]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/infiniband/ulp/srpt/ib_srpt.c
treewide: kmalloc() -> kmalloc_array()
[mirror_ubuntu-eoan-kernel.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46 #include <scsi/scsi_proto.h>
47 #include <scsi/scsi_tcq.h>
48 #include <target/target_core_base.h>
49 #include <target/target_core_fabric.h>
50 #include "ib_srpt.h"
51
52 /* Name of this kernel module. */
53 #define DRV_NAME "ib_srpt"
54 #define DRV_VERSION "2.0.0"
55 #define DRV_RELDATE "2011-02-14"
56
57 #define SRPT_ID_STRING "Linux SRP target"
58
59 #undef pr_fmt
60 #define pr_fmt(fmt) DRV_NAME " " fmt
61
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 "v" DRV_VERSION " (" DRV_RELDATE ")");
65 MODULE_LICENSE("Dual BSD/GPL");
66
67 /*
68 * Global Variables
69 */
70
71 static u64 srpt_service_guid;
72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
74
75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76 module_param(srp_max_req_size, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size,
78 "Maximum size of SRP request messages in bytes.");
79
80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81 module_param(srpt_srq_size, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size,
83 "Shared receive queue (SRQ) size.");
84
85 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
86 {
87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88 }
89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 0444);
91 MODULE_PARM_DESC(srpt_service_guid,
92 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 " instead of using the node_guid of the first HCA.");
94
95 static struct ib_client srpt_client;
96 /* Protects both rdma_cm_port and rdma_cm_id. */
97 static DEFINE_MUTEX(rdma_cm_mutex);
98 /* Port number RDMA/CM will bind to. */
99 static u16 rdma_cm_port;
100 static struct rdma_cm_id *rdma_cm_id;
101 static void srpt_release_cmd(struct se_cmd *se_cmd);
102 static void srpt_free_ch(struct kref *kref);
103 static int srpt_queue_status(struct se_cmd *cmd);
104 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
105 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
106 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
107
108 /*
109 * The only allowed channel state changes are those that change the channel
110 * state into a state with a higher numerical value. Hence the new > prev test.
111 */
112 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
113 {
114 unsigned long flags;
115 enum rdma_ch_state prev;
116 bool changed = false;
117
118 spin_lock_irqsave(&ch->spinlock, flags);
119 prev = ch->state;
120 if (new > prev) {
121 ch->state = new;
122 changed = true;
123 }
124 spin_unlock_irqrestore(&ch->spinlock, flags);
125
126 return changed;
127 }
128
129 /**
130 * srpt_event_handler - asynchronous IB event callback function
131 * @handler: IB event handler registered by ib_register_event_handler().
132 * @event: Description of the event that occurred.
133 *
134 * Callback function called by the InfiniBand core when an asynchronous IB
135 * event occurs. This callback may occur in interrupt context. See also
136 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
137 * Architecture Specification.
138 */
139 static void srpt_event_handler(struct ib_event_handler *handler,
140 struct ib_event *event)
141 {
142 struct srpt_device *sdev;
143 struct srpt_port *sport;
144 u8 port_num;
145
146 sdev = ib_get_client_data(event->device, &srpt_client);
147 if (!sdev || sdev->device != event->device)
148 return;
149
150 pr_debug("ASYNC event= %d on device= %s\n", event->event,
151 sdev->device->name);
152
153 switch (event->event) {
154 case IB_EVENT_PORT_ERR:
155 port_num = event->element.port_num - 1;
156 if (port_num < sdev->device->phys_port_cnt) {
157 sport = &sdev->port[port_num];
158 sport->lid = 0;
159 sport->sm_lid = 0;
160 } else {
161 WARN(true, "event %d: port_num %d out of range 1..%d\n",
162 event->event, port_num + 1,
163 sdev->device->phys_port_cnt);
164 }
165 break;
166 case IB_EVENT_PORT_ACTIVE:
167 case IB_EVENT_LID_CHANGE:
168 case IB_EVENT_PKEY_CHANGE:
169 case IB_EVENT_SM_CHANGE:
170 case IB_EVENT_CLIENT_REREGISTER:
171 case IB_EVENT_GID_CHANGE:
172 /* Refresh port data asynchronously. */
173 port_num = event->element.port_num - 1;
174 if (port_num < sdev->device->phys_port_cnt) {
175 sport = &sdev->port[port_num];
176 if (!sport->lid && !sport->sm_lid)
177 schedule_work(&sport->work);
178 } else {
179 WARN(true, "event %d: port_num %d out of range 1..%d\n",
180 event->event, port_num + 1,
181 sdev->device->phys_port_cnt);
182 }
183 break;
184 default:
185 pr_err("received unrecognized IB event %d\n", event->event);
186 break;
187 }
188 }
189
190 /**
191 * srpt_srq_event - SRQ event callback function
192 * @event: Description of the event that occurred.
193 * @ctx: Context pointer specified at SRQ creation time.
194 */
195 static void srpt_srq_event(struct ib_event *event, void *ctx)
196 {
197 pr_debug("SRQ event %d\n", event->event);
198 }
199
200 static const char *get_ch_state_name(enum rdma_ch_state s)
201 {
202 switch (s) {
203 case CH_CONNECTING:
204 return "connecting";
205 case CH_LIVE:
206 return "live";
207 case CH_DISCONNECTING:
208 return "disconnecting";
209 case CH_DRAINING:
210 return "draining";
211 case CH_DISCONNECTED:
212 return "disconnected";
213 }
214 return "???";
215 }
216
217 /**
218 * srpt_qp_event - QP event callback function
219 * @event: Description of the event that occurred.
220 * @ch: SRPT RDMA channel.
221 */
222 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
223 {
224 pr_debug("QP event %d on ch=%p sess_name=%s state=%d\n",
225 event->event, ch, ch->sess_name, ch->state);
226
227 switch (event->event) {
228 case IB_EVENT_COMM_EST:
229 if (ch->using_rdma_cm)
230 rdma_notify(ch->rdma_cm.cm_id, event->event);
231 else
232 ib_cm_notify(ch->ib_cm.cm_id, event->event);
233 break;
234 case IB_EVENT_QP_LAST_WQE_REACHED:
235 pr_debug("%s-%d, state %s: received Last WQE event.\n",
236 ch->sess_name, ch->qp->qp_num,
237 get_ch_state_name(ch->state));
238 break;
239 default:
240 pr_err("received unrecognized IB QP event %d\n", event->event);
241 break;
242 }
243 }
244
245 /**
246 * srpt_set_ioc - initialize a IOUnitInfo structure
247 * @c_list: controller list.
248 * @slot: one-based slot number.
249 * @value: four-bit value.
250 *
251 * Copies the lowest four bits of value in element slot of the array of four
252 * bit elements called c_list (controller list). The index slot is one-based.
253 */
254 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
255 {
256 u16 id;
257 u8 tmp;
258
259 id = (slot - 1) / 2;
260 if (slot & 0x1) {
261 tmp = c_list[id] & 0xf;
262 c_list[id] = (value << 4) | tmp;
263 } else {
264 tmp = c_list[id] & 0xf0;
265 c_list[id] = (value & 0xf) | tmp;
266 }
267 }
268
269 /**
270 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
271 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
272 *
273 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
274 * Specification.
275 */
276 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
277 {
278 struct ib_class_port_info *cif;
279
280 cif = (struct ib_class_port_info *)mad->data;
281 memset(cif, 0, sizeof(*cif));
282 cif->base_version = 1;
283 cif->class_version = 1;
284
285 ib_set_cpi_resp_time(cif, 20);
286 mad->mad_hdr.status = 0;
287 }
288
289 /**
290 * srpt_get_iou - write IOUnitInfo to a management datagram
291 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
292 *
293 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
294 * Specification. See also section B.7, table B.6 in the SRP r16a document.
295 */
296 static void srpt_get_iou(struct ib_dm_mad *mad)
297 {
298 struct ib_dm_iou_info *ioui;
299 u8 slot;
300 int i;
301
302 ioui = (struct ib_dm_iou_info *)mad->data;
303 ioui->change_id = cpu_to_be16(1);
304 ioui->max_controllers = 16;
305
306 /* set present for slot 1 and empty for the rest */
307 srpt_set_ioc(ioui->controller_list, 1, 1);
308 for (i = 1, slot = 2; i < 16; i++, slot++)
309 srpt_set_ioc(ioui->controller_list, slot, 0);
310
311 mad->mad_hdr.status = 0;
312 }
313
314 /**
315 * srpt_get_ioc - write IOControllerprofile to a management datagram
316 * @sport: HCA port through which the MAD has been received.
317 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
318 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
319 *
320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321 * Architecture Specification. See also section B.7, table B.7 in the SRP
322 * r16a document.
323 */
324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325 struct ib_dm_mad *mad)
326 {
327 struct srpt_device *sdev = sport->sdev;
328 struct ib_dm_ioc_profile *iocp;
329 int send_queue_depth;
330
331 iocp = (struct ib_dm_ioc_profile *)mad->data;
332
333 if (!slot || slot > 16) {
334 mad->mad_hdr.status
335 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
336 return;
337 }
338
339 if (slot > 2) {
340 mad->mad_hdr.status
341 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
342 return;
343 }
344
345 if (sdev->use_srq)
346 send_queue_depth = sdev->srq_size;
347 else
348 send_queue_depth = min(MAX_SRPT_RQ_SIZE,
349 sdev->device->attrs.max_qp_wr);
350
351 memset(iocp, 0, sizeof(*iocp));
352 strcpy(iocp->id_string, SRPT_ID_STRING);
353 iocp->guid = cpu_to_be64(srpt_service_guid);
354 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
355 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
356 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
357 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
358 iocp->subsys_device_id = 0x0;
359 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
360 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
361 iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
362 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
363 iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
364 iocp->rdma_read_depth = 4;
365 iocp->send_size = cpu_to_be32(srp_max_req_size);
366 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
367 1U << 24));
368 iocp->num_svc_entries = 1;
369 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
370 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
371
372 mad->mad_hdr.status = 0;
373 }
374
375 /**
376 * srpt_get_svc_entries - write ServiceEntries to a management datagram
377 * @ioc_guid: I/O controller GUID to use in reply.
378 * @slot: I/O controller number.
379 * @hi: End of the range of service entries to be specified in the reply.
380 * @lo: Start of the range of service entries to be specified in the reply..
381 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
382 *
383 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
384 * Specification. See also section B.7, table B.8 in the SRP r16a document.
385 */
386 static void srpt_get_svc_entries(u64 ioc_guid,
387 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
388 {
389 struct ib_dm_svc_entries *svc_entries;
390
391 WARN_ON(!ioc_guid);
392
393 if (!slot || slot > 16) {
394 mad->mad_hdr.status
395 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
396 return;
397 }
398
399 if (slot > 2 || lo > hi || hi > 1) {
400 mad->mad_hdr.status
401 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
402 return;
403 }
404
405 svc_entries = (struct ib_dm_svc_entries *)mad->data;
406 memset(svc_entries, 0, sizeof(*svc_entries));
407 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
408 snprintf(svc_entries->service_entries[0].name,
409 sizeof(svc_entries->service_entries[0].name),
410 "%s%016llx",
411 SRP_SERVICE_NAME_PREFIX,
412 ioc_guid);
413
414 mad->mad_hdr.status = 0;
415 }
416
417 /**
418 * srpt_mgmt_method_get - process a received management datagram
419 * @sp: HCA port through which the MAD has been received.
420 * @rq_mad: received MAD.
421 * @rsp_mad: response MAD.
422 */
423 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
424 struct ib_dm_mad *rsp_mad)
425 {
426 u16 attr_id;
427 u32 slot;
428 u8 hi, lo;
429
430 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
431 switch (attr_id) {
432 case DM_ATTR_CLASS_PORT_INFO:
433 srpt_get_class_port_info(rsp_mad);
434 break;
435 case DM_ATTR_IOU_INFO:
436 srpt_get_iou(rsp_mad);
437 break;
438 case DM_ATTR_IOC_PROFILE:
439 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
440 srpt_get_ioc(sp, slot, rsp_mad);
441 break;
442 case DM_ATTR_SVC_ENTRIES:
443 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
444 hi = (u8) ((slot >> 8) & 0xff);
445 lo = (u8) (slot & 0xff);
446 slot = (u16) ((slot >> 16) & 0xffff);
447 srpt_get_svc_entries(srpt_service_guid,
448 slot, hi, lo, rsp_mad);
449 break;
450 default:
451 rsp_mad->mad_hdr.status =
452 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
453 break;
454 }
455 }
456
457 /**
458 * srpt_mad_send_handler - MAD send completion callback
459 * @mad_agent: Return value of ib_register_mad_agent().
460 * @mad_wc: Work completion reporting that the MAD has been sent.
461 */
462 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
463 struct ib_mad_send_wc *mad_wc)
464 {
465 rdma_destroy_ah(mad_wc->send_buf->ah);
466 ib_free_send_mad(mad_wc->send_buf);
467 }
468
469 /**
470 * srpt_mad_recv_handler - MAD reception callback function
471 * @mad_agent: Return value of ib_register_mad_agent().
472 * @send_buf: Not used.
473 * @mad_wc: Work completion reporting that a MAD has been received.
