect_hdr;
1625 u32 idb_len, table_len;
1626 __be32 idb_rkey;
1627 u8 fmt;
1628
1629 if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1630 return sizeof (struct srp_cmd);
1631
1632 if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1633 scmnd->sc_data_direction != DMA_TO_DEVICE) {
1634 shost_printk(KERN_WARNING, target->scsi_host,
1635 PFX "Unhandled data direction %d\n",
1636 scmnd->sc_data_direction);
1637 return -EINVAL;
1638 }
1639
1640 nents = scsi_sg_count(scmnd);
1641 scat = scsi_sglist(scmnd);
1642
1643 dev = target->srp_host->srp_dev;
1644 ibdev = dev->dev;
1645
1646 count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1647 if (unlikely(count == 0))
1648 return -EIO;
1649
1650 fmt = SRP_DATA_DESC_DIRECT;
1651 len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf);
1652
1653 if (count == 1 && (pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) {
1654 /*
1655 * The midlayer only generated a single gather/scatter
1656 * entry, or DMA mapping coalesced everything to a
1657 * single entry. So a direct descriptor along with
1658 * the DMA MR suffices.
1659 */
1660 struct srp_direct_buf *buf = (void *) cmd->add_data;
1661
1662 buf->va = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1663 buf->key = cpu_to_be32(pd->unsafe_global_rkey);
1664 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1665
1666 req->nmdesc = 0;
1667 goto map_complete;
1668 }
1669
1670 /*
1671 * We have more than one scatter/gather entry, so build our indirect
1672 * descriptor table, trying to merge as many entries as we can.
1673 */
1674 indirect_hdr = (void *) cmd->add_data;
1675
1676 ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1677 target->indirect_size, DMA_TO_DEVICE);
1678
1679 memset(&state, 0, sizeof(state));
1680 state.desc = req->indirect_desc;
1681 if (dev->use_fast_reg)
1682 ret = srp_map_sg_fr(&state, ch, req, scat, count);
1683 else if (dev->use_fmr)
1684 ret = srp_map_sg_fmr(&state, ch, req, scat, count);
1685 else
1686 ret = srp_map_sg_dma(&state, ch, req, scat, count);
1687 req->nmdesc = state.nmdesc;
1688 if (ret < 0)
1689 goto unmap;
1690
1691 {
1692 DEFINE_DYNAMIC_DEBUG_METADATA(ddm,
1693 "Memory mapping consistency check");
1694 if (DYNAMIC_DEBUG_BRANCH(ddm))
1695 srp_check_mapping(&state, ch, req, scat, count);
1696 }
1697
1698 /* We've mapped the request, now pull as much of the indirect
1699 * descriptor table as we can into the command buffer. If this
1700 * target is not using an external indirect table, we are
1701 * guaranteed to fit into the command, as the SCSI layer won't
1702 * give us more S/G entries than we allow.
1703 */
1704 if (state.ndesc == 1) {
1705 /*
1706 * Memory registration collapsed the sg-list into one entry,
1707 * so use a direct descriptor.
1708 */
1709 struct srp_direct_buf *buf = (void *) cmd->add_data;
1710
1711 *buf = req->indirect_desc[0];
1712 goto map_complete;
1713 }
1714
1715 if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1716 !target->allow_ext_sg)) {
1717 shost_printk(KERN_ERR, target->scsi_host,
1718 "Could not fit S/G list into SRP_CMD\n");
1719 ret = -EIO;
1720 goto unmap;
1721 }
1722
1723 count = min(state.ndesc, target->cmd_sg_cnt);
1724 table_len = state.ndesc * sizeof (struct srp_direct_buf);
1725 idb_len = sizeof(struct srp_indirect_buf) + table_len;
1726
1727 fmt = SRP_DATA_DESC_INDIRECT;
1728 len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1729 len += count * sizeof (struct srp_direct_buf);
1730
1731 memcpy(indirect_hdr->desc_list, req->indirect_desc,
1732 count * sizeof (struct srp_direct_buf));
1733
1734 if (!(pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) {
1735 ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
1736 idb_len, &idb_rkey);
1737 if (ret < 0)
1738 goto unmap;
1739 req->nmdesc++;
1740 } else {
1741 idb_rkey = cpu_to_be32(pd->unsafe_global_rkey);
1742 }
1743
1744 indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1745 indirect_hdr->table_desc.key = idb_rkey;
1746 indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1747 indirect_hdr->len = cpu_to_be32(state.total_len);
1748
1749 if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1750 cmd->data_out_desc_cnt = count;
1751 else
1752 cmd->data_in_desc_cnt = count;
1753
1754 ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1755 DMA_TO_DEVICE);
1756
1757 map_complete:
1758 if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1759 cmd->buf_fmt = fmt << 4;
1760 else
1761 cmd->buf_fmt = fmt;
1762
1763 return len;
1764
1765 unmap:
1766 srp_unmap_data(scmnd, ch, req);
1767 if (ret == -ENOMEM && req->nmdesc >= target->mr_pool_size)
1768 ret = -E2BIG;
1769 return ret;
1770 }
1771
1772 /*
1773 * Return an IU and possible credit to the free pool
1774 */
1775 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1776 enum srp_iu_type iu_type)
1777 {
1778 unsigned long flags;
1779
1780 spin_lock_irqsave(&ch->lock, flags);
1781 list_add(&iu->list, &ch->free_tx);
1782 if (iu_type != SRP_IU_RSP)
1783 ++ch->req_lim;
1784 spin_unlock_irqrestore(&ch->lock, flags);
1785 }
1786
1787 /*
1788 * Must be called with ch->lock held to protect req_lim and free_tx.
1789 * If IU is not sent, it must be returned using srp_put_tx_iu().
1790 *
1791 * Note:
1792 * An upper limit for the number of allocated information units for each
1793 * request type is:
1794 * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1795 * more than Scsi_Host.can_queue requests.
1796 * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1797 * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1798 * one unanswered SRP request to an initiator.
1799 */
1800 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1801 enum srp_iu_type iu_type)
1802 {
1803 struct srp_target_port *target = ch->target;
1804 s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1805 struct srp_iu *iu;
1806
1807 ib_process_cq_direct(ch->send_cq, -1);
1808
1809 if (list_empty(&ch->free_tx))
1810 return NULL;
1811
1812 /* Initiator responses to target requests do not consume credits */
1813 if (iu_type != SRP_IU_RSP) {
1814 if (ch->req_lim <= rsv) {
1815 ++target->zero_req_lim;
1816 return NULL;
1817 }
1818
1819 --ch->req_lim;
1820 }
1821
1822 iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1823 list_del(&iu->list);
1824 return iu;
1825 }
1826
1827 static void srp_send_done(struct ib_cq *cq, struct ib_wc *wc)
1828 {
1829 struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
1830 struct srp_rdma_ch *ch = cq->cq_context;
1831
1832 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1833 srp_handle_qp_err(cq, wc, "SEND");
1834 return;
1835 }
1836
1837 list_add(&iu->list, &ch->free_tx);
1838 }
1839
1840 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1841 {
1842 struct srp_target_port *target = ch->target;
1843 struct ib_sge list;
1844 struct ib_send_wr wr, *bad_wr;
1845
1846 list.addr = iu->dma;
1847 list.length = len;
1848 list.lkey = target->lkey;
1849
1850 iu->cqe.done = srp_send_done;
1851
1852 wr.next = NULL;
1853 wr.wr_cqe = &iu->cqe;
1854 wr.sg_list = &list;
1855 wr.num_sge = 1;
1856 wr.opcode = IB_WR_SEND;
1857 wr.send_flags = IB_SEND_SIGNALED;
1858
1859 return ib_post_send(ch->qp, &wr, &bad_wr);
1860 }
1861
1862 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1863 {
1864 struct srp_target_port *target = ch->target;
1865 struct ib_recv_wr wr, *bad_wr;
1866 struct ib_sge list;
1867
1868 list.addr = iu->dma;
1869 list.length = iu->size;
1870 list.lkey = target->lkey;
1871
1872 iu->cqe.done = srp_recv_done;
1873
1874 wr.next = NULL;
1875 wr.wr_cqe = &iu->cqe;
1876 wr.sg_list = &list;
1877 wr.num_sge = 1;
1878
1879 return ib_post_recv(ch->qp, &wr, &bad_wr);
1880 }
1881
1882 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1883 {
1884 struct srp_target_port *target = ch->target;
1885 struct srp_request *req;
1886 struct scsi_cmnd *scmnd;
1887 unsigned long flags;
1888
1889 if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1890 spin_lock_irqsave(&ch->lock, flags);
1891 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1892 spin_unlock_irqrestore(&ch->lock, flags);
1893
1894 ch->tsk_mgmt_status = -1;
1895 if (be32_to_cpu(rsp->resp_data_len) >= 4)
1896 ch->tsk_mgmt_status = rsp->data[3];
1897 complete(&ch->tsk_mgmt_done);
1898 } else {
1899 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1900 if (scmnd) {
