]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/infiniband/ulp/srpt/ib_srpt.c
Merge tag 'platform-drivers-x86-v4.15-4' of git://git.infradead.org/linux-platform...
[mirror_ubuntu-bionic-kernel.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_proto.h>
45 #include <scsi/scsi_tcq.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric.h>
48 #include "ib_srpt.h"
49
50 /* Name of this kernel module. */
51 #define DRV_NAME "ib_srpt"
52 #define DRV_VERSION "2.0.0"
53 #define DRV_RELDATE "2011-02-14"
54
55 #define SRPT_ID_STRING "Linux SRP target"
56
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
59
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
62 "v" DRV_VERSION " (" DRV_RELDATE ")");
63 MODULE_LICENSE("Dual BSD/GPL");
64
65 /*
66 * Global Variables
67 */
68
69 static u64 srpt_service_guid;
70 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
71 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
72
73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
74 module_param(srp_max_req_size, int, 0444);
75 MODULE_PARM_DESC(srp_max_req_size,
76 "Maximum size of SRP request messages in bytes.");
77
78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
79 module_param(srpt_srq_size, int, 0444);
80 MODULE_PARM_DESC(srpt_srq_size,
81 "Shared receive queue (SRQ) size.");
82
83 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
84 {
85 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
86 }
87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
88 0444);
89 MODULE_PARM_DESC(srpt_service_guid,
90 "Using this value for ioc_guid, id_ext, and cm_listen_id"
91 " instead of using the node_guid of the first HCA.");
92
93 static struct ib_client srpt_client;
94 static void srpt_release_cmd(struct se_cmd *se_cmd);
95 static void srpt_free_ch(struct kref *kref);
96 static int srpt_queue_status(struct se_cmd *cmd);
97 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
98 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
99 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
100
101 /*
102 * The only allowed channel state changes are those that change the channel
103 * state into a state with a higher numerical value. Hence the new > prev test.
104 */
105 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
106 {
107 unsigned long flags;
108 enum rdma_ch_state prev;
109 bool changed = false;
110
111 spin_lock_irqsave(&ch->spinlock, flags);
112 prev = ch->state;
113 if (new > prev) {
114 ch->state = new;
115 changed = true;
116 }
117 spin_unlock_irqrestore(&ch->spinlock, flags);
118
119 return changed;
120 }
121
122 /**
123 * srpt_event_handler() - Asynchronous IB event callback function.
124 *
125 * Callback function called by the InfiniBand core when an asynchronous IB
126 * event occurs. This callback may occur in interrupt context. See also
127 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
128 * Architecture Specification.
129 */
130 static void srpt_event_handler(struct ib_event_handler *handler,
131 struct ib_event *event)
132 {
133 struct srpt_device *sdev;
134 struct srpt_port *sport;
135
136 sdev = ib_get_client_data(event->device, &srpt_client);
137 if (!sdev || sdev->device != event->device)
138 return;
139
140 pr_debug("ASYNC event= %d on device= %s\n", event->event,
141 sdev->device->name);
142
143 switch (event->event) {
144 case IB_EVENT_PORT_ERR:
145 if (event->element.port_num <= sdev->device->phys_port_cnt) {
146 sport = &sdev->port[event->element.port_num - 1];
147 sport->lid = 0;
148 sport->sm_lid = 0;
149 }
150 break;
151 case IB_EVENT_PORT_ACTIVE:
152 case IB_EVENT_LID_CHANGE:
153 case IB_EVENT_PKEY_CHANGE:
154 case IB_EVENT_SM_CHANGE:
155 case IB_EVENT_CLIENT_REREGISTER:
156 case IB_EVENT_GID_CHANGE:
157 /* Refresh port data asynchronously. */
158 if (event->element.port_num <= sdev->device->phys_port_cnt) {
159 sport = &sdev->port[event->element.port_num - 1];
160 if (!sport->lid && !sport->sm_lid)
161 schedule_work(&sport->work);
162 }
163 break;
164 default:
165 pr_err("received unrecognized IB event %d\n",
166 event->event);
167 break;
168 }
169 }
170
171 /**
172 * srpt_srq_event() - SRQ event callback function.
