]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/infiniband/ulp/srp/ib_srp.c
Merge tag 'for-4.2' of git://git.infradead.org/battery-2.6
[mirror_ubuntu-focal-kernel.git] / drivers / infiniband / ulp / srp / ib_srp.c
1 /*
2 * Copyright (c) 2005 Cisco Systems. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44
45 #include <linux/atomic.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53
54 #include "ib_srp.h"
55
56 #define DRV_NAME "ib_srp"
57 #define PFX DRV_NAME ": "
58 #define DRV_VERSION "1.0"
59 #define DRV_RELDATE "July 1, 2013"
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65 MODULE_INFO(release_date, DRV_RELDATE);
66
67 static unsigned int srp_sg_tablesize;
68 static unsigned int cmd_sg_entries;
69 static unsigned int indirect_sg_entries;
70 static bool allow_ext_sg;
71 static bool prefer_fr;
72 static bool register_always;
73 static int topspin_workarounds = 1;
74
75 module_param(srp_sg_tablesize, uint, 0444);
76 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
77
78 module_param(cmd_sg_entries, uint, 0444);
79 MODULE_PARM_DESC(cmd_sg_entries,
80 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
81
82 module_param(indirect_sg_entries, uint, 0444);
83 MODULE_PARM_DESC(indirect_sg_entries,
84 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
85
86 module_param(allow_ext_sg, bool, 0444);
87 MODULE_PARM_DESC(allow_ext_sg,
88 "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
89
90 module_param(topspin_workarounds, int, 0444);
91 MODULE_PARM_DESC(topspin_workarounds,
92 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
93
94 module_param(prefer_fr, bool, 0444);
95 MODULE_PARM_DESC(prefer_fr,
96 "Whether to use fast registration if both FMR and fast registration are supported");
97
98 module_param(register_always, bool, 0444);
99 MODULE_PARM_DESC(register_always,
100 "Use memory registration even for contiguous memory regions");
101
102 static struct kernel_param_ops srp_tmo_ops;
103
104 static int srp_reconnect_delay = 10;
105 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
106 S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
108
109 static int srp_fast_io_fail_tmo = 15;
110 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
111 S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(fast_io_fail_tmo,
113 "Number of seconds between the observation of a transport"
114 " layer error and failing all I/O. \"off\" means that this"
115 " functionality is disabled.");
116
117 static int srp_dev_loss_tmo = 600;
118 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
119 S_IRUGO | S_IWUSR);
120 MODULE_PARM_DESC(dev_loss_tmo,
121 "Maximum number of seconds that the SRP transport should"
122 " insulate transport layer errors. After this time has been"
123 " exceeded the SCSI host is removed. Should be"
124 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
125 " if fast_io_fail_tmo has not been set. \"off\" means that"
126 " this functionality is disabled.");
127
128 static unsigned ch_count;
129 module_param(ch_count, uint, 0444);
130 MODULE_PARM_DESC(ch_count,
131 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
132
133 static void srp_add_one(struct ib_device *device);
134 static void srp_remove_one(struct ib_device *device);
135 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr);
136 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr);
137 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
138
139 static struct scsi_transport_template *ib_srp_transport_template;
140 static struct workqueue_struct *srp_remove_wq;
141
142 static struct ib_client srp_client = {
143 .name = "srp",
144 .add = srp_add_one,
145 .remove = srp_remove_one
146 };
147
148 static struct ib_sa_client srp_sa_client;
149
150 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
151 {
152 int tmo = *(int *)kp->arg;
153
154 if (tmo >= 0)
155 return sprintf(buffer, "%d", tmo);
156 else
157 return sprintf(buffer, "off");
158 }
159
160 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
161 {
162 int tmo, res;
163
164 if (strncmp(val, "off", 3) != 0) {
165 res = kstrtoint(val, 0, &tmo);
166 if (res)
167 goto out;
168 } else {
169 tmo = -1;
170 }
171 if (kp->arg == &srp_reconnect_delay)
172 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
173 srp_dev_loss_tmo);
174 else if (kp->arg == &srp_fast_io_fail_tmo)
175 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
176 else
177 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
178 tmo);
179 if (res)
180 goto out;
181 *(int *)kp->arg = tmo;
182
183 out:
184 return res;
185 }
186
187 static struct kernel_param_ops srp_tmo_ops = {
188 .get = srp_tmo_get,
189 .set = srp_tmo_set,
190 };
191
192 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
193 {
194 return (struct srp_target_port *) host->hostdata;
195 }
196
197 static const char *srp_target_info(struct Scsi_Host *host)
198 {
199 return host_to_target(host)->target_name;
200 }
201
202 static int srp_target_is_topspin(struct srp_target_port *target)
203 {
204 static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
205 static const u8 cisco_oui[3] = { 0x00, 0x1b, 0x0d };
206
207 return topspin_workarounds &&
208 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
209 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
210 }
211
212 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
213 gfp_t gfp_mask,
214 enum dma_data_direction direction)
215 {
216 struct srp_iu *iu;
217
218 iu = kmalloc(sizeof *iu, gfp_mask);
219 if (!iu)
220 goto out;
221
222 iu->buf = kzalloc(size, gfp_mask);
223 if (!iu->buf)
224 goto out_free_iu;
225
226 iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
227 direction);
228 if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
229 goto out_free_buf;
230
231 iu->size = size;
232 iu->direction = direction;
233
234 return iu;
235
236 out_free_buf:
237 kfree(iu->buf);
238 out_free_iu:
239 kfree(iu);
240 out:
241 return NULL;
242 }
243
244 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
245 {
246 if (!iu)
247 return;
248
249 ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
250 iu->direction);
251 kfree(iu->buf);
252 kfree(iu);
253 }
254
255 static void srp_qp_event(struct ib_event *event, void *context)
256 {
257 pr_debug("QP event %s (%d)\n",
258 ib_event_msg(event->event), event->event);
259 }
260
261 static int srp_init_qp(struct srp_target_port *target,
262 struct ib_qp *qp)
263 {
264 struct ib_qp_attr *attr;
265 int ret;
266
267 attr = kmalloc(sizeof *attr, GFP_KERNEL);
268 if (!attr)
269 return -ENOMEM;
270
271 ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
272 target->srp_host->port,
273 be16_to_cpu(target->pkey),
274 &attr->pkey_index);
275 if (ret)
276 goto out;
277
278 attr->qp_state = IB_QPS_INIT;
279 attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
280 IB_ACCESS_REMOTE_WRITE);
281 attr->port_num = target->srp_host->port;
282
283 ret = ib_modify_qp(qp, attr,
284 IB_QP_STATE |
285 IB_QP_PKEY_INDEX |
286 IB_QP_ACCESS_FLAGS |
287 IB_QP_PORT);
288
289 out:
290 kfree(attr);
291 return ret;
292 }
293
294 static int srp_new_cm_id(struct srp_rdma_ch *ch)
295 {
296 struct srp_target_port *target = ch->target;
297 struct ib_cm_id *new_cm_id;
298
299 new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
300 srp_cm_handler, ch);
301 if (IS_ERR(new_cm_id))
302 return PTR_ERR(new_cm_id);
303
304 if (ch->cm_id)
305 ib_destroy_cm_id(ch->cm_id);
306 ch->cm_id = new_cm_id;
307 ch->path.sgid = target->sgid;
308 ch->path.dgid = target->orig_dgid;
309 ch->path.pkey = target->pkey;
310 ch->path.service_id = target->service_id;
311
312 return 0;
313 }
314
315 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
316 {
317 struct srp_device *dev = target->srp_host->srp_dev;
318 struct ib_fmr_pool_param fmr_param;
319
320 memset(&fmr_param, 0, sizeof(fmr_param));
321 fmr_param.pool_size = target->scsi_host->can_queue;
322 fmr_param.dirty_watermark = fmr_param.pool_size / 4;
323 fmr_param.cache = 1;
324 fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
325 fmr_param.page_shift = ilog2(dev->mr_page_size);
326 fmr_param.access = (IB_ACCESS_LOCAL_WRITE |
327 IB_ACCESS_REMOTE_WRITE |
328 IB_ACCESS_REMOTE_READ);
329
330 return ib_create_fmr_pool(dev->pd, &fmr_param);
331 }
332
333 /**
334 * srp_destroy_fr_pool() - free the resources owned by a pool
335 * @pool: Fast registration pool to be destroyed.
336 */
337 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
338 {
339 int i;
340 struct srp_fr_desc *d;
341
342 if (!pool)
343 return;
344
345 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
346 if (d->frpl)
347 ib_free_fast_reg_page_list(d->frpl);
348 if (d->mr)
349 ib_dereg_mr(d->mr);
350 }
351 kfree(pool);
352 }
353
354 /**
355 * srp_create_fr_pool() - allocate and initialize a pool for fast registration
356 * @device: IB device to allocate fast registration descriptors for.
357 * @pd: Protection domain associated with the FR descriptors.
358 * @pool_size: Number of descriptors to allocate.
359 * @max_page_list_len: Maximum fast registration work request page list length.
360 */
361 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
362 struct ib_pd *pd, int pool_size,
363 int max_page_list_len)
364 {
365 struct srp_fr_pool *pool;
366 struct srp_fr_desc *d;
367 struct ib_mr *mr;
368 struct ib_fast_reg_page_list *frpl;
369 int i, ret = -EINVAL;
370
371 if (pool_size <= 0)
372 goto err;
373 ret = -ENOMEM;
374 pool = kzalloc(sizeof(struct srp_fr_pool) +
375 pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
376 if (!pool)
377 goto err;
378 pool->size = pool_size;
379 pool->max_page_list_len = max_page_list_len;
380 spin_lock_init(&pool->lock);
381 INIT_LIST_HEAD(&pool->free_list);
382
383 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
384 mr = ib_alloc_fast_reg_mr(pd, max_page_list_len);
385 if (IS_ERR(mr)) {
386 ret = PTR_ERR(mr);
387 goto destroy_pool;
388 }
389 d->mr = mr;
390 frpl = ib_alloc_fast_reg_page_list(device, max_page_list_len);
391 if (IS_ERR(frpl)) {
392 ret = PTR_ERR(frpl);
393 goto destroy_pool;
394 }
395 d->frpl = frpl;
396 list_add_tail(&d->entry, &pool->free_list);
397 }
398
399 out:
400 return pool;
401
402 destroy_pool:
403 srp_destroy_fr_pool(pool);
404
405 err:
406 pool = ERR_PTR(ret);
407 goto out;
408 }
409
410 /**
411 * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
412 * @pool: Pool to obtain descriptor from.
413 */
414 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
415 {
416 struct srp_fr_desc *d = NULL;
417 unsigned long flags;
418
419 spin_lock_irqsave(&pool->lock, flags);
420 if (!list_empty(&pool->free_list)) {
421 d = list_first_entry(&pool->free_list, typeof(*d), entry);
422 list_del(&d->entry);
423 }
424 spin_unlock_irqrestore(&pool->lock, flags);
425
426 return d;
427 }
428
429 /**
430 * srp_fr_pool_put() - put an FR descriptor back in the free list
431 * @pool: Pool the descriptor was allocated from.
432 * @desc: Pointer to an array of fast registration descriptor pointers.
433 * @n: Number of descriptors to put back.
434 *
435 * Note: The caller must already have queued an invalidation request for
436 * desc->mr->rkey before calling this function.
437 */
438 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
439 int n)
440 {
441 unsigned long flags;
442 int i;
443
444 spin_lock_irqsave(&pool->lock, flags);
445 for (i = 0; i < n; i++)
446 list_add(&desc[i]->entry, &pool->free_list);
447 spin_unlock_irqrestore(&pool->lock, flags);
448 }
449
450 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
451 {
452 struct srp_device *dev = target->srp_host->srp_dev;
453
454 return srp_create_fr_pool(dev->dev, dev->pd,
455 target->scsi_host->can_queue,
456 dev->max_pages_per_mr);
457 }
458
459 /**
460 * srp_destroy_qp() - destroy an RDMA queue pair
461 * @ch: SRP RDMA channel.
462 *
463 * Change a queue pair into the error state and wait until all receive
464 * completions have been processed before destroying it. This avoids that
465 * the receive completion handler can access the queue pair while it is
466 * being destroyed.