1901 req = (void *)scmnd->host_scribble;
1902 scmnd = srp_claim_req(ch, req, NULL, scmnd);
1903 }
1904 if (!scmnd) {
1905 shost_printk(KERN_ERR, target->scsi_host,
1906 "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1907 rsp->tag, ch - target->ch, ch->qp->qp_num);
1908
1909 spin_lock_irqsave(&ch->lock, flags);
1910 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1911 spin_unlock_irqrestore(&ch->lock, flags);
1912
1913 return;
1914 }
1915 scmnd->result = rsp->status;
1916
1917 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1918 memcpy(scmnd->sense_buffer, rsp->data +
1919 be32_to_cpu(rsp->resp_data_len),
1920 min_t(int, be32_to_cpu(rsp->sense_data_len),
1921 SCSI_SENSE_BUFFERSIZE));
1922 }
1923
1924 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1925 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1926 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1927 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1928 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1929 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1930 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1931 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1932
1933 srp_free_req(ch, req, scmnd,
1934 be32_to_cpu(rsp->req_lim_delta));
1935
1936 scmnd->host_scribble = NULL;
1937 scmnd->scsi_done(scmnd);
1938 }
1939 }
1940
1941 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1942 void *rsp, int len)
1943 {
1944 struct srp_target_port *target = ch->target;
1945 struct ib_device *dev = target->srp_host->srp_dev->dev;
1946 unsigned long flags;
1947 struct srp_iu *iu;
1948 int err;
1949
1950 spin_lock_irqsave(&ch->lock, flags);
1951 ch->req_lim += req_delta;
1952 iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1953 spin_unlock_irqrestore(&ch->lock, flags);
1954
1955 if (!iu) {
1956 shost_printk(KERN_ERR, target->scsi_host, PFX
1957 "no IU available to send response\n");
1958 return 1;
1959 }
1960
1961 ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1962 memcpy(iu->buf, rsp, len);
1963 ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1964
1965 err = srp_post_send(ch, iu, len);
1966 if (err) {
1967 shost_printk(KERN_ERR, target->scsi_host, PFX
1968 "unable to post response: %d\n", err);
1969 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1970 }
1971
1972 return err;
1973 }
1974
1975 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1976 struct srp_cred_req *req)
1977 {
1978 struct srp_cred_rsp rsp = {
1979 .opcode = SRP_CRED_RSP,
1980 .tag = req->tag,
1981 };
1982 s32 delta = be32_to_cpu(req->req_lim_delta);
1983
1984 if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1985 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1986 "problems processing SRP_CRED_REQ\n");
1987 }
1988
1989 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1990 struct srp_aer_req *req)
1991 {
1992 struct srp_target_port *target = ch->target;
1993 struct srp_aer_rsp rsp = {
1994 .opcode = SRP_AER_RSP,
1995 .tag = req->tag,
1996 };
1997 s32 delta = be32_to_cpu(req->req_lim_delta);
1998
1999 shost_printk(KERN_ERR, target->scsi_host, PFX
2000 "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
2001
2002 if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
2003 shost_printk(KERN_ERR, target->scsi_host, PFX
2004 "problems processing SRP_AER_REQ\n");
2005 }
2006
2007 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc)
2008 {
2009 struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
2010 struct srp_rdma_ch *ch = cq->cq_context;
2011 struct srp_target_port *target = ch->target;
2012 struct ib_device *dev = target->srp_host->srp_dev->dev;
2013 int res;
2014 u8 opcode;
2015
2016 if (unlikely(wc->status != IB_WC_SUCCESS)) {
2017 srp_handle_qp_err(cq, wc, "RECV");
2018 return;
2019 }
2020
2021 ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
2022 DMA_FROM_DEVICE);
2023
2024 opcode = *(u8 *) iu->buf;
2025
2026 if (0) {
2027 shost_printk(KERN_ERR, target->scsi_host,
2028 PFX "recv completion, opcode 0x%02x\n", opcode);
2029 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
2030 iu->buf, wc->byte_len, true);
2031 }
2032
2033 switch (opcode) {
2034 case SRP_RSP:
2035 srp_process_rsp(ch, iu->buf);
2036 break;
2037
2038 case SRP_CRED_REQ:
2039 srp_process_cred_req(ch, iu->buf);
2040 break;
2041
2042 case SRP_AER_REQ:
2043 srp_process_aer_req(ch, iu->buf);
2044 break;
2045
2046 case SRP_T_LOGOUT:
2047 /* XXX Handle target logout */
2048 shost_printk(KERN_WARNING, target->scsi_host,
2049 PFX "Got target logout request\n");
2050 break;
2051
2052 default:
2053 shost_printk(KERN_WARNING, target->scsi_host,
2054 PFX "Unhandled SRP opcode 0x%02x\n", opcode);
2055 break;
2056 }
2057
2058 ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
2059 DMA_FROM_DEVICE);
2060
2061 res = srp_post_recv(ch, iu);
2062 if (res != 0)
2063 shost_printk(KERN_ERR, target->scsi_host,
2064 PFX "Recv failed with error code %d\n", res);
2065 }
2066
2067 /**
2068 * srp_tl_err_work() - handle a transport layer error
2069 * @work: Work structure embedded in an SRP target port.
2070 *
2071 * Note: This function may get invoked before the rport has been created,
2072 * hence the target->rport test.
2073 */
2074 static void srp_tl_err_work(struct work_struct *work)
2075 {
2076 struct srp_target_port *target;
2077
2078 target = container_of(work, struct srp_target_port, tl_err_work);
2079 if (target->rport)
2080 srp_start_tl_fail_timers(target->rport);
2081 }
2082
2083 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
2084 const char *opname)
2085 {
2086 struct srp_rdma_ch *ch = cq->cq_context;
2087 struct srp_target_port *target = ch->target;
2088
2089 if (ch->connected && !target->qp_in_error) {
2090 shost_printk(KERN_ERR, target->scsi_host,
2091 PFX "failed %s status %s (%d) for CQE %p\n",
2092 opname, ib_wc_status_msg(wc->status), wc->status,
2093 wc->wr_cqe);
2094 queue_work(system_long_wq, &target->tl_err_work);
2095 }
2096 target->qp_in_error = true;
2097 }
2098
2099 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
2100 {
2101 struct srp_target_port *target = host_to_target(shost);
2102 struct srp_rport *rport = target->rport;
2103 struct srp_rdma_ch *ch;
2104 struct srp_request *req;
2105 struct srp_iu *iu;
2106 struct srp_cmd *cmd;
2107 struct ib_device *dev;
2108 unsigned long flags;
2109 u32 tag;
2110 u16 idx;
2111 int len, ret;
2112 const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
2113
2114 /*
2115 * The SCSI EH thread is the only context from which srp_queuecommand()
2116 * can get invoked for blocked devices (SDEV_BLOCK /
2117 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
2118 * locking the rport mutex if invoked from inside the SCSI EH.
2119 */
2120 if (in_scsi_eh)
2121 mutex_lock(&rport->mutex);
2122
2123 scmnd->result = srp_chkready(target->rport);
2124 if (unlikely(scmnd->result))
2125 goto err;
2126
2127 WARN_ON_ONCE(scmnd->request->tag < 0);
2128 tag = blk_mq_unique_tag(scmnd->request);
2129 ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2130 idx = blk_mq_unique_tag_to_tag(tag);
2131 WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2132 dev_name(&shost->shost_gendev), tag, idx,
2133 target->req_ring_size);
2134
2135 spin_lock_irqsave(&ch->lock, flags);
2136 iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2137 spin_unlock_irqrestore(&ch->lock, flags);
2138
2139 if (!iu)
2140 goto err;
2141
2142 req = &ch->req_ring[idx];
2143 dev = target->srp_host->srp_dev->dev;
2144 ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2145 DMA_TO_DEVICE);
2146
2147 scmnd->host_scribble = (void *) req;
2148
2149 cmd = iu->buf;
2150 memset(cmd, 0, sizeof *cmd);
2151
2152 cmd->opcode = SRP_CMD;
2153 int_to_scsilun(scmnd->device->lun, &cmd->lun);
2154 cmd->tag = tag;
2155 memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2156
2157 req->scmnd = scmnd;
2158 req->cmd = iu;
2159
2160 len = srp_map_data(scmnd, ch, req);
2161 if (len < 0) {
2162 shost_printk(KERN_ERR, target->scsi_host,
2163 PFX "Failed to map data (%d)\n", len);
2164 /*
2165 * If we ran out of memory descriptors (-ENOMEM) because an
2166 * application is queuing many requests with more than
2167 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2168 * to reduce queue depth temporarily.
2169 */
2170 scmnd->result = len == -ENOMEM ?