474 */
475 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
476 struct ib_mad_send_buf *send_buf,
477 struct ib_mad_recv_wc *mad_wc)
478 {
479 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
480 struct ib_ah *ah;
481 struct ib_mad_send_buf *rsp;
482 struct ib_dm_mad *dm_mad;
483
484 if (!mad_wc || !mad_wc->recv_buf.mad)
485 return;
486
487 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
488 mad_wc->recv_buf.grh, mad_agent->port_num);
489 if (IS_ERR(ah))
490 goto err;
491
492 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
493
494 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
495 mad_wc->wc->pkey_index, 0,
496 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
497 GFP_KERNEL,
498 IB_MGMT_BASE_VERSION);
499 if (IS_ERR(rsp))
500 goto err_rsp;
501
502 rsp->ah = ah;
503
504 dm_mad = rsp->mad;
505 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
506 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
507 dm_mad->mad_hdr.status = 0;
508
509 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
510 case IB_MGMT_METHOD_GET:
511 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
512 break;
513 case IB_MGMT_METHOD_SET:
514 dm_mad->mad_hdr.status =
515 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
516 break;
517 default:
518 dm_mad->mad_hdr.status =
519 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
520 break;
521 }
522
523 if (!ib_post_send_mad(rsp, NULL)) {
524 ib_free_recv_mad(mad_wc);
525 /* will destroy_ah & free_send_mad in send completion */
526 return;
527 }
528
529 ib_free_send_mad(rsp);
530
531 err_rsp:
532 rdma_destroy_ah(ah);
533 err:
534 ib_free_recv_mad(mad_wc);
535 }
536
537 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
538 {
539 const __be16 *g = (const __be16 *)guid;
540
541 return snprintf(buf, size, "%04x:%04x:%04x:%04x",
542 be16_to_cpu(g[0]), be16_to_cpu(g[1]),
543 be16_to_cpu(g[2]), be16_to_cpu(g[3]));
544 }
545
546 /**
547 * srpt_refresh_port - configure a HCA port
548 * @sport: SRPT HCA port.
549 *
550 * Enable InfiniBand management datagram processing, update the cached sm_lid,
551 * lid and gid values, and register a callback function for processing MADs
552 * on the specified port.
553 *
554 * Note: It is safe to call this function more than once for the same port.
555 */
556 static int srpt_refresh_port(struct srpt_port *sport)
557 {
558 struct ib_mad_reg_req reg_req;
559 struct ib_port_modify port_modify;
560 struct ib_port_attr port_attr;
561 int ret;
562
563 memset(&port_modify, 0, sizeof(port_modify));
564 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
565 port_modify.clr_port_cap_mask = 0;
566
567 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
568 if (ret)
569 goto err_mod_port;
570
571 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
572 if (ret)
573 goto err_query_port;
574
575 sport->sm_lid = port_attr.sm_lid;
576 sport->lid = port_attr.lid;
577
578 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
579 NULL);
580 if (ret)
581 goto err_query_port;
582
583 sport->port_guid_wwn.priv = sport;
584 srpt_format_guid(sport->port_guid, sizeof(sport->port_guid),
585 &sport->gid.global.interface_id);
586 sport->port_gid_wwn.priv = sport;
587 snprintf(sport->port_gid, sizeof(sport->port_gid),
588 "0x%016llx%016llx",
589 be64_to_cpu(sport->gid.global.subnet_prefix),
590 be64_to_cpu(sport->gid.global.interface_id));
591
592 if (!sport->mad_agent) {
593 memset(&reg_req, 0, sizeof(reg_req));
594 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
595 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
596 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
597 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
598
599 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
600 sport->port,
601 IB_QPT_GSI,
602 &reg_req, 0,
603 srpt_mad_send_handler,
604 srpt_mad_recv_handler,
605 sport, 0);
606 if (IS_ERR(sport->mad_agent)) {
607 ret = PTR_ERR(sport->mad_agent);
608 sport->mad_agent = NULL;
609 goto err_query_port;
610 }
611 }
612
613 return 0;
614
615 err_query_port:
616
617 port_modify.set_port_cap_mask = 0;
618 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
619 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
620
621 err_mod_port:
622
623 return ret;
624 }
625
626 /**
627 * srpt_unregister_mad_agent - unregister MAD callback functions
628 * @sdev: SRPT HCA pointer.
629 *
630 * Note: It is safe to call this function more than once for the same device.
631 */
632 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
633 {
634 struct ib_port_modify port_modify = {
635 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
636 };
637 struct srpt_port *sport;
638 int i;
639
640 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
641 sport = &sdev->port[i - 1];
642 WARN_ON(sport->port != i);
643 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
644 pr_err("disabling MAD processing failed.\n");
645 if (sport->mad_agent) {
646 ib_unregister_mad_agent(sport->mad_agent);
647 sport->mad_agent = NULL;
648 }
649 }
650 }
651
652 /**
653 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
654 * @sdev: SRPT HCA pointer.
655 * @ioctx_size: I/O context size.
656 * @dma_size: Size of I/O context DMA buffer.
657 * @dir: DMA data direction.
658 */
659 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
660 int ioctx_size, int dma_size,
661 enum dma_data_direction dir)
662 {
663 struct srpt_ioctx *ioctx;
664
665 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
666 if (!ioctx)
667 goto err;
668
669 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
670 if (!ioctx->buf)
671 goto err_free_ioctx;
672
673 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
674 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
675 goto err_free_buf;
676
677 return ioctx;
678
679 err_free_buf:
680 kfree(ioctx->buf);
681 err_free_ioctx:
682 kfree(ioctx);
683 err:
684 return NULL;
685 }
686
687 /**
688 * srpt_free_ioctx - free a SRPT I/O context structure
689 * @sdev: SRPT HCA pointer.
690 * @ioctx: I/O context pointer.
691 * @dma_size: Size of I/O context DMA buffer.
692 * @dir: DMA data direction.
693 */
694 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
695 int dma_size, enum dma_data_direction dir)
696 {
697 if (!ioctx)
698 return;
699
700 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
701 kfree(ioctx->buf);
702 kfree(ioctx);
703 }
704
705 /**
706 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
707 * @sdev: Device to allocate the I/O context ring for.
708 * @ring_size: Number of elements in the I/O context ring.
709 * @ioctx_size: I/O context size.
710 * @dma_size: DMA buffer size.
711 * @dir: DMA data direction.
712 */
713 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
714 int ring_size, int ioctx_size,
715 int dma_size, enum dma_data_direction dir)
716 {
717 struct srpt_ioctx **ring;
718 int i;
719
720 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
721 && ioctx_size != sizeof(struct srpt_send_ioctx));
722
723 ring = kmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
724 if (!ring)
725 goto out;
726 for (i = 0; i < ring_size; ++i) {
727 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
728 if (!ring[i])
729 goto err;
730 ring[i]->index = i;
731 }
732 goto out;
733
734 err:
735 while (--i >= 0)
736 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
737 kfree(ring);
738 ring = NULL;
739 out:
740 return ring;
741 }
742
743 /**
744 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
745 * @ioctx_ring: I/O context ring to be freed.
746 * @sdev: SRPT HCA pointer.
747 * @ring_size: Number of ring elements.
748 * @dma_size: Size of I/O context DMA buffer.
749 * @dir: DMA data direction.
750 */
751 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
752 struct srpt_device *sdev, int ring_size,
753 int dma_size, enum dma_data_direction dir)
754 {
755 int i;
756
757 if (!ioctx_ring)
758 return;
759
760 for (i = 0; i < ring_size; ++i)
761 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
762 kfree(ioctx_ring);
763 }
764
765 /**
766 * srpt_set_cmd_state - set the state of a SCSI command
767 * @ioctx: Send I/O context.
768 * @new: New I/O context state.
769 *
770 * Does not modify the state of aborted commands. Returns the previous command
771 * state.
772 */
773 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
774 enum srpt_command_state new)
775 {
776 enum srpt_command_state previous;
777
778 previous = ioctx->state;
779 if (previous != SRPT_STATE_DONE)
780 ioctx->state = new;
781
782 return previous;
783 }
784
785 /**
786 * srpt_test_and_set_cmd_state - test and set the state of a command
787 * @ioctx: Send I/O context.
788 * @old: Current I/O context state.
789 * @new: New I/O context state.
790 *
791 * Returns true if and only if the previous command state was equal to 'old'.
792 */
793 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
794 enum srpt_command_state old,
795 enum srpt_command_state new)
796 {
797 enum srpt_command_state previous;
798
799 WARN_ON(!ioctx);
800 WARN_ON(old == SRPT_STATE_DONE);
801 WARN_ON(new == SRPT_STATE_NEW);
802
803 previous = ioctx->state;
804 if (previous == old)
805 ioctx->state = new;
806
807 return previous == old;
808 }
809
810 /**
811 * srpt_post_recv - post an IB receive request
812 * @sdev: SRPT HCA pointer.
813 * @ch: SRPT RDMA channel.
814 * @ioctx: Receive I/O context pointer.
815 */
816 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
817 struct srpt_recv_ioctx *ioctx)
818 {
819 struct ib_sge list;
820 struct ib_recv_wr wr, *bad_wr;
821
822 BUG_ON(!sdev);
823 list.addr = ioctx->ioctx.dma;
824 list.length = srp_max_req_size;
825 list.lkey = sdev->lkey;
826
827 ioctx->ioctx.cqe.done = srpt_recv_done;
828 wr.wr_cqe = &ioctx->ioctx.cqe;
829 wr.next = NULL;
830 wr.sg_list = &list;
831 wr.num_sge = 1;
832
833 if (sdev->use_srq)
834 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
835 else
836 return ib_post_recv(ch->qp, &wr, &bad_wr);
837 }
838
839 /**
840 * srpt_zerolength_write - perform a zero-length RDMA write
841 * @ch: SRPT RDMA channel.
842 *
843 * A quote from the InfiniBand specification: C9-88: For an HCA responder
844 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
845 * request, the R_Key shall not be validated, even if the request includes
846 * Immediate data.
847 */
848 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
849 {
850 struct ib_send_wr *bad_wr;
851 struct ib_rdma_wr wr = {
852 .wr = {
853 .next = NULL,
854 { .wr_cqe = &ch->zw_cqe, },
855 .opcode = IB_WR_RDMA_WRITE,
856 .send_flags = IB_SEND_SIGNALED,
857 }
858 };
859
860 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
861 ch->qp->qp_num);
862
863 return ib_post_send(ch->qp, &wr.wr, &bad_wr);
864 }
865
866 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
867 {
868 struct srpt_rdma_ch *ch = cq->cq_context;
869
870 pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
871 wc->status);
872
873 if (wc->status == IB_WC_SUCCESS) {
874 srpt_process_wait_list(ch);
875 } else {
876 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
877 schedule_work(&ch->release_work);
878 else
879 pr_debug("%s-%d: already disconnected.\n",
880 ch->sess_name, ch->qp->qp_num);
881 }
882 }
883
884 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
885 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
886 unsigned *sg_cnt)
887 {
888 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
889 struct srpt_rdma_ch *ch = ioctx->ch;
890 struct scatterlist *prev = NULL;
891 unsigned prev_nents;
892 int ret, i;
893
894 if (nbufs == 1) {
895 ioctx->rw_ctxs = &ioctx->s_rw_ctx;
896 } else {
897 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
898 GFP_KERNEL);
899 if (!ioctx->rw_ctxs)
900 return -ENOMEM;
901 }
902
903 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
904 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
905 u64 remote_addr = be64_to_cpu(db->va);
906 u32 size = be32_to_cpu(db->len);
907 u32 rkey = be32_to_cpu(db->key);
908
909 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
910 i < nbufs - 1);
911 if (ret)
912 goto unwind;
913
914 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
915 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
916 if (ret < 0) {
917 target_free_sgl(ctx->sg, ctx->nents);
918 goto unwind;
919 }
920
921 ioctx->n_rdma += ret;
922 ioctx->n_rw_ctx++;
923
924 if (prev) {
925 sg_unmark_end(&prev[prev_nents - 1]);
926 sg_chain(prev, prev_nents + 1, ctx->sg);
927 } else {
928 *sg = ctx->sg;
929 }
930
931 prev = ctx->sg;
932 prev_nents = ctx->nents;
933
934 *sg_cnt += ctx->nents;
935 }
936
937 return 0;
938
939 unwind:
940 while (--i >= 0) {
941 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
942
943 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
944 ctx->sg, ctx->nents, dir);
945 target_free_sgl(ctx->sg, ctx->nents);
946 }
947 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
948 kfree(ioctx->rw_ctxs);
949 return ret;
950 }
951
952 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
953 struct srpt_send_ioctx *ioctx)
954 {
955 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
956 int i;
957
958 for (i = 0; i < ioctx->n_rw_ctx; i++) {
959 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
960
961 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
962 ctx->sg, ctx->nents, dir);
963 target_free_sgl(ctx->sg, ctx->nents);
964 }
965
966 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
967 kfree(ioctx->rw_ctxs);
968 }
969
970 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
971 {
972 /*
973 * The pointer computations below will only be compiled correctly
974 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
975 * whether srp_cmd::add_data has been declared as a byte pointer.
976 */
977 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
978 !__same_type(srp_cmd->add_data[0], (u8)0));
979
980 /*
981 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
982 * CDB LENGTH' field are reserved and the size in bytes of this field
983 * is four times the value specified in bits 3..7. Hence the "& ~3".
984 */
985 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
986 }
987
988 /**
989 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
990 * @ioctx: Pointer to the I/O context associated with the request.
991 * @srp_cmd: Pointer to the SRP_CMD request data.
992 * @dir: Pointer to the variable to which the transfer direction will be
993 * written.
994 * @sg: [out] scatterlist allocated for the parsed SRP_CMD.
995 * @sg_cnt: [out] length of @sg.
996 * @data_len: Pointer to the variable to which the total data length of all
997 * descriptors in the SRP_CMD request will be written.
998 *
999 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1000 *
1001 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1002 * -ENOMEM when memory allocation fails and zero upon success.
1003 */
1004 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
1005 struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1006 struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
1007 {
1008 BUG_ON(!dir);
1009 BUG_ON(!data_len);
1010
1011 /*
1012 * The lower four bits of the buffer format field contain the DATA-IN
1013 * buffer descriptor format, and the highest four bits contain the
1014 * DATA-OUT buffer descriptor format.