467 */
468 static void srp_destroy_qp(struct srp_rdma_ch *ch)
469 {
470 static struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
471 static struct ib_recv_wr wr = { .wr_id = SRP_LAST_WR_ID };
472 struct ib_recv_wr *bad_wr;
473 int ret;
474
475 /* Destroying a QP and reusing ch->done is only safe if not connected */
476 WARN_ON_ONCE(ch->connected);
477
478 ret = ib_modify_qp(ch->qp, &attr, IB_QP_STATE);
479 WARN_ONCE(ret, "ib_cm_init_qp_attr() returned %d\n", ret);
480 if (ret)
481 goto out;
482
483 init_completion(&ch->done);
484 ret = ib_post_recv(ch->qp, &wr, &bad_wr);
485 WARN_ONCE(ret, "ib_post_recv() returned %d\n", ret);
486 if (ret == 0)
487 wait_for_completion(&ch->done);
488
489 out:
490 ib_destroy_qp(ch->qp);
491 }
492
493 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
494 {
495 struct srp_target_port *target = ch->target;
496 struct srp_device *dev = target->srp_host->srp_dev;
497 struct ib_qp_init_attr *init_attr;
498 struct ib_cq *recv_cq, *send_cq;
499 struct ib_qp *qp;
500 struct ib_fmr_pool *fmr_pool = NULL;
501 struct srp_fr_pool *fr_pool = NULL;
502 const int m = 1 + dev->use_fast_reg;
503 struct ib_cq_init_attr cq_attr = {};
504 int ret;
505
506 init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
507 if (!init_attr)
508 return -ENOMEM;
509
510 /* + 1 for SRP_LAST_WR_ID */
511 cq_attr.cqe = target->queue_size + 1;
512 cq_attr.comp_vector = ch->comp_vector;
513 recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, ch,
514 &cq_attr);
515 if (IS_ERR(recv_cq)) {
516 ret = PTR_ERR(recv_cq);
517 goto err;
518 }
519
520 cq_attr.cqe = m * target->queue_size;
521 cq_attr.comp_vector = ch->comp_vector;
522 send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, ch,
523 &cq_attr);
524 if (IS_ERR(send_cq)) {
525 ret = PTR_ERR(send_cq);
526 goto err_recv_cq;
527 }
528
529 ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP);
530
531 init_attr->event_handler = srp_qp_event;
532 init_attr->cap.max_send_wr = m * target->queue_size;
533 init_attr->cap.max_recv_wr = target->queue_size + 1;
534 init_attr->cap.max_recv_sge = 1;
535 init_attr->cap.max_send_sge = 1;
536 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
537 init_attr->qp_type = IB_QPT_RC;
538 init_attr->send_cq = send_cq;
539 init_attr->recv_cq = recv_cq;
540
541 qp = ib_create_qp(dev->pd, init_attr);
542 if (IS_ERR(qp)) {
543 ret = PTR_ERR(qp);
544 goto err_send_cq;
545 }
546
547 ret = srp_init_qp(target, qp);
548 if (ret)
549 goto err_qp;
550
551 if (dev->use_fast_reg && dev->has_fr) {
552 fr_pool = srp_alloc_fr_pool(target);
553 if (IS_ERR(fr_pool)) {
554 ret = PTR_ERR(fr_pool);
555 shost_printk(KERN_WARNING, target->scsi_host, PFX
556 "FR pool allocation failed (%d)\n", ret);
557 goto err_qp;
558 }
559 if (ch->fr_pool)
560 srp_destroy_fr_pool(ch->fr_pool);
561 ch->fr_pool = fr_pool;
562 } else if (!dev->use_fast_reg && dev->has_fmr) {
563 fmr_pool = srp_alloc_fmr_pool(target);
564 if (IS_ERR(fmr_pool)) {
565 ret = PTR_ERR(fmr_pool);
566 shost_printk(KERN_WARNING, target->scsi_host, PFX
567 "FMR pool allocation failed (%d)\n", ret);
568 goto err_qp;
569 }
570 if (ch->fmr_pool)
571 ib_destroy_fmr_pool(ch->fmr_pool);
572 ch->fmr_pool = fmr_pool;
573 }
574
575 if (ch->qp)
576 srp_destroy_qp(ch);
577 if (ch->recv_cq)
578 ib_destroy_cq(ch->recv_cq);
579 if (ch->send_cq)
580 ib_destroy_cq(ch->send_cq);
581
582 ch->qp = qp;
583 ch->recv_cq = recv_cq;
584 ch->send_cq = send_cq;
585
586 kfree(init_attr);
587 return 0;
588
589 err_qp:
590 ib_destroy_qp(qp);
591
592 err_send_cq:
593 ib_destroy_cq(send_cq);
594
595 err_recv_cq:
596 ib_destroy_cq(recv_cq);
597
598 err:
599 kfree(init_attr);
600 return ret;
601 }
602
603 /*
604 * Note: this function may be called without srp_alloc_iu_bufs() having been
605 * invoked. Hence the ch->[rt]x_ring checks.
606 */
607 static void srp_free_ch_ib(struct srp_target_port *target,
608 struct srp_rdma_ch *ch)
609 {
610 struct srp_device *dev = target->srp_host->srp_dev;
611 int i;
612
613 if (!ch->target)
614 return;
615
616 if (ch->cm_id) {
617 ib_destroy_cm_id(ch->cm_id);
618 ch->cm_id = NULL;
619 }
620
621 /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
622 if (!ch->qp)
623 return;
624
625 if (dev->use_fast_reg) {
626 if (ch->fr_pool)
627 srp_destroy_fr_pool(ch->fr_pool);
628 } else {
629 if (ch->fmr_pool)
630 ib_destroy_fmr_pool(ch->fmr_pool);
631 }
632 srp_destroy_qp(ch);
633 ib_destroy_cq(ch->send_cq);
634 ib_destroy_cq(ch->recv_cq);
635
636 /*
637 * Avoid that the SCSI error handler tries to use this channel after
638 * it has been freed. The SCSI error handler can namely continue
639 * trying to perform recovery actions after scsi_remove_host()
640 * returned.
641 */
642 ch->target = NULL;
643
644 ch->qp = NULL;
645 ch->send_cq = ch->recv_cq = NULL;
646
647 if (ch->rx_ring) {
648 for (i = 0; i < target->queue_size; ++i)
649 srp_free_iu(target->srp_host, ch->rx_ring[i]);
650 kfree(ch->rx_ring);
651 ch->rx_ring = NULL;
652 }
653 if (ch->tx_ring) {
654 for (i = 0; i < target->queue_size; ++i)
655 srp_free_iu(target->srp_host, ch->tx_ring[i]);
656 kfree(ch->tx_ring);
657 ch->tx_ring = NULL;
658 }
659 }
660
661 static void srp_path_rec_completion(int status,
662 struct ib_sa_path_rec *pathrec,
663 void *ch_ptr)
664 {
665 struct srp_rdma_ch *ch = ch_ptr;
666 struct srp_target_port *target = ch->target;
667
668 ch->status = status;
669 if (status)
670 shost_printk(KERN_ERR, target->scsi_host,
671 PFX "Got failed path rec status %d\n", status);
672 else
673 ch->path = *pathrec;
674 complete(&ch->done);
675 }
676
677 static int srp_lookup_path(struct srp_rdma_ch *ch)
678 {
679 struct srp_target_port *target = ch->target;
680 int ret;
681
682 ch->path.numb_path = 1;
683
684 init_completion(&ch->done);
685
686 ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
687 target->srp_host->srp_dev->dev,
688 target->srp_host->port,
689 &ch->path,
690 IB_SA_PATH_REC_SERVICE_ID |
691 IB_SA_PATH_REC_DGID |
692 IB_SA_PATH_REC_SGID |
693 IB_SA_PATH_REC_NUMB_PATH |
694 IB_SA_PATH_REC_PKEY,
695 SRP_PATH_REC_TIMEOUT_MS,
696 GFP_KERNEL,
697 srp_path_rec_completion,
698 ch, &ch->path_query);
699 if (ch->path_query_id < 0)
700 return ch->path_query_id;
701
702 ret = wait_for_completion_interruptible(&ch->done);
703 if (ret < 0)
704 return ret;
705
706 if (ch->status < 0)
707 shost_printk(KERN_WARNING, target->scsi_host,
708 PFX "Path record query failed\n");
709
710 return ch->status;
711 }
712
713 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
714 {
715 struct srp_target_port *target = ch->target;
716 struct {
717 struct ib_cm_req_param param;
718 struct srp_login_req priv;
719 } *req = NULL;
720 int status;
721
722 req = kzalloc(sizeof *req, GFP_KERNEL);
723 if (!req)
724 return -ENOMEM;
725
726 req->param.primary_path = &ch->path;
727 req->param.alternate_path = NULL;
728 req->param.service_id = target->service_id;
729 req->param.qp_num = ch->qp->qp_num;
730 req->param.qp_type = ch->qp->qp_type;
731 req->param.private_data = &req->priv;
732 req->param.private_data_len = sizeof req->priv;
733 req->param.flow_control = 1;
734
735 get_random_bytes(&req->param.starting_psn, 4);
736 req->param.starting_psn &= 0xffffff;
737
738 /*
739 * Pick some arbitrary defaults here; we could make these
740 * module parameters if anyone cared about setting them.
741 */
742 req->param.responder_resources = 4;
743 req->param.remote_cm_response_timeout = 20;
744 req->param.local_cm_response_timeout = 20;
745 req->param.retry_count = target->tl_retry_count;
746 req->param.rnr_retry_count = 7;
747 req->param.max_cm_retries = 15;
748
749 req->priv.opcode = SRP_LOGIN_REQ;
750 req->priv.tag = 0;
751 req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
752 req->priv.req_buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
753 SRP_BUF_FORMAT_INDIRECT);
754 req->priv.req_flags = (multich ? SRP_MULTICHAN_MULTI :
755 SRP_MULTICHAN_SINGLE);
756 /*
757 * In the published SRP specification (draft rev. 16a), the
758 * port identifier format is 8 bytes of ID extension followed
759 * by 8 bytes of GUID. Older drafts put the two halves in the
760 * opposite order, so that the GUID comes first.
761 *
762 * Targets conforming to these obsolete drafts can be
763 * recognized by the I/O Class they report.
764 */
765 if (target->io_class == SRP_REV10_IB_IO_CLASS) {
766 memcpy(req->priv.initiator_port_id,
767 &target->sgid.global.interface_id, 8);
768 memcpy(req->priv.initiator_port_id + 8,
769 &target->initiator_ext, 8);
770 memcpy(req->priv.target_port_id, &target->ioc_guid, 8);
771 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
772 } else {
773 memcpy(req->priv.initiator_port_id,
774 &target->initiator_ext, 8);
775 memcpy(req->priv.initiator_port_id + 8,
776 &target->sgid.global.interface_id, 8);
777 memcpy(req->priv.target_port_id, &target->id_ext, 8);
778 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
779 }
780
781 /*
782 * Topspin/Cisco SRP targets will reject our login unless we
783 * zero out the first 8 bytes of our initiator port ID and set
784 * the second 8 bytes to the local node GUID.
785 */
786 if (srp_target_is_topspin(target)) {
787 shost_printk(KERN_DEBUG, target->scsi_host,
788 PFX "Topspin/Cisco initiator port ID workaround "
789 "activated for target GUID %016llx\n",
790 be64_to_cpu(target->ioc_guid));
791 memset(req->priv.initiator_port_id, 0, 8);
792 memcpy(req->priv.initiator_port_id + 8,
793 &target->srp_host->srp_dev->dev->node_guid, 8);
794 }
795
796 status = ib_send_cm_req(ch->cm_id, &req->param);
797
798 kfree(req);
799
800 return status;
801 }
802
803 static bool srp_queue_remove_work(struct srp_target_port *target)
804 {
805 bool changed = false;
806
807 spin_lock_irq(&target->lock);
808 if (target->state != SRP_TARGET_REMOVED) {
809 target->state = SRP_TARGET_REMOVED;
810 changed = true;
811 }
812 spin_unlock_irq(&target->lock);
813
814 if (changed)
815 queue_work(srp_remove_wq, &target->remove_work);
816
817 return changed;
818 }
819
820 static void srp_disconnect_target(struct srp_target_port *target)
821 {
822 struct srp_rdma_ch *ch;
823 int i;
824
825 /* XXX should send SRP_I_LOGOUT request */
826
827 for (i = 0; i < target->ch_count; i++) {
828 ch = &target->ch[i];
829 ch->connected = false;
830 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
831 shost_printk(KERN_DEBUG, target->scsi_host,
832 PFX "Sending CM DREQ failed\n");
833 }
834 }
835 }
836
837 static void srp_free_req_data(struct srp_target_port *target,
838 struct srp_rdma_ch *ch)
839 {
840 struct srp_device *dev = target->srp_host->srp_dev;
841 struct ib_device *ibdev = dev->dev;
842 struct srp_request *req;
843 int i;
844
845 if (!ch->req_ring)
846 return;
847
848 for (i = 0; i < target->req_ring_size; ++i) {
849 req = &ch->req_ring[i];
850 if (dev->use_fast_reg)
851 kfree(req->fr_list);
852 else
853 kfree(req->fmr_list);
854 kfree(req->map_page);
855 if (req->indirect_dma_addr) {
856 ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
857 target->indirect_size,
858 DMA_TO_DEVICE);
859 }
860 kfree(req->indirect_desc);
861 }
862
863 kfree(ch->req_ring);
864 ch->req_ring = NULL;
865 }
866
867 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
868 {
869 struct srp_target_port *target = ch->target;
870 struct srp_device *srp_dev = target->srp_host->srp_dev;
871 struct ib_device *ibdev = srp_dev->dev;
872 struct srp_request *req;
873 void *mr_list;
874 dma_addr_t dma_addr;
875 int i, ret = -ENOMEM;
876
877 ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
878 GFP_KERNEL);
879 if (!ch->req_ring)
880 goto out;
881
882 for (i = 0; i < target->req_ring_size; ++i) {
883 req = &ch->req_ring[i];
884 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
885 GFP_KERNEL);
886 if (!mr_list)
887 goto out;
888 if (srp_dev->use_fast_reg)
889 req->fr_list = mr_list;
890 else
891 req->fmr_list = mr_list;
892 req->map_page = kmalloc(srp_dev->max_pages_per_mr *
893 sizeof(void *), GFP_KERNEL);
894 if (!req->map_page)
895 goto out;
896 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
897 if (!req->indirect_desc)
898 goto out;
899
900 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
901 target->indirect_size,
902 DMA_TO_DEVICE);
903 if (ib_dma_mapping_error(ibdev, dma_addr))
904 goto out;
905
906 req->indirect_dma_addr = dma_addr;
907 }
908 ret = 0;
909
910 out:
911 return ret;
912 }
913
914 /**
915 * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
916 * @shost: SCSI host whose attributes to remove from sysfs.
917 *
918 * Note: Any attributes defined in the host template and that did not exist
919 * before invocation of this function will be ignored.
920 */
921 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
922 {
923 struct device_attribute **attr;
924
925 for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
926 device_remove_file(&shost->shost_dev, *attr);
927 }
928
929 static void srp_remove_target(struct srp_target_port *target)
930 {
931 struct srp_rdma_ch *ch;
932 int i;
933
934 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
935
936 srp_del_scsi_host_attr(target->scsi_host);
937 srp_rport_get(target->rport);
938 srp_remove_host(target->scsi_host);
939 scsi_remove_host(target->scsi_host);
940 srp_stop_rport_timers(target->rport);
941 srp_disconnect_target(target);
942 for (i = 0; i < target->ch_count; i++) {
943 ch = &target->ch[i];
944 srp_free_ch_ib(target, ch);
945 }
946 cancel_work_sync(&target->tl_err_work);
947 srp_rport_put(target->rport);
948 for (i = 0; i < target->ch_count; i++) {
949 ch = &target->ch[i];
950 srp_free_req_data(target, ch);
951 }
952 kfree(target->ch);
953 target->ch = NULL;
954
955 spin_lock(&target->srp_host->target_lock);
956 list_del(&target->list);
957 spin_unlock(&target->srp_host->target_lock);
958
959 scsi_host_put(target->scsi_host);
960 }
961
962 static void srp_remove_work(struct work_struct *work)
963 {
964 struct srp_target_port *target =
965 container_of(work, struct srp_target_port, remove_work);
966
967 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
968
969 srp_remove_target(target);
970 }
971
972 static void srp_rport_delete(struct srp_rport *rport)
973 {
974 struct srp_target_port *target = rport->lld_data;
975
976 srp_queue_remove_work(target);
977 }
978
979 /**
980 * srp_connected_ch() - number of connected channels
981 * @target: SRP target port.