2171 DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2172 goto err_iu;
2173 }
2174
2175 ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2176 DMA_TO_DEVICE);
2177
2178 if (srp_post_send(ch, iu, len)) {
2179 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2180 goto err_unmap;
2181 }
2182
2183 ret = 0;
2184
2185 unlock_rport:
2186 if (in_scsi_eh)
2187 mutex_unlock(&rport->mutex);
2188
2189 return ret;
2190
2191 err_unmap:
2192 srp_unmap_data(scmnd, ch, req);
2193
2194 err_iu:
2195 srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2196
2197 /*
2198 * Avoid that the loops that iterate over the request ring can
2199 * encounter a dangling SCSI command pointer.
2200 */
2201 req->scmnd = NULL;
2202
2203 err:
2204 if (scmnd->result) {
2205 scmnd->scsi_done(scmnd);
2206 ret = 0;
2207 } else {
2208 ret = SCSI_MLQUEUE_HOST_BUSY;
2209 }
2210
2211 goto unlock_rport;
2212 }
2213
2214 /*
2215 * Note: the resources allocated in this function are freed in
2216 * srp_free_ch_ib().
2217 */
2218 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2219 {
2220 struct srp_target_port *target = ch->target;
2221 int i;
2222
2223 ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2224 GFP_KERNEL);
2225 if (!ch->rx_ring)
2226 goto err_no_ring;
2227 ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2228 GFP_KERNEL);
2229 if (!ch->tx_ring)
2230 goto err_no_ring;
2231
2232 for (i = 0; i < target->queue_size; ++i) {
2233 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2234 ch->max_ti_iu_len,
2235 GFP_KERNEL, DMA_FROM_DEVICE);
2236 if (!ch->rx_ring[i])
2237 goto err;
2238 }
2239
2240 for (i = 0; i < target->queue_size; ++i) {
2241 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2242 target->max_iu_len,
2243 GFP_KERNEL, DMA_TO_DEVICE);
2244 if (!ch->tx_ring[i])
2245 goto err;
2246
2247 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2248 }
2249
2250 return 0;
2251
2252 err:
2253 for (i = 0; i < target->queue_size; ++i) {
2254 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2255 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2256 }
2257
2258
2259 err_no_ring:
2260 kfree(ch->tx_ring);
2261 ch->tx_ring = NULL;
2262 kfree(ch->rx_ring);
2263 ch->rx_ring = NULL;
2264
2265 return -ENOMEM;
2266 }
2267
2268 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2269 {
2270 uint64_t T_tr_ns, max_compl_time_ms;
2271 uint32_t rq_tmo_jiffies;
2272
2273 /*
2274 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2275 * table 91), both the QP timeout and the retry count have to be set
2276 * for RC QP's during the RTR to RTS transition.
2277 */
2278 WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2279 (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2280
2281 /*
2282 * Set target->rq_tmo_jiffies to one second more than the largest time
2283 * it can take before an error completion is generated. See also
2284 * C9-140..142 in the IBTA spec for more information about how to
2285 * convert the QP Local ACK Timeout value to nanoseconds.
2286 */
2287 T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2288 max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2289 do_div(max_compl_time_ms, NSEC_PER_MSEC);
2290 rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2291
2292 return rq_tmo_jiffies;
2293 }
2294
2295 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2296 const struct srp_login_rsp *lrsp,
2297 struct srp_rdma_ch *ch)
2298 {
2299 struct srp_target_port *target = ch->target;
2300 struct ib_qp_attr *qp_attr = NULL;
2301 int attr_mask = 0;
2302 int ret;
2303 int i;
2304
2305 if (lrsp->opcode == SRP_LOGIN_RSP) {
2306 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2307 ch->req_lim = be32_to_cpu(lrsp->req_lim_delta);
2308
2309 /*
2310 * Reserve credits for task management so we don't
2311 * bounce requests back to the SCSI mid-layer.
2312 */
2313 target->scsi_host->can_queue
2314 = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2315 target->scsi_host->can_queue);
2316 target->scsi_host->cmd_per_lun
2317 = min_t(int, target->scsi_host->can_queue,
2318 target->scsi_host->cmd_per_lun);
2319 } else {
2320 shost_printk(KERN_WARNING, target->scsi_host,
2321 PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2322 ret = -ECONNRESET;
2323 goto error;
2324 }
2325
2326 if (!ch->rx_ring) {
2327 ret = srp_alloc_iu_bufs(ch);
2328 if (ret)
2329 goto error;
2330 }
2331
2332 ret = -ENOMEM;
2333 qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2334 if (!qp_attr)
2335 goto error;
2336
2337 qp_attr->qp_state = IB_QPS_RTR;
2338 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2339 if (ret)
2340 goto error_free;
2341
2342 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2343 if (ret)
2344 goto error_free;
2345
2346 for (i = 0; i < target->queue_size; i++) {
2347 struct srp_iu *iu = ch->rx_ring[i];
2348
2349 ret = srp_post_recv(ch, iu);
2350 if (ret)
2351 goto error_free;
2352 }
2353
2354 qp_attr->qp_state = IB_QPS_RTS;
2355 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2356 if (ret)
2357 goto error_free;
2358
2359 target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2360
2361 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2362 if (ret)
2363 goto error_free;
2364
2365 ret = ib_send_cm_rtu(cm_id, NULL, 0);
2366
2367 error_free:
2368 kfree(qp_attr);
2369
2370 error:
2371 ch->status = ret;
2372 }
2373
2374 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2375 struct ib_cm_event *event,
2376 struct srp_rdma_ch *ch)
2377 {
2378 struct srp_target_port *target = ch->target;
2379 struct Scsi_Host *shost = target->scsi_host;
2380 struct ib_class_port_info *cpi;
2381 int opcode;
2382
2383 switch (event->param.rej_rcvd.reason) {
2384 case IB_CM_REJ_PORT_CM_REDIRECT:
2385 cpi = event->param.rej_rcvd.ari;
2386 ch->path.dlid = cpi->redirect_lid;
2387 ch->path.pkey = cpi->redirect_pkey;
2388 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2389 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2390
2391 ch->status = ch->path.dlid ?
2392 SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2393 break;
2394
2395 case IB_CM_REJ_PORT_REDIRECT:
2396 if (srp_target_is_topspin(target)) {
2397 /*
2398 * Topspin/Cisco SRP gateways incorrectly send
2399 * reject reason code 25 when they mean 24
2400 * (port redirect).
2401 */
2402 memcpy(ch->path.dgid.raw,
2403 event->param.rej_rcvd.ari, 16);
2404
2405 shost_printk(KERN_DEBUG, shost,
2406 PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2407 be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2408 be64_to_cpu(ch->path.dgid.global.interface_id));
2409
2410 ch->status = SRP_PORT_REDIRECT;
2411 } else {
2412 shost_printk(KERN_WARNING, shost,
2413 " REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2414 ch->status = -ECONNRESET;
2415 }
2416 break;
2417
2418 case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2419 shost_printk(KERN_WARNING, shost,
2420 " REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2421 ch->status = -ECONNRESET;
2422 break;
2423
2424 case IB_CM_REJ_CONSUMER_DEFINED:
2425 opcode = *(u8 *) event->private_data;
2426 if (opcode == SRP_LOGIN_REJ) {
2427 struct srp_login_rej *rej = event->private_data;
2428 u32 reason = be32_to_cpu(rej->reason);
2429
2430 if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2431 shost_printk(KERN_WARNING, shost,
2432 PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2433 else
2434 shost_printk(KERN_WARNING, shost, PFX
2435 "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2436 target->sgid.raw,
2437 target->orig_dgid.raw, reason);
2438 } else
2439 shost_printk(KERN_WARNING, shost,
2440 " REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2441 " opcode 0x%02x\n", opcode);
2442 ch->status = -ECONNRESET;
2443 break;
2444
2445 case IB_CM_REJ_STALE_CONN:
2446 shost_printk(KERN_WARNING, shost, " REJ reason: stale connection\n");
2447 ch->status = SRP_STALE_CONN;
2448 break;
2449
2450 default:
2451 shost_printk(KERN_WARNING, shost, " REJ reason 0x%x\n",
2452 event->param.rej_rcvd.reason);
2453 ch->status = -ECONNRESET;
2454 }
2455 }
2456
2457 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2458 {
2459 struct srp_rdma_ch *ch = cm_id->context;
2460 struct srp_target_port *target = ch->target;
2461 int comp = 0;
2462
2463 switch (event->event) {
2464 case IB_CM_REQ_ERROR:
2465 shost_printk(KERN_DEBUG, target->scsi_host,
2466 PFX "Sending CM REQ failed\n");
2467 comp = 1;
2468 ch->status = -ECONNRESET;
2469 break;
2470
2471 case IB_CM_REP_RECEIVED:
2472 comp = 1;
2473 srp_cm_rep_handler(cm_id, event->private_data, ch);
2474 break;
2475
2476 case IB_CM_REJ_RECEIVED:
2477 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2478 comp = 1;
2479
2480 srp_cm_rej_handler(cm_id, event, ch);
2481 break;
2482
2483 case IB_CM_DREQ_RECEIVED:
2484 shost_printk(KERN_WARNING, target->scsi_host,
2485 PFX "DREQ received - connection closed\n");
2486 ch->connected = false;
2487 if (ib_send_cm_drep(cm_id, NULL, 0))
2488 shost_printk(KERN_ERR, target->scsi_host,
2489 PFX "Sending CM DREP failed\n");
2490 queue_work(system_long_wq, &target->tl_err_work);
2491 break;
2492
2493 case IB_CM_TIMEWAIT_EXIT:
2494 shost_printk(KERN_ERR, target->scsi_host,
2495 PFX "connection closed\n");
2496 comp = 1;
2497
2498 ch->status = 0;
2499 break;
2500
2501 case IB_CM_MRA_RECEIVED:
2502 case IB_CM_DREQ_ERROR:
2503 case IB_CM_DREP_RECEIVED:
2504 break;
2505
2506 default:
2507 shost_printk(KERN_WARNING, target->scsi_host,
2508 PFX "Unhandled CM event %d\n", event->event);
2509 break;
2510 }
2511
2512 if (comp)
2513 complete(&ch->done);
2514
2515 return 0;
2516 }
2517
2518 /**
2519 * srp_change_queue_depth - setting device queue depth
2520 * @sdev: scsi device struct
2521 * @qdepth: requested queue depth
2522 *
2523 * Returns queue depth.