173 */
174 static void srpt_srq_event(struct ib_event *event, void *ctx)
175 {
176 pr_info("SRQ event %d\n", event->event);
177 }
178
179 static const char *get_ch_state_name(enum rdma_ch_state s)
180 {
181 switch (s) {
182 case CH_CONNECTING:
183 return "connecting";
184 case CH_LIVE:
185 return "live";
186 case CH_DISCONNECTING:
187 return "disconnecting";
188 case CH_DRAINING:
189 return "draining";
190 case CH_DISCONNECTED:
191 return "disconnected";
192 }
193 return "???";
194 }
195
196 /**
197 * srpt_qp_event() - QP event callback function.
198 */
199 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
200 {
201 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
202 event->event, ch->cm_id, ch->sess_name, ch->state);
203
204 switch (event->event) {
205 case IB_EVENT_COMM_EST:
206 ib_cm_notify(ch->cm_id, event->event);
207 break;
208 case IB_EVENT_QP_LAST_WQE_REACHED:
209 pr_debug("%s-%d, state %s: received Last WQE event.\n",
210 ch->sess_name, ch->qp->qp_num,
211 get_ch_state_name(ch->state));
212 break;
213 default:
214 pr_err("received unrecognized IB QP event %d\n", event->event);
215 break;
216 }
217 }
218
219 /**
220 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
221 *
222 * @slot: one-based slot number.
223 * @value: four-bit value.
224 *
225 * Copies the lowest four bits of value in element slot of the array of four
226 * bit elements called c_list (controller list). The index slot is one-based.
227 */
228 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
229 {
230 u16 id;
231 u8 tmp;
232
233 id = (slot - 1) / 2;
234 if (slot & 0x1) {
235 tmp = c_list[id] & 0xf;
236 c_list[id] = (value << 4) | tmp;
237 } else {
238 tmp = c_list[id] & 0xf0;
239 c_list[id] = (value & 0xf) | tmp;
240 }
241 }
242
243 /**
244 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
245 *
246 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
247 * Specification.
248 */
249 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
250 {
251 struct ib_class_port_info *cif;
252
253 cif = (struct ib_class_port_info *)mad->data;
254 memset(cif, 0, sizeof(*cif));
255 cif->base_version = 1;
256 cif->class_version = 1;
257
258 ib_set_cpi_resp_time(cif, 20);
259 mad->mad_hdr.status = 0;
260 }
261
262 /**
263 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
264 *
265 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
266 * Specification. See also section B.7, table B.6 in the SRP r16a document.
267 */
268 static void srpt_get_iou(struct ib_dm_mad *mad)
269 {
270 struct ib_dm_iou_info *ioui;
271 u8 slot;
272 int i;
273
274 ioui = (struct ib_dm_iou_info *)mad->data;
275 ioui->change_id = cpu_to_be16(1);
276 ioui->max_controllers = 16;
277
278 /* set present for slot 1 and empty for the rest */
279 srpt_set_ioc(ioui->controller_list, 1, 1);
280 for (i = 1, slot = 2; i < 16; i++, slot++)
281 srpt_set_ioc(ioui->controller_list, slot, 0);
282
283 mad->mad_hdr.status = 0;
284 }
285
286 /**
287 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
288 *
289 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
290 * Architecture Specification. See also section B.7, table B.7 in the SRP
291 * r16a document.