982 */
983 static int srp_connected_ch(struct srp_target_port *target)
984 {
985 int i, c = 0;
986
987 for (i = 0; i < target->ch_count; i++)
988 c += target->ch[i].connected;
989
990 return c;
991 }
992
993 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
994 {
995 struct srp_target_port *target = ch->target;
996 int ret;
997
998 WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
999
1000 ret = srp_lookup_path(ch);
1001 if (ret)
1002 return ret;
1003
1004 while (1) {
1005 init_completion(&ch->done);
1006 ret = srp_send_req(ch, multich);
1007 if (ret)
1008 return ret;
1009 ret = wait_for_completion_interruptible(&ch->done);
1010 if (ret < 0)
1011 return ret;
1012
1013 /*
1014 * The CM event handling code will set status to
1015 * SRP_PORT_REDIRECT if we get a port redirect REJ
1016 * back, or SRP_DLID_REDIRECT if we get a lid/qp
1017 * redirect REJ back.
1018 */
1019 switch (ch->status) {
1020 case 0:
1021 ch->connected = true;
1022 return 0;
1023
1024 case SRP_PORT_REDIRECT:
1025 ret = srp_lookup_path(ch);
1026 if (ret)
1027 return ret;
1028 break;
1029
1030 case SRP_DLID_REDIRECT:
1031 break;
1032
1033 case SRP_STALE_CONN:
1034 shost_printk(KERN_ERR, target->scsi_host, PFX
1035 "giving up on stale connection\n");
1036 ch->status = -ECONNRESET;
1037 return ch->status;
1038
1039 default:
1040 return ch->status;
1041 }
1042 }
1043 }
1044
1045 static int srp_inv_rkey(struct srp_rdma_ch *ch, u32 rkey)
1046 {
1047 struct ib_send_wr *bad_wr;
1048 struct ib_send_wr wr = {
1049 .opcode = IB_WR_LOCAL_INV,
1050 .wr_id = LOCAL_INV_WR_ID_MASK,
1051 .next = NULL,
1052 .num_sge = 0,
1053 .send_flags = 0,
1054 .ex.invalidate_rkey = rkey,
1055 };
1056
1057 return ib_post_send(ch->qp, &wr, &bad_wr);
1058 }
1059
1060 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1061 struct srp_rdma_ch *ch,
1062 struct srp_request *req)
1063 {
1064 struct srp_target_port *target = ch->target;
1065 struct srp_device *dev = target->srp_host->srp_dev;
1066 struct ib_device *ibdev = dev->dev;
1067 int i, res;
1068
1069 if (!scsi_sglist(scmnd) ||
1070 (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1071 scmnd->sc_data_direction != DMA_FROM_DEVICE))
1072 return;
1073
1074 if (dev->use_fast_reg) {
1075 struct srp_fr_desc **pfr;
1076
1077 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1078 res = srp_inv_rkey(ch, (*pfr)->mr->rkey);
1079 if (res < 0) {
1080 shost_printk(KERN_ERR, target->scsi_host, PFX
1081 "Queueing INV WR for rkey %#x failed (%d)\n",
1082 (*pfr)->mr->rkey, res);
1083 queue_work(system_long_wq,
1084 &target->tl_err_work);
1085 }
1086 }
1087 if (req->nmdesc)
1088 srp_fr_pool_put(ch->fr_pool, req->fr_list,
1089 req->nmdesc);
1090 } else {
1091 struct ib_pool_fmr **pfmr;
1092
1093 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1094 ib_fmr_pool_unmap(*pfmr);
1095 }
1096
1097 ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1098 scmnd->sc_data_direction);
1099 }
1100
1101 /**
1102 * srp_claim_req - Take ownership of the scmnd associated with a request.
1103 * @ch: SRP RDMA channel.
1104 * @req: SRP request.
1105 * @sdev: If not NULL, only take ownership for this SCSI device.
1106 * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1107 * ownership of @req->scmnd if it equals @scmnd.
1108 *
1109 * Return value:
1110 * Either NULL or a pointer to the SCSI command the caller became owner of.
1111 */
1112 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1113 struct srp_request *req,
1114 struct scsi_device *sdev,
1115 struct scsi_cmnd *scmnd)
1116 {
1117 unsigned long flags;
1118
1119 spin_lock_irqsave(&ch->lock, flags);
1120 if (req->scmnd &&
1121 (!sdev || req->scmnd->device == sdev) &&
1122 (!scmnd || req->scmnd == scmnd)) {
1123 scmnd = req->scmnd;
1124 req->scmnd = NULL;
1125 } else {
1126 scmnd = NULL;
1127 }
1128 spin_unlock_irqrestore(&ch->lock, flags);
1129
1130 return scmnd;
1131 }
1132
1133 /**
1134 * srp_free_req() - Unmap data and add request to the free request list.
1135 * @ch: SRP RDMA channel.
1136 * @req: Request to be freed.
1137 * @scmnd: SCSI command associated with @req.
1138 * @req_lim_delta: Amount to be added to @target->req_lim.
1139 */
1140 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1141 struct scsi_cmnd *scmnd, s32 req_lim_delta)
1142 {
1143 unsigned long flags;
1144
1145 srp_unmap_data(scmnd, ch, req);
1146
1147 spin_lock_irqsave(&ch->lock, flags);
1148 ch->req_lim += req_lim_delta;
1149 spin_unlock_irqrestore(&ch->lock, flags);
1150 }
1151
1152 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1153 struct scsi_device *sdev, int result)
1154 {
1155 struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1156
1157 if (scmnd) {
1158 srp_free_req(ch, req, scmnd, 0);
1159 scmnd->result = result;
1160 scmnd->scsi_done(scmnd);
1161 }
1162 }
1163
1164 static void srp_terminate_io(struct srp_rport *rport)
1165 {
1166 struct srp_target_port *target = rport->lld_data;
1167 struct srp_rdma_ch *ch;
1168 struct Scsi_Host *shost = target->scsi_host;
1169 struct scsi_device *sdev;
1170 int i, j;
1171
1172 /*
1173 * Invoking srp_terminate_io() while srp_queuecommand() is running
1174 * is not safe. Hence the warning statement below.
1175 */
1176 shost_for_each_device(sdev, shost)
1177 WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1178
1179 for (i = 0; i < target->ch_count; i++) {
1180 ch = &target->ch[i];
1181
1182 for (j = 0; j < target->req_ring_size; ++j) {
1183 struct srp_request *req = &ch->req_ring[j];
1184
1185 srp_finish_req(ch, req, NULL,
1186 DID_TRANSPORT_FAILFAST << 16);
1187 }
1188 }
1189 }
1190
1191 /*
1192 * It is up to the caller to ensure that srp_rport_reconnect() calls are
1193 * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1194 * srp_reset_device() or srp_reset_host() calls will occur while this function
1195 * is in progress. One way to realize that is not to call this function
1196 * directly but to call srp_reconnect_rport() instead since that last function
1197 * serializes calls of this function via rport->mutex and also blocks
1198 * srp_queuecommand() calls before invoking this function.
1199 */
1200 static int srp_rport_reconnect(struct srp_rport *rport)
1201 {
1202 struct srp_target_port *target = rport->lld_data;
1203 struct srp_rdma_ch *ch;
1204 int i, j, ret = 0;
1205 bool multich = false;
1206
1207 srp_disconnect_target(target);
1208
1209 if (target->state == SRP_TARGET_SCANNING)
1210 return -ENODEV;
1211
1212 /*
1213 * Now get a new local CM ID so that we avoid confusing the target in
1214 * case things are really fouled up. Doing so also ensures that all CM
1215 * callbacks will have finished before a new QP is allocated.
1216 */
1217 for (i = 0; i < target->ch_count; i++) {
1218 ch = &target->ch[i];
1219 ret += srp_new_cm_id(ch);
1220 }
1221 for (i = 0; i < target->ch_count; i++) {
1222 ch = &target->ch[i];
1223 for (j = 0; j < target->req_ring_size; ++j) {
1224 struct srp_request *req = &ch->req_ring[j];
1225
1226 srp_finish_req(ch, req, NULL, DID_RESET << 16);
1227 }
1228 }
1229 for (i = 0; i < target->ch_count; i++) {
1230 ch = &target->ch[i];
1231 /*
1232 * Whether or not creating a new CM ID succeeded, create a new
1233 * QP. This guarantees that all completion callback function
1234 * invocations have finished before request resetting starts.
1235 */
1236 ret += srp_create_ch_ib(ch);
1237
1238 INIT_LIST_HEAD(&ch->free_tx);
1239 for (j = 0; j < target->queue_size; ++j)
1240 list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1241 }
1242
1243 target->qp_in_error = false;
1244
1245 for (i = 0; i < target->ch_count; i++) {
1246 ch = &target->ch[i];
1247 if (ret)
1248 break;
1249 ret = srp_connect_ch(ch, multich);
1250 multich = true;
1251 }
1252
1253 if (ret == 0)
1254 shost_printk(KERN_INFO, target->scsi_host,
1255 PFX "reconnect succeeded\n");
1256
1257 return ret;
1258 }
1259
1260 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1261 unsigned int dma_len, u32 rkey)
1262 {
1263 struct srp_direct_buf *desc = state->desc;
1264
1265 desc->va = cpu_to_be64(dma_addr);
1266 desc->key = cpu_to_be32(rkey);
1267 desc->len = cpu_to_be32(dma_len);
1268
1269 state->total_len += dma_len;
1270 state->desc++;
1271 state->ndesc++;
1272 }
1273
1274 static int srp_map_finish_fmr(struct srp_map_state *state,
1275 struct srp_rdma_ch *ch)
1276 {
1277 struct ib_pool_fmr *fmr;
1278 u64 io_addr = 0;
1279
1280 fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1281 state->npages, io_addr);
1282 if (IS_ERR(fmr))
1283 return PTR_ERR(fmr);
1284
1285 *state->next_fmr++ = fmr;
1286 state->nmdesc++;
1287
1288 srp_map_desc(state, 0, state->dma_len, fmr->fmr->rkey);
1289
1290 return 0;
1291 }
1292
1293 static int srp_map_finish_fr(struct srp_map_state *state,
1294 struct srp_rdma_ch *ch)
1295 {
1296 struct srp_target_port *target = ch->target;
1297 struct srp_device *dev = target->srp_host->srp_dev;
1298 struct ib_send_wr *bad_wr;
1299 struct ib_send_wr wr;
1300 struct srp_fr_desc *desc;
1301 u32 rkey;
1302
1303 desc = srp_fr_pool_get(ch->fr_pool);
1304 if (!desc)
1305 return -ENOMEM;
1306
1307 rkey = ib_inc_rkey(desc->mr->rkey);
1308 ib_update_fast_reg_key(desc->mr, rkey);
1309
1310 memcpy(desc->frpl->page_list, state->pages,
1311 sizeof(state->pages[0]) * state->npages);
1312
1313 memset(&wr, 0, sizeof(wr));
1314 wr.opcode = IB_WR_FAST_REG_MR;
1315 wr.wr_id = FAST_REG_WR_ID_MASK;
1316 wr.wr.fast_reg.iova_start = state->base_dma_addr;
1317 wr.wr.fast_reg.page_list = desc->frpl;
1318 wr.wr.fast_reg.page_list_len = state->npages;
1319 wr.wr.fast_reg.page_shift = ilog2(dev->mr_page_size);
1320 wr.wr.fast_reg.length = state->dma_len;
1321 wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE |
1322 IB_ACCESS_REMOTE_READ |
1323 IB_ACCESS_REMOTE_WRITE);
1324 wr.wr.fast_reg.rkey = desc->mr->lkey;
1325
1326 *state->next_fr++ = desc;
1327 state->nmdesc++;
1328
1329 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1330 desc->mr->rkey);
1331
1332 return ib_post_send(ch->qp, &wr, &bad_wr);
1333 }
1334
1335 static int srp_finish_mapping(struct srp_map_state *state,
1336 struct srp_rdma_ch *ch)
1337 {
1338 struct srp_target_port *target = ch->target;
1339 int ret = 0;
1340
1341 if (state->npages == 0)
1342 return 0;
1343
1344 if (state->npages == 1 && !register_always)
1345 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1346 target->rkey);
1347 else
1348 ret = target->srp_host->srp_dev->use_fast_reg ?
1349 srp_map_finish_fr(state, ch) :
1350 srp_map_finish_fmr(state, ch);
1351
1352 if (ret == 0) {
1353 state->npages = 0;
1354 state->dma_len = 0;
1355 }
1356
1357 return ret;
1358 }
1359
1360 static void srp_map_update_start(struct srp_map_state *state,
1361 struct scatterlist *sg, int sg_index,
1362 dma_addr_t dma_addr)
1363 {
1364 state->unmapped_sg = sg;
1365 state->unmapped_index = sg_index;
1366 state->unmapped_addr = dma_addr;
1367 }
1368
1369 static int srp_map_sg_entry(struct srp_map_state *state,
1370 struct srp_rdma_ch *ch,
1371 struct scatterlist *sg, int sg_index,
1372 bool use_mr)
1373 {
1374 struct srp_target_port *target = ch->target;
1375 struct srp_device *dev = target->srp_host->srp_dev;
1376 struct ib_device *ibdev = dev->dev;
1377 dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1378 unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1379 unsigned int len;
1380 int ret;
1381
1382 if (!dma_len)
1383 return 0;
1384
1385 if (!use_mr) {
1386 /*
1387 * Once we're in direct map mode for a request, we don't
1388 * go back to FMR or FR mode, so no need to update anything
1389 * other than the descriptor.
1390 */
1391 srp_map_desc(state, dma_addr, dma_len, target->rkey);
1392 return 0;
1393 }
1394
1395 /*
1396 * Since not all RDMA HW drivers support non-zero page offsets for
1397 * FMR, if we start at an offset into a page, don't merge into the
1398 * current FMR mapping. Finish it out, and use the kernel's MR for
1399 * this sg entry.