2524 */
2525 static int
2526 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2527 {
2528 if (!sdev->tagged_supported)
2529 qdepth = 1;
2530 return scsi_change_queue_depth(sdev, qdepth);
2531 }
2532
2533 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2534 u8 func)
2535 {
2536 struct srp_target_port *target = ch->target;
2537 struct srp_rport *rport = target->rport;
2538 struct ib_device *dev = target->srp_host->srp_dev->dev;
2539 struct srp_iu *iu;
2540 struct srp_tsk_mgmt *tsk_mgmt;
2541
2542 if (!ch->connected || target->qp_in_error)
2543 return -1;
2544
2545 init_completion(&ch->tsk_mgmt_done);
2546
2547 /*
2548 * Lock the rport mutex to avoid that srp_create_ch_ib() is
2549 * invoked while a task management function is being sent.
2550 */
2551 mutex_lock(&rport->mutex);
2552 spin_lock_irq(&ch->lock);
2553 iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2554 spin_unlock_irq(&ch->lock);
2555
2556 if (!iu) {
2557 mutex_unlock(&rport->mutex);
2558
2559 return -1;
2560 }
2561
2562 ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2563 DMA_TO_DEVICE);
2564 tsk_mgmt = iu->buf;
2565 memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2566
2567 tsk_mgmt->opcode = SRP_TSK_MGMT;
2568 int_to_scsilun(lun, &tsk_mgmt->lun);
2569 tsk_mgmt->tag = req_tag | SRP_TAG_TSK_MGMT;
2570 tsk_mgmt->tsk_mgmt_func = func;
2571 tsk_mgmt->task_tag = req_tag;
2572
2573 ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2574 DMA_TO_DEVICE);
2575 if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2576 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2577 mutex_unlock(&rport->mutex);
2578
2579 return -1;
2580 }
2581 mutex_unlock(&rport->mutex);
2582
2583 if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2584 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2585 return -1;
2586
2587 return 0;
2588 }
2589
2590 static int srp_abort(struct scsi_cmnd *scmnd)
2591 {
2592 struct srp_target_port *target = host_to_target(scmnd->device->host);
2593 struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2594 u32 tag;
2595 u16 ch_idx;
2596 struct srp_rdma_ch *ch;
2597 int ret;
2598
2599 shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2600
2601 if (!req)
2602 return SUCCESS;
2603 tag = blk_mq_unique_tag(scmnd->request);
2604 ch_idx = blk_mq_unique_tag_to_hwq(tag);
2605 if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2606 return SUCCESS;
2607 ch = &target->ch[ch_idx];
2608 if (!srp_claim_req(ch, req, NULL, scmnd))
2609 return SUCCESS;
2610 shost_printk(KERN_ERR, target->scsi_host,
2611 "Sending SRP abort for tag %#x\n", tag);
2612 if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2613 SRP_TSK_ABORT_TASK) == 0)
2614 ret = SUCCESS;
2615 else if (target->rport->state == SRP_RPORT_LOST)
2616 ret = FAST_IO_FAIL;
2617 else
2618 ret = FAILED;
2619 srp_free_req(ch, req, scmnd, 0);
2620 scmnd->result = DID_ABORT << 16;
2621 scmnd->scsi_done(scmnd);
2622
2623 return ret;
2624 }
2625
2626 static int srp_reset_device(struct scsi_cmnd *scmnd)
2627 {
2628 struct srp_target_port *target = host_to_target(scmnd->device->host);
2629 struct srp_rdma_ch *ch;
2630 int i;
2631
2632 shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2633
2634 ch = &target->ch[0];
2635 if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2636 SRP_TSK_LUN_RESET))
2637 return FAILED;
2638 if (ch->tsk_mgmt_status)
2639 return FAILED;
2640
2641 for (i = 0; i < target->ch_count; i++) {
2642 ch = &target->ch[i];
2643 for (i = 0; i < target->req_ring_size; ++i) {
2644 struct srp_request *req = &ch->req_ring[i];
2645
2646 srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2647 }
2648 }
2649
2650 return SUCCESS;
2651 }
2652
2653 static int srp_reset_host(struct scsi_cmnd *scmnd)
2654 {
2655 struct srp_target_port *target = host_to_target(scmnd->device->host);
2656
2657 shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2658
2659 return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2660 }
2661
2662 static int srp_slave_alloc(struct scsi_device *sdev)
2663 {
2664 struct Scsi_Host *shost = sdev->host;
2665 struct srp_target_port *target = host_to_target(shost);
2666 struct srp_device *srp_dev = target->srp_host->srp_dev;
2667 struct ib_device *ibdev = srp_dev->dev;
2668
2669 if (!(ibdev->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG))
2670 blk_queue_virt_boundary(sdev->request_queue,
2671 ~srp_dev->mr_page_mask);
2672
2673 return 0;
2674 }
2675
2676 static int srp_slave_configure(struct scsi_device *sdev)
2677 {
2678 struct Scsi_Host *shost = sdev->host;
2679 struct srp_target_port *target = host_to_target(shost);
2680 struct request_queue *q = sdev->request_queue;
2681 unsigned long timeout;
2682
2683 if (sdev->type == TYPE_DISK) {
2684 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2685 blk_queue_rq_timeout(q, timeout);
2686 }
2687
2688 return 0;
2689 }
2690
2691 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2692 char *buf)
2693 {
2694 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2695
2696 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2697 }
2698
2699 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2700 char *buf)
2701 {
2702 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2703
2704 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2705 }
2706
2707 static ssize_t show_service_id(struct device *dev,
2708 struct device_attribute *attr, char *buf)
2709 {
2710 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2711
2712 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2713 }
2714
2715 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2716 char *buf)
2717 {
2718 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2719
2720 return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2721 }
2722
2723 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2724 char *buf)
2725 {
2726 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2727
2728 return sprintf(buf, "%pI6\n", target->sgid.raw);
2729 }
2730
2731 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2732 char *buf)
2733 {
2734 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2735 struct srp_rdma_ch *ch = &target->ch[0];
2736
2737 return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2738 }
2739
2740 static ssize_t show_orig_dgid(struct device *dev,
2741 struct device_attribute *attr, char *buf)
2742 {
2743 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2744
2745 return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2746 }
2747
2748 static ssize_t show_req_lim(struct device *dev,
2749 struct device_attribute *attr, char *buf)
2750 {
2751 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2752 struct srp_rdma_ch *ch;
2753 int i, req_lim = INT_MAX;
2754
2755 for (i = 0; i < target->ch_count; i++) {
2756 ch = &target->ch[i];
2757 req_lim = min(req_lim, ch->req_lim);
2758 }
2759 return sprintf(buf, "%d\n", req_lim);
2760 }
2761
2762 static ssize_t show_zero_req_lim(struct device *dev,
2763 struct device_attribute *attr, char *buf)
2764 {
2765 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2766
2767 return sprintf(buf, "%d\n", target->zero_req_lim);
2768 }
2769
2770 static ssize_t show_local_ib_port(struct device *dev,
2771 struct device_attribute *attr, char *buf)
2772 {
2773 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2774