292 */
293 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
294 struct ib_dm_mad *mad)
295 {
296 struct srpt_device *sdev = sport->sdev;
297 struct ib_dm_ioc_profile *iocp;
298 int send_queue_depth;
299
300 iocp = (struct ib_dm_ioc_profile *)mad->data;
301
302 if (!slot || slot > 16) {
303 mad->mad_hdr.status
304 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
305 return;
306 }
307
308 if (slot > 2) {
309 mad->mad_hdr.status
310 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
311 return;
312 }
313
314 if (sdev->use_srq)
315 send_queue_depth = sdev->srq_size;
316 else
317 send_queue_depth = min(SRPT_RQ_SIZE,
318 sdev->device->attrs.max_qp_wr);
319
320 memset(iocp, 0, sizeof(*iocp));
321 strcpy(iocp->id_string, SRPT_ID_STRING);
322 iocp->guid = cpu_to_be64(srpt_service_guid);
323 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
324 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
325 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
326 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
327 iocp->subsys_device_id = 0x0;
328 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
329 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
330 iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
331 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
332 iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
333 iocp->rdma_read_depth = 4;
334 iocp->send_size = cpu_to_be32(srp_max_req_size);
335 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
336 1U << 24));
337 iocp->num_svc_entries = 1;
338 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
339 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
340
341 mad->mad_hdr.status = 0;
342 }
343
344 /**
345 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
346 *
347 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
348 * Specification. See also section B.7, table B.8 in the SRP r16a document.
349 */
350 static void srpt_get_svc_entries(u64 ioc_guid,
351 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
352 {
353 struct ib_dm_svc_entries *svc_entries;
354
355 WARN_ON(!ioc_guid);
356
357 if (!slot || slot > 16) {
358 mad->mad_hdr.status
359 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
360 return;
361 }
362
363 if (slot > 2 || lo > hi || hi > 1) {
364 mad->mad_hdr.status
365 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
366 return;
367 }
368
369 svc_entries = (struct ib_dm_svc_entries *)mad->data;
370 memset(svc_entries, 0, sizeof(*svc_entries));
371 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
372 snprintf(svc_entries->service_entries[0].name,
373 sizeof(svc_entries->service_entries[0].name),
374 "%s%016llx",
375 SRP_SERVICE_NAME_PREFIX,
376 ioc_guid);
377
378 mad->mad_hdr.status = 0;
379 }
380
381 /**
382 * srpt_mgmt_method_get() - Process a received management datagram.
383 * @sp: source port through which the MAD has been received.
384 * @rq_mad: received MAD.
385 * @rsp_mad: response MAD.
386 */
387 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
388 struct ib_dm_mad *rsp_mad)
389 {
390 u16 attr_id;
391 u32 slot;
392 u8 hi, lo;
393
394 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
395 switch (attr_id) {
396 case DM_ATTR_CLASS_PORT_INFO:
397 srpt_get_class_port_info(rsp_mad);
398 break;
399 case DM_ATTR_IOU_INFO:
400 srpt_get_iou(rsp_mad);
401 break;
402 case DM_ATTR_IOC_PROFILE:
403 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
404 srpt_get_ioc(sp, slot, rsp_mad);
405 break;
406 case DM_ATTR_SVC_ENTRIES:
407 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
408 hi = (u8) ((slot >> 8) & 0xff);
409 lo = (u8) (slot & 0xff);
410 slot = (u16) ((slot >> 16) & 0xffff);
411 srpt_get_svc_entries(srpt_service_guid,
412 slot, hi, lo, rsp_mad);
413 break;
414 default:
415 rsp_mad->mad_hdr.status =
416 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
417 break;
418 }
419 }
420
421 /**
422 * srpt_mad_send_handler() - Post MAD-send callback function.
423 */
424 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
425 struct ib_mad_send_wc *mad_wc)
426 {
427 rdma_destroy_ah(mad_wc->send_buf->ah);
428 ib_free_send_mad(mad_wc->send_buf);
429 }
430
431 /**
432 * srpt_mad_recv_handler() - MAD reception callback function.