1400 */
1401 if ((!dev->use_fast_reg && dma_addr & ~dev->mr_page_mask) ||
1402 dma_len > dev->mr_max_size) {
1403 ret = srp_finish_mapping(state, ch);
1404 if (ret)
1405 return ret;
1406
1407 srp_map_desc(state, dma_addr, dma_len, target->rkey);
1408 srp_map_update_start(state, NULL, 0, 0);
1409 return 0;
1410 }
1411
1412 /*
1413 * If this is the first sg that will be mapped via FMR or via FR, save
1414 * our position. We need to know the first unmapped entry, its index,
1415 * and the first unmapped address within that entry to be able to
1416 * restart mapping after an error.
1417 */
1418 if (!state->unmapped_sg)
1419 srp_map_update_start(state, sg, sg_index, dma_addr);
1420
1421 while (dma_len) {
1422 unsigned offset = dma_addr & ~dev->mr_page_mask;
1423 if (state->npages == dev->max_pages_per_mr || offset != 0) {
1424 ret = srp_finish_mapping(state, ch);
1425 if (ret)
1426 return ret;
1427
1428 srp_map_update_start(state, sg, sg_index, dma_addr);
1429 }
1430
1431 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1432
1433 if (!state->npages)
1434 state->base_dma_addr = dma_addr;
1435 state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1436 state->dma_len += len;
1437 dma_addr += len;
1438 dma_len -= len;
1439 }
1440
1441 /*
1442 * If the last entry of the MR wasn't a full page, then we need to
1443 * close it out and start a new one -- we can only merge at page
1444 * boundries.
1445 */
1446 ret = 0;
1447 if (len != dev->mr_page_size) {
1448 ret = srp_finish_mapping(state, ch);
1449 if (!ret)
1450 srp_map_update_start(state, NULL, 0, 0);
1451 }
1452 return ret;
1453 }
1454
1455 static int srp_map_sg(struct srp_map_state *state, struct srp_rdma_ch *ch,
1456 struct srp_request *req, struct scatterlist *scat,
1457 int count)
1458 {
1459 struct srp_target_port *target = ch->target;
1460 struct srp_device *dev = target->srp_host->srp_dev;
1461 struct ib_device *ibdev = dev->dev;
1462 struct scatterlist *sg;
1463 int i;
1464 bool use_mr;
1465
1466 state->desc = req->indirect_desc;
1467 state->pages = req->map_page;
1468 if (dev->use_fast_reg) {
1469 state->next_fr = req->fr_list;
1470 use_mr = !!ch->fr_pool;
1471 } else {
1472 state->next_fmr = req->fmr_list;
1473 use_mr = !!ch->fmr_pool;
1474 }
1475
1476 for_each_sg(scat, sg, count, i) {
1477 if (srp_map_sg_entry(state, ch, sg, i, use_mr)) {
1478 /*
1479 * Memory registration failed, so backtrack to the
1480 * first unmapped entry and continue on without using
1481 * memory registration.
1482 */
1483 dma_addr_t dma_addr;
1484 unsigned int dma_len;
1485
1486 backtrack:
1487 sg = state->unmapped_sg;
1488 i = state->unmapped_index;
1489
1490 dma_addr = ib_sg_dma_address(ibdev, sg);
1491 dma_len = ib_sg_dma_len(ibdev, sg);
1492 dma_len -= (state->unmapped_addr - dma_addr);
1493 dma_addr = state->unmapped_addr;
1494 use_mr = false;
1495 srp_map_desc(state, dma_addr, dma_len, target->rkey);
1496 }
1497 }
1498
1499 if (use_mr && srp_finish_mapping(state, ch))
1500 goto backtrack;
1501
1502 req->nmdesc = state->nmdesc;
1503
1504 return 0;
1505 }
1506
1507 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1508 struct srp_request *req)
1509 {
1510 struct srp_target_port *target = ch->target;
1511 struct scatterlist *scat;
1512 struct srp_cmd *cmd = req->cmd->buf;
1513 int len, nents, count;
1514 struct srp_device *dev;
1515 struct ib_device *ibdev;
1516 struct srp_map_state state;
1517 struct srp_indirect_buf *indirect_hdr;
1518 u32 table_len;
1519 u8 fmt;
1520
1521 if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1522 return sizeof (struct srp_cmd);
1523
1524 if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1525 scmnd->sc_data_direction != DMA_TO_DEVICE) {
1526 shost_printk(KERN_WARNING, target->scsi_host,
1527 PFX "Unhandled data direction %d\n",
1528 scmnd->sc_data_direction);
1529 return -EINVAL;
1530 }
1531
1532 nents = scsi_sg_count(scmnd);
1533 scat = scsi_sglist(scmnd);
1534
1535 dev = target->srp_host->srp_dev;
1536 ibdev = dev->dev;
1537
1538 count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1539 if (unlikely(count == 0))
1540 return -EIO;
1541
1542 fmt = SRP_DATA_DESC_DIRECT;
1543 len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf);
1544
1545 if (count == 1 && !register_always) {
1546 /*
1547 * The midlayer only generated a single gather/scatter
1548 * entry, or DMA mapping coalesced everything to a
1549 * single entry. So a direct descriptor along with
1550 * the DMA MR suffices.
1551 */
1552 struct srp_direct_buf *buf = (void *) cmd->add_data;
1553
1554 buf->va = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1555 buf->key = cpu_to_be32(target->rkey);
1556 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1557
1558 req->nmdesc = 0;
1559 goto map_complete;
1560 }
1561
1562 /*
1563 * We have more than one scatter/gather entry, so build our indirect
1564 * descriptor table, trying to merge as many entries as we can.
1565 */
1566 indirect_hdr = (void *) cmd->add_data;
1567
1568 ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1569 target->indirect_size, DMA_TO_DEVICE);
1570
1571 memset(&state, 0, sizeof(state));
1572 srp_map_sg(&state, ch, req, scat, count);
1573
1574 /* We've mapped the request, now pull as much of the indirect
1575 * descriptor table as we can into the command buffer. If this
1576 * target is not using an external indirect table, we are
1577 * guaranteed to fit into the command, as the SCSI layer won't
1578 * give us more S/G entries than we allow.
1579 */
1580 if (state.ndesc == 1) {
1581 /*
1582 * Memory registration collapsed the sg-list into one entry,
1583 * so use a direct descriptor.
1584 */
1585 struct srp_direct_buf *buf = (void *) cmd->add_data;
1586
1587 *buf = req->indirect_desc[0];
1588 goto map_complete;
1589 }
1590
1591 if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1592 !target->allow_ext_sg)) {
1593 shost_printk(KERN_ERR, target->scsi_host,
1594 "Could not fit S/G list into SRP_CMD\n");
1595 return -EIO;
1596 }
1597
1598 count = min(state.ndesc, target->cmd_sg_cnt);
1599 table_len = state.ndesc * sizeof (struct srp_direct_buf);
1600
1601 fmt = SRP_DATA_DESC_INDIRECT;
1602 len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1603 len += count * sizeof (struct srp_direct_buf);
1604
1605 memcpy(indirect_hdr->desc_list, req->indirect_desc,
1606 count * sizeof (struct srp_direct_buf));
1607
1608 indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1609 indirect_hdr->table_desc.key = cpu_to_be32(target->rkey);
1610 indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1611 indirect_hdr->len = cpu_to_be32(state.total_len);
1612
1613 if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1614 cmd->data_out_desc_cnt = count;
1615 else
1616 cmd->data_in_desc_cnt = count;
1617
1618 ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1619 DMA_TO_DEVICE);
1620
1621 map_complete:
1622 if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1623 cmd->buf_fmt = fmt << 4;
1624 else
1625 cmd->buf_fmt = fmt;
1626
1627 return len;
1628 }
1629
1630 /*
1631 * Return an IU and possible credit to the free pool
1632 */
1633 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1634 enum srp_iu_type iu_type)
1635 {
1636 unsigned long flags;
1637
1638 spin_lock_irqsave(&ch->lock, flags);
1639 list_add(&iu->list, &ch->free_tx);
1640 if (iu_type != SRP_IU_RSP)
1641 ++ch->req_lim;
1642 spin_unlock_irqrestore(&ch->lock, flags);
1643 }
1644
1645 /*
1646 * Must be called with ch->lock held to protect req_lim and free_tx.
1647 * If IU is not sent, it must be returned using srp_put_tx_iu().
1648 *
1649 * Note:
1650 * An upper limit for the number of allocated information units for each
1651 * request type is:
1652 * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1653 * more than Scsi_Host.can_queue requests.
1654 * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1655 * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1656 * one unanswered SRP request to an initiator.
1657 */
1658 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1659 enum srp_iu_type iu_type)
1660 {
1661 struct srp_target_port *target = ch->target;
1662 s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1663 struct srp_iu *iu;
1664
1665 srp_send_completion(ch->send_cq, ch);
1666
1667 if (list_empty(&ch->free_tx))
1668 return NULL;
1669
1670 /* Initiator responses to target requests do not consume credits */
1671 if (iu_type != SRP_IU_RSP) {
1672 if (ch->req_lim <= rsv) {
1673 ++target->zero_req_lim;
1674 return NULL;
1675 }
1676
1677 --ch->req_lim;
1678 }
1679
1680 iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1681 list_del(&iu->list);
1682 return iu;
1683 }
1684
1685 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1686 {
1687 struct srp_target_port *target = ch->target;
1688 struct ib_sge list;
1689 struct ib_send_wr wr, *bad_wr;
1690
1691 list.addr = iu->dma;
1692 list.length = len;
1693 list.lkey = target->lkey;
1694
1695 wr.next = NULL;
1696 wr.wr_id = (uintptr_t) iu;
1697 wr.sg_list = &list;
1698 wr.num_sge = 1;
1699 wr.opcode = IB_WR_SEND;
1700 wr.send_flags = IB_SEND_SIGNALED;
1701
1702 return ib_post_send(ch->qp, &wr, &bad_wr);
1703 }
1704
1705 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1706 {
1707 struct srp_target_port *target = ch->target;
1708 struct ib_recv_wr wr, *bad_wr;
1709 struct ib_sge list;
1710
1711 list.addr = iu->dma;
1712 list.length = iu->size;
1713 list.lkey = target->lkey;
1714
1715 wr.next = NULL;
1716 wr.wr_id = (uintptr_t) iu;
1717 wr.sg_list = &list;
1718 wr.num_sge = 1;
1719
1720 return ib_post_recv(ch->qp, &wr, &bad_wr);
1721 }
1722
1723 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1724 {
1725 struct srp_target_port *target = ch->target;
1726 struct srp_request *req;
1727 struct scsi_cmnd *scmnd;
1728 unsigned long flags;
1729
1730 if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1731 spin_lock_irqsave(&ch->lock, flags);
1732 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1733 spin_unlock_irqrestore(&ch->lock, flags);
1734
1735 ch->tsk_mgmt_status = -1;
1736 if (be32_to_cpu(rsp->resp_data_len) >= 4)
1737 ch->tsk_mgmt_status = rsp->data[3];
1738 complete(&ch->tsk_mgmt_done);
1739 } else {
1740 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1741 if (scmnd) {
1742 req = (void *)scmnd->host_scribble;
1743 scmnd = srp_claim_req(ch, req, NULL, scmnd);
1744 }
1745 if (!scmnd) {
1746 shost_printk(KERN_ERR, target->scsi_host,
1747 "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1748 rsp->tag, ch - target->ch, ch->qp->qp_num);
1749
1750 spin_lock_irqsave(&ch->lock, flags);
1751 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1752 spin_unlock_irqrestore(&ch->lock, flags);
1753
1754 return;
1755 }
1756 scmnd->result = rsp->status;
1757
1758 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1759 memcpy(scmnd->sense_buffer, rsp->data +
1760 be32_to_cpu(rsp->resp_data_len),
1761 min_t(int, be32_to_cpu(rsp->sense_data_len),
1762 SCSI_SENSE_BUFFERSIZE));
1763 }
1764
1765 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1766 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1767 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1768 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1769 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1770 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1771 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1772 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1773
1774 srp_free_req(ch, req, scmnd,
1775 be32_to_cpu(rsp->req_lim_delta));
1776
1777 scmnd->host_scribble = NULL;
1778 scmnd->scsi_done(scmnd);
1779 }
1780 }
1781
1782 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1783 void *rsp, int len)
1784 {
1785 struct srp_target_port *target = ch->target;
1786 struct ib_device *dev = target->srp_host->srp_dev->dev;
1787 unsigned long flags;
1788 struct srp_iu *iu;
1789 int err;
1790
1791 spin_lock_irqsave(&ch->lock, flags);
1792 ch->req_lim += req_delta;
1793 iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1794 spin_unlock_irqrestore(&ch->lock, flags);
1795
1796 if (!iu) {
1797 shost_printk(KERN_ERR, target->scsi_host, PFX
1798 "no IU available to send response\n");
1799 return 1;
1800 }
1801
1802 ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1803 memcpy(iu->buf, rsp, len);
1804 ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1805
1806 err = srp_post_send(ch, iu, len);
1807 if (err) {
1808 shost_printk(KERN_ERR, target->scsi_host, PFX
1809 "unable to post response: %d\n", err);
1810 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1811 }
1812
1813 return err;
1814 }
1815
1816 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1817 struct srp_cred_req *req)
1818 {
1819 struct srp_cred_rsp rsp = {
1820 .opcode = SRP_CRED_RSP,
1821 .tag = req->tag,
1822 };
1823 s32 delta = be32_to_cpu(req->req_lim_delta);
1824
1825 if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1826 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1827 "problems processing SRP_CRED_REQ\n");
1828 }
1829
1830 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1831 struct srp_aer_req *req)
1832 {
1833 struct srp_target_port *target = ch->target;
1834 struct srp_aer_rsp rsp = {
1835 .opcode = SRP_AER_RSP,
1836 .tag = req->tag,
1837 };
1838 s32 delta = be32_to_cpu(req->req_lim_delta);
1839
1840 shost_printk(KERN_ERR, target->scsi_host, PFX
1841 "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
1842
1843 if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1844 shost_printk(KERN_ERR, target->scsi_host, PFX
1845 "problems processing SRP_AER_REQ\n");
1846 }
1847
1848 static void srp_handle_recv(struct srp_rdma_ch *ch, struct ib_wc *wc)
1849 {
1850 struct srp_target_port *target = ch->target;
1851 struct ib_device *dev = target->srp_host->srp_dev->dev;
1852 struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id;
1853 int res;
1854 u8 opcode;
1855
1856 ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
1857 DMA_FROM_DEVICE);
1858
1859 opcode = *(u8 *) iu->buf;
1860
1861 if (0) {
1862 shost_printk(KERN_ERR, target->scsi_host,
1863 PFX "recv completion, opcode 0x%02x\n", opcode);
1864 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1865 iu->buf, wc->byte_len, true);
1866 }
1867
1868 switch (opcode) {
1869 case SRP_RSP:
1870 srp_process_rsp(ch, iu->buf);
1871 break;
1872
1873 case SRP_CRED_REQ:
1874 srp_process_cred_req(ch, iu->buf);
1875 break;
1876
1877 case SRP_AER_REQ:
1878 srp_process_aer_req(ch, iu->buf);
1879 break;
1880
1881 case SRP_T_LOGOUT:
1882 /* XXX Handle target logout */
1883 shost_printk(KERN_WARNING, target->scsi_host,
1884 PFX "Got target logout request\n");
1885 break;
1886
1887 default:
1888 shost_printk(KERN_WARNING, target->scsi_host,
1889 PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1890 break;
1891 }
1892
1893 ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
1894 DMA_FROM_DEVICE);
1895
1896 res = srp_post_recv(ch, iu);
1897 if (res != 0)
1898 shost_printk(KERN_ERR, target->scsi_host,
1899 PFX "Recv failed with error code %d\n", res);
1900 }
1901
1902 /**
1903 * srp_tl_err_work() - handle a transport layer error
1904 * @work: Work structure embedded in an SRP target port.