2775 return sprintf(buf, "%d\n", target->srp_host->port);
2776 }
2777
2778 static ssize_t show_local_ib_device(struct device *dev,
2779 struct device_attribute *attr, char *buf)
2780 {
2781 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2782
2783 return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2784 }
2785
2786 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2787 char *buf)
2788 {
2789 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2790
2791 return sprintf(buf, "%d\n", target->ch_count);
2792 }
2793
2794 static ssize_t show_comp_vector(struct device *dev,
2795 struct device_attribute *attr, char *buf)
2796 {
2797 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2798
2799 return sprintf(buf, "%d\n", target->comp_vector);
2800 }
2801
2802 static ssize_t show_tl_retry_count(struct device *dev,
2803 struct device_attribute *attr, char *buf)
2804 {
2805 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2806
2807 return sprintf(buf, "%d\n", target->tl_retry_count);
2808 }
2809
2810 static ssize_t show_cmd_sg_entries(struct device *dev,
2811 struct device_attribute *attr, char *buf)
2812 {
2813 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2814
2815 return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2816 }
2817
2818 static ssize_t show_allow_ext_sg(struct device *dev,
2819 struct device_attribute *attr, char *buf)
2820 {
2821 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2822
2823 return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2824 }
2825
2826 static DEVICE_ATTR(id_ext, S_IRUGO, show_id_ext, NULL);
2827 static DEVICE_ATTR(ioc_guid, S_IRUGO, show_ioc_guid, NULL);
2828 static DEVICE_ATTR(service_id, S_IRUGO, show_service_id, NULL);
2829 static DEVICE_ATTR(pkey, S_IRUGO, show_pkey, NULL);
2830 static DEVICE_ATTR(sgid, S_IRUGO, show_sgid, NULL);
2831 static DEVICE_ATTR(dgid, S_IRUGO, show_dgid, NULL);
2832 static DEVICE_ATTR(orig_dgid, S_IRUGO, show_orig_dgid, NULL);
2833 static DEVICE_ATTR(req_lim, S_IRUGO, show_req_lim, NULL);
2834 static DEVICE_ATTR(zero_req_lim, S_IRUGO, show_zero_req_lim, NULL);
2835 static DEVICE_ATTR(local_ib_port, S_IRUGO, show_local_ib_port, NULL);
2836 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2837 static DEVICE_ATTR(ch_count, S_IRUGO, show_ch_count, NULL);
2838 static DEVICE_ATTR(comp_vector, S_IRUGO, show_comp_vector, NULL);
2839 static DEVICE_ATTR(tl_retry_count, S_IRUGO, show_tl_retry_count, NULL);
2840 static DEVICE_ATTR(cmd_sg_entries, S_IRUGO, show_cmd_sg_entries, NULL);
2841 static DEVICE_ATTR(allow_ext_sg, S_IRUGO, show_allow_ext_sg, NULL);
2842
2843 static struct device_attribute *srp_host_attrs[] = {
2844 &dev_attr_id_ext,
2845 &dev_attr_ioc_guid,
2846 &dev_attr_service_id,
2847 &dev_attr_pkey,
2848 &dev_attr_sgid,
2849 &dev_attr_dgid,
2850 &dev_attr_orig_dgid,
2851 &dev_attr_req_lim,
2852 &dev_attr_zero_req_lim,
2853 &dev_attr_local_ib_port,
2854 &dev_attr_local_ib_device,
2855 &dev_attr_ch_count,
2856 &dev_attr_comp_vector,
2857 &dev_attr_tl_retry_count,
2858 &dev_attr_cmd_sg_entries,
2859 &dev_attr_allow_ext_sg,
2860 NULL
2861 };
2862
2863 static struct scsi_host_template srp_template = {
2864 .module = THIS_MODULE,
2865 .name = "InfiniBand SRP initiator",
2866 .proc_name = DRV_NAME,
2867 .slave_alloc = srp_slave_alloc,
2868 .slave_configure = srp_slave_configure,
2869 .info = srp_target_info,
2870 .queuecommand = srp_queuecommand,
2871 .change_queue_depth = srp_change_queue_depth,
2872 .eh_timed_out = srp_timed_out,
2873 .eh_abort_handler = srp_abort,
2874 .eh_device_reset_handler = srp_reset_device,
2875 .eh_host_reset_handler = srp_reset_host,
2876 .skip_settle_delay = true,
2877 .sg_tablesize = SRP_DEF_SG_TABLESIZE,
2878 .can_queue = SRP_DEFAULT_CMD_SQ_SIZE,
2879 .this_id = -1,
2880 .cmd_per_lun = SRP_DEFAULT_CMD_SQ_SIZE,
2881 .use_clustering = ENABLE_CLUSTERING,
2882 .shost_attrs = srp_host_attrs,
2883 .track_queue_depth = 1,
2884 };
2885
2886 static int srp_sdev_count(struct Scsi_Host *host)
2887 {
2888 struct scsi_device *sdev;
2889 int c = 0;
2890
2891 shost_for_each_device(sdev, host)
2892 c++;
2893
2894 return c;
2895 }
2896
2897 /*
2898 * Return values:
2899 * < 0 upon failure. Caller is responsible for SRP target port cleanup.
2900 * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
2901 * removal has been scheduled.
2902 * 0 and target->state != SRP_TARGET_REMOVED upon success.
2903 */
2904 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2905 {
2906 struct srp_rport_identifiers ids;
2907 struct srp_rport *rport;
2908
2909 target->state = SRP_TARGET_SCANNING;
2910 sprintf(target->target_name, "SRP.T10:%016llX",
2911 be64_to_cpu(target->id_ext));
2912
2913 if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2914 return -ENODEV;
2915
2916 memcpy(ids.port_id, &target->id_ext, 8);
2917 memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2918 ids.roles = SRP_RPORT_ROLE_TARGET;
2919 rport = srp_rport_add(target->scsi_host, &ids);
2920 if (IS_ERR(rport)) {
2921 scsi_remove_host(target->scsi_host);
2922 return PTR_ERR(rport);
2923 }
2924
2925 rport->lld_data = target;
2926 target->rport = rport;
2927
2928 spin_lock(&host->target_lock);
2929 list_add_tail(&target->list, &host->target_list);
2930 spin_unlock(&host->target_lock);
2931
2932 scsi_scan_target(&target->scsi_host->shost_gendev,
2933 0, target->scsi_id, SCAN_WILD_CARD, SCSI_SCAN_INITIAL);
2934
2935 if (srp_connected_ch(target) < target->ch_count ||
2936 target->qp_in_error) {
2937 shost_printk(KERN_INFO, target->scsi_host,
2938 PFX "SCSI scan failed - removing SCSI host\n");
2939 srp_queue_remove_work(target);
2940 goto out;
2941 }
2942
2943 pr_debug("%s: SCSI scan succeeded - detected %d LUNs\n",
2944 dev_name(&target->scsi_host->shost_gendev),
2945 srp_sdev_count(target->scsi_host));
2946
2947 spin_lock_irq(&target->lock);
2948 if (target->state == SRP_TARGET_SCANNING)
2949 target->state = SRP_TARGET_LIVE;
2950 spin_unlock_irq(&target->lock);
2951
2952 out:
2953 return 0;
2954 }
2955
2956 static void srp_release_dev(struct device *dev)
2957 {
2958 struct srp_host *host =
2959 container_of(dev, struct srp_host, dev);
2960
2961 complete(&host->released);
2962 }
2963
2964 static struct class srp_class = {
2965 .name = "infiniband_srp",
2966 .dev_release = srp_release_dev
2967 };
2968
2969 /**
2970 * srp_conn_unique() - check whether the connection to a target is unique
2971 * @host: SRP host.
2972 * @target: SRP target port.
2973 */
2974 static bool srp_conn_unique(struct srp_host *host,
2975 struct srp_target_port *target)
2976 {
2977 struct srp_target_port *t;
2978 bool ret = false;
2979
2980 if (target->state == SRP_TARGET_REMOVED)
2981 goto out;
2982
2983 ret = true;
2984
2985 spin_lock(&host->target_lock);
2986 list_for_each_entry(t, &host->target_list, list) {
2987 if (t != target &&
2988 target->id_ext == t->id_ext &&
2989 target->ioc_guid == t->ioc_guid &&
2990 target->initiator_ext == t->initiator_ext) {
2991 ret = false;
2992 break;
2993 }
2994 }
2995 spin_unlock(&host->target_lock);
2996
2997 out:
2998 return ret;
2999 }
3000
3001 /*
3002 * Target ports are added by writing
3003 *
3004 * id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
3005 * pkey=<P_Key>,service_id=<service ID>
3006 *
3007 * to the add_target sysfs attribute.