433 */
434 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
435 struct ib_mad_send_buf *send_buf,
436 struct ib_mad_recv_wc *mad_wc)
437 {
438 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
439 struct ib_ah *ah;
440 struct ib_mad_send_buf *rsp;
441 struct ib_dm_mad *dm_mad;
442
443 if (!mad_wc || !mad_wc->recv_buf.mad)
444 return;
445
446 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
447 mad_wc->recv_buf.grh, mad_agent->port_num);
448 if (IS_ERR(ah))
449 goto err;
450
451 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
452
453 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
454 mad_wc->wc->pkey_index, 0,
455 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
456 GFP_KERNEL,
457 IB_MGMT_BASE_VERSION);
458 if (IS_ERR(rsp))
459 goto err_rsp;
460
461 rsp->ah = ah;
462
463 dm_mad = rsp->mad;
464 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
465 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
466 dm_mad->mad_hdr.status = 0;
467
468 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
469 case IB_MGMT_METHOD_GET:
470 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
471 break;
472 case IB_MGMT_METHOD_SET:
473 dm_mad->mad_hdr.status =
474 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
475 break;
476 default:
477 dm_mad->mad_hdr.status =
478 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
479 break;
480 }
481
482 if (!ib_post_send_mad(rsp, NULL)) {
483 ib_free_recv_mad(mad_wc);
484 /* will destroy_ah & free_send_mad in send completion */
485 return;
486 }
487
488 ib_free_send_mad(rsp);
489
490 err_rsp:
491 rdma_destroy_ah(ah);
492 err:
493 ib_free_recv_mad(mad_wc);
494 }
495
496 /**
497 * srpt_refresh_port() - Configure a HCA port.
498 *
499 * Enable InfiniBand management datagram processing, update the cached sm_lid,
500 * lid and gid values, and register a callback function for processing MADs
501 * on the specified port.
502 *
503 * Note: It is safe to call this function more than once for the same port.
504 */
505 static int srpt_refresh_port(struct srpt_port *sport)
506 {
507 struct ib_mad_reg_req reg_req;
508 struct ib_port_modify port_modify;
509 struct ib_port_attr port_attr;
510 __be16 *guid;
511 int ret;
512
513 memset(&port_modify, 0, sizeof(port_modify));
514 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
515 port_modify.clr_port_cap_mask = 0;
516
517 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
518 if (ret)
519 goto err_mod_port;
520
521 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
522 if (ret)
523 goto err_query_port;
524
525 sport->sm_lid = port_attr.sm_lid;
526 sport->lid = port_attr.lid;
527
528 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
529 NULL);
530 if (ret)
531 goto err_query_port;
532
533 sport->port_guid_wwn.priv = sport;
534 guid = (__be16 *)&sport->gid.global.interface_id;
535 snprintf(sport->port_guid, sizeof(sport->port_guid),
536 "%04x:%04x:%04x:%04x",
537 be16_to_cpu(guid[0]), be16_to_cpu(guid[1]),
538 be16_to_cpu(guid[2]), be16_to_cpu(guid[3]));
539 sport->port_gid_wwn.priv = sport;
540 snprintf(sport->port_gid, sizeof(sport->port_gid),
541 "0x%016llx%016llx",
542 be64_to_cpu(sport->gid.global.subnet_prefix),
543 be64_to_cpu(sport->gid.global.interface_id));
544
545 if (!sport->mad_agent) {
546 memset(&reg_req, 0, sizeof(reg_req));
547 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
548 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
549 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
550 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
551
552 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
553 sport->port,
554 IB_QPT_GSI,
555 &reg_req, 0,
556 srpt_mad_send_handler,
557 srpt_mad_recv_handler,
558 sport, 0);
559 if (IS_ERR(sport->mad_agent)) {
560 ret = PTR_ERR(sport->mad_agent);
561 sport->mad_agent = NULL;
562 goto err_query_port;
563 }
564 }
565
566 return 0;
567
568 err_query_port:
569
570 port_modify.set_port_cap_mask = 0;
571 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
572 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
573
574 err_mod_port:
575
576 return ret;
577 }
578
579 /**
580 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
581 *
582 * Note: It is safe to call this function more than once for the same device.