1905 *
1906 * Note: This function may get invoked before the rport has been created,
1907 * hence the target->rport test.
1908 */
1909 static void srp_tl_err_work(struct work_struct *work)
1910 {
1911 struct srp_target_port *target;
1912
1913 target = container_of(work, struct srp_target_port, tl_err_work);
1914 if (target->rport)
1915 srp_start_tl_fail_timers(target->rport);
1916 }
1917
1918 static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status,
1919 bool send_err, struct srp_rdma_ch *ch)
1920 {
1921 struct srp_target_port *target = ch->target;
1922
1923 if (wr_id == SRP_LAST_WR_ID) {
1924 complete(&ch->done);
1925 return;
1926 }
1927
1928 if (ch->connected && !target->qp_in_error) {
1929 if (wr_id & LOCAL_INV_WR_ID_MASK) {
1930 shost_printk(KERN_ERR, target->scsi_host, PFX
1931 "LOCAL_INV failed with status %s (%d)\n",
1932 ib_wc_status_msg(wc_status), wc_status);
1933 } else if (wr_id & FAST_REG_WR_ID_MASK) {
1934 shost_printk(KERN_ERR, target->scsi_host, PFX
1935 "FAST_REG_MR failed status %s (%d)\n",
1936 ib_wc_status_msg(wc_status), wc_status);
1937 } else {
1938 shost_printk(KERN_ERR, target->scsi_host,
1939 PFX "failed %s status %s (%d) for iu %p\n",
1940 send_err ? "send" : "receive",
1941 ib_wc_status_msg(wc_status), wc_status,
1942 (void *)(uintptr_t)wr_id);
1943 }
1944 queue_work(system_long_wq, &target->tl_err_work);
1945 }
1946 target->qp_in_error = true;
1947 }
1948
1949 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr)
1950 {
1951 struct srp_rdma_ch *ch = ch_ptr;
1952 struct ib_wc wc;
1953
1954 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1955 while (ib_poll_cq(cq, 1, &wc) > 0) {
1956 if (likely(wc.status == IB_WC_SUCCESS)) {
1957 srp_handle_recv(ch, &wc);
1958 } else {
1959 srp_handle_qp_err(wc.wr_id, wc.status, false, ch);
1960 }
1961 }
1962 }
1963
1964 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr)
1965 {
1966 struct srp_rdma_ch *ch = ch_ptr;
1967 struct ib_wc wc;
1968 struct srp_iu *iu;
1969
1970 while (ib_poll_cq(cq, 1, &wc) > 0) {
1971 if (likely(wc.status == IB_WC_SUCCESS)) {
1972 iu = (struct srp_iu *) (uintptr_t) wc.wr_id;
1973 list_add(&iu->list, &ch->free_tx);
1974 } else {
1975 srp_handle_qp_err(wc.wr_id, wc.status, true, ch);
1976 }
1977 }
1978 }
1979
1980 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
1981 {
1982 struct srp_target_port *target = host_to_target(shost);
1983 struct srp_rport *rport = target->rport;
1984 struct srp_rdma_ch *ch;
1985 struct srp_request *req;
1986 struct srp_iu *iu;
1987 struct srp_cmd *cmd;
1988 struct ib_device *dev;
1989 unsigned long flags;
1990 u32 tag;
1991 u16 idx;
1992 int len, ret;
1993 const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
1994
1995 /*
1996 * The SCSI EH thread is the only context from which srp_queuecommand()
1997 * can get invoked for blocked devices (SDEV_BLOCK /
1998 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
1999 * locking the rport mutex if invoked from inside the SCSI EH.
2000 */
2001 if (in_scsi_eh)
2002 mutex_lock(&rport->mutex);
2003
2004 scmnd->result = srp_chkready(target->rport);
2005 if (unlikely(scmnd->result))
2006 goto err;
2007
2008 WARN_ON_ONCE(scmnd->request->tag < 0);
2009 tag = blk_mq_unique_tag(scmnd->request);
2010 ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2011 idx = blk_mq_unique_tag_to_tag(tag);
2012 WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2013 dev_name(&shost->shost_gendev), tag, idx,
2014 target->req_ring_size);
2015
2016 spin_lock_irqsave(&ch->lock, flags);
2017 iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2018 spin_unlock_irqrestore(&ch->lock, flags);
2019
2020 if (!iu)
2021 goto err;
2022
2023 req = &ch->req_ring[idx];
2024 dev = target->srp_host->srp_dev->dev;
2025 ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2026 DMA_TO_DEVICE);
2027
2028 scmnd->host_scribble = (void *) req;
2029
2030 cmd = iu->buf;
2031 memset(cmd, 0, sizeof *cmd);
2032
2033 cmd->opcode = SRP_CMD;
2034 int_to_scsilun(scmnd->device->lun, &cmd->lun);
2035 cmd->tag = tag;
2036 memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2037
2038 req->scmnd = scmnd;
2039 req->cmd = iu;
2040
2041 len = srp_map_data(scmnd, ch, req);
2042 if (len < 0) {
2043 shost_printk(KERN_ERR, target->scsi_host,
2044 PFX "Failed to map data (%d)\n", len);
2045 /*
2046 * If we ran out of memory descriptors (-ENOMEM) because an
2047 * application is queuing many requests with more than
2048 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2049 * to reduce queue depth temporarily.
2050 */
2051 scmnd->result = len == -ENOMEM ?
2052 DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2053 goto err_iu;
2054 }
2055
2056 ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2057 DMA_TO_DEVICE);
2058
2059 if (srp_post_send(ch, iu, len)) {
2060 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2061 goto err_unmap;
2062 }
2063
2064 ret = 0;
2065
2066 unlock_rport:
2067 if (in_scsi_eh)
2068 mutex_unlock(&rport->mutex);
2069
2070 return ret;
2071
2072 err_unmap:
2073 srp_unmap_data(scmnd, ch, req);
2074
2075 err_iu:
2076 srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2077
2078 /*
2079 * Avoid that the loops that iterate over the request ring can
2080 * encounter a dangling SCSI command pointer.
2081 */
2082 req->scmnd = NULL;
2083
2084 err:
2085 if (scmnd->result) {
2086 scmnd->scsi_done(scmnd);
2087 ret = 0;
2088 } else {
2089 ret = SCSI_MLQUEUE_HOST_BUSY;
2090 }
2091
2092 goto unlock_rport;
2093 }
2094
2095 /*
2096 * Note: the resources allocated in this function are freed in
2097 * srp_free_ch_ib().
2098 */
2099 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2100 {
2101 struct srp_target_port *target = ch->target;
2102 int i;
2103
2104 ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2105 GFP_KERNEL);
2106 if (!ch->rx_ring)
2107 goto err_no_ring;
2108 ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2109 GFP_KERNEL);
2110 if (!ch->tx_ring)
2111 goto err_no_ring;
2112
2113 for (i = 0; i < target->queue_size; ++i) {
2114 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2115 ch->max_ti_iu_len,
2116 GFP_KERNEL, DMA_FROM_DEVICE);
2117 if (!ch->rx_ring[i])
2118 goto err;
2119 }
2120
2121 for (i = 0; i < target->queue_size; ++i) {
2122 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2123 target->max_iu_len,
2124 GFP_KERNEL, DMA_TO_DEVICE);
2125 if (!ch->tx_ring[i])
2126 goto err;
2127
2128 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2129 }
2130
2131 return 0;
2132
2133 err:
2134 for (i = 0; i < target->queue_size; ++i) {
2135 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2136 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2137 }
2138
2139
2140 err_no_ring:
2141 kfree(ch->tx_ring);
2142 ch->tx_ring = NULL;
2143 kfree(ch->rx_ring);
2144 ch->rx_ring = NULL;
2145
2146 return -ENOMEM;
2147 }
2148
2149 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2150 {
2151 uint64_t T_tr_ns, max_compl_time_ms;
2152 uint32_t rq_tmo_jiffies;
2153
2154 /*
2155 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2156 * table 91), both the QP timeout and the retry count have to be set
2157 * for RC QP's during the RTR to RTS transition.
2158 */
2159 WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2160 (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2161
2162 /*
2163 * Set target->rq_tmo_jiffies to one second more than the largest time
2164 * it can take before an error completion is generated. See also
2165 * C9-140..142 in the IBTA spec for more information about how to
2166 * convert the QP Local ACK Timeout value to nanoseconds.
2167 */
2168 T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2169 max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2170 do_div(max_compl_time_ms, NSEC_PER_MSEC);
2171 rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2172
2173 return rq_tmo_jiffies;
2174 }
2175
2176 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2177 struct srp_login_rsp *lrsp,
2178 struct srp_rdma_ch *ch)
2179 {
2180 struct srp_target_port *target = ch->target;
2181 struct ib_qp_attr *qp_attr = NULL;
2182 int attr_mask = 0;
2183 int ret;
2184 int i;
2185
2186 if (lrsp->opcode == SRP_LOGIN_RSP) {
2187 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2188 ch->req_lim = be32_to_cpu(lrsp->req_lim_delta);
2189
2190 /*
2191 * Reserve credits for task management so we don't
2192 * bounce requests back to the SCSI mid-layer.
2193 */
2194 target->scsi_host->can_queue
2195 = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2196 target->scsi_host->can_queue);
2197 target->scsi_host->cmd_per_lun
2198 = min_t(int, target->scsi_host->can_queue,
2199 target->scsi_host->cmd_per_lun);
2200 } else {
2201 shost_printk(KERN_WARNING, target->scsi_host,
2202 PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2203 ret = -ECONNRESET;
2204 goto error;
2205 }
2206
2207 if (!ch->rx_ring) {
2208 ret = srp_alloc_iu_bufs(ch);
2209 if (ret)
2210 goto error;
2211 }
2212
2213 ret = -ENOMEM;
2214 qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2215 if (!qp_attr)
2216 goto error;
2217
2218 qp_attr->qp_state = IB_QPS_RTR;
2219 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2220 if (ret)
2221 goto error_free;
2222
2223 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2224 if (ret)
2225 goto error_free;
2226
2227 for (i = 0; i < target->queue_size; i++) {
2228 struct srp_iu *iu = ch->rx_ring[i];
2229
2230 ret = srp_post_recv(ch, iu);
2231 if (ret)
2232 goto error_free;
2233 }
2234
2235 qp_attr->qp_state = IB_QPS_RTS;
2236 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2237 if (ret)
2238 goto error_free;
2239
2240 target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2241
2242 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2243 if (ret)
2244 goto error_free;
2245
2246 ret = ib_send_cm_rtu(cm_id, NULL, 0);
2247
2248 error_free:
2249 kfree(qp_attr);
2250
2251 error:
2252 ch->status = ret;
2253 }
2254
2255 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2256 struct ib_cm_event *event,
2257 struct srp_rdma_ch *ch)
2258 {
2259 struct srp_target_port *target = ch->target;
2260 struct Scsi_Host *shost = target->scsi_host;
2261 struct ib_class_port_info *cpi;
2262 int opcode;
2263
2264 switch (event->param.rej_rcvd.reason) {
2265 case IB_CM_REJ_PORT_CM_REDIRECT:
2266 cpi = event->param.rej_rcvd.ari;
2267 ch->path.dlid = cpi->redirect_lid;
2268 ch->path.pkey = cpi->redirect_pkey;
2269 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2270 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2271
2272 ch->status = ch->path.dlid ?
2273 SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2274 break;
2275
2276 case IB_CM_REJ_PORT_REDIRECT:
2277 if (srp_target_is_topspin(target)) {
2278 /*
2279 * Topspin/Cisco SRP gateways incorrectly send
2280 * reject reason code 25 when they mean 24
2281 * (port redirect).