3008 */
3009 enum {
3010 SRP_OPT_ERR = 0,
3011 SRP_OPT_ID_EXT = 1 << 0,
3012 SRP_OPT_IOC_GUID = 1 << 1,
3013 SRP_OPT_DGID = 1 << 2,
3014 SRP_OPT_PKEY = 1 << 3,
3015 SRP_OPT_SERVICE_ID = 1 << 4,
3016 SRP_OPT_MAX_SECT = 1 << 5,
3017 SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
3018 SRP_OPT_IO_CLASS = 1 << 7,
3019 SRP_OPT_INITIATOR_EXT = 1 << 8,
3020 SRP_OPT_CMD_SG_ENTRIES = 1 << 9,
3021 SRP_OPT_ALLOW_EXT_SG = 1 << 10,
3022 SRP_OPT_SG_TABLESIZE = 1 << 11,
3023 SRP_OPT_COMP_VECTOR = 1 << 12,
3024 SRP_OPT_TL_RETRY_COUNT = 1 << 13,
3025 SRP_OPT_QUEUE_SIZE = 1 << 14,
3026 SRP_OPT_ALL = (SRP_OPT_ID_EXT |
3027 SRP_OPT_IOC_GUID |
3028 SRP_OPT_DGID |
3029 SRP_OPT_PKEY |
3030 SRP_OPT_SERVICE_ID),
3031 };
3032
3033 static const match_table_t srp_opt_tokens = {
3034 { SRP_OPT_ID_EXT, "id_ext=%s" },
3035 { SRP_OPT_IOC_GUID, "ioc_guid=%s" },
3036 { SRP_OPT_DGID, "dgid=%s" },
3037 { SRP_OPT_PKEY, "pkey=%x" },
3038 { SRP_OPT_SERVICE_ID, "service_id=%s" },
3039 { SRP_OPT_MAX_SECT, "max_sect=%d" },
3040 { SRP_OPT_MAX_CMD_PER_LUN, "max_cmd_per_lun=%d" },
3041 { SRP_OPT_IO_CLASS, "io_class=%x" },
3042 { SRP_OPT_INITIATOR_EXT, "initiator_ext=%s" },
3043 { SRP_OPT_CMD_SG_ENTRIES, "cmd_sg_entries=%u" },
3044 { SRP_OPT_ALLOW_EXT_SG, "allow_ext_sg=%u" },
3045 { SRP_OPT_SG_TABLESIZE, "sg_tablesize=%u" },
3046 { SRP_OPT_COMP_VECTOR, "comp_vector=%u" },
3047 { SRP_OPT_TL_RETRY_COUNT, "tl_retry_count=%u" },
3048 { SRP_OPT_QUEUE_SIZE, "queue_size=%d" },
3049 { SRP_OPT_ERR, NULL }
3050 };
3051
3052 static int srp_parse_options(const char *buf, struct srp_target_port *target)
3053 {
3054 char *options, *sep_opt;
3055 char *p;
3056 char dgid[3];
3057 substring_t args[MAX_OPT_ARGS];
3058 int opt_mask = 0;
3059 int token;
3060 int ret = -EINVAL;
3061 int i;
3062
3063 options = kstrdup(buf, GFP_KERNEL);
3064 if (!options)
3065 return -ENOMEM;
3066
3067 sep_opt = options;
3068 while ((p = strsep(&sep_opt, ",\n")) != NULL) {
3069 if (!*p)
3070 continue;
3071
3072 token = match_token(p, srp_opt_tokens, args);
3073 opt_mask |= token;
3074
3075 switch (token) {
3076 case SRP_OPT_ID_EXT:
3077 p = match_strdup(args);
3078 if (!p) {
3079 ret = -ENOMEM;
3080 goto out;
3081 }
3082 target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3083 kfree(p);
3084 break;
3085
3086 case SRP_OPT_IOC_GUID:
3087 p = match_strdup(args);
3088 if (!p) {
3089 ret = -ENOMEM;
3090 goto out;
3091 }
3092 target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
3093 kfree(p);
3094 break;
3095
3096 case SRP_OPT_DGID:
3097 p = match_strdup(args);
3098 if (!p) {
3099 ret = -ENOMEM;
3100 goto out;
3101 }
3102 if (strlen(p) != 32) {
3103 pr_warn("bad dest GID parameter '%s'\n", p);
3104 kfree(p);
3105 goto out;
3106 }
3107
3108 for (i = 0; i < 16; ++i) {
3109 strlcpy(dgid, p + i * 2, sizeof(dgid));
3110 if (sscanf(dgid, "%hhx",
3111 &target->orig_dgid.raw[i]) < 1) {
3112 ret = -EINVAL;
3113 kfree(p);
3114 goto out;
3115 }
3116 }
3117 kfree(p);
3118 break;
3119
3120 case SRP_OPT_PKEY:
3121 if (match_hex(args, &token)) {
3122 pr_warn("bad P_Key parameter '%s'\n", p);
3123 goto out;
3124 }
3125 target->pkey = cpu_to_be16(token);
3126 break;
3127
3128 case SRP_OPT_SERVICE_ID:
3129 p = match_strdup(args);
3130 if (!p) {
3131 ret = -ENOMEM;
3132 goto out;
3133 }
3134 target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
3135 kfree(p);
3136 break;
3137
3138 case SRP_OPT_MAX_SECT:
3139 if (match_int(args, &token)) {
3140 pr_warn("bad max sect parameter '%s'\n", p);
3141 goto out;
3142 }
3143 target->scsi_host->max_sectors = token;
3144 break;
3145
3146 case SRP_OPT_QUEUE_SIZE:
3147 if (match_int(args, &token) || token < 1) {
3148 pr_warn("bad queue_size parameter '%s'\n", p);
3149 goto out;
3150 }
3151 target->scsi_host->can_queue = token;
3152 target->queue_size = token + SRP_RSP_SQ_SIZE +
3153 SRP_TSK_MGMT_SQ_SIZE;
3154 if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3155 target->scsi_host->cmd_per_lun = token;
3156 break;
3157
3158 case SRP_OPT_MAX_CMD_PER_LUN:
3159 if (match_int(args, &token) || token < 1) {
3160 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3161 p);
3162 goto out;
3163 }
3164 target->scsi_host->cmd_per_lun = token;
3165 break;
3166
3167 case SRP_OPT_IO_CLASS:
3168 if (match_hex(args, &token)) {
3169 pr_warn("bad IO class parameter '%s'\n", p);
3170 goto out;
3171 }
3172 if (token != SRP_REV10_IB_IO_CLASS &&
3173 token != SRP_REV16A_IB_IO_CLASS) {
3174 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3175 token, SRP_REV10_IB_IO_CLASS,
3176 SRP_REV16A_IB_IO_CLASS);
3177 goto out;
3178 }
3179 target->io_class = token;
3180 break;
3181
3182 case SRP_OPT_INITIATOR_EXT:
3183 p = match_strdup(args);
3184 if (!p) {
3185 ret = -ENOMEM;
3186 goto out;
3187 }
3188 target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3189 kfree(p);
3190 break;
3191
3192 case SRP_OPT_CMD_SG_ENTRIES:
3193 if (match_int(args, &token) || token < 1 || token > 255) {
3194 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3195 p);
3196 goto out;
3197 }
3198 target->cmd_sg_cnt = token;
3199 break;
3200
3201 case SRP_OPT_ALLOW_EXT_SG:
3202 if (match_int(args, &token)) {
3203 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3204 goto out;
3205 }
3206 target->allow_ext_sg = !!token;
3207 break;
3208
3209 case SRP_OPT_SG_TABLESIZE:
3210 if (match_int(args, &token) || token < 1 ||
3211 token > SG_MAX_SEGMENTS) {
3212 pr_warn("bad max sg_tablesize parameter '%s'\n",
3213 p);
3214 goto out;
3215 }
3216 target->sg_tablesize = token;
3217 break;
3218
3219 case SRP_OPT_COMP_VECTOR:
3220 if (match_int(args, &token) || token < 0) {
3221 pr_warn("bad comp_vector parameter '%s'\n", p);
3222 goto out;
3223 }
3224 target->comp_vector = token;
3225 break;
3226
3227 case SRP_OPT_TL_RETRY_COUNT:
3228 if (match_int(args, &token) || token < 2 || token > 7) {
3229 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3230 p);
3231 goto out;
3232 }
3233 target->tl_retry_count = token;
3234 break;
3235
3236 default:
3237 pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3238 p);
3239 goto out;
3240 }
3241 }
3242
3243 if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3244 ret = 0;
3245 else
3246 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3247 if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3248 !(srp_opt_tokens[i].token & opt_mask))
3249 pr_warn("target creation request is missing parameter '%s'\n",
3250 srp_opt_tokens[i].pattern);
3251
3252 if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3253 && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3254 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3255 target->scsi_host->cmd_per_lun,
3256 target->scsi_host->can_queue);
3257
3258 out:
3259 kfree(options);
3260 return ret;
3261 }
3262
3263 static ssize_t srp_create_target(struct device *dev,
3264 struct device_attribute *attr,
3265 const char *buf, size_t count)
3266 {
3267 struct srp_host *host =
3268 container_of(dev, struct srp_host, dev);
3269 struct Scsi_Host *target_host;
3270 struct srp_target_port *target;
3271 struct srp_rdma_ch *ch;
3272 struct srp_device *srp_dev = host->srp_dev;
3273 struct ib_device *ibdev = srp_dev->dev;
3274 int ret, node_idx, node, cpu, i;
3275 unsigned int max_sectors_per_mr, mr_per_cmd = 0;
3276 bool multich = false;
3277
3278 target_host = scsi_host_alloc(&srp_template,
3279 sizeof (struct srp_target_port));
3280 if (!target_host)
3281 return -ENOMEM;
3282
3283 target_host->transportt = ib_srp_transport_template;
3284 target_host->max_channel = 0;
3285 target_host->max_id = 1;
3286 target_host->max_lun = -1LL;
3287 target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3288
3289 target = host_to_target(target_host);
3290
3291 target->io_class = SRP_REV16A_IB_IO_CLASS;
3292 target->scsi_host = target_host;
3293 target->srp_host = host;
3294 target->pd = host->srp_dev->pd;
3295 target->lkey = host->srp_dev->pd->local_dma_lkey;
3296 target->cmd_sg_cnt = cmd_sg_entries;
3297 target->sg_tablesize = indirect_sg_entries ? : cmd_sg_entries;
3298 target->allow_ext_sg = allow_ext_sg;
3299 target->tl_retry_count = 7;
3300 target->queue_size = SRP_DEFAULT_QUEUE_SIZE;
3301
3302 /*
3303 * Avoid that the SCSI host can be removed by srp_remove_target()
3304 * before this function returns.