583 */
584 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
585 {
586 struct ib_port_modify port_modify = {
587 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
588 };
589 struct srpt_port *sport;
590 int i;
591
592 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
593 sport = &sdev->port[i - 1];
594 WARN_ON(sport->port != i);
595 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
596 pr_err("disabling MAD processing failed.\n");
597 if (sport->mad_agent) {
598 ib_unregister_mad_agent(sport->mad_agent);
599 sport->mad_agent = NULL;
600 }
601 }
602 }
603
604 /**
605 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
606 */
607 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
608 int ioctx_size, int dma_size,
609 enum dma_data_direction dir)
610 {
611 struct srpt_ioctx *ioctx;
612
613 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
614 if (!ioctx)
615 goto err;
616
617 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
618 if (!ioctx->buf)
619 goto err_free_ioctx;
620
621 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
622 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
623 goto err_free_buf;
624
625 return ioctx;
626
627 err_free_buf:
628 kfree(ioctx->buf);
629 err_free_ioctx:
630 kfree(ioctx);
631 err:
632 return NULL;
633 }
634
635 /**
636 * srpt_free_ioctx() - Free an SRPT I/O context structure.
637 */
638 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
639 int dma_size, enum dma_data_direction dir)
640 {
641 if (!ioctx)
642 return;
643
644 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
645 kfree(ioctx->buf);
646 kfree(ioctx);
647 }
648
649 /**
650 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
651 * @sdev: Device to allocate the I/O context ring for.
652 * @ring_size: Number of elements in the I/O context ring.
653 * @ioctx_size: I/O context size.
654 * @dma_size: DMA buffer size.
655 * @dir: DMA data direction.
656 */
657 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
658 int ring_size, int ioctx_size,
659 int dma_size, enum dma_data_direction dir)
660 {
661 struct srpt_ioctx **ring;
662 int i;
663
664 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
665 && ioctx_size != sizeof(struct srpt_send_ioctx));
666
667 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
668 if (!ring)
669 goto out;
670 for (i = 0; i < ring_size; ++i) {
671 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
672 if (!ring[i])
673 goto err;
674 ring[i]->index = i;
675 }
676 goto out;
677
678 err:
679 while (--i >= 0)
680 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
681 kfree(ring);
682 ring = NULL;
683 out:
684 return ring;
685 }
686
687 /**
688 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
689 */
690 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
691 struct srpt_device *sdev, int ring_size,
692 int dma_size, enum dma_data_direction dir)
693 {
694 int i;
695
696 if (!ioctx_ring)
697 return;
698
699 for (i = 0; i < ring_size; ++i)
700 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
701 kfree(ioctx_ring);
702 }
703
704 /**
705 * srpt_get_cmd_state() - Get the state of a SCSI command.
706 */
707 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
708 {
709 enum srpt_command_state state;
710 unsigned long flags;
711
712 BUG_ON(!ioctx);
713
714 spin_lock_irqsave(&ioctx->spinlock, flags);
715 state = ioctx->state;
716 spin_unlock_irqrestore(&ioctx->spinlock, flags);
717 return state;
718 }
719
720 /**
721 * srpt_set_cmd_state() - Set the state of a SCSI command.
722 *
723 * Does not modify the state of aborted commands. Returns the previous command
724 * state.
725 */
726 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
727 enum srpt_command_state new)
728 {
729 enum srpt_command_state previous;
730 unsigned long flags;
731
732 BUG_ON(!ioctx);
733
734 spin_lock_irqsave(&ioctx->spinlock, flags);
735 previous = ioctx->state;
736 if (previous != SRPT_STATE_DONE)
737 ioctx->state = new;
738 spin_unlock_irqrestore(&ioctx->spinlock, flags);
739
740 return previous;
741 }
742
743 /**
744 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
745 *
746 * Returns true if and only if the previous command state was equal to 'old'.