2282 */
2283 memcpy(ch->path.dgid.raw,
2284 event->param.rej_rcvd.ari, 16);
2285
2286 shost_printk(KERN_DEBUG, shost,
2287 PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2288 be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2289 be64_to_cpu(ch->path.dgid.global.interface_id));
2290
2291 ch->status = SRP_PORT_REDIRECT;
2292 } else {
2293 shost_printk(KERN_WARNING, shost,
2294 " REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2295 ch->status = -ECONNRESET;
2296 }
2297 break;
2298
2299 case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2300 shost_printk(KERN_WARNING, shost,
2301 " REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2302 ch->status = -ECONNRESET;
2303 break;
2304
2305 case IB_CM_REJ_CONSUMER_DEFINED:
2306 opcode = *(u8 *) event->private_data;
2307 if (opcode == SRP_LOGIN_REJ) {
2308 struct srp_login_rej *rej = event->private_data;
2309 u32 reason = be32_to_cpu(rej->reason);
2310
2311 if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2312 shost_printk(KERN_WARNING, shost,
2313 PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2314 else
2315 shost_printk(KERN_WARNING, shost, PFX
2316 "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2317 target->sgid.raw,
2318 target->orig_dgid.raw, reason);
2319 } else
2320 shost_printk(KERN_WARNING, shost,
2321 " REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2322 " opcode 0x%02x\n", opcode);
2323 ch->status = -ECONNRESET;
2324 break;
2325
2326 case IB_CM_REJ_STALE_CONN:
2327 shost_printk(KERN_WARNING, shost, " REJ reason: stale connection\n");
2328 ch->status = SRP_STALE_CONN;
2329 break;
2330
2331 default:
2332 shost_printk(KERN_WARNING, shost, " REJ reason 0x%x\n",
2333 event->param.rej_rcvd.reason);
2334 ch->status = -ECONNRESET;
2335 }
2336 }
2337
2338 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2339 {
2340 struct srp_rdma_ch *ch = cm_id->context;
2341 struct srp_target_port *target = ch->target;
2342 int comp = 0;
2343
2344 switch (event->event) {
2345 case IB_CM_REQ_ERROR:
2346 shost_printk(KERN_DEBUG, target->scsi_host,
2347 PFX "Sending CM REQ failed\n");
2348 comp = 1;
2349 ch->status = -ECONNRESET;
2350 break;
2351
2352 case IB_CM_REP_RECEIVED:
2353 comp = 1;
2354 srp_cm_rep_handler(cm_id, event->private_data, ch);
2355 break;
2356
2357 case IB_CM_REJ_RECEIVED:
2358 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2359 comp = 1;
2360
2361 srp_cm_rej_handler(cm_id, event, ch);
2362 break;
2363
2364 case IB_CM_DREQ_RECEIVED:
2365 shost_printk(KERN_WARNING, target->scsi_host,
2366 PFX "DREQ received - connection closed\n");
2367 ch->connected = false;
2368 if (ib_send_cm_drep(cm_id, NULL, 0))
2369 shost_printk(KERN_ERR, target->scsi_host,
2370 PFX "Sending CM DREP failed\n");
2371 queue_work(system_long_wq, &target->tl_err_work);
2372 break;
2373
2374 case IB_CM_TIMEWAIT_EXIT:
2375 shost_printk(KERN_ERR, target->scsi_host,
2376 PFX "connection closed\n");
2377 comp = 1;
2378
2379 ch->status = 0;
2380 break;
2381
2382 case IB_CM_MRA_RECEIVED:
2383 case IB_CM_DREQ_ERROR:
2384 case IB_CM_DREP_RECEIVED:
2385 break;
2386
2387 default:
2388 shost_printk(KERN_WARNING, target->scsi_host,
2389 PFX "Unhandled CM event %d\n", event->event);
2390 break;
2391 }
2392
2393 if (comp)
2394 complete(&ch->done);
2395
2396 return 0;
2397 }
2398
2399 /**
2400 * srp_change_queue_depth - setting device queue depth
2401 * @sdev: scsi device struct
2402 * @qdepth: requested queue depth
2403 *
2404 * Returns queue depth.
2405 */
2406 static int
2407 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2408 {
2409 if (!sdev->tagged_supported)
2410 qdepth = 1;
2411 return scsi_change_queue_depth(sdev, qdepth);
2412 }
2413
2414 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2415 u8 func)
2416 {
2417 struct srp_target_port *target = ch->target;
2418 struct srp_rport *rport = target->rport;
2419 struct ib_device *dev = target->srp_host->srp_dev->dev;
2420 struct srp_iu *iu;
2421 struct srp_tsk_mgmt *tsk_mgmt;
2422
2423 if (!ch->connected || target->qp_in_error)
2424 return -1;
2425
2426 init_completion(&ch->tsk_mgmt_done);
2427
2428 /*
2429 * Lock the rport mutex to avoid that srp_create_ch_ib() is
2430 * invoked while a task management function is being sent.
2431 */
2432 mutex_lock(&rport->mutex);
2433 spin_lock_irq(&ch->lock);
2434 iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2435 spin_unlock_irq(&ch->lock);
2436
2437 if (!iu) {
2438 mutex_unlock(&rport->mutex);
2439
2440 return -1;
2441 }
2442
2443 ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2444 DMA_TO_DEVICE);
2445 tsk_mgmt = iu->buf;
2446 memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2447
2448 tsk_mgmt->opcode = SRP_TSK_MGMT;
2449 int_to_scsilun(lun, &tsk_mgmt->lun);
2450 tsk_mgmt->tag = req_tag | SRP_TAG_TSK_MGMT;
2451 tsk_mgmt->tsk_mgmt_func = func;
2452 tsk_mgmt->task_tag = req_tag;
2453
2454 ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2455 DMA_TO_DEVICE);
2456 if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2457 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2458 mutex_unlock(&rport->mutex);
2459
2460 return -1;
2461 }
2462 mutex_unlock(&rport->mutex);
2463
2464 if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2465 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2466 return -1;
2467
2468 return 0;
2469 }
2470
2471 static int srp_abort(struct scsi_cmnd *scmnd)
2472 {
2473 struct srp_target_port *target = host_to_target(scmnd->device->host);
2474 struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2475 u32 tag;
2476 u16 ch_idx;
2477 struct srp_rdma_ch *ch;
2478 int ret;
2479
2480 shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2481
2482 if (!req)
2483 return SUCCESS;
2484 tag = blk_mq_unique_tag(scmnd->request);
2485 ch_idx = blk_mq_unique_tag_to_hwq(tag);
2486 if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2487 return SUCCESS;
2488 ch = &target->ch[ch_idx];
2489 if (!srp_claim_req(ch, req, NULL, scmnd))
2490 return SUCCESS;
2491 shost_printk(KERN_ERR, target->scsi_host,
2492 "Sending SRP abort for tag %#x\n", tag);
2493 if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2494 SRP_TSK_ABORT_TASK) == 0)
2495 ret = SUCCESS;
2496 else if (target->rport->state == SRP_RPORT_LOST)
2497 ret = FAST_IO_FAIL;
2498 else
2499 ret = FAILED;
2500 srp_free_req(ch, req, scmnd, 0);
2501 scmnd->result = DID_ABORT << 16;
2502 scmnd->scsi_done(scmnd);
2503
2504 return ret;
2505 }
2506
2507 static int srp_reset_device(struct scsi_cmnd *scmnd)
2508 {
2509 struct srp_target_port *target = host_to_target(scmnd->device->host);
2510 struct srp_rdma_ch *ch;
2511 int i;
2512
2513 shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2514
2515 ch = &target->ch[0];
2516 if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2517 SRP_TSK_LUN_RESET))
2518 return FAILED;
2519 if (ch->tsk_mgmt_status)
2520 return FAILED;
2521
2522 for (i = 0; i < target->ch_count; i++) {
2523 ch = &target->ch[i];
2524 for (i = 0; i < target->req_ring_size; ++i) {
2525 struct srp_request *req = &ch->req_ring[i];
2526
2527 srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2528 }
2529 }
2530
2531 return SUCCESS;
2532 }
2533
2534 static int srp_reset_host(struct scsi_cmnd *scmnd)
2535 {
2536 struct srp_target_port *target = host_to_target(scmnd->device->host);
2537
2538 shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2539
2540 return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2541 }
2542
2543 static int srp_slave_configure(struct scsi_device *sdev)
2544 {
2545 struct Scsi_Host *shost = sdev->host;
2546 struct srp_target_port *target = host_to_target(shost);
2547 struct request_queue *q = sdev->request_queue;
2548 unsigned long timeout;
2549
2550 if (sdev->type == TYPE_DISK) {
2551 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2552 blk_queue_rq_timeout(q, timeout);
2553 }
2554
2555 return 0;
2556 }
2557
2558 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2559 char *buf)
2560 {
2561 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2562
2563 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2564 }
2565
2566 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2567 char *buf)
2568 {
2569 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2570
2571 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2572 }
2573
2574 static ssize_t show_service_id(struct device *dev,
2575 struct device_attribute *attr, char *buf)
2576 {
2577 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2578
2579 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2580 }
2581
2582 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2583 char *buf)
2584 {
2585 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2586
2587 return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2588 }
2589
2590 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2591 char *buf)
2592 {
2593 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2594
2595 return sprintf(buf, "%pI6\n", target->sgid.raw);
2596 }
2597
2598 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2599 char *buf)
2600 {
2601 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2602 struct srp_rdma_ch *ch = &target->ch[0];
2603
2604 return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2605 }
2606
2607 static ssize_t show_orig_dgid(struct device *dev,
2608 struct device_attribute *attr, char *buf)
2609 {
2610 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2611
2612 return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2613 }
2614
2615 static ssize_t show_req_lim(struct device *dev,
2616 struct device_attribute *attr, char *buf)
2617 {
2618 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2619 struct srp_rdma_ch *ch;
2620 int i, req_lim = INT_MAX;
2621
2622 for (i = 0; i < target->ch_count; i++) {
2623 ch = &target->ch[i];
2624 req_lim = min(req_lim, ch->req_lim);
2625 }
2626 return sprintf(buf, "%d\n", req_lim);
2627 }
2628
2629 static ssize_t show_zero_req_lim(struct device *dev,
2630 struct device_attribute *attr, char *buf)
2631 {
2632 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2633
2634 return sprintf(buf, "%d\n", target->zero_req_lim);
2635 }
2636
2637 static ssize_t show_local_ib_port(struct device *dev,
2638 struct device_attribute *attr, char *buf)
2639 {
2640 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2641
2642 return sprintf(buf, "%d\n", target->srp_host->port);
2643 }
2644
2645 static ssize_t show_local_ib_device(struct device *dev,
2646 struct device_attribute *attr, char *buf)
2647 {
2648 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2649
2650 return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2651 }
2652
2653 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2654 char *buf)
2655 {
2656 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2657
2658 return sprintf(buf, "%d\n", target->ch_count);
2659 }
2660
2661 static ssize_t show_comp_vector(struct device *dev,
2662 struct device_attribute *attr, char *buf)
2663 {
2664 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2665
2666 return sprintf(buf, "%d\n", target->comp_vector);
2667 }
2668
2669 static ssize_t show_tl_retry_count(struct device *dev,
2670 struct device_attribute *attr, char *buf)
2671 {
2672 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2673
2674 return sprintf(buf, "%d\n", target->tl_retry_count);
2675 }
2676
2677 static ssize_t show_cmd_sg_entries(struct device *dev,
2678 struct device_attribute *attr, char *buf)
2679 {
2680 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2681
2682 return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2683 }
2684
2685 static ssize_t show_allow_ext_sg(struct device *dev,
2686 struct device_attribute *attr, char *buf)
2687 {
2688 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2689
2690 return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2691 }
2692
2693 static DEVICE_ATTR(id_ext, S_IRUGO, show_id_ext, NULL);
2694 static DEVICE_ATTR(ioc_guid, S_IRUGO, show_ioc_guid, NULL);
2695 static DEVICE_ATTR(service_id, S_IRUGO, show_service_id, NULL);
2696 static DEVICE_ATTR(pkey, S_IRUGO, show_pkey, NULL);
2697 static DEVICE_ATTR(sgid, S_IRUGO, show_sgid, NULL);
2698 static DEVICE_ATTR(dgid, S_IRUGO, show_dgid, NULL);
2699 static DEVICE_ATTR(orig_dgid, S_IRUGO, show_orig_dgid, NULL);
2700 static DEVICE_ATTR(req_lim, S_IRUGO, show_req_lim, NULL);
2701 static DEVICE_ATTR(zero_req_lim, S_IRUGO, show_zero_req_lim, NULL);
2702 static DEVICE_ATTR(local_ib_port, S_IRUGO, show_local_ib_port, NULL);
2703 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2704 static DEVICE_ATTR(ch_count, S_IRUGO, show_ch_count, NULL);
2705 static DEVICE_ATTR(comp_vector, S_IRUGO, show_comp_vector, NULL);
2706 static DEVICE_ATTR(tl_retry_count, S_IRUGO, show_tl_retry_count, NULL);
2707 static DEVICE_ATTR(cmd_sg_entries, S_IRUGO, show_cmd_sg_entries, NULL);
2708 static DEVICE_ATTR(allow_ext_sg, S_IRUGO, show_allow_ext_sg, NULL);
2709
2710 static struct device_attribute *srp_host_attrs[] = {
2711 &dev_attr_id_ext,
2712 &dev_attr_ioc_guid,
2713 &dev_attr_service_id,
2714 &dev_attr_pkey,
2715 &dev_attr_sgid,
2716 &dev_attr_dgid,
2717 &dev_attr_orig_dgid,
2718 &dev_attr_req_lim,
2719 &dev_attr_zero_req_lim,
2720 &dev_attr_local_ib_port,
2721 &dev_attr_local_ib_device,
2722 &dev_attr_ch_count,
2723 &dev_attr_comp_vector,
2724 &dev_attr_tl_retry_count,
2725 &dev_attr_cmd_sg_entries,
2726 &dev_attr_allow_ext_sg,
2727 NULL
2728 };
2729
2730 static struct scsi_host_template srp_template = {
2731 .module = THIS_MODULE,
2732 .name = "InfiniBand SRP initiator",
2733 .proc_name = DRV_NAME,
2734 .slave_configure = srp_slave_configure,
2735 .info = srp_target_info,
2736 .queuecommand = srp_queuecommand,
2737 .change_queue_depth = srp_change_queue_depth,
2738 .eh_abort_handler = srp_abort,
2739 .eh_device_reset_handler = srp_reset_device,
2740 .eh_host_reset_handler = srp_reset_host,
2741 .skip_settle_delay = true,
2742 .sg_tablesize = SRP_DEF_SG_TABLESIZE,
2743 .can_queue = SRP_DEFAULT_CMD_SQ_SIZE,
2744 .this_id = -1,
2745 .cmd_per_lun = SRP_DEFAULT_CMD_SQ_SIZE,
2746 .use_clustering = ENABLE_CLUSTERING,
2747 .shost_attrs = srp_host_attrs,
2748 .use_blk_tags = 1,
2749 .track_queue_depth = 1,
2750 };
2751
2752 static int srp_sdev_count(struct Scsi_Host *host)
2753 {
2754 struct scsi_device *sdev;
2755 int c = 0;
2756
2757 shost_for_each_device(sdev, host)
2758 c++;
2759
2760 return c;
2761 }
2762
2763 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2764 {
2765 struct srp_rport_identifiers ids;
2766 struct srp_rport *rport;
2767
2768 target->state = SRP_TARGET_SCANNING;
2769 sprintf(target->target_name, "SRP.T10:%016llX",
2770 be64_to_cpu(target->id_ext));
2771
2772 if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2773 return -ENODEV;
2774
2775 memcpy(ids.port_id, &target->id_ext, 8);
2776 memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2777 ids.roles = SRP_RPORT_ROLE_TARGET;
2778 rport = srp_rport_add(target->scsi_host, &ids);
2779 if (IS_ERR(rport)) {
2780 scsi_remove_host(target->scsi_host);
2781 return PTR_ERR(rport);
2782 }
2783
2784 rport->lld_data = target;
2785 target->rport = rport;
2786
2787 spin_lock(&host->target_lock);
2788 list_add_tail(&target->list, &host->target_list);
2789 spin_unlock(&host->target_lock);
2790
2791 scsi_scan_target(&target->scsi_host->shost_gendev,
2792 0, target->scsi_id, SCAN_WILD_CARD, 0);
2793
2794 if (srp_connected_ch(target) < target->ch_count ||
2795 target->qp_in_error) {
2796 shost_printk(KERN_INFO, target->scsi_host,
2797 PFX "SCSI scan failed - removing SCSI host\n");
2798 srp_queue_remove_work(target);
2799 goto out;
2800 }
2801
2802 pr_debug(PFX "%s: SCSI scan succeeded - detected %d LUNs\n",
2803 dev_name(&target->scsi_host->shost_gendev),
2804 srp_sdev_count(target->scsi_host));
2805
2806 spin_lock_irq(&target->lock);
2807 if (target->state == SRP_TARGET_SCANNING)
2808 target->state = SRP_TARGET_LIVE;
2809 spin_unlock_irq(&target->lock);
2810
2811 out:
2812 return 0;
2813 }
2814
2815 static void srp_release_dev(struct device *dev)
2816 {
2817 struct srp_host *host =
2818 container_of(dev, struct srp_host, dev);
2819
2820 complete(&host->released);
2821 }
2822
2823 static struct class srp_class = {
2824 .name = "infiniband_srp",
2825 .dev_release = srp_release_dev
2826 };
2827
2828 /**
2829 * srp_conn_unique() - check whether the connection to a target is unique
2830 * @host: SRP host.