1015 */
1016 if (srp_cmd->buf_fmt & 0xf)
1017 /* DATA-IN: transfer data from target to initiator (read). */
1018 *dir = DMA_FROM_DEVICE;
1019 else if (srp_cmd->buf_fmt >> 4)
1020 /* DATA-OUT: transfer data from initiator to target (write). */
1021 *dir = DMA_TO_DEVICE;
1022 else
1023 *dir = DMA_NONE;
1024
1025 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1026 ioctx->cmd.data_direction = *dir;
1027
1028 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1029 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1030 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1031
1032 *data_len = be32_to_cpu(db->len);
1033 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1034 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1035 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1036 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1037 int nbufs = be32_to_cpu(idb->table_desc.len) /
1038 sizeof(struct srp_direct_buf);
1039
1040 if (nbufs >
1041 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1042 pr_err("received unsupported SRP_CMD request"
1043 " type (%u out + %u in != %u / %zu)\n",
1044 srp_cmd->data_out_desc_cnt,
1045 srp_cmd->data_in_desc_cnt,
1046 be32_to_cpu(idb->table_desc.len),
1047 sizeof(struct srp_direct_buf));
1048 return -EINVAL;
1049 }
1050
1051 *data_len = be32_to_cpu(idb->len);
1052 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1053 sg, sg_cnt);
1054 } else {
1055 *data_len = 0;
1056 return 0;
1057 }
1058 }
1059
1060 /**
1061 * srpt_init_ch_qp - initialize queue pair attributes
1062 * @ch: SRPT RDMA channel.
1063 * @qp: Queue pair pointer.
1064 *
1065 * Initialized the attributes of queue pair 'qp' by allowing local write,
1066 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1067 */
1068 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1069 {
1070 struct ib_qp_attr *attr;
1071 int ret;
1072
1073 WARN_ON_ONCE(ch->using_rdma_cm);
1074
1075 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1076 if (!attr)
1077 return -ENOMEM;
1078
1079 attr->qp_state = IB_QPS_INIT;
1080 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1081 attr->port_num = ch->sport->port;
1082
1083 ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1084 ch->pkey, &attr->pkey_index);
1085 if (ret < 0)
1086 pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1087 ch->pkey, ret);
1088
1089 ret = ib_modify_qp(qp, attr,
1090 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1091 IB_QP_PKEY_INDEX);
1092
1093 kfree(attr);
1094 return ret;
1095 }
1096
1097 /**
1098 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1099 * @ch: channel of the queue pair.
1100 * @qp: queue pair to change the state of.
1101 *
1102 * Returns zero upon success and a negative value upon failure.
1103 *
1104 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1105 * If this structure ever becomes larger, it might be necessary to allocate
1106 * it dynamically instead of on the stack.
1107 */
1108 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1109 {
1110 struct ib_qp_attr qp_attr;
1111 int attr_mask;
1112 int ret;
1113
1114 WARN_ON_ONCE(ch->using_rdma_cm);
1115
1116 qp_attr.qp_state = IB_QPS_RTR;
1117 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1118 if (ret)
1119 goto out;
1120
1121 qp_attr.max_dest_rd_atomic = 4;
1122
1123 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1124
1125 out:
1126 return ret;
1127 }
1128
1129 /**
1130 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1131 * @ch: channel of the queue pair.
1132 * @qp: queue pair to change the state of.
1133 *
1134 * Returns zero upon success and a negative value upon failure.
1135 *
1136 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1137 * If this structure ever becomes larger, it might be necessary to allocate
1138 * it dynamically instead of on the stack.
1139 */
1140 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1141 {
1142 struct ib_qp_attr qp_attr;
1143 int attr_mask;
1144 int ret;
1145
1146 qp_attr.qp_state = IB_QPS_RTS;
1147 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1148 if (ret)
1149 goto out;
1150
1151 qp_attr.max_rd_atomic = 4;
1152
1153 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1154
1155 out:
1156 return ret;
1157 }
1158
1159 /**
1160 * srpt_ch_qp_err - set the channel queue pair state to 'error'
1161 * @ch: SRPT RDMA channel.
1162 */
1163 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1164 {
1165 struct ib_qp_attr qp_attr;
1166
1167 qp_attr.qp_state = IB_QPS_ERR;
1168 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1169 }
1170
1171 /**
1172 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1173 * @ch: SRPT RDMA channel.
1174 */
1175 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1176 {
1177 struct srpt_send_ioctx *ioctx;
1178 unsigned long flags;
1179
1180 BUG_ON(!ch);
1181
1182 ioctx = NULL;
1183 spin_lock_irqsave(&ch->spinlock, flags);
1184 if (!list_empty(&ch->free_list)) {
1185 ioctx = list_first_entry(&ch->free_list,
1186 struct srpt_send_ioctx, free_list);
1187 list_del(&ioctx->free_list);
1188 }
1189 spin_unlock_irqrestore(&ch->spinlock, flags);
1190
1191 if (!ioctx)
1192 return ioctx;
1193
1194 BUG_ON(ioctx->ch != ch);
1195 ioctx->state = SRPT_STATE_NEW;
1196 ioctx->n_rdma = 0;
1197 ioctx->n_rw_ctx = 0;
1198 ioctx->queue_status_only = false;
1199 /*
1200 * transport_init_se_cmd() does not initialize all fields, so do it
1201 * here.
1202 */
1203 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1204 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1205
1206 return ioctx;
1207 }
1208
1209 /**
1210 * srpt_abort_cmd - abort a SCSI command
1211 * @ioctx: I/O context associated with the SCSI command.
1212 */
1213 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1214 {
1215 enum srpt_command_state state;
1216
1217 BUG_ON(!ioctx);
1218
1219 /*
1220 * If the command is in a state where the target core is waiting for
1221 * the ib_srpt driver, change the state to the next state.
1222 */
1223
1224 state = ioctx->state;
1225 switch (state) {
1226 case SRPT_STATE_NEED_DATA:
1227 ioctx->state = SRPT_STATE_DATA_IN;
1228 break;
1229 case SRPT_STATE_CMD_RSP_SENT:
1230 case SRPT_STATE_MGMT_RSP_SENT:
1231 ioctx->state = SRPT_STATE_DONE;
1232 break;
1233 default:
1234 WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1235 __func__, state);
1236 break;
1237 }
1238
1239 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1240 ioctx->state, ioctx->cmd.tag);
1241
1242 switch (state) {
1243 case SRPT_STATE_NEW:
1244 case SRPT_STATE_DATA_IN:
1245 case SRPT_STATE_MGMT:
1246 case SRPT_STATE_DONE:
1247 /*
1248 * Do nothing - defer abort processing until
1249 * srpt_queue_response() is invoked.
1250 */
1251 break;
1252 case SRPT_STATE_NEED_DATA:
1253 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1254 transport_generic_request_failure(&ioctx->cmd,
1255 TCM_CHECK_CONDITION_ABORT_CMD);
1256 break;
1257 case SRPT_STATE_CMD_RSP_SENT:
1258 /*
1259 * SRP_RSP sending failed or the SRP_RSP send completion has
1260 * not been received in time.
1261 */
1262 transport_generic_free_cmd(&ioctx->cmd, 0);
1263 break;
1264 case SRPT_STATE_MGMT_RSP_SENT:
1265 transport_generic_free_cmd(&ioctx->cmd, 0);
1266 break;
1267 default:
1268 WARN(1, "Unexpected command state (%d)", state);
1269 break;
1270 }
1271
1272 return state;
1273 }
1274
1275 /**
1276 * srpt_rdma_read_done - RDMA read completion callback
1277 * @cq: Completion queue.
1278 * @wc: Work completion.
1279 *
1280 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1281 * the data that has been transferred via IB RDMA had to be postponed until the
1282 * check_stop_free() callback. None of this is necessary anymore and needs to
1283 * be cleaned up.
1284 */
1285 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1286 {
1287 struct srpt_rdma_ch *ch = cq->cq_context;
1288 struct srpt_send_ioctx *ioctx =
1289 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1290
1291 WARN_ON(ioctx->n_rdma <= 0);
1292 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1293 ioctx->n_rdma = 0;
1294
1295 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1296 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1297 ioctx, wc->status);
1298 srpt_abort_cmd(ioctx);
1299 return;
1300 }
1301
1302 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1303 SRPT_STATE_DATA_IN))
1304 target_execute_cmd(&ioctx->cmd);
1305 else
1306 pr_err("%s[%d]: wrong state = %d\n", __func__,
1307 __LINE__, ioctx->state);
1308 }
1309
1310 /**
1311 * srpt_build_cmd_rsp - build a SRP_RSP response
1312 * @ch: RDMA channel through which the request has been received.
1313 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1314 * be built in the buffer ioctx->buf points at and hence this function will
1315 * overwrite the request data.
1316 * @tag: tag of the request for which this response is being generated.
1317 * @status: value for the STATUS field of the SRP_RSP information unit.
1318 *
1319 * Returns the size in bytes of the SRP_RSP response.
1320 *
1321 * An SRP_RSP response contains a SCSI status or service response. See also
1322 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1323 * response. See also SPC-2 for more information about sense data.
1324 */
1325 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1326 struct srpt_send_ioctx *ioctx, u64 tag,
1327 int status)
1328 {
1329 struct srp_rsp *srp_rsp;
1330 const u8 *sense_data;
1331 int sense_data_len, max_sense_len;
1332
1333 /*
1334 * The lowest bit of all SAM-3 status codes is zero (see also
1335 * paragraph 5.3 in SAM-3).
1336 */
1337 WARN_ON(status & 1);
1338
1339 srp_rsp = ioctx->ioctx.buf;
1340 BUG_ON(!srp_rsp);
1341
1342 sense_data = ioctx->sense_data;
1343 sense_data_len = ioctx->cmd.scsi_sense_length;
1344 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1345
1346 memset(srp_rsp, 0, sizeof(*srp_rsp));
1347 srp_rsp->opcode = SRP_RSP;
1348 srp_rsp->req_lim_delta =
1349 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1350 srp_rsp->tag = tag;
1351 srp_rsp->status = status;
1352
1353 if (sense_data_len) {
1354 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1355 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1356 if (sense_data_len > max_sense_len) {
1357 pr_warn("truncated sense data from %d to %d"
1358 " bytes\n", sense_data_len, max_sense_len);
1359 sense_data_len = max_sense_len;
1360 }
1361
1362 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1363 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1364 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1365 }
1366
1367 return sizeof(*srp_rsp) + sense_data_len;
1368 }
1369
1370 /**
1371 * srpt_build_tskmgmt_rsp - build a task management response
1372 * @ch: RDMA channel through which the request has been received.
1373 * @ioctx: I/O context in which the SRP_RSP response will be built.
1374 * @rsp_code: RSP_CODE that will be stored in the response.
1375 * @tag: Tag of the request for which this response is being generated.
1376 *
1377 * Returns the size in bytes of the SRP_RSP response.
1378 *
1379 * An SRP_RSP response contains a SCSI status or service response. See also
1380 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1381 * response.
1382 */
1383 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1384 struct srpt_send_ioctx *ioctx,
1385 u8 rsp_code, u64 tag)
1386 {
1387 struct srp_rsp *srp_rsp;
1388 int resp_data_len;
1389 int resp_len;
1390
1391 resp_data_len = 4;
1392 resp_len = sizeof(*srp_rsp) + resp_data_len;
1393
1394 srp_rsp = ioctx->ioctx.buf;
1395 BUG_ON(!srp_rsp);
1396 memset(srp_rsp, 0, sizeof(*srp_rsp));
1397
1398 srp_rsp->opcode = SRP_RSP;
1399 srp_rsp->req_lim_delta =
1400 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1401 srp_rsp->tag = tag;
1402
1403 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1404 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1405 srp_rsp->data[3] = rsp_code;
1406
1407 return resp_len;
1408 }
1409
1410 static int srpt_check_stop_free(struct se_cmd *cmd)
1411 {
1412 struct srpt_send_ioctx *ioctx = container_of(cmd,
1413 struct srpt_send_ioctx, cmd);
1414
1415 return target_put_sess_cmd(&ioctx->cmd);
1416 }
1417
1418 /**
1419 * srpt_handle_cmd - process a SRP_CMD information unit
1420 * @ch: SRPT RDMA channel.
1421 * @recv_ioctx: Receive I/O context.
1422 * @send_ioctx: Send I/O context.
1423 */
1424 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1425 struct srpt_recv_ioctx *recv_ioctx,
1426 struct srpt_send_ioctx *send_ioctx)
1427 {
1428 struct se_cmd *cmd;
1429 struct srp_cmd *srp_cmd;
1430 struct scatterlist *sg = NULL;
1431 unsigned sg_cnt = 0;
1432 u64 data_len;
1433 enum dma_data_direction dir;
1434 int rc;
1435
1436 BUG_ON(!send_ioctx);
1437
1438 srp_cmd = recv_ioctx->ioctx.buf;
1439 cmd = &send_ioctx->cmd;
1440 cmd->tag = srp_cmd->tag;
1441
1442 switch (srp_cmd->task_attr) {
1443 case SRP_CMD_SIMPLE_Q:
1444 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1445 break;
1446 case SRP_CMD_ORDERED_Q:
1447 default:
1448 cmd->sam_task_attr = TCM_ORDERED_TAG;
1449 break;
1450 case SRP_CMD_HEAD_OF_Q:
1451 cmd->sam_task_attr = TCM_HEAD_TAG;
1452 break;
1453 case SRP_CMD_ACA:
1454 cmd->sam_task_attr = TCM_ACA_TAG;
1455 break;
1456 }
1457
1458 rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
1459 &data_len);
1460 if (rc) {
1461 if (rc != -EAGAIN) {
1462 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1463 srp_cmd->tag);
1464 }
1465 goto release_ioctx;
1466 }
1467
1468 rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
1469 &send_ioctx->sense_data[0],
1470 scsilun_to_int(&srp_cmd->lun), data_len,
1471 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
1472 sg, sg_cnt, NULL, 0, NULL, 0);
1473 if (rc != 0) {
1474 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1475 srp_cmd->tag);
1476 goto release_ioctx;
1477 }
1478 return;
1479
1480 release_ioctx:
1481 send_ioctx->state = SRPT_STATE_DONE;
1482 srpt_release_cmd(cmd);
1483 }
1484
1485 static int srp_tmr_to_tcm(int fn)
1486 {
1487 switch (fn) {
1488 case SRP_TSK_ABORT_TASK:
1489 return TMR_ABORT_TASK;
1490 case SRP_TSK_ABORT_TASK_SET:
1491 return TMR_ABORT_TASK_SET;
1492 case SRP_TSK_CLEAR_TASK_SET:
1493 return TMR_CLEAR_TASK_SET;
1494 case SRP_TSK_LUN_RESET:
1495 return TMR_LUN_RESET;
1496 case SRP_TSK_CLEAR_ACA:
1497 return TMR_CLEAR_ACA;
1498 default:
1499 return -1;
1500 }
1501 }
1502
1503 /**
1504 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1505 * @ch: SRPT RDMA channel.