3305 */
3306 scsi_host_get(target->scsi_host);
3307
3308 ret = mutex_lock_interruptible(&host->add_target_mutex);
3309 if (ret < 0)
3310 goto put;
3311
3312 ret = srp_parse_options(buf, target);
3313 if (ret)
3314 goto out;
3315
3316 target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3317
3318 if (!srp_conn_unique(target->srp_host, target)) {
3319 shost_printk(KERN_INFO, target->scsi_host,
3320 PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3321 be64_to_cpu(target->id_ext),
3322 be64_to_cpu(target->ioc_guid),
3323 be64_to_cpu(target->initiator_ext));
3324 ret = -EEXIST;
3325 goto out;
3326 }
3327
3328 if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3329 target->cmd_sg_cnt < target->sg_tablesize) {
3330 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3331 target->sg_tablesize = target->cmd_sg_cnt;
3332 }
3333
3334 if (srp_dev->use_fast_reg || srp_dev->use_fmr) {
3335 /*
3336 * FR and FMR can only map one HCA page per entry. If the
3337 * start address is not aligned on a HCA page boundary two
3338 * entries will be used for the head and the tail although
3339 * these two entries combined contain at most one HCA page of
3340 * data. Hence the "+ 1" in the calculation below.
3341 *
3342 * The indirect data buffer descriptor is contiguous so the
3343 * memory for that buffer will only be registered if
3344 * register_always is true. Hence add one to mr_per_cmd if
3345 * register_always has been set.
3346 */
3347 max_sectors_per_mr = srp_dev->max_pages_per_mr <<
3348 (ilog2(srp_dev->mr_page_size) - 9);
3349 mr_per_cmd = register_always +
3350 (target->scsi_host->max_sectors + 1 +
3351 max_sectors_per_mr - 1) / max_sectors_per_mr;
3352 pr_debug("max_sectors = %u; max_pages_per_mr = %u; mr_page_size = %u; max_sectors_per_mr = %u; mr_per_cmd = %u\n",
3353 target->scsi_host->max_sectors,
3354 srp_dev->max_pages_per_mr, srp_dev->mr_page_size,
3355 max_sectors_per_mr, mr_per_cmd);
3356 }
3357
3358 target_host->sg_tablesize = target->sg_tablesize;
3359 target->mr_pool_size = target->scsi_host->can_queue * mr_per_cmd;
3360 target->mr_per_cmd = mr_per_cmd;
3361 target->indirect_size = target->sg_tablesize *
3362 sizeof (struct srp_direct_buf);
3363 target->max_iu_len = sizeof (struct srp_cmd) +
3364 sizeof (struct srp_indirect_buf) +
3365 target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3366
3367 INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3368 INIT_WORK(&target->remove_work, srp_remove_work);
3369 spin_lock_init(&target->lock);
3370 ret = ib_query_gid(ibdev, host->port, 0, &target->sgid, NULL);
3371 if (ret)
3372 goto out;
3373
3374 ret = -ENOMEM;
3375 target->ch_count = max_t(unsigned, num_online_nodes(),
3376 min(ch_count ? :
3377 min(4 * num_online_nodes(),
3378 ibdev->num_comp_vectors),
3379 num_online_cpus()));
3380 target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3381 GFP_KERNEL);
3382 if (!target->ch)
3383 goto out;
3384
3385 node_idx = 0;
3386 for_each_online_node(node) {
3387 const int ch_start = (node_idx * target->ch_count /
3388 num_online_nodes());
3389 const int ch_end = ((node_idx + 1) * target->ch_count /
3390 num_online_nodes());
3391 const int cv_start = (node_idx * ibdev->num_comp_vectors /
3392 num_online_nodes() + target->comp_vector)
3393 % ibdev->num_comp_vectors;
3394 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3395 num_online_nodes() + target->comp_vector)
3396 % ibdev->num_comp_vectors;
3397 int cpu_idx = 0;
3398
3399 for_each_online_cpu(cpu) {
3400 if (cpu_to_node(cpu) != node)
3401 continue;
3402 if (ch_start + cpu_idx >= ch_end)
3403 continue;
3404 ch = &target->ch[ch_start + cpu_idx];
3405 ch->target = target;
3406 ch->comp_vector = cv_start == cv_end ? cv_start :
3407 cv_start + cpu_idx % (cv_end - cv_start);
3408 spin_lock_init(&ch->lock);
3409 INIT_LIST_HEAD(&ch->free_tx);
3410 ret = srp_new_cm_id(ch);
3411 if (ret)
3412 goto err_disconnect;
3413
3414 ret = srp_create_ch_ib(ch);
3415 if (ret)
3416 goto err_disconnect;
3417
3418 ret = srp_alloc_req_data(ch);
3419 if (ret)
3420 goto err_disconnect;
3421
3422 ret = srp_connect_ch(ch, multich);
3423 if (ret) {
3424 shost_printk(KERN_ERR, target->scsi_host,
3425 PFX "Connection %d/%d failed\n",
3426 ch_start + cpu_idx,
3427 target->ch_count);
3428 if (node_idx == 0 && cpu_idx == 0) {
3429 goto err_disconnect;
3430 } else {
3431 srp_free_ch_ib(target, ch);
3432 srp_free_req_data(target, ch);
3433 target->ch_count = ch - target->ch;
3434 goto connected;
3435 }
3436 }
3437
3438 multich = true;
3439 cpu_idx++;
3440 }
3441 node_idx++;
3442 }
3443
3444 connected:
3445 target->scsi_host->nr_hw_queues = target->ch_count;
3446
3447 ret = srp_add_target(host, target);
3448 if (ret)
3449 goto err_disconnect;
3450
3451 if (target->state != SRP_TARGET_REMOVED) {
3452 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3453 "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3454 be64_to_cpu(target->id_ext),
3455 be64_to_cpu(target->ioc_guid),
3456 be16_to_cpu(target->pkey),
3457 be64_to_cpu(target->service_id),
3458 target->sgid.raw, target->orig_dgid.raw);
3459 }
3460
3461 ret = count;
3462
3463 out:
3464 mutex_unlock(&host->add_target_mutex);
3465
3466 put:
3467 scsi_host_put(target->scsi_host);
3468 if (ret < 0)
3469 scsi_host_put(target->scsi_host);
3470
3471 return ret;
3472
3473 err_disconnect:
3474 srp_disconnect_target(target);
3475
3476 for (i = 0; i < target->ch_count; i++) {
3477 ch = &target->ch[i];
3478 srp_free_ch_ib(target, ch);
3479 srp_free_req_data(target, ch);
3480 }
3481
3482 kfree(target->ch);
3483 goto out;
3484 }
3485
3486 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3487
3488 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3489 char *buf)
3490 {
3491 struct srp_host *host = container_of(dev, struct srp_host, dev);
3492
3493 return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3494 }
3495
3496 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3497
3498 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3499 char *buf)
3500 {
3501 struct srp_host *host = container_of(dev, struct srp_host, dev);
3502
3503 return sprintf(buf, "%d\n", host->port);
3504 }
3505
3506 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3507
3508 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3509 {
3510 struct srp_host *host;
3511
3512 host = kzalloc(sizeof *host, GFP_KERNEL);
3513 if (!host)
3514 return NULL;
3515
3516 INIT_LIST_HEAD(&host->target_list);
3517 spin_lock_init(&host->target_lock);
3518 init_completion(&host->released);
3519 mutex_init(&host->add_target_mutex);
3520 host->srp_dev = device;
3521 host->port = port;
3522
3523 host->dev.class = &srp_class;
3524 host->dev.parent = device->dev->dma_device;
3525 dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3526
3527 if (device_register(&host->dev))
3528 goto free_host;
3529 if (device_create_file(&host->dev, &dev_attr_add_target))
3530 goto err_class;
3531 if (device_create_file(&host->dev, &dev_attr_ibdev))
3532 goto err_class;
3533 if (device_create_file(&host->dev, &dev_attr_port))
3534 goto err_class;
3535
3536 return host;
3537
3538 err_class:
3539 device_unregister(&host->dev);
3540
3541 free_host:
3542 kfree(host);
3543
3544 return NULL;
3545 }
3546
3547 static void srp_add_one(struct ib_device *device)
3548 {
3549 struct srp_device *srp_dev;
3550 struct ib_device_attr *attr = &device->attrs;
3551 struct srp_host *host;
3552 int mr_page_shift, p;
3553 u64 max_pages_per_mr;
3554 unsigned int flags = 0;
3555
3556 srp_dev = kzalloc(sizeof(*srp_dev), GFP_KERNEL);
3557 if (!srp_dev)
3558 return;
3559
3560 /*
3561 * Use the smallest page size supported by the HCA, down to a
3562 * minimum of 4096 bytes. We're unlikely to build large sglists
3563 * out of smaller entries.