2831 * @target: SRP target port.
2832 */
2833 static bool srp_conn_unique(struct srp_host *host,
2834 struct srp_target_port *target)
2835 {
2836 struct srp_target_port *t;
2837 bool ret = false;
2838
2839 if (target->state == SRP_TARGET_REMOVED)
2840 goto out;
2841
2842 ret = true;
2843
2844 spin_lock(&host->target_lock);
2845 list_for_each_entry(t, &host->target_list, list) {
2846 if (t != target &&
2847 target->id_ext == t->id_ext &&
2848 target->ioc_guid == t->ioc_guid &&
2849 target->initiator_ext == t->initiator_ext) {
2850 ret = false;
2851 break;
2852 }
2853 }
2854 spin_unlock(&host->target_lock);
2855
2856 out:
2857 return ret;
2858 }
2859
2860 /*
2861 * Target ports are added by writing
2862 *
2863 * id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2864 * pkey=<P_Key>,service_id=<service ID>
2865 *
2866 * to the add_target sysfs attribute.
2867 */
2868 enum {
2869 SRP_OPT_ERR = 0,
2870 SRP_OPT_ID_EXT = 1 << 0,
2871 SRP_OPT_IOC_GUID = 1 << 1,
2872 SRP_OPT_DGID = 1 << 2,
2873 SRP_OPT_PKEY = 1 << 3,
2874 SRP_OPT_SERVICE_ID = 1 << 4,
2875 SRP_OPT_MAX_SECT = 1 << 5,
2876 SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
2877 SRP_OPT_IO_CLASS = 1 << 7,
2878 SRP_OPT_INITIATOR_EXT = 1 << 8,
2879 SRP_OPT_CMD_SG_ENTRIES = 1 << 9,
2880 SRP_OPT_ALLOW_EXT_SG = 1 << 10,
2881 SRP_OPT_SG_TABLESIZE = 1 << 11,
2882 SRP_OPT_COMP_VECTOR = 1 << 12,
2883 SRP_OPT_TL_RETRY_COUNT = 1 << 13,
2884 SRP_OPT_QUEUE_SIZE = 1 << 14,
2885 SRP_OPT_ALL = (SRP_OPT_ID_EXT |
2886 SRP_OPT_IOC_GUID |
2887 SRP_OPT_DGID |
2888 SRP_OPT_PKEY |
2889 SRP_OPT_SERVICE_ID),
2890 };
2891
2892 static const match_table_t srp_opt_tokens = {
2893 { SRP_OPT_ID_EXT, "id_ext=%s" },
2894 { SRP_OPT_IOC_GUID, "ioc_guid=%s" },
2895 { SRP_OPT_DGID, "dgid=%s" },
2896 { SRP_OPT_PKEY, "pkey=%x" },
2897 { SRP_OPT_SERVICE_ID, "service_id=%s" },
2898 { SRP_OPT_MAX_SECT, "max_sect=%d" },
2899 { SRP_OPT_MAX_CMD_PER_LUN, "max_cmd_per_lun=%d" },
2900 { SRP_OPT_IO_CLASS, "io_class=%x" },
2901 { SRP_OPT_INITIATOR_EXT, "initiator_ext=%s" },
2902 { SRP_OPT_CMD_SG_ENTRIES, "cmd_sg_entries=%u" },
2903 { SRP_OPT_ALLOW_EXT_SG, "allow_ext_sg=%u" },
2904 { SRP_OPT_SG_TABLESIZE, "sg_tablesize=%u" },
2905 { SRP_OPT_COMP_VECTOR, "comp_vector=%u" },
2906 { SRP_OPT_TL_RETRY_COUNT, "tl_retry_count=%u" },
2907 { SRP_OPT_QUEUE_SIZE, "queue_size=%d" },
2908 { SRP_OPT_ERR, NULL }
2909 };
2910
2911 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2912 {
2913 char *options, *sep_opt;
2914 char *p;
2915 char dgid[3];
2916 substring_t args[MAX_OPT_ARGS];
2917 int opt_mask = 0;
2918 int token;
2919 int ret = -EINVAL;
2920 int i;
2921
2922 options = kstrdup(buf, GFP_KERNEL);
2923 if (!options)
2924 return -ENOMEM;
2925
2926 sep_opt = options;
2927 while ((p = strsep(&sep_opt, ",\n")) != NULL) {
2928 if (!*p)
2929 continue;
2930
2931 token = match_token(p, srp_opt_tokens, args);
2932 opt_mask |= token;
2933
2934 switch (token) {
2935 case SRP_OPT_ID_EXT:
2936 p = match_strdup(args);
2937 if (!p) {
2938 ret = -ENOMEM;
2939 goto out;
2940 }
2941 target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
2942 kfree(p);
2943 break;
2944
2945 case SRP_OPT_IOC_GUID:
2946 p = match_strdup(args);
2947 if (!p) {
2948 ret = -ENOMEM;
2949 goto out;
2950 }
2951 target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
2952 kfree(p);
2953 break;
2954
2955 case SRP_OPT_DGID:
2956 p = match_strdup(args);
2957 if (!p) {
2958 ret = -ENOMEM;
2959 goto out;
2960 }
2961 if (strlen(p) != 32) {
2962 pr_warn("bad dest GID parameter '%s'\n", p);
2963 kfree(p);
2964 goto out;
2965 }
2966
2967 for (i = 0; i < 16; ++i) {
2968 strlcpy(dgid, p + i * 2, sizeof(dgid));
2969 if (sscanf(dgid, "%hhx",
2970 &target->orig_dgid.raw[i]) < 1) {
2971 ret = -EINVAL;
2972 kfree(p);
2973 goto out;
2974 }
2975 }
2976 kfree(p);
2977 break;
2978
2979 case SRP_OPT_PKEY:
2980 if (match_hex(args, &token)) {
2981 pr_warn("bad P_Key parameter '%s'\n", p);
2982 goto out;
2983 }
2984 target->pkey = cpu_to_be16(token);
2985 break;
2986
2987 case SRP_OPT_SERVICE_ID:
2988 p = match_strdup(args);
2989 if (!p) {
2990 ret = -ENOMEM;
2991 goto out;
2992 }
2993 target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
2994 kfree(p);
2995 break;
2996
2997 case SRP_OPT_MAX_SECT:
2998 if (match_int(args, &token)) {
2999 pr_warn("bad max sect parameter '%s'\n", p);
3000 goto out;
3001 }
3002 target->scsi_host->max_sectors = token;
3003 break;
3004
3005 case SRP_OPT_QUEUE_SIZE:
3006 if (match_int(args, &token) || token < 1) {
3007 pr_warn("bad queue_size parameter '%s'\n", p);
3008 goto out;
3009 }
3010 target->scsi_host->can_queue = token;
3011 target->queue_size = token + SRP_RSP_SQ_SIZE +
3012 SRP_TSK_MGMT_SQ_SIZE;
3013 if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3014 target->scsi_host->cmd_per_lun = token;
3015 break;
3016
3017 case SRP_OPT_MAX_CMD_PER_LUN:
3018 if (match_int(args, &token) || token < 1) {
3019 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3020 p);
3021 goto out;
3022 }
3023 target->scsi_host->cmd_per_lun = token;
3024 break;
3025
3026 case SRP_OPT_IO_CLASS:
3027 if (match_hex(args, &token)) {
3028 pr_warn("bad IO class parameter '%s'\n", p);
3029 goto out;
3030 }
3031 if (token != SRP_REV10_IB_IO_CLASS &&
3032 token != SRP_REV16A_IB_IO_CLASS) {
3033 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3034 token, SRP_REV10_IB_IO_CLASS,
3035 SRP_REV16A_IB_IO_CLASS);
3036 goto out;
3037 }
3038 target->io_class = token;
3039 break;
3040
3041 case SRP_OPT_INITIATOR_EXT:
3042 p = match_strdup(args);
3043 if (!p) {
3044 ret = -ENOMEM;
3045 goto out;
3046 }
3047 target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3048 kfree(p);
3049 break;
3050
3051 case SRP_OPT_CMD_SG_ENTRIES:
3052 if (match_int(args, &token) || token < 1 || token > 255) {
3053 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3054 p);
3055 goto out;
3056 }
3057 target->cmd_sg_cnt = token;
3058 break;
3059
3060 case SRP_OPT_ALLOW_EXT_SG:
3061 if (match_int(args, &token)) {
3062 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3063 goto out;
3064 }
3065 target->allow_ext_sg = !!token;
3066 break;
3067
3068 case SRP_OPT_SG_TABLESIZE:
3069 if (match_int(args, &token) || token < 1 ||
3070 token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
3071 pr_warn("bad max sg_tablesize parameter '%s'\n",
3072 p);
3073 goto out;
3074 }
3075 target->sg_tablesize = token;
3076 break;
3077
3078 case SRP_OPT_COMP_VECTOR:
3079 if (match_int(args, &token) || token < 0) {
3080 pr_warn("bad comp_vector parameter '%s'\n", p);
3081 goto out;
3082 }
3083 target->comp_vector = token;
3084 break;
3085
3086 case SRP_OPT_TL_RETRY_COUNT:
3087 if (match_int(args, &token) || token < 2 || token > 7) {
3088 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3089 p);
3090 goto out;
3091 }
3092 target->tl_retry_count = token;
3093 break;
3094
3095 default:
3096 pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3097 p);
3098 goto out;
3099 }
3100 }
3101
3102 if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3103 ret = 0;
3104 else
3105 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3106 if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3107 !(srp_opt_tokens[i].token & opt_mask))
3108 pr_warn("target creation request is missing parameter '%s'\n",
3109 srp_opt_tokens[i].pattern);
3110
3111 if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3112 && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3113 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3114 target->scsi_host->cmd_per_lun,
3115 target->scsi_host->can_queue);
3116
3117 out:
3118 kfree(options);
3119 return ret;
3120 }
3121
3122 static ssize_t srp_create_target(struct device *dev,
3123 struct device_attribute *attr,
3124 const char *buf, size_t count)
3125 {
3126 struct srp_host *host =
3127 container_of(dev, struct srp_host, dev);
3128 struct Scsi_Host *target_host;
3129 struct srp_target_port *target;
3130 struct srp_rdma_ch *ch;
3131 struct srp_device *srp_dev = host->srp_dev;
3132 struct ib_device *ibdev = srp_dev->dev;
3133 int ret, node_idx, node, cpu, i;
3134 bool multich = false;
3135
3136 target_host = scsi_host_alloc(&srp_template,
3137 sizeof (struct srp_target_port));
3138 if (!target_host)
3139 return -ENOMEM;
3140
3141 target_host->transportt = ib_srp_transport_template;
3142 target_host->max_channel = 0;
3143 target_host->max_id = 1;
3144 target_host->max_lun = -1LL;
3145 target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3146
3147 target = host_to_target(target_host);
3148
3149 target->io_class = SRP_REV16A_IB_IO_CLASS;
3150 target->scsi_host = target_host;
3151 target->srp_host = host;
3152 target->lkey = host->srp_dev->mr->lkey;
3153 target->rkey = host->srp_dev->mr->rkey;
3154 target->cmd_sg_cnt = cmd_sg_entries;
3155 target->sg_tablesize = indirect_sg_entries ? : cmd_sg_entries;
3156 target->allow_ext_sg = allow_ext_sg;
3157 target->tl_retry_count = 7;
3158 target->queue_size = SRP_DEFAULT_QUEUE_SIZE;
3159
3160 /*
3161 * Avoid that the SCSI host can be removed by srp_remove_target()
3162 * before this function returns.