1506 * @recv_ioctx: Receive I/O context.
1507 * @send_ioctx: Send I/O context.
1508 *
1509 * Returns 0 if and only if the request will be processed by the target core.
1510 *
1511 * For more information about SRP_TSK_MGMT information units, see also section
1512 * 6.7 in the SRP r16a document.
1513 */
1514 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1515 struct srpt_recv_ioctx *recv_ioctx,
1516 struct srpt_send_ioctx *send_ioctx)
1517 {
1518 struct srp_tsk_mgmt *srp_tsk;
1519 struct se_cmd *cmd;
1520 struct se_session *sess = ch->sess;
1521 int tcm_tmr;
1522 int rc;
1523
1524 BUG_ON(!send_ioctx);
1525
1526 srp_tsk = recv_ioctx->ioctx.buf;
1527 cmd = &send_ioctx->cmd;
1528
1529 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1530 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1531 ch->sess);
1532
1533 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1534 send_ioctx->cmd.tag = srp_tsk->tag;
1535 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1536 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1537 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1538 GFP_KERNEL, srp_tsk->task_tag,
1539 TARGET_SCF_ACK_KREF);
1540 if (rc != 0) {
1541 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1542 goto fail;
1543 }
1544 return;
1545 fail:
1546 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1547 }
1548
1549 /**
1550 * srpt_handle_new_iu - process a newly received information unit
1551 * @ch: RDMA channel through which the information unit has been received.
1552 * @recv_ioctx: Receive I/O context associated with the information unit.
1553 */
1554 static bool
1555 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1556 {
1557 struct srpt_send_ioctx *send_ioctx = NULL;
1558 struct srp_cmd *srp_cmd;
1559 bool res = false;
1560 u8 opcode;
1561
1562 BUG_ON(!ch);
1563 BUG_ON(!recv_ioctx);
1564
1565 if (unlikely(ch->state == CH_CONNECTING))
1566 goto push;
1567
1568 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1569 recv_ioctx->ioctx.dma, srp_max_req_size,
1570 DMA_FROM_DEVICE);
1571
1572 srp_cmd = recv_ioctx->ioctx.buf;
1573 opcode = srp_cmd->opcode;
1574 if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1575 send_ioctx = srpt_get_send_ioctx(ch);
1576 if (unlikely(!send_ioctx))
1577 goto push;
1578 }
1579
1580 if (!list_empty(&recv_ioctx->wait_list)) {
1581 WARN_ON_ONCE(!ch->processing_wait_list);
1582 list_del_init(&recv_ioctx->wait_list);
1583 }
1584
1585 switch (opcode) {
1586 case SRP_CMD:
1587 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1588 break;
1589 case SRP_TSK_MGMT:
1590 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1591 break;
1592 case SRP_I_LOGOUT:
1593 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1594 break;
1595 case SRP_CRED_RSP:
1596 pr_debug("received SRP_CRED_RSP\n");
1597 break;
1598 case SRP_AER_RSP:
1599 pr_debug("received SRP_AER_RSP\n");
1600 break;
1601 case SRP_RSP:
1602 pr_err("Received SRP_RSP\n");
1603 break;
1604 default:
1605 pr_err("received IU with unknown opcode 0x%x\n", opcode);
1606 break;
1607 }
1608
1609 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1610 res = true;
1611
1612 out:
1613 return res;
1614
1615 push:
1616 if (list_empty(&recv_ioctx->wait_list)) {
1617 WARN_ON_ONCE(ch->processing_wait_list);
1618 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1619 }
1620 goto out;
1621 }
1622
1623 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1624 {
1625 struct srpt_rdma_ch *ch = cq->cq_context;
1626 struct srpt_recv_ioctx *ioctx =
1627 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1628
1629 if (wc->status == IB_WC_SUCCESS) {
1630 int req_lim;
1631
1632 req_lim = atomic_dec_return(&ch->req_lim);
1633 if (unlikely(req_lim < 0))
1634 pr_err("req_lim = %d < 0\n", req_lim);
1635 srpt_handle_new_iu(ch, ioctx);
1636 } else {
1637 pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1638 ioctx, wc->status);
1639 }
1640 }
1641
1642 /*
1643 * This function must be called from the context in which RDMA completions are
1644 * processed because it accesses the wait list without protection against
1645 * access from other threads.
1646 */
1647 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1648 {
1649 struct srpt_recv_ioctx *recv_ioctx, *tmp;
1650
1651 WARN_ON_ONCE(ch->state == CH_CONNECTING);
1652
1653 if (list_empty(&ch->cmd_wait_list))
1654 return;
1655
1656 WARN_ON_ONCE(ch->processing_wait_list);
1657 ch->processing_wait_list = true;
1658 list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1659 wait_list) {
1660 if (!srpt_handle_new_iu(ch, recv_ioctx))
1661 break;
1662 }
1663 ch->processing_wait_list = false;
1664 }
1665
1666 /**
1667 * srpt_send_done - send completion callback
1668 * @cq: Completion queue.
1669 * @wc: Work completion.
1670 *
1671 * Note: Although this has not yet been observed during tests, at least in
1672 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1673 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1674 * value in each response is set to one, and it is possible that this response
1675 * makes the initiator send a new request before the send completion for that
1676 * response has been processed. This could e.g. happen if the call to
1677 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1678 * if IB retransmission causes generation of the send completion to be
1679 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1680 * are queued on cmd_wait_list. The code below processes these delayed
1681 * requests one at a time.
1682 */
1683 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1684 {
1685 struct srpt_rdma_ch *ch = cq->cq_context;
1686 struct srpt_send_ioctx *ioctx =
1687 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1688 enum srpt_command_state state;
1689
1690 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1691
1692 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1693 state != SRPT_STATE_MGMT_RSP_SENT);
1694
1695 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1696
1697 if (wc->status != IB_WC_SUCCESS)
1698 pr_info("sending response for ioctx 0x%p failed"
1699 " with status %d\n", ioctx, wc->status);
1700
1701 if (state != SRPT_STATE_DONE) {
1702 transport_generic_free_cmd(&ioctx->cmd, 0);
1703 } else {
1704 pr_err("IB completion has been received too late for"
1705 " wr_id = %u.\n", ioctx->ioctx.index);
1706 }
1707
1708 srpt_process_wait_list(ch);
1709 }
1710
1711 /**
1712 * srpt_create_ch_ib - create receive and send completion queues
1713 * @ch: SRPT RDMA channel.
1714 */
1715 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1716 {
1717 struct ib_qp_init_attr *qp_init;
1718 struct srpt_port *sport = ch->sport;
1719 struct srpt_device *sdev = sport->sdev;
1720 const struct ib_device_attr *attrs = &sdev->device->attrs;
1721 int sq_size = sport->port_attrib.srp_sq_size;
1722 int i, ret;
1723
1724 WARN_ON(ch->rq_size < 1);
1725
1726 ret = -ENOMEM;
1727 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1728 if (!qp_init)
1729 goto out;
1730
1731 retry:
1732 ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + sq_size,
1733 0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1734 if (IS_ERR(ch->cq)) {
1735 ret = PTR_ERR(ch->cq);
1736 pr_err("failed to create CQ cqe= %d ret= %d\n",
1737 ch->rq_size + sq_size, ret);
1738 goto out;
1739 }
1740
1741 qp_init->qp_context = (void *)ch;
1742 qp_init->event_handler
1743 = (void(*)(struct ib_event *, void*))srpt_qp_event;
1744 qp_init->send_cq = ch->cq;
1745 qp_init->recv_cq = ch->cq;
1746 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1747 qp_init->qp_type = IB_QPT_RC;
1748 /*
1749 * We divide up our send queue size into half SEND WRs to send the
1750 * completions, and half R/W contexts to actually do the RDMA
1751 * READ/WRITE transfers. Note that we need to allocate CQ slots for
1752 * both both, as RDMA contexts will also post completions for the
1753 * RDMA READ case.
1754 */
1755 qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1756 qp_init->cap.max_rdma_ctxs = sq_size / 2;
1757 qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE);
1758 qp_init->port_num = ch->sport->port;
1759 if (sdev->use_srq) {
1760 qp_init->srq = sdev->srq;
1761 } else {
1762 qp_init->cap.max_recv_wr = ch->rq_size;
1763 qp_init->cap.max_recv_sge = qp_init->cap.max_send_sge;
1764 }
1765
1766 if (ch->using_rdma_cm) {
1767 ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1768 ch->qp = ch->rdma_cm.cm_id->qp;
1769 } else {
1770 ch->qp = ib_create_qp(sdev->pd, qp_init);
1771 if (!IS_ERR(ch->qp)) {
1772 ret = srpt_init_ch_qp(ch, ch->qp);
1773 if (ret)
1774 ib_destroy_qp(ch->qp);
1775 } else {
1776 ret = PTR_ERR(ch->qp);
1777 }
1778 }
1779 if (ret) {
1780 bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1781
1782 if (retry) {
1783 pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1784 sq_size, ret);
1785 ib_free_cq(ch->cq);
1786 sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1787 goto retry;
1788 } else {
1789 pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1790 sq_size, ret);
1791 goto err_destroy_cq;
1792 }
1793 }
1794
1795 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1796
1797 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1798 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1799 qp_init->cap.max_send_wr, ch);
1800
1801 if (!sdev->use_srq)
1802 for (i = 0; i < ch->rq_size; i++)
1803 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1804
1805 out:
1806 kfree(qp_init);
1807 return ret;
1808
1809 err_destroy_cq:
1810 ch->qp = NULL;
1811 ib_free_cq(ch->cq);
1812 goto out;
1813 }
1814
1815 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1816 {
1817 ib_destroy_qp(ch->qp);
1818 ib_free_cq(ch->cq);
1819 }
1820
1821 /**
1822 * srpt_close_ch - close a RDMA channel
1823 * @ch: SRPT RDMA channel.
1824 *
1825 * Make sure all resources associated with the channel will be deallocated at
1826 * an appropriate time.
1827 *
1828 * Returns true if and only if the channel state has been modified into
1829 * CH_DRAINING.
1830 */
1831 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1832 {
1833 int ret;
1834
1835 if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1836 pr_debug("%s-%d: already closed\n", ch->sess_name,
1837 ch->qp->qp_num);
1838 return false;
1839 }
1840
1841 kref_get(&ch->kref);
1842
1843 ret = srpt_ch_qp_err(ch);
1844 if (ret < 0)
1845 pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1846 ch->sess_name, ch->qp->qp_num, ret);
1847
1848 ret = srpt_zerolength_write(ch);
1849 if (ret < 0) {
1850 pr_err("%s-%d: queuing zero-length write failed: %d\n",
1851 ch->sess_name, ch->qp->qp_num, ret);
1852 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1853 schedule_work(&ch->release_work);
1854 else
1855 WARN_ON_ONCE(true);
1856 }
1857
1858 kref_put(&ch->kref, srpt_free_ch);
1859
1860 return true;
1861 }
1862
1863 /*
1864 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1865 * reached the connected state, close it. If a channel is in the connected
1866 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1867 * the responsibility of the caller to ensure that this function is not
1868 * invoked concurrently with the code that accepts a connection. This means
1869 * that this function must either be invoked from inside a CM callback
1870 * function or that it must be invoked with the srpt_port.mutex held.
1871 */
1872 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1873 {
1874 int ret;
1875
1876 if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1877 return -ENOTCONN;
1878
1879 if (ch->using_rdma_cm) {
1880 ret = rdma_disconnect(ch->rdma_cm.cm_id);
1881 } else {
1882 ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1883 if (ret < 0)
1884 ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1885 }
1886
1887 if (ret < 0 && srpt_close_ch(ch))
1888 ret = 0;
1889
1890 return ret;
1891 }
1892
1893 static bool srpt_ch_closed(struct srpt_port *sport, struct srpt_rdma_ch *ch)
1894 {
1895 struct srpt_nexus *nexus;
1896 struct srpt_rdma_ch *ch2;
1897 bool res = true;
1898
1899 rcu_read_lock();
1900 list_for_each_entry(nexus, &sport->nexus_list, entry) {
1901 list_for_each_entry(ch2, &nexus->ch_list, list) {
1902 if (ch2 == ch) {
1903 res = false;
1904 goto done;
1905 }
1906 }
1907 }
1908 done:
1909 rcu_read_unlock();
1910
1911 return res;
1912 }
1913
1914 /* Send DREQ and wait for DREP. */
1915 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1916 {
1917 struct srpt_port *sport = ch->sport;
1918
1919 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1920 ch->state);
1921
1922 mutex_lock(&sport->mutex);
1923 srpt_disconnect_ch(ch);
1924 mutex_unlock(&sport->mutex);
1925
1926 while (wait_event_timeout(sport->ch_releaseQ, srpt_ch_closed(sport, ch),
1927 5 * HZ) == 0)
1928 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1929 ch->sess_name, ch->qp->qp_num, ch->state);
1930
1931 }
1932
1933 static void __srpt_close_all_ch(struct srpt_port *sport)
1934 {
1935 struct srpt_nexus *nexus;
1936 struct srpt_rdma_ch *ch;
1937
1938 lockdep_assert_held(&sport->mutex);
1939
1940 list_for_each_entry(nexus, &sport->nexus_list, entry) {
1941 list_for_each_entry(ch, &nexus->ch_list, list) {
1942 if (srpt_disconnect_ch(ch) >= 0)
1943 pr_info("Closing channel %s-%d because target %s_%d has been disabled\n",
1944 ch->sess_name, ch->qp->qp_num,
1945 sport->sdev->device->name, sport->port);
1946 srpt_close_ch(ch);
1947 }
1948 }
1949 }
1950
1951 /*
1952 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
1953 * it does not yet exist.