3564 */
3565 mr_page_shift = max(12, ffs(attr->page_size_cap) - 1);
3566 srp_dev->mr_page_size = 1 << mr_page_shift;
3567 srp_dev->mr_page_mask = ~((u64) srp_dev->mr_page_size - 1);
3568 max_pages_per_mr = attr->max_mr_size;
3569 do_div(max_pages_per_mr, srp_dev->mr_page_size);
3570 pr_debug("%s: %llu / %u = %llu <> %u\n", __func__,
3571 attr->max_mr_size, srp_dev->mr_page_size,
3572 max_pages_per_mr, SRP_MAX_PAGES_PER_MR);
3573 srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3574 max_pages_per_mr);
3575
3576 srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3577 device->map_phys_fmr && device->unmap_fmr);
3578 srp_dev->has_fr = (attr->device_cap_flags &
3579 IB_DEVICE_MEM_MGT_EXTENSIONS);
3580 if (!never_register && !srp_dev->has_fmr && !srp_dev->has_fr) {
3581 dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3582 } else if (!never_register &&
3583 attr->max_mr_size >= 2 * srp_dev->mr_page_size) {
3584 srp_dev->use_fast_reg = (srp_dev->has_fr &&
3585 (!srp_dev->has_fmr || prefer_fr));
3586 srp_dev->use_fmr = !srp_dev->use_fast_reg && srp_dev->has_fmr;
3587 }
3588
3589 if (never_register || !register_always ||
3590 (!srp_dev->has_fmr && !srp_dev->has_fr))
3591 flags |= IB_PD_UNSAFE_GLOBAL_RKEY;
3592
3593 if (srp_dev->use_fast_reg) {
3594 srp_dev->max_pages_per_mr =
3595 min_t(u32, srp_dev->max_pages_per_mr,
3596 attr->max_fast_reg_page_list_len);
3597 }
3598 srp_dev->mr_max_size = srp_dev->mr_page_size *
3599 srp_dev->max_pages_per_mr;
3600 pr_debug("%s: mr_page_shift = %d, device->max_mr_size = %#llx, device->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3601 device->name, mr_page_shift, attr->max_mr_size,
3602 attr->max_fast_reg_page_list_len,
3603 srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3604
3605 INIT_LIST_HEAD(&srp_dev->dev_list);
3606
3607 srp_dev->dev = device;
3608 srp_dev->pd = ib_alloc_pd(device, flags);
3609 if (IS_ERR(srp_dev->pd))
3610 goto free_dev;
3611
3612
3613 for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) {
3614 host = srp_add_port(srp_dev, p);
3615 if (host)
3616 list_add_tail(&host->list, &srp_dev->dev_list);
3617 }
3618
3619 ib_set_client_data(device, &srp_client, srp_dev);
3620 return;
3621
3622 free_dev:
3623 kfree(srp_dev);
3624 }
3625
3626 static void srp_remove_one(struct ib_device *device, void *client_data)
3627 {
3628 struct srp_device *srp_dev;
3629 struct srp_host *host, *tmp_host;
3630 struct srp_target_port *target;
3631
3632 srp_dev = client_data;
3633 if (!srp_dev)
3634 return;
3635
3636 list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3637 device_unregister(&host->dev);
3638 /*
3639 * Wait for the sysfs entry to go away, so that no new
3640 * target ports can be created.
3641 */
3642 wait_for_completion(&host->released);
3643
3644 /*
3645 * Remove all target ports.
3646 */
3647 spin_lock(&host->target_lock);
3648 list_for_each_entry(target, &host->target_list, list)
3649 srp_queue_remove_work(target);
3650 spin_unlock(&host->target_lock);
3651
3652 /*
3653 * Wait for tl_err and target port removal tasks.
3654 */
3655 flush_workqueue(system_long_wq);
3656 flush_workqueue(srp_remove_wq);
3657
3658 kfree(host);
3659 }
3660
3661 ib_dealloc_pd(srp_dev->pd);
3662
3663 kfree(srp_dev);
3664 }
3665
3666 static struct srp_function_template ib_srp_transport_functions = {
3667 .has_rport_state = true,
3668 .reset_timer_if_blocked = true,
3669 .reconnect_delay = &srp_reconnect_delay,
3670 .fast_io_fail_tmo = &srp_fast_io_fail_tmo,
3671 .dev_loss_tmo = &srp_dev_loss_tmo,
3672 .reconnect = srp_rport_reconnect,
3673 .rport_delete = srp_rport_delete,
3674 .terminate_rport_io = srp_terminate_io,
3675 };
3676
3677 static int __init srp_init_module(void)
3678 {
3679 int ret;
3680
3681 if (srp_sg_tablesize) {
3682 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3683 if (!cmd_sg_entries)
3684 cmd_sg_entries = srp_sg_tablesize;
3685 }
3686
3687 if (!cmd_sg_entries)
3688 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3689
3690 if (cmd_sg_entries > 255) {
3691 pr_warn("Clamping cmd_sg_entries to 255\n");
3692 cmd_sg_entries = 255;
3693 }
3694
3695 if (!indirect_sg_entries)
3696 indirect_sg_entries = cmd_sg_entries;
3697 else if (indirect_sg_entries < cmd_sg_entries) {
3698 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3699 cmd_sg_entries);
3700 indirect_sg_entries = cmd_sg_entries;
3701 }
3702
3703 if (indirect_sg_entries > SG_MAX_SEGMENTS) {
3704 pr_warn("Clamping indirect_sg_entries to %u\n",
3705 SG_MAX_SEGMENTS);
3706 indirect_sg_entries = SG_MAX_SEGMENTS;
3707 }
3708
3709 srp_remove_wq = create_workqueue("srp_remove");
3710 if (!srp_remove_wq) {
3711 ret = -ENOMEM;
3712 goto out;
3713 }
3714
3715 ret = -ENOMEM;
3716 ib_srp_transport_template =
3717 srp_attach_transport(&ib_srp_transport_functions);
3718 if (!ib_srp_transport_template)
3719 goto destroy_wq;
3720
3721 ret = class_register(&srp_class);
3722 if (ret) {
3723 pr_err("couldn't register class infiniband_srp\n");
3724 goto release_tr;
3725 }
3726
3727 ib_sa_register_client(&srp_sa_client);
3728
3729 ret = ib_register_client(&srp_client);
3730 if (ret) {
3731 pr_err("couldn't register IB client\n");
3732 goto unreg_sa;
3733 }
3734
3735 out:
3736 return ret;
3737
3738 unreg_sa:
3739 ib_sa_unregister_client(&srp_sa_client);
3740 class_unregister(&srp_class);
3741
3742 release_tr:
3743 srp_release_transport(ib_srp_transport_template);
3744
3745 destroy_wq:
3746 destroy_workqueue(srp_remove_wq);
3747 goto out;
3748 }
3749
3750 static void __exit srp_cleanup_module(void)
3751 {
3752 ib_unregister_client(&srp_client);
3753 ib_sa_unregister_client(&srp_sa_client);
3754 class_unregister(&srp_class);
3755 srp_release_transport(ib_srp_transport_template);
3756 destroy_workqueue(srp_remove_wq);
3757 }
3758
3759 module_init(srp_init_module);
3760 module_exit(srp_cleanup_module);