747 */
748 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
749 enum srpt_command_state old,
750 enum srpt_command_state new)
751 {
752 enum srpt_command_state previous;
753 unsigned long flags;
754
755 WARN_ON(!ioctx);
756 WARN_ON(old == SRPT_STATE_DONE);
757 WARN_ON(new == SRPT_STATE_NEW);
758
759 spin_lock_irqsave(&ioctx->spinlock, flags);
760 previous = ioctx->state;
761 if (previous == old)
762 ioctx->state = new;
763 spin_unlock_irqrestore(&ioctx->spinlock, flags);
764 return previous == old;
765 }
766
767 /**
768 * srpt_post_recv() - Post an IB receive request.
769 */
770 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
771 struct srpt_recv_ioctx *ioctx)
772 {
773 struct ib_sge list;
774 struct ib_recv_wr wr, *bad_wr;
775
776 BUG_ON(!sdev);
777 list.addr = ioctx->ioctx.dma;
778 list.length = srp_max_req_size;
779 list.lkey = sdev->lkey;
780
781 ioctx->ioctx.cqe.done = srpt_recv_done;
782 wr.wr_cqe = &ioctx->ioctx.cqe;
783 wr.next = NULL;
784 wr.sg_list = &list;
785 wr.num_sge = 1;
786
787 if (sdev->use_srq)
788 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
789 else
790 return ib_post_recv(ch->qp, &wr, &bad_wr);
791 }
792
793 /**
794 * srpt_zerolength_write() - Perform a zero-length RDMA write.
795 *
796 * A quote from the InfiniBand specification: C9-88: For an HCA responder
797 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
798 * request, the R_Key shall not be validated, even if the request includes
799 * Immediate data.
800 */
801 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
802 {
803 struct ib_send_wr wr, *bad_wr;
804
805 memset(&wr, 0, sizeof(wr));
806 wr.opcode = IB_WR_RDMA_WRITE;
807 wr.wr_cqe = &ch->zw_cqe;
808 wr.send_flags = IB_SEND_SIGNALED;
809 return ib_post_send(ch->qp, &wr, &bad_wr);
810 }
811
812 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
813 {
814 struct srpt_rdma_ch *ch = cq->cq_context;
815
816 if (wc->status == IB_WC_SUCCESS) {
817 srpt_process_wait_list(ch);
818 } else {
819 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
820 schedule_work(&ch->release_work);
821 else
822 WARN_ONCE(1, "%s-%d\n", ch->sess_name, ch->qp->qp_num);
823 }
824 }
825
826 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
827 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
828 unsigned *sg_cnt)
829 {
830 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
831 struct srpt_rdma_ch *ch = ioctx->ch;
832 struct scatterlist *prev = NULL;
833 unsigned prev_nents;
834 int ret, i;
835
836 if (nbufs == 1) {
837 ioctx->rw_ctxs = &ioctx->s_rw_ctx;
838 } else {
839 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
840 GFP_KERNEL);
841 if (!ioctx->rw_ctxs)
842 return -ENOMEM;
843 }
844
845 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
846 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
847 u64 remote_addr = be64_to_cpu(db->va);
848 u32 size = be32_to_cpu(db->len);
849 u32 rkey = be32_to_cpu(db->key);
850
851 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
852 i < nbufs - 1);
853 if (ret)
854 goto unwind;
855
856 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
857 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
858 if (ret < 0) {
859 target_free_sgl(ctx->sg, ctx->nents);
860 goto unwind;
861 }
862
863 ioctx->n_rdma += ret;
864 ioctx->n_rw_ctx++;
865
866 if (prev) {
867 sg_unmark_end(&prev[prev_nents - 1]);
868 sg_chain(prev, prev_nents + 1, ctx->sg);
869 } else {
870 *sg = ctx->sg;
871 }
872
873 prev = ctx->sg;
874 prev_nents = ctx->nents;
875
876 *sg_cnt += ctx->nents;
877 }
878
879 return 0;
880
881 unwind:
882 while (--i >= 0) {
883 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
884
885 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
886 ctx->sg, ctx->nents, dir);
887 target_free_sgl(ctx->sg, ctx->nents);
888 }
889 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
890 kfree(ioctx->rw_ctxs);
891 return ret;
892 }
893
894 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
895 struct srpt_send_ioctx *ioctx)
896 {
897 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
898 int i;
899
900 for (i = 0; i < ioctx->n_rw_ctx; i++) {
901 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
902
903 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
904 ctx->sg, ctx->nents, dir);
905 target_free_sgl(ctx->sg, ctx->nents);
906 }
907
908 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
909 kfree(ioctx->rw_ctxs);
910 }
911
912 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
913 {
914 /*
915 * The pointer computations below will only be compiled correctly
916 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
917 * whether srp_cmd::add_data has been declared as a byte pointer.