3163 */
3164 scsi_host_get(target->scsi_host);
3165
3166 mutex_lock(&host->add_target_mutex);
3167
3168 ret = srp_parse_options(buf, target);
3169 if (ret)
3170 goto out;
3171
3172 ret = scsi_init_shared_tag_map(target_host, target_host->can_queue);
3173 if (ret)
3174 goto out;
3175
3176 target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3177
3178 if (!srp_conn_unique(target->srp_host, target)) {
3179 shost_printk(KERN_INFO, target->scsi_host,
3180 PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3181 be64_to_cpu(target->id_ext),
3182 be64_to_cpu(target->ioc_guid),
3183 be64_to_cpu(target->initiator_ext));
3184 ret = -EEXIST;
3185 goto out;
3186 }
3187
3188 if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3189 target->cmd_sg_cnt < target->sg_tablesize) {
3190 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3191 target->sg_tablesize = target->cmd_sg_cnt;
3192 }
3193
3194 target_host->sg_tablesize = target->sg_tablesize;
3195 target->indirect_size = target->sg_tablesize *
3196 sizeof (struct srp_direct_buf);
3197 target->max_iu_len = sizeof (struct srp_cmd) +
3198 sizeof (struct srp_indirect_buf) +
3199 target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3200
3201 INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3202 INIT_WORK(&target->remove_work, srp_remove_work);
3203 spin_lock_init(&target->lock);
3204 ret = ib_query_gid(ibdev, host->port, 0, &target->sgid);
3205 if (ret)
3206 goto out;
3207
3208 ret = -ENOMEM;
3209 target->ch_count = max_t(unsigned, num_online_nodes(),
3210 min(ch_count ? :
3211 min(4 * num_online_nodes(),
3212 ibdev->num_comp_vectors),
3213 num_online_cpus()));
3214 target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3215 GFP_KERNEL);
3216 if (!target->ch)
3217 goto out;
3218
3219 node_idx = 0;
3220 for_each_online_node(node) {
3221 const int ch_start = (node_idx * target->ch_count /
3222 num_online_nodes());
3223 const int ch_end = ((node_idx + 1) * target->ch_count /
3224 num_online_nodes());
3225 const int cv_start = (node_idx * ibdev->num_comp_vectors /
3226 num_online_nodes() + target->comp_vector)
3227 % ibdev->num_comp_vectors;
3228 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3229 num_online_nodes() + target->comp_vector)
3230 % ibdev->num_comp_vectors;
3231 int cpu_idx = 0;
3232
3233 for_each_online_cpu(cpu) {
3234 if (cpu_to_node(cpu) != node)
3235 continue;
3236 if (ch_start + cpu_idx >= ch_end)
3237 continue;
3238 ch = &target->ch[ch_start + cpu_idx];
3239 ch->target = target;
3240 ch->comp_vector = cv_start == cv_end ? cv_start :
3241 cv_start + cpu_idx % (cv_end - cv_start);
3242 spin_lock_init(&ch->lock);
3243 INIT_LIST_HEAD(&ch->free_tx);
3244 ret = srp_new_cm_id(ch);
3245 if (ret)
3246 goto err_disconnect;
3247
3248 ret = srp_create_ch_ib(ch);
3249 if (ret)
3250 goto err_disconnect;
3251
3252 ret = srp_alloc_req_data(ch);
3253 if (ret)
3254 goto err_disconnect;
3255
3256 ret = srp_connect_ch(ch, multich);
3257 if (ret) {
3258 shost_printk(KERN_ERR, target->scsi_host,
3259 PFX "Connection %d/%d failed\n",
3260 ch_start + cpu_idx,
3261 target->ch_count);
3262 if (node_idx == 0 && cpu_idx == 0) {
3263 goto err_disconnect;
3264 } else {
3265 srp_free_ch_ib(target, ch);
3266 srp_free_req_data(target, ch);
3267 target->ch_count = ch - target->ch;
3268 break;
3269 }
3270 }
3271
3272 multich = true;
3273 cpu_idx++;
3274 }
3275 node_idx++;
3276 }
3277
3278 target->scsi_host->nr_hw_queues = target->ch_count;
3279
3280 ret = srp_add_target(host, target);
3281 if (ret)
3282 goto err_disconnect;
3283
3284 if (target->state != SRP_TARGET_REMOVED) {
3285 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3286 "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3287 be64_to_cpu(target->id_ext),
3288 be64_to_cpu(target->ioc_guid),
3289 be16_to_cpu(target->pkey),
3290 be64_to_cpu(target->service_id),
3291 target->sgid.raw, target->orig_dgid.raw);
3292 }
3293
3294 ret = count;
3295
3296 out:
3297 mutex_unlock(&host->add_target_mutex);
3298
3299 scsi_host_put(target->scsi_host);
3300
3301 return ret;
3302
3303 err_disconnect:
3304 srp_disconnect_target(target);
3305
3306 for (i = 0; i < target->ch_count; i++) {
3307 ch = &target->ch[i];
3308 srp_free_ch_ib(target, ch);
3309 srp_free_req_data(target, ch);
3310 }
3311
3312 kfree(target->ch);
3313 goto out;
3314 }
3315
3316 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3317
3318 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3319 char *buf)
3320 {
3321 struct srp_host *host = container_of(dev, struct srp_host, dev);
3322
3323 return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3324 }
3325
3326 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3327
3328 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3329 char *buf)
3330 {
3331 struct srp_host *host = container_of(dev, struct srp_host, dev);
3332
3333 return sprintf(buf, "%d\n", host->port);
3334 }
3335
3336 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3337
3338 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3339 {
3340 struct srp_host *host;
3341
3342 host = kzalloc(sizeof *host, GFP_KERNEL);
3343 if (!host)
3344 return NULL;
3345
3346 INIT_LIST_HEAD(&host->target_list);
3347 spin_lock_init(&host->target_lock);
3348 init_completion(&host->released);
3349 mutex_init(&host->add_target_mutex);
3350 host->srp_dev = device;
3351 host->port = port;
3352
3353 host->dev.class = &srp_class;
3354 host->dev.parent = device->dev->dma_device;
3355 dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3356
3357 if (device_register(&host->dev))
3358 goto free_host;
3359 if (device_create_file(&host->dev, &dev_attr_add_target))
3360 goto err_class;
3361 if (device_create_file(&host->dev, &dev_attr_ibdev))
3362 goto err_class;
3363 if (device_create_file(&host->dev, &dev_attr_port))
3364 goto err_class;
3365
3366 return host;
3367
3368 err_class:
3369 device_unregister(&host->dev);
3370
3371 free_host:
3372 kfree(host);
3373
3374 return NULL;
3375 }
3376
3377 static void srp_add_one(struct ib_device *device)
3378 {
3379 struct srp_device *srp_dev;
3380 struct ib_device_attr *dev_attr;
3381 struct srp_host *host;
3382 int mr_page_shift, s, e, p;
3383 u64 max_pages_per_mr;
3384
3385 dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
3386 if (!dev_attr)
3387 return;
3388
3389 if (ib_query_device(device, dev_attr)) {
3390 pr_warn("Query device failed for %s\n", device->name);
3391 goto free_attr;
3392 }
3393
3394 srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
3395 if (!srp_dev)
3396 goto free_attr;
3397
3398 srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3399 device->map_phys_fmr && device->unmap_fmr);
3400 srp_dev->has_fr = (dev_attr->device_cap_flags &
3401 IB_DEVICE_MEM_MGT_EXTENSIONS);
3402 if (!srp_dev->has_fmr && !srp_dev->has_fr)
3403 dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3404
3405 srp_dev->use_fast_reg = (srp_dev->has_fr &&
3406 (!srp_dev->has_fmr || prefer_fr));
3407
3408 /*
3409 * Use the smallest page size supported by the HCA, down to a
3410 * minimum of 4096 bytes. We're unlikely to build large sglists
3411 * out of smaller entries.
3412 */
3413 mr_page_shift = max(12, ffs(dev_attr->page_size_cap) - 1);
3414 srp_dev->mr_page_size = 1 << mr_page_shift;
3415 srp_dev->mr_page_mask = ~((u64) srp_dev->mr_page_size - 1);
3416 max_pages_per_mr = dev_attr->max_mr_size;
3417 do_div(max_pages_per_mr, srp_dev->mr_page_size);
3418 srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3419 max_pages_per_mr);
3420 if (srp_dev->use_fast_reg) {
3421 srp_dev->max_pages_per_mr =
3422 min_t(u32, srp_dev->max_pages_per_mr,
3423 dev_attr->max_fast_reg_page_list_len);
3424 }
3425 srp_dev->mr_max_size = srp_dev->mr_page_size *
3426 srp_dev->max_pages_per_mr;
3427 pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3428 device->name, mr_page_shift, dev_attr->max_mr_size,
3429 dev_attr->max_fast_reg_page_list_len,
3430 srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3431
3432 INIT_LIST_HEAD(&srp_dev->dev_list);
3433
3434 srp_dev->dev = device;
3435 srp_dev->pd = ib_alloc_pd(device);
3436 if (IS_ERR(srp_dev->pd))
3437 goto free_dev;
3438
3439 srp_dev->mr = ib_get_dma_mr(srp_dev->pd,
3440 IB_ACCESS_LOCAL_WRITE |
3441 IB_ACCESS_REMOTE_READ |
3442 IB_ACCESS_REMOTE_WRITE);
3443 if (IS_ERR(srp_dev->mr))
3444 goto err_pd;
3445
3446 if (device->node_type == RDMA_NODE_IB_SWITCH) {
3447 s = 0;
3448 e = 0;
3449 } else {
3450 s = 1;
3451 e = device->phys_port_cnt;
3452 }
3453
3454 for (p = s; p <= e; ++p) {
3455 host = srp_add_port(srp_dev, p);
3456 if (host)
3457 list_add_tail(&host->list, &srp_dev->dev_list);
3458 }
3459
3460 ib_set_client_data(device, &srp_client, srp_dev);
3461
3462 goto free_attr;
3463
3464 err_pd:
3465 ib_dealloc_pd(srp_dev->pd);
3466
3467 free_dev:
3468 kfree(srp_dev);
3469
3470 free_attr:
3471 kfree(dev_attr);
3472 }
3473
3474 static void srp_remove_one(struct ib_device *device)
3475 {
3476 struct srp_device *srp_dev;
3477 struct srp_host *host, *tmp_host;
3478 struct srp_target_port *target;
3479
3480 srp_dev = ib_get_client_data(device, &srp_client);
3481 if (!srp_dev)
3482 return;
3483
3484 list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3485 device_unregister(&host->dev);
3486 /*
3487 * Wait for the sysfs entry to go away, so that no new
3488 * target ports can be created.
3489 */
3490 wait_for_completion(&host->released);
3491
3492 /*
3493 * Remove all target ports.
3494 */
3495 spin_lock(&host->target_lock);
3496 list_for_each_entry(target, &host->target_list, list)
3497 srp_queue_remove_work(target);
3498 spin_unlock(&host->target_lock);
3499
3500 /*
3501 * Wait for tl_err and target port removal tasks.
3502 */
3503 flush_workqueue(system_long_wq);
3504 flush_workqueue(srp_remove_wq);
3505
3506 kfree(host);
3507 }
3508
3509 ib_dereg_mr(srp_dev->mr);
3510 ib_dealloc_pd(srp_dev->pd);
3511
3512 kfree(srp_dev);
3513 }
3514
3515 static struct srp_function_template ib_srp_transport_functions = {
3516 .has_rport_state = true,
3517 .reset_timer_if_blocked = true,
3518 .reconnect_delay = &srp_reconnect_delay,
3519 .fast_io_fail_tmo = &srp_fast_io_fail_tmo,
3520 .dev_loss_tmo = &srp_dev_loss_tmo,
3521 .reconnect = srp_rport_reconnect,
3522 .rport_delete = srp_rport_delete,
3523 .terminate_rport_io = srp_terminate_io,
3524 };
3525
3526 static int __init srp_init_module(void)
3527 {
3528 int ret;
3529
3530 BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *));
3531
3532 if (srp_sg_tablesize) {
3533 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3534 if (!cmd_sg_entries)
3535 cmd_sg_entries = srp_sg_tablesize;
3536 }
3537
3538 if (!cmd_sg_entries)
3539 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3540
3541 if (cmd_sg_entries > 255) {
3542 pr_warn("Clamping cmd_sg_entries to 255\n");
3543 cmd_sg_entries = 255;
3544 }
3545
3546 if (!indirect_sg_entries)
3547 indirect_sg_entries = cmd_sg_entries;
3548 else if (indirect_sg_entries < cmd_sg_entries) {
3549 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3550 cmd_sg_entries);
3551 indirect_sg_entries = cmd_sg_entries;
3552 }
3553
3554 srp_remove_wq = create_workqueue("srp_remove");
3555 if (!srp_remove_wq) {
3556 ret = -ENOMEM;
3557 goto out;
3558 }
3559
3560 ret = -ENOMEM;
3561 ib_srp_transport_template =
3562 srp_attach_transport(&ib_srp_transport_functions);
3563 if (!ib_srp_transport_template)
3564 goto destroy_wq;
3565
3566 ret = class_register(&srp_class);
3567 if (ret) {
3568 pr_err("couldn't register class infiniband_srp\n");
3569 goto release_tr;
3570 }
3571
3572 ib_sa_register_client(&srp_sa_client);
3573
3574 ret = ib_register_client(&srp_client);
3575 if (ret) {
3576 pr_err("couldn't register IB client\n");
3577 goto unreg_sa;
3578 }
3579
3580 out:
3581 return ret;
3582
3583 unreg_sa:
3584 ib_sa_unregister_client(&srp_sa_client);
3585 class_unregister(&srp_class);
3586
3587 release_tr:
3588 srp_release_transport(ib_srp_transport_template);
3589
3590 destroy_wq:
3591 destroy_workqueue(srp_remove_wq);
3592 goto out;
3593 }
3594
3595 static void __exit srp_cleanup_module(void)
3596 {
3597 ib_unregister_client(&srp_client);
3598 ib_sa_unregister_client(&srp_sa_client);
3599 class_unregister(&srp_class);
3600 srp_release_transport(ib_srp_transport_template);
3601 destroy_workqueue(srp_remove_wq);
3602 }
3603
3604 module_init(srp_init_module);
3605 module_exit(srp_cleanup_module);