1954 */
1955 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
1956 const u8 i_port_id[16],
1957 const u8 t_port_id[16])
1958 {
1959 struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
1960
1961 for (;;) {
1962 mutex_lock(&sport->mutex);
1963 list_for_each_entry(n, &sport->nexus_list, entry) {
1964 if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
1965 memcmp(n->t_port_id, t_port_id, 16) == 0) {
1966 nexus = n;
1967 break;
1968 }
1969 }
1970 if (!nexus && tmp_nexus) {
1971 list_add_tail_rcu(&tmp_nexus->entry,
1972 &sport->nexus_list);
1973 swap(nexus, tmp_nexus);
1974 }
1975 mutex_unlock(&sport->mutex);
1976
1977 if (nexus)
1978 break;
1979 tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
1980 if (!tmp_nexus) {
1981 nexus = ERR_PTR(-ENOMEM);
1982 break;
1983 }
1984 INIT_LIST_HEAD(&tmp_nexus->ch_list);
1985 memcpy(tmp_nexus->i_port_id, i_port_id, 16);
1986 memcpy(tmp_nexus->t_port_id, t_port_id, 16);
1987 }
1988
1989 kfree(tmp_nexus);
1990
1991 return nexus;
1992 }
1993
1994 static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
1995 __must_hold(&sport->mutex)
1996 {
1997 lockdep_assert_held(&sport->mutex);
1998
1999 if (sport->enabled == enabled)
2000 return;
2001 sport->enabled = enabled;
2002 if (!enabled)
2003 __srpt_close_all_ch(sport);
2004 }
2005
2006 static void srpt_free_ch(struct kref *kref)
2007 {
2008 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2009
2010 kfree_rcu(ch, rcu);
2011 }
2012
2013 static void srpt_release_channel_work(struct work_struct *w)
2014 {
2015 struct srpt_rdma_ch *ch;
2016 struct srpt_device *sdev;
2017 struct srpt_port *sport;
2018 struct se_session *se_sess;
2019
2020 ch = container_of(w, struct srpt_rdma_ch, release_work);
2021 pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2022
2023 sdev = ch->sport->sdev;
2024 BUG_ON(!sdev);
2025
2026 se_sess = ch->sess;
2027 BUG_ON(!se_sess);
2028
2029 target_sess_cmd_list_set_waiting(se_sess);
2030 target_wait_for_sess_cmds(se_sess);
2031
2032 transport_deregister_session_configfs(se_sess);
2033 transport_deregister_session(se_sess);
2034 ch->sess = NULL;
2035
2036 if (ch->using_rdma_cm)
2037 rdma_destroy_id(ch->rdma_cm.cm_id);
2038 else
2039 ib_destroy_cm_id(ch->ib_cm.cm_id);
2040
2041 srpt_destroy_ch_ib(ch);
2042
2043 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2044 ch->sport->sdev, ch->rq_size,
2045 ch->max_rsp_size, DMA_TO_DEVICE);
2046
2047 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2048 sdev, ch->rq_size,
2049 srp_max_req_size, DMA_FROM_DEVICE);
2050
2051 sport = ch->sport;
2052 mutex_lock(&sport->mutex);
2053 list_del_rcu(&ch->list);
2054 mutex_unlock(&sport->mutex);
2055
2056 wake_up(&sport->ch_releaseQ);
2057
2058 kref_put(&ch->kref, srpt_free_ch);
2059 }
2060
2061 /**
2062 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2063 * @sdev: HCA through which the login request was received.
2064 * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2065 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2066 * @port_num: Port through which the REQ message was received.
2067 * @pkey: P_Key of the incoming connection.
2068 * @req: SRP login request.
2069 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2070 * the login request.
2071 *
2072 * Ownership of the cm_id is transferred to the target session if this
2073 * function returns zero. Otherwise the caller remains the owner of cm_id.
2074 */
2075 static int srpt_cm_req_recv(struct srpt_device *const sdev,
2076 struct ib_cm_id *ib_cm_id,
2077 struct rdma_cm_id *rdma_cm_id,
2078 u8 port_num, __be16 pkey,
2079 const struct srp_login_req *req,
2080 const char *src_addr)
2081 {
2082 struct srpt_port *sport = &sdev->port[port_num - 1];
2083 struct srpt_nexus *nexus;
2084 struct srp_login_rsp *rsp = NULL;
2085 struct srp_login_rej *rej = NULL;
2086 union {
2087 struct rdma_conn_param rdma_cm;
2088 struct ib_cm_rep_param ib_cm;
2089 } *rep_param = NULL;
2090 struct srpt_rdma_ch *ch;
2091 char i_port_id[36];
2092 u32 it_iu_len;
2093 int i, ret;
2094
2095 WARN_ON_ONCE(irqs_disabled());
2096
2097 if (WARN_ON(!sdev || !req))
2098 return -EINVAL;
2099
2100 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2101
2102 pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2103 req->initiator_port_id, req->target_port_id, it_iu_len,
2104 port_num, &sport->gid, be16_to_cpu(pkey));
2105
2106 nexus = srpt_get_nexus(sport, req->initiator_port_id,
2107 req->target_port_id);
2108 if (IS_ERR(nexus)) {
2109 ret = PTR_ERR(nexus);
2110 goto out;
2111 }
2112
2113 ret = -ENOMEM;
2114 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2115 rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2116 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2117 if (!rsp || !rej || !rep_param)
2118 goto out;
2119
2120 ret = -EINVAL;
2121 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2122 rej->reason = cpu_to_be32(
2123 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2124 pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2125 it_iu_len, 64, srp_max_req_size);
2126 goto reject;
2127 }
2128
2129 if (!sport->enabled) {
2130 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2131 pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2132 sport->sdev->device->name, port_num);
2133 goto reject;
2134 }
2135
2136 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2137 || *(__be64 *)(req->target_port_id + 8) !=
2138 cpu_to_be64(srpt_service_guid)) {
2139 rej->reason = cpu_to_be32(
2140 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2141 pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2142 goto reject;
2143 }
2144
2145 ret = -ENOMEM;
2146 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2147 if (!ch) {
2148 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2149 pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2150 goto reject;
2151 }
2152
2153 kref_init(&ch->kref);
2154 ch->pkey = be16_to_cpu(pkey);
2155 ch->nexus = nexus;
2156 ch->zw_cqe.done = srpt_zerolength_write_done;
2157 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2158 ch->sport = sport;
2159 if (ib_cm_id) {
2160 ch->ib_cm.cm_id = ib_cm_id;
2161 ib_cm_id->context = ch;
2162 } else {
2163 ch->using_rdma_cm = true;
2164 ch->rdma_cm.cm_id = rdma_cm_id;
2165 rdma_cm_id->context = ch;
2166 }
2167 /*
2168 * ch->rq_size should be at least as large as the initiator queue
2169 * depth to avoid that the initiator driver has to report QUEUE_FULL
2170 * to the SCSI mid-layer.
2171 */
2172 ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2173 spin_lock_init(&ch->spinlock);
2174 ch->state = CH_CONNECTING;
2175 INIT_LIST_HEAD(&ch->cmd_wait_list);
2176 ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2177
2178 ch->ioctx_ring = (struct srpt_send_ioctx **)
2179 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2180 sizeof(*ch->ioctx_ring[0]),
2181 ch->max_rsp_size, DMA_TO_DEVICE);
2182 if (!ch->ioctx_ring) {
2183 pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2184 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2185 goto free_ch;
2186 }
2187
2188 INIT_LIST_HEAD(&ch->free_list);
2189 for (i = 0; i < ch->rq_size; i++) {
2190 ch->ioctx_ring[i]->ch = ch;
2191 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2192 }
2193 if (!sdev->use_srq) {
2194 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2195 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2196 sizeof(*ch->ioctx_recv_ring[0]),
2197 srp_max_req_size,
2198 DMA_FROM_DEVICE);
2199 if (!ch->ioctx_recv_ring) {
2200 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2201 rej->reason =
2202 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2203 goto free_ring;
2204 }
2205 for (i = 0; i < ch->rq_size; i++)
2206 INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2207 }
2208
2209 ret = srpt_create_ch_ib(ch);
2210 if (ret) {
2211 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2212 pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2213 goto free_recv_ring;
2214 }
2215
2216 strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2217 snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2218 be64_to_cpu(*(__be64 *)nexus->i_port_id),
2219 be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2220
2221 pr_debug("registering session %s\n", ch->sess_name);
2222
2223 if (sport->port_guid_tpg.se_tpg_wwn)
2224 ch->sess = target_alloc_session(&sport->port_guid_tpg, 0, 0,
2225 TARGET_PROT_NORMAL,
2226 ch->sess_name, ch, NULL);
2227 if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
2228 ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2229 TARGET_PROT_NORMAL, i_port_id, ch,
2230 NULL);
2231 /* Retry without leading "0x" */
2232 if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
2233 ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2234 TARGET_PROT_NORMAL,
2235 i_port_id + 2, ch, NULL);
2236 if (IS_ERR_OR_NULL(ch->sess)) {
2237 ret = PTR_ERR(ch->sess);
2238 pr_info("Rejected login for initiator %s: ret = %d.\n",
2239 ch->sess_name, ret);
2240 rej->reason = cpu_to_be32(ret == -ENOMEM ?
2241 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2242 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2243 goto reject;
2244 }
2245
2246 mutex_lock(&sport->mutex);
2247
2248 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2249 struct srpt_rdma_ch *ch2;
2250
2251 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2252
2253 list_for_each_entry(ch2, &nexus->ch_list, list) {
2254 if (srpt_disconnect_ch(ch2) < 0)
2255 continue;
2256 pr_info("Relogin - closed existing channel %s\n",
2257 ch2->sess_name);
2258 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2259 }
2260 } else {
2261 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2262 }
2263
2264 list_add_tail_rcu(&ch->list, &nexus->ch_list);
2265
2266 if (!sport->enabled) {
2267 rej->reason = cpu_to_be32(
2268 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2269 pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2270 sdev->device->name, port_num);
2271 mutex_unlock(&sport->mutex);
2272 goto reject;
2273 }
2274
2275 mutex_unlock(&sport->mutex);
2276
2277 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2278 if (ret) {
2279 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2280 pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2281 ret);
2282 goto destroy_ib;
2283 }
2284
2285 pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2286 ch->sess_name, ch);
2287
2288 /* create srp_login_response */
2289 rsp->opcode = SRP_LOGIN_RSP;
2290 rsp->tag = req->tag;
2291 rsp->max_it_iu_len = req->req_it_iu_len;
2292 rsp->max_ti_iu_len = req->req_it_iu_len;
2293 ch->max_ti_iu_len = it_iu_len;
2294 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2295 SRP_BUF_FORMAT_INDIRECT);
2296 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2297 atomic_set(&ch->req_lim, ch->rq_size);
2298 atomic_set(&ch->req_lim_delta, 0);
2299
2300 /* create cm reply */
2301 if (ch->using_rdma_cm) {
2302 rep_param->rdma_cm.private_data = (void *)rsp;
2303 rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2304 rep_param->rdma_cm.rnr_retry_count = 7;
2305 rep_param->rdma_cm.flow_control = 1;
2306 rep_param->rdma_cm.responder_resources = 4;
2307 rep_param->rdma_cm.initiator_depth = 4;
2308 } else {
2309 rep_param->ib_cm.qp_num = ch->qp->qp_num;
2310 rep_param->ib_cm.private_data = (void *)rsp;
2311 rep_param->ib_cm.private_data_len = sizeof(*rsp);
2312 rep_param->ib_cm.rnr_retry_count = 7;
2313 rep_param->ib_cm.flow_control = 1;
2314 rep_param->ib_cm.failover_accepted = 0;
2315 rep_param->ib_cm.srq = 1;
2316 rep_param->ib_cm.responder_resources = 4;
2317 rep_param->ib_cm.initiator_depth = 4;
2318 }
2319
2320 /*
2321 * Hold the sport mutex while accepting a connection to avoid that
2322 * srpt_disconnect_ch() is invoked concurrently with this code.
2323 */
2324 mutex_lock(&sport->mutex);
2325 if (sport->enabled && ch->state == CH_CONNECTING) {
2326 if (ch->using_rdma_cm)
2327 ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2328 else
2329 ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2330 } else {
2331 ret = -EINVAL;
2332 }
2333 mutex_unlock(&sport->mutex);
2334
2335 switch (ret) {
2336 case 0:
2337 break;
2338 case -EINVAL:
2339 goto reject;
2340 default:
2341 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2342 pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2343 ret);
2344 goto reject;
2345 }
2346
2347 goto out;
2348
2349 destroy_ib:
2350 srpt_destroy_ch_ib(ch);
2351
2352 free_recv_ring:
2353 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2354 ch->sport->sdev, ch->rq_size,
2355 srp_max_req_size, DMA_FROM_DEVICE);
2356
2357 free_ring:
2358 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2359 ch->sport->sdev, ch->rq_size,
2360 ch->max_rsp_size, DMA_TO_DEVICE);
2361 free_ch:
2362 if (ib_cm_id)
2363 ib_cm_id->context = NULL;
2364 kfree(ch);
2365 ch = NULL;
2366
2367 WARN_ON_ONCE(ret == 0);
2368
2369 reject:
2370 pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2371 rej->opcode = SRP_LOGIN_REJ;
2372 rej->tag = req->tag;
2373 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2374 SRP_BUF_FORMAT_INDIRECT);
2375
2376 if (rdma_cm_id)
2377 rdma_reject(rdma_cm_id, rej, sizeof(*rej));
2378 else
2379 ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2380 rej, sizeof(*rej));
2381
2382 out:
2383 kfree(rep_param);
2384 kfree(rsp);
2385 kfree(rej);
2386
2387 return ret;
2388 }
2389
2390 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2391 struct ib_cm_req_event_param *param,
2392 void *private_data)
2393 {
2394 char sguid[40];
2395
2396 srpt_format_guid(sguid, sizeof(sguid),
2397 &param->primary_path->dgid.global.interface_id);
2398
2399 return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2400 param->primary_path->pkey,
2401 private_data, sguid);
2402 }
2403
2404 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2405 struct rdma_cm_event *event)
2406 {
2407 struct srpt_device *sdev;
2408 struct srp_login_req req;
2409 const struct srp_login_req_rdma *req_rdma;
2410 char src_addr[40];
2411
2412 sdev = ib_get_client_data(cm_id->device, &srpt_client);
2413 if (!sdev)
2414 return -ECONNREFUSED;
2415
2416 if (event->param.conn.private_data_len < sizeof(*req_rdma))
2417 return -EINVAL;
2418
2419 /* Transform srp_login_req_rdma into srp_login_req. */
2420 req_rdma = event->param.conn.private_data;
2421 memset(&req, 0, sizeof(req));
2422 req.opcode = req_rdma->opcode;
2423 req.tag = req_rdma->tag;
2424 req.req_it_iu_len = req_rdma->req_it_iu_len;
2425 req.req_buf_fmt = req_rdma->req_buf_fmt;
2426 req.req_flags = req_rdma->req_flags;
2427 memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2428 memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2429
2430 snprintf(src_addr, sizeof(src_addr), "%pIS",
2431 &cm_id->route.addr.src_addr);
2432
2433 return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2434 cm_id->route.path_rec->pkey, &req, src_addr);
2435 }
2436
2437 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2438 enum ib_cm_rej_reason reason,
2439 const u8 *private_data,
2440 u8 private_data_len)
2441 {
2442 char *priv = NULL;
2443 int i;
2444
2445 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2446 GFP_KERNEL))) {
2447 for (i = 0; i < private_data_len; i++)
2448 sprintf(priv + 3 * i, " %02x", private_data[i]);
2449 }
2450 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2451 ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2452 "; private data" : "", priv ? priv : " (?)");
2453 kfree(priv);
2454 }
2455
2456 /**
2457 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2458 * @ch: SRPT RDMA channel.
2459 *
2460 * An RTU (ready to use) message indicates that the connection has been
2461 * established and that the recipient may begin transmitting.
2462 */
2463 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2464 {
2465 int ret;
2466
2467 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2468 if (ret < 0) {
2469 pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2470 ch->qp->qp_num);
2471 srpt_close_ch(ch);
2472 return;
2473 }
2474
2475 /*
2476 * Note: calling srpt_close_ch() if the transition to the LIVE state
2477 * fails is not necessary since that means that that function has
2478 * already been invoked from another thread.
2479 */
2480 if (!srpt_set_ch_state(ch, CH_LIVE)) {
2481 pr_err("%s-%d: channel transition to LIVE state failed\n",
2482 ch->sess_name, ch->qp->qp_num);
2483 return;
2484 }
2485
2486 /* Trigger wait list processing. */
2487 ret = srpt_zerolength_write(ch);
2488 WARN_ONCE(ret < 0, "%d\n", ret);
2489 }
2490
2491 /**
2492 * srpt_cm_handler - IB connection manager callback function
2493 * @cm_id: IB/CM connection identifier.
2494 * @event: IB/CM event.
2495 *
2496 * A non-zero return value will cause the caller destroy the CM ID.
2497 *
2498 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2499 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2500 * a non-zero value in any other case will trigger a race with the
2501 * ib_destroy_cm_id() call in srpt_release_channel().
2502 */
2503 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2504 {
2505 struct srpt_rdma_ch *ch = cm_id->context;
2506 int ret;
2507
2508 ret = 0;
2509 switch (event->event) {
2510 case IB_CM_REQ_RECEIVED:
2511 ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2512 event->private_data);
2513 break;
2514 case IB_CM_REJ_RECEIVED:
2515 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2516 event->private_data,
2517 IB_CM_REJ_PRIVATE_DATA_SIZE);
2518 break;
2519 case IB_CM_RTU_RECEIVED:
2520 case IB_CM_USER_ESTABLISHED:
2521 srpt_cm_rtu_recv(ch);
2522 break;
2523 case IB_CM_DREQ_RECEIVED:
2524 srpt_disconnect_ch(ch);
2525 break;
2526 case IB_CM_DREP_RECEIVED:
2527 pr_info("Received CM DREP message for ch %s-%d.\n",
2528 ch->sess_name, ch->qp->qp_num);
2529 srpt_close_ch(ch);
2530 break;
2531 case IB_CM_TIMEWAIT_EXIT:
2532 pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2533 ch->sess_name, ch->qp->qp_num);
2534 srpt_close_ch(ch);
2535 break;
2536 case IB_CM_REP_ERROR:
2537 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2538 ch->qp->qp_num);
2539 break;
2540 case IB_CM_DREQ_ERROR:
2541 pr_info("Received CM DREQ ERROR event.\n");
2542 break;
2543 case IB_CM_MRA_RECEIVED:
2544 pr_info("Received CM MRA event\n");
2545 break;
2546 default:
2547 pr_err("received unrecognized CM event %d\n", event->event);
2548 break;
2549 }
2550
2551 return ret;
2552 }
2553
2554 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2555 struct rdma_cm_event *event)
2556 {
2557 struct srpt_rdma_ch *ch = cm_id->context;
2558 int ret = 0;
2559
2560 switch (event->event) {
2561 case RDMA_CM_EVENT_CONNECT_REQUEST:
2562 ret = srpt_rdma_cm_req_recv(cm_id, event);
2563 break;
2564 case RDMA_CM_EVENT_REJECTED:
2565 srpt_cm_rej_recv(ch, event->status,
2566 event->param.conn.private_data,
2567 event->param.conn.private_data_len);
2568 break;
2569 case RDMA_CM_EVENT_ESTABLISHED:
2570 srpt_cm_rtu_recv(ch);
2571 break;
2572 case RDMA_CM_EVENT_DISCONNECTED:
2573 if (ch->state < CH_DISCONNECTING)
2574 srpt_disconnect_ch(ch);
2575 else
2576 srpt_close_ch(ch);
2577 break;
2578 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2579 srpt_close_ch(ch);
2580 break;
2581 case RDMA_CM_EVENT_UNREACHABLE:
2582 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2583 ch->qp->qp_num);
2584 break;
2585 case RDMA_CM_EVENT_DEVICE_REMOVAL:
2586 case RDMA_CM_EVENT_ADDR_CHANGE:
2587 break;
2588 default:
2589 pr_err("received unrecognized RDMA CM event %d\n",
2590 event->event);
2591 break;
2592 }
2593
2594 return ret;
2595 }
2596
2597 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2598 {
2599 struct srpt_send_ioctx *ioctx;
2600
2601 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2602 return ioctx->state == SRPT_STATE_NEED_DATA;
2603 }
2604
2605 /*
2606 * srpt_write_pending - Start data transfer from initiator to target (write).
2607 */
2608 static int srpt_write_pending(struct se_cmd *se_cmd)
2609 {
2610 struct srpt_send_ioctx *ioctx =
2611 container_of(se_cmd, struct srpt_send_ioctx, cmd);
2612 struct srpt_rdma_ch *ch = ioctx->ch;
2613 struct ib_send_wr *first_wr = NULL, *bad_wr;
2614 struct ib_cqe *cqe = &ioctx->rdma_cqe;
2615 enum srpt_command_state new_state;
2616 int ret, i;
2617
2618 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2619 WARN_ON(new_state == SRPT_STATE_DONE);
2620
2621 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2622 pr_warn("%s: IB send queue full (needed %d)\n",
2623 __func__, ioctx->n_rdma);
2624 ret = -ENOMEM;
2625 goto out_undo;
2626 }
2627
2628 cqe->done = srpt_rdma_read_done;
2629 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2630 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2631
2632 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2633 cqe, first_wr);
2634 cqe = NULL;
2635 }
2636
2637 ret = ib_post_send(ch->qp, first_wr, &bad_wr);
2638 if (ret) {
2639 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2640 __func__, ret, ioctx->n_rdma,
2641 atomic_read(&ch->sq_wr_avail));
2642 goto out_undo;
2643 }
2644
2645 return 0;
2646 out_undo:
2647 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2648 return ret;
2649 }
2650
2651 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2652 {
2653 switch (tcm_mgmt_status) {
2654 case TMR_FUNCTION_COMPLETE:
2655 return SRP_TSK_MGMT_SUCCESS;
2656 case TMR_FUNCTION_REJECTED:
2657 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2658 }
2659 return SRP_TSK_MGMT_FAILED;
2660 }
2661
2662 /**
2663 * srpt_queue_response - transmit the response to a SCSI command
2664 * @cmd: SCSI target command.
2665 *
2666 * Callback function called by the TCM core. Must not block since it can be
2667 * invoked on the context of the IB completion handler.
2668 */
2669 static void srpt_queue_response(struct se_cmd *cmd)
2670 {
2671 struct srpt_send_ioctx *ioctx =
2672 container_of(cmd, struct srpt_send_ioctx, cmd);
2673 struct srpt_rdma_ch *ch = ioctx->ch;
2674 struct srpt_device *sdev = ch->sport->sdev;
2675 struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr;
2676 struct ib_sge sge;
2677 enum srpt_command_state state;
2678 int resp_len, ret, i;
2679 u8 srp_tm_status;
2680
2681 BUG_ON(!ch);
2682
2683 state = ioctx->state;
2684 switch (state) {
2685 case SRPT_STATE_NEW:
2686 case SRPT_STATE_DATA_IN:
2687 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2688 break;
2689 case SRPT_STATE_MGMT:
2690 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2691 break;
2692 default:
2693 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2694 ch, ioctx->ioctx.index, ioctx->state);
2695 break;
2696 }
2697
2698 if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)))
2699 return;
2700
2701 /* For read commands, transfer the data to the initiator. */
2702 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2703 ioctx->cmd.data_length &&
2704 !ioctx->queue_status_only) {
2705 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2706 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2707
2708 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2709 ch->sport->port, NULL, first_wr);
2710 }
2711 }
2712
2713 if (state != SRPT_STATE_MGMT)
2714 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2715 cmd->scsi_status);
2716 else {
2717 srp_tm_status
2718 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2719 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2720 ioctx->cmd.tag);
2721 }
2722
2723 atomic_inc(&ch->req_lim);
2724
2725 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2726 &ch->sq_wr_avail) < 0)) {
2727 pr_warn("%s: IB send queue full (needed %d)\n",
2728 __func__, ioctx->n_rdma);
2729 ret = -ENOMEM;
2730 goto out;
2731 }
2732
2733 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2734 DMA_TO_DEVICE);
2735
2736 sge.addr = ioctx->ioctx.dma;
2737 sge.length = resp_len;
2738 sge.lkey = sdev->lkey;
2739
2740 ioctx->ioctx.cqe.done = srpt_send_done;
2741 send_wr.next = NULL;
2742 send_wr.wr_cqe = &ioctx->ioctx.cqe;
2743 send_wr.sg_list = &sge;
2744 send_wr.num_sge = 1;
2745 send_wr.opcode = IB_WR_SEND;
2746 send_wr.send_flags = IB_SEND_SIGNALED;
2747
2748 ret = ib_post_send(ch->qp, first_wr, &bad_wr);
2749 if (ret < 0) {
2750 pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2751 __func__, ioctx->cmd.tag, ret);
2752 goto out;
2753 }
2754
2755 return;
2756
2757 out:
2758 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2759 atomic_dec(&ch->req_lim);
2760 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2761 target_put_sess_cmd(&ioctx->cmd);
2762 }
2763
2764 static int srpt_queue_data_in(struct se_cmd *cmd)
2765 {
2766 srpt_queue_response(cmd);
2767 return 0;
2768 }
2769
2770 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2771 {
2772 srpt_queue_response(cmd);
2773 }
2774
2775 static void srpt_aborted_task(struct se_cmd *cmd)
2776 {
2777 }
2778
2779 static int srpt_queue_status(struct se_cmd *cmd)
2780 {
2781 struct srpt_send_ioctx *ioctx;
2782
2783 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2784 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2785 if (cmd->se_cmd_flags &
2786 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2787 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2788 ioctx->queue_status_only = true;
2789 srpt_queue_response(cmd);
2790 return 0;
2791 }
2792
2793 static void srpt_refresh_port_work(struct work_struct *work)
2794 {
2795 struct srpt_port *sport = container_of(work, struct srpt_port, work);
2796
2797 srpt_refresh_port(sport);
2798 }
2799
2800 static bool srpt_ch_list_empty(struct srpt_port *sport)
2801 {
2802 struct srpt_nexus *nexus;
2803 bool res = true;
2804
2805 rcu_read_lock();
2806 list_for_each_entry(nexus, &sport->nexus_list, entry)
2807 if (!list_empty(&nexus->ch_list))
2808 res = false;
2809 rcu_read_unlock();
2810
2811 return res;
2812 }
2813
2814 /**
2815 * srpt_release_sport - disable login and wait for associated channels
2816 * @sport: SRPT HCA port.
2817 */
2818 static int srpt_release_sport(struct srpt_port *sport)
2819 {
2820 struct srpt_nexus *nexus, *next_n;
2821 struct srpt_rdma_ch *ch;
2822
2823 WARN_ON_ONCE(irqs_disabled());
2824
2825 mutex_lock(&sport->mutex);
2826 srpt_set_enabled(sport, false);
2827 mutex_unlock(&sport->mutex);
2828
2829 while (wait_event_timeout(sport->ch_releaseQ,
2830 srpt_ch_list_empty(sport), 5 * HZ) <= 0) {
2831 pr_info("%s_%d: waiting for session unregistration ...\n",
2832 sport->sdev->device->name, sport->port);
2833 rcu_read_lock();
2834 list_for_each_entry(nexus, &sport->nexus_list, entry) {
2835 list_for_each_entry(ch, &nexus->ch_list, list) {
2836 pr_info("%s-%d: state %s\n",
2837 ch->sess_name, ch->qp->qp_num,
2838 get_ch_state_name(ch->state));
2839 }
2840 }
2841 rcu_read_unlock();
2842 }
2843
2844 mutex_lock(&sport->mutex);
2845 list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2846 list_del(&nexus->entry);
2847 kfree_rcu(nexus, rcu);
2848 }
2849 mutex_unlock(&sport->mutex);
2850
2851 return 0;
2852 }
2853
2854 static struct se_wwn *__srpt_lookup_wwn(const char *name)
2855 {
2856 struct ib_device *dev;
2857 struct srpt_device *sdev;
2858 struct srpt_port *sport;
2859 int i;
2860
2861 list_for_each_entry(sdev, &srpt_dev_list, list) {
2862 dev = sdev->device;
2863 if (!dev)
2864 continue;
2865
2866 for (i = 0; i < dev->phys_port_cnt; i++) {
2867 sport = &sdev->port[i];
2868
2869 if (strcmp(sport->port_guid, name) == 0)
2870 return &sport->port_guid_wwn;
2871 if (strcmp(sport->port_gid, name) == 0)
2872 return &sport->port_gid_wwn;
2873 }
2874 }
2875
2876 return NULL;
2877 }
2878
2879 static struct se_wwn *srpt_lookup_wwn(const char *name)
2880 {
2881 struct se_wwn *wwn;
2882
2883 spin_lock(&srpt_dev_lock);
2884 wwn = __srpt_lookup_wwn(name);
2885 spin_unlock(&srpt_dev_lock);
2886
2887 return wwn;
2888 }
2889
2890 static void srpt_free_srq(struct srpt_device *sdev)
2891 {
2892 if (!sdev->srq)
2893 return;
2894
2895 ib_destroy_srq(sdev->srq);
2896 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
2897 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
2898 sdev->srq = NULL;
2899 }
2900
2901 static int srpt_alloc_srq(struct srpt_device *sdev)
2902 {
2903 struct ib_srq_init_attr srq_attr = {
2904 .event_handler = srpt_srq_event,
2905 .srq_context = (void *)sdev,
2906 .attr.max_wr = sdev->srq_size,
2907 .attr.max_sge = 1,
2908 .srq_type = IB_SRQT_BASIC,
2909 };
2910 struct ib_device *device = sdev->device;
2911 struct ib_srq *srq;
2912 int i;
2913
2914 WARN_ON_ONCE(sdev->srq);
2915 srq = ib_create_srq(sdev->pd, &srq_attr);
2916 if (IS_ERR(srq)) {
2917 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
2918 return PTR_ERR(srq);
2919 }
2920
2921 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
2922 sdev->device->attrs.max_srq_wr, device->name);
2923
2924 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
2925 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
2926 sizeof(*sdev->ioctx_ring[0]),
2927 srp_max_req_size, DMA_FROM_DEVICE);
2928 if (!sdev->ioctx_ring) {
2929 ib_destroy_srq(srq);
2930 return -ENOMEM;
2931 }
2932
2933 sdev->use_srq = true;
2934 sdev->srq = srq;
2935
2936 for (i = 0; i < sdev->srq_size; ++i) {
2937 INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
2938 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
2939 }
2940
2941 return 0;
2942 }
2943
2944 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
2945 {
2946 struct ib_device *device = sdev->device;
2947 int ret = 0;
2948
2949 if (!use_srq) {
2950 srpt_free_srq(sdev);
2951 sdev->use_srq = false;
2952 } else if (use_srq && !sdev->srq) {
2953 ret = srpt_alloc_srq(sdev);
2954 }
2955 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, device->name,
2956 sdev->use_srq, ret);
2957 return ret;
2958 }
2959
2960 /**
2961 * srpt_add_one - InfiniBand device addition callback function
2962 * @device: Describes a HCA.
2963 */
2964 static void srpt_add_one(struct ib_device *device)
2965 {
2966 struct srpt_device *sdev;
2967 struct srpt_port *sport;
2968 int i, ret;
2969
2970 pr_debug("device = %p\n", device);
2971
2972 sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2973 if (!sdev)
2974 goto err;
2975
2976 sdev->device = device;
2977 mutex_init(&sdev->sdev_mutex);
2978
2979 sdev->pd = ib_alloc_pd(device, 0);
2980 if (IS_ERR(sdev->pd))
2981 goto free_dev;
2982
2983 sdev->lkey = sdev->pd->local_dma_lkey;
2984
2985 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2986
2987 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
2988
2989 if (!srpt_service_guid)
2990 srpt_service_guid = be64_to_cpu(device->node_guid);
2991
2992 if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
2993 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
2994 if (IS_ERR(sdev->cm_id)) {
2995 pr_info("ib_create_cm_id() failed: %ld\n",
2996 PTR_ERR(sdev->cm_id));
2997 sdev->cm_id = NULL;
2998 if (!rdma_cm_id)
2999 goto err_ring;
3000 }
3001
3002 /* print out target login information */
3003 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3004 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3005 srpt_service_guid, srpt_service_guid);
3006
3007 /*
3008 * We do not have a consistent service_id (ie. also id_ext of target_id)
3009 * to identify this target. We currently use the guid of the first HCA
3010 * in the system as service_id; therefore, the target_id will change
3011 * if this HCA is gone bad and replaced by different HCA
3012 */
3013 ret = sdev->cm_id ?
3014 ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) :
3015 0;
3016 if (ret < 0) {
3017 pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3018 sdev->cm_id->state);
3019 goto err_cm;
3020 }
3021
3022 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3023 srpt_event_handler);
3024 ib_register_event_handler(&sdev->event_handler);
3025
3026 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3027
3028 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3029 sport = &sdev->port[i - 1];
3030 INIT_LIST_HEAD(&sport->nexus_list);
3031 init_waitqueue_head(&sport->ch_releaseQ);
3032 mutex_init(&sport->mutex);
3033 sport->sdev = sdev;
3034 sport->port = i;
3035 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3036 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3037 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3038 sport->port_attrib.use_srq = false;
3039 INIT_WORK(&sport->work, srpt_refresh_port_work);
3040
3041 if (srpt_refresh_port(sport)) {
3042 pr_err("MAD registration failed for %s-%d.\n",
3043 sdev->device->name, i);
3044 goto err_event;
3045 }
3046 }
3047
3048 spin_lock(&srpt_dev_lock);
3049 list_add_tail(&sdev->list, &srpt_dev_list);
3050 spin_unlock(&srpt_dev_lock);
3051
3052 out:
3053 ib_set_client_data(device, &srpt_client, sdev);
3054 pr_debug("added %s.\n", device->name);
3055 return;
3056
3057 err_event:
3058 ib_unregister_event_handler(&sdev->event_handler);
3059 err_cm:
3060 if (sdev->cm_id)
3061 ib_destroy_cm_id(sdev->cm_id);
3062 err_ring:
3063 srpt_free_srq(sdev);
3064 ib_dealloc_pd(sdev->pd);
3065 free_dev:
3066 kfree(sdev);
3067 err:
3068 sdev = NULL;
3069 pr_info("%s(%s) failed.\n", __func__, device->name);
3070 goto out;
3071 }
3072
3073 /**
3074 * srpt_remove_one - InfiniBand device removal callback function
3075 * @device: Describes a HCA.
3076 * @client_data: The value passed as the third argument to ib_set_client_data().
3077 */
3078 static void srpt_remove_one(struct ib_device *device, void *client_data)
3079 {
3080 struct srpt_device *sdev = client_data;
3081 int i;
3082
3083 if (!sdev) {
3084 pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3085 return;
3086 }
3087
3088 srpt_unregister_mad_agent(sdev);
3089
3090 ib_unregister_event_handler(&sdev->event_handler);
3091
3092 /* Cancel any work queued by the just unregistered IB event handler. */
3093 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3094 cancel_work_sync(&sdev->port[i].work);
3095
3096 if (sdev->cm_id)
3097 ib_destroy_cm_id(sdev->cm_id);
3098
3099 ib_set_client_data(device, &srpt_client, NULL);
3100
3101 /*
3102 * Unregistering a target must happen after destroying sdev->cm_id
3103 * such that no new SRP_LOGIN_REQ information units can arrive while
3104 * destroying the target.
3105 */
3106 spin_lock(&srpt_dev_lock);
3107 list_del(&sdev->list);
3108 spin_unlock(&srpt_dev_lock);
3109
3110 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3111 srpt_release_sport(&sdev->port[i]);
3112
3113 srpt_free_srq(sdev);
3114
3115 ib_dealloc_pd(sdev->pd);
3116
3117 kfree(sdev);
3118 }
3119
3120 static struct ib_client srpt_client = {
3121 .name = DRV_NAME,
3122 .add = srpt_add_one,
3123 .remove = srpt_remove_one
3124 };
3125
3126 static int srpt_check_true(struct se_portal_group *se_tpg)
3127 {
3128 return 1;
3129 }
3130
3131 static int srpt_check_false(struct se_portal_group *se_tpg)
3132 {
3133 return 0;
3134 }
3135
3136 static char *srpt_get_fabric_name(void)
3137 {
3138 return "srpt";
3139 }
3140
3141 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3142 {
3143 return tpg->se_tpg_wwn->priv;
3144 }
3145
3146 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3147 {
3148 struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3149
3150 WARN_ON_ONCE(tpg != &sport->port_guid_tpg &&
3151 tpg != &sport->port_gid_tpg);
3152 return tpg == &sport->port_guid_tpg ? sport->port_guid :
3153 sport->port_gid;
3154 }
3155
3156 static u16 srpt_get_tag(struct se_portal_group *tpg)
3157 {
3158 return 1;
3159 }
3160
3161 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3162 {
3163 return 1;
3164 }
3165
3166 static void srpt_release_cmd(struct se_cmd *se_cmd)
3167 {
3168 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3169 struct srpt_send_ioctx, cmd);
3170 struct srpt_rdma_ch *ch = ioctx->ch;
3171 unsigned long flags;
3172
3173 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3174 !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3175
3176 if (ioctx->n_rw_ctx) {
3177 srpt_free_rw_ctxs(ch, ioctx);
3178 ioctx->n_rw_ctx = 0;
3179 }
3180
3181 spin_lock_irqsave(&ch->spinlock, flags);
3182 list_add(&ioctx->free_list, &ch->free_list);
3183 spin_unlock_irqrestore(&ch->spinlock, flags);
3184 }
3185
3186 /**
3187 * srpt_close_session - forcibly close a session
3188 * @se_sess: SCSI target session.
3189 *
3190 * Callback function invoked by the TCM core to clean up sessions associated
3191 * with a node ACL when the user invokes
3192 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3193 */
3194 static void srpt_close_session(struct se_session *se_sess)
3195 {
3196 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3197
3198 srpt_disconnect_ch_sync(ch);
3199 }
3200
3201 /**
3202 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
3203 * @se_sess: SCSI target session.
3204 *
3205 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3206 * This object represents an arbitrary integer used to uniquely identify a
3207 * particular attached remote initiator port to a particular SCSI target port
3208 * within a particular SCSI target device within a particular SCSI instance.
3209 */
3210 static u32 srpt_sess_get_index(struct se_session *se_sess)
3211 {
3212 return 0;
3213 }
3214
3215 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3216 {
3217 }
3218
3219 /* Note: only used from inside debug printk's by the TCM core. */
3220 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3221 {
3222 struct srpt_send_ioctx *ioctx;
3223
3224 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3225 return ioctx->state;
3226 }
3227
3228 static int srpt_parse_guid(u64 *guid, const char *name)
3229 {
3230 u16 w[4];
3231 int ret = -EINVAL;
3232
3233 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3234 goto out;
3235 *guid = get_unaligned_be64(w);
3236 ret = 0;
3237 out:
3238 return ret;
3239 }
3240
3241 /**
3242 * srpt_parse_i_port_id - parse an initiator port ID
3243 * @name: ASCII representation of a 128-bit initiator port ID.
3244 * @i_port_id: Binary 128-bit port ID.
3245 */
3246 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3247 {
3248 const char *p;
3249 unsigned len, count, leading_zero_bytes;
3250 int ret;
3251
3252 p = name;
3253 if (strncasecmp(p, "0x", 2) == 0)
3254 p += 2;
3255 ret = -EINVAL;
3256 len = strlen(p);
3257 if (len % 2)
3258 goto out;
3259 count = min(len / 2, 16U);
3260 leading_zero_bytes = 16 - count;
3261 memset(i_port_id, 0, leading_zero_bytes);
3262 ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3263
3264 out:
3265 return ret;
3266 }
3267
3268 /*
3269 * configfs callback function invoked for mkdir
3270 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3271 *
3272 * i_port_id must be an initiator port GUID, GID or IP address. See also the
3273 * target_alloc_session() calls in this driver. Examples of valid initiator
3274 * port IDs:
3275 * 0x0000000000000000505400fffe4a0b7b
3276 * 0000000000000000505400fffe4a0b7b
3277 * 5054:00ff:fe4a:0b7b
3278 * 192.168.122.76
3279 */
3280 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3281 {
3282 struct sockaddr_storage sa;
3283 u64 guid;
3284 u8 i_port_id[16];
3285 int ret;
3286
3287 ret = srpt_parse_guid(&guid, name);
3288 if (ret < 0)
3289 ret = srpt_parse_i_port_id(i_port_id, name);
3290 if (ret < 0)
3291 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3292 &sa);
3293 if (ret < 0)
3294 pr_err("invalid initiator port ID %s\n", name);
3295 return ret;
3296 }
3297
3298 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3299 char *page)
3300 {
3301 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3302 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3303
3304 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3305 }
3306
3307 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3308 const char *page, size_t count)
3309 {
3310 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3311 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3312 unsigned long val;
3313 int ret;
3314
3315 ret = kstrtoul(page, 0, &val);
3316 if (ret < 0) {
3317 pr_err("kstrtoul() failed with ret: %d\n", ret);
3318 return -EINVAL;
3319 }
3320 if (val > MAX_SRPT_RDMA_SIZE) {
3321 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3322 MAX_SRPT_RDMA_SIZE);
3323 return -EINVAL;
3324 }
3325 if (val < DEFAULT_MAX_RDMA_SIZE) {
3326 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3327 val, DEFAULT_MAX_RDMA_SIZE);
3328 return -EINVAL;
3329 }
3330 sport->port_attrib.srp_max_rdma_size = val;
3331
3332 return count;
3333 }
3334
3335 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3336 char *page)
3337 {
3338 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3339 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3340
3341 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3342 }
3343
3344 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3345 const char *page, size_t count)
3346 {
3347 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3348 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3349 unsigned long val;
3350 int ret;
3351
3352 ret = kstrtoul(page, 0, &val);
3353 if (ret < 0) {
3354 pr_err("kstrtoul() failed with ret: %d\n", ret);
3355 return -EINVAL;
3356 }
3357 if (val > MAX_SRPT_RSP_SIZE) {
3358 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3359 MAX_SRPT_RSP_SIZE);
3360 return -EINVAL;
3361 }
3362 if (val < MIN_MAX_RSP_SIZE) {
3363 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3364 MIN_MAX_RSP_SIZE);
3365 return -EINVAL;
3366 }
3367 sport->port_attrib.srp_max_rsp_size = val;
3368
3369 return count;
3370 }
3371
3372 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3373 char *page)
3374 {
3375 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3376 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3377
3378 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3379 }
3380
3381 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3382 const char *page, size_t count)
3383 {
3384 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3385 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3386 unsigned long val;
3387 int ret;
3388
3389 ret = kstrtoul(page, 0, &val);
3390 if (ret < 0) {
3391 pr_err("kstrtoul() failed with ret: %d\n", ret);
3392 return -EINVAL;
3393 }
3394 if (val > MAX_SRPT_SRQ_SIZE) {
3395 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3396 MAX_SRPT_SRQ_SIZE);
3397 return -EINVAL;
3398 }
3399 if (val < MIN_SRPT_SRQ_SIZE) {
3400 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3401 MIN_SRPT_SRQ_SIZE);
3402 return -EINVAL;
3403 }
3404 sport->port_attrib.srp_sq_size = val;
3405
3406 return count;
3407 }
3408
3409 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3410 char *page)
3411 {
3412 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3413 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3414
3415 return sprintf(page, "%d\n", sport->port_attrib.use_srq);
3416 }
3417
3418 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3419 const char *page, size_t count)
3420 {
3421 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3422 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3423 struct srpt_device *sdev = sport->sdev;
3424 unsigned long val;
3425 bool enabled;
3426 int ret;
3427
3428 ret = kstrtoul(page, 0, &val);
3429 if (ret < 0)
3430 return ret;
3431 if (val != !!val)
3432 return -EINVAL;
3433
3434 ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3435 if (ret < 0)
3436 return ret;
3437 ret = mutex_lock_interruptible(&sport->mutex);
3438 if (ret < 0)
3439 goto unlock_sdev;
3440 enabled = sport->enabled;
3441 /* Log out all initiator systems before changing 'use_srq'. */
3442 srpt_set_enabled(sport, false);
3443 sport->port_attrib.use_srq = val;
3444 srpt_use_srq(sdev, sport->port_attrib.use_srq);
3445 srpt_set_enabled(sport, enabled);
3446 ret = count;
3447 mutex_unlock(&sport->mutex);
3448 unlock_sdev:
3449 mutex_unlock(&sdev->sdev_mutex);
3450
3451 return ret;
3452 }
3453
3454 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size);
3455 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size);
3456 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size);
3457 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq);
3458
3459 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3460 &srpt_tpg_attrib_attr_srp_max_rdma_size,
3461 &srpt_tpg_attrib_attr_srp_max_rsp_size,
3462 &srpt_tpg_attrib_attr_srp_sq_size,
3463 &srpt_tpg_attrib_attr_use_srq,
3464 NULL,
3465 };
3466
3467 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3468 {
3469 struct rdma_cm_id *rdma_cm_id;
3470 int ret;
3471
3472 rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3473 NULL, RDMA_PS_TCP, IB_QPT_RC);
3474 if (IS_ERR(rdma_cm_id)) {
3475 pr_err("RDMA/CM ID creation failed: %ld\n",
3476 PTR_ERR(rdma_cm_id));
3477 goto out;
3478 }
3479
3480 ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3481 if (ret) {
3482 char addr_str[64];
3483
3484 snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3485 pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3486 addr_str, ret);
3487 rdma_destroy_id(rdma_cm_id);
3488 rdma_cm_id = ERR_PTR(ret);
3489 goto out;
3490 }
3491
3492 ret = rdma_listen(rdma_cm_id, 128);
3493 if (ret) {
3494 pr_err("rdma_listen() failed: %d\n", ret);
3495 rdma_destroy_id(rdma_cm_id);
3496 rdma_cm_id = ERR_PTR(ret);
3497 }
3498
3499 out:
3500 return rdma_cm_id;
3501 }
3502
3503 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3504 {
3505 return sprintf(page, "%d\n", rdma_cm_port);
3506 }
3507
3508 static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3509 const char *page, size_t count)
3510 {
3511 struct sockaddr_in addr4 = { .sin_family = AF_INET };
3512 struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3513 struct rdma_cm_id *new_id = NULL;
3514 u16 val;
3515 int ret;
3516
3517 ret = kstrtou16(page, 0, &val);
3518 if (ret < 0)
3519 return ret;
3520 ret = count;
3521 if (rdma_cm_port == val)
3522 goto out;
3523
3524 if (val) {
3525 addr6.sin6_port = cpu_to_be16(val);
3526 new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3527 if (IS_ERR(new_id)) {
3528 addr4.sin_port = cpu_to_be16(val);
3529 new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3530 if (IS_ERR(new_id)) {
3531 ret = PTR_ERR(new_id);
3532 goto out;
3533 }
3534 }
3535 }
3536
3537 mutex_lock(&rdma_cm_mutex);
3538 rdma_cm_port = val;
3539 swap(rdma_cm_id, new_id);
3540 mutex_unlock(&rdma_cm_mutex);
3541
3542 if (new_id)
3543 rdma_destroy_id(new_id);
3544 ret = count;
3545 out:
3546 return ret;
3547 }
3548
3549 CONFIGFS_ATTR(srpt_, rdma_cm_port);
3550
3551 static struct configfs_attribute *srpt_da_attrs[] = {
3552 &srpt_attr_rdma_cm_port,
3553 NULL,
3554 };
3555
3556 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3557 {
3558 struct se_portal_group *se_tpg = to_tpg(item);
3559 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3560
3561 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3562 }
3563
3564 static ssize_t srpt_tpg_enable_store(struct config_item *item,
3565 const char *page, size_t count)
3566 {
3567 struct se_portal_group *se_tpg = to_tpg(item);
3568 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3569 unsigned long tmp;
3570 int ret;
3571
3572 ret = kstrtoul(page, 0, &tmp);
3573 if (ret < 0) {
3574 pr_err("Unable to extract srpt_tpg_store_enable\n");
3575 return -EINVAL;
3576 }
3577
3578 if ((tmp != 0) && (tmp != 1)) {
3579 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3580 return -EINVAL;
3581 }
3582
3583 mutex_lock(&sport->mutex);
3584 srpt_set_enabled(sport, tmp);
3585 mutex_unlock(&sport->mutex);
3586
3587 return count;
3588 }
3589
3590 CONFIGFS_ATTR(srpt_tpg_, enable);
3591
3592 static struct configfs_attribute *srpt_tpg_attrs[] = {
3593 &srpt_tpg_attr_enable,
3594 NULL,
3595 };
3596
3597 /**
3598 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3599 * @wwn: Corresponds to $driver/$port.
3600 * @group: Not used.
3601 * @name: $tpg.
3602 */
3603 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3604 struct config_group *group,
3605 const char *name)
3606 {
3607 struct srpt_port *sport = wwn->priv;
3608 static struct se_portal_group *tpg;
3609 int res;
3610
3611 WARN_ON_ONCE(wwn != &sport->port_guid_wwn &&
3612 wwn != &sport->port_gid_wwn);
3613 tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg :
3614 &sport->port_gid_tpg;
3615 res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP);
3616 if (res)
3617 return ERR_PTR(res);
3618
3619 return tpg;
3620 }
3621
3622 /**
3623 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3624 * @tpg: Target portal group to deregister.
3625 */
3626 static void srpt_drop_tpg(struct se_portal_group *tpg)
3627 {
3628 struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3629
3630 sport->enabled = false;
3631 core_tpg_deregister(tpg);
3632 }
3633
3634 /**
3635 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3636 * @tf: Not used.
3637 * @group: Not used.
3638 * @name: $port.
3639 */
3640 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3641 struct config_group *group,
3642 const char *name)
3643 {
3644 return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3645 }
3646
3647 /**
3648 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3649 * @wwn: $port.
3650 */
3651 static void srpt_drop_tport(struct se_wwn *wwn)
3652 {
3653 }
3654
3655 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3656 {
3657 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3658 }
3659
3660 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3661
3662 static struct configfs_attribute *srpt_wwn_attrs[] = {
3663 &srpt_wwn_attr_version,
3664 NULL,
3665 };
3666
3667 static const struct target_core_fabric_ops srpt_template = {
3668 .module = THIS_MODULE,
3669 .name = "srpt",
3670 .get_fabric_name = srpt_get_fabric_name,
3671 .tpg_get_wwn = srpt_get_fabric_wwn,
3672 .tpg_get_tag = srpt_get_tag,
3673 .tpg_check_demo_mode = srpt_check_false,
3674 .tpg_check_demo_mode_cache = srpt_check_true,
3675 .tpg_check_demo_mode_write_protect = srpt_check_true,
3676 .tpg_check_prod_mode_write_protect = srpt_check_false,
3677 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3678 .release_cmd = srpt_release_cmd,
3679 .check_stop_free = srpt_check_stop_free,
3680 .close_session = srpt_close_session,
3681 .sess_get_index = srpt_sess_get_index,
3682 .sess_get_initiator_sid = NULL,
3683 .write_pending = srpt_write_pending,
3684 .write_pending_status = srpt_write_pending_status,
3685 .set_default_node_attributes = srpt_set_default_node_attrs,
3686 .get_cmd_state = srpt_get_tcm_cmd_state,
3687 .queue_data_in = srpt_queue_data_in,
3688 .queue_status = srpt_queue_status,
3689 .queue_tm_rsp = srpt_queue_tm_rsp,
3690 .aborted_task = srpt_aborted_task,
3691 /*
3692 * Setup function pointers for generic logic in
3693 * target_core_fabric_configfs.c
3694 */
3695 .fabric_make_wwn = srpt_make_tport,
3696 .fabric_drop_wwn = srpt_drop_tport,
3697 .fabric_make_tpg = srpt_make_tpg,
3698 .fabric_drop_tpg = srpt_drop_tpg,
3699 .fabric_init_nodeacl = srpt_init_nodeacl,
3700
3701 .tfc_discovery_attrs = srpt_da_attrs,
3702 .tfc_wwn_attrs = srpt_wwn_attrs,
3703 .tfc_tpg_base_attrs = srpt_tpg_attrs,
3704 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3705 };
3706
3707 /**
3708 * srpt_init_module - kernel module initialization
3709 *
3710 * Note: Since ib_register_client() registers callback functions, and since at
3711 * least one of these callback functions (srpt_add_one()) calls target core
3712 * functions, this driver must be registered with the target core before
3713 * ib_register_client() is called.
3714 */
3715 static int __init srpt_init_module(void)
3716 {
3717 int ret;
3718
3719 ret = -EINVAL;
3720 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3721 pr_err("invalid value %d for kernel module parameter"
3722 " srp_max_req_size -- must be at least %d.\n",
3723 srp_max_req_size, MIN_MAX_REQ_SIZE);
3724 goto out;
3725 }
3726
3727 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3728 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3729 pr_err("invalid value %d for kernel module parameter"
3730 " srpt_srq_size -- must be in the range [%d..%d].\n",
3731 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3732 goto out;
3733 }
3734
3735 ret = target_register_template(&srpt_template);
3736 if (ret)
3737 goto out;
3738
3739 ret = ib_register_client(&srpt_client);
3740 if (ret) {
3741 pr_err("couldn't register IB client\n");
3742 goto out_unregister_target;
3743 }
3744
3745 return 0;
3746
3747 out_unregister_target:
3748 target_unregister_template(&srpt_template);
3749 out:
3750 return ret;
3751 }
3752
3753 static void __exit srpt_cleanup_module(void)
3754 {
3755 if (rdma_cm_id)
3756 rdma_destroy_id(rdma_cm_id);
3757 ib_unregister_client(&srpt_client);
3758 target_unregister_template(&srpt_template);
3759 }
3760
3761 module_init(srpt_init_module);
3762 module_exit(srpt_cleanup_module);