918 */
919 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
920 !__same_type(srp_cmd->add_data[0], (u8)0));
921
922 /*
923 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
924 * CDB LENGTH' field are reserved and the size in bytes of this field
925 * is four times the value specified in bits 3..7. Hence the "& ~3".
926 */
927 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
928 }
929
930 /**
931 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
932 * @ioctx: Pointer to the I/O context associated with the request.
933 * @srp_cmd: Pointer to the SRP_CMD request data.
934 * @dir: Pointer to the variable to which the transfer direction will be
935 * written.
936 * @data_len: Pointer to the variable to which the total data length of all
937 * descriptors in the SRP_CMD request will be written.
938 *
939 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
940 *
941 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
942 * -ENOMEM when memory allocation fails and zero upon success.
943 */
944 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
945 struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
946 struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
947 {
948 BUG_ON(!dir);
949 BUG_ON(!data_len);
950
951 /*
952 * The lower four bits of the buffer format field contain the DATA-IN
953 * buffer descriptor format, and the highest four bits contain the
954 * DATA-OUT buffer descriptor format.
955 */
956 if (srp_cmd->buf_fmt & 0xf)
957 /* DATA-IN: transfer data from target to initiator (read). */
958 *dir = DMA_FROM_DEVICE;
959 else if (srp_cmd->buf_fmt >> 4)
960 /* DATA-OUT: transfer data from initiator to target (write). */
961 *dir = DMA_TO_DEVICE;
962 else
963 *dir = DMA_NONE;
964
965 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
966 ioctx->cmd.data_direction = *dir;
967
968 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
969 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
970 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
971
972 *data_len = be32_to_cpu(db->len);
973 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
974 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
975 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
976 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
977 int nbufs = be32_to_cpu(idb->table_desc.len) /
978 sizeof(struct srp_direct_buf);
979
980 if (nbufs >
981 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
982 pr_err("received unsupported SRP_CMD request"
983 " type (%u out + %u in != %u / %zu)\n",
984 srp_cmd->data_out_desc_cnt,
985 srp_cmd->data_in_desc_cnt,
986 be32_to_cpu(idb->table_desc.len),
987 sizeof(struct srp_direct_buf));
988 return -EINVAL;
989 }
990
991 *data_len = be32_to_cpu(idb->len);
992 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
993 sg, sg_cnt);
994 } else {
995 *data_len = 0;
996 return 0;
997 }
998 }
999
1000 /**
1001 * srpt_init_ch_qp() - Initialize queue pair attributes.
1002 *
1003 * Initialized the attributes of queue pair 'qp' by allowing local write,
1004 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1005 */
1006 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1007 {
1008 struct ib_qp_attr *attr;
1009 int ret;
1010
1011 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1012 if (!attr)
1013 return -ENOMEM;
1014
1015 attr->qp_state = IB_QPS_INIT;
1016 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
1017 IB_ACCESS_REMOTE_WRITE;
1018 attr->port_num = ch->sport->port;
1019 attr->pkey_index = 0;
1020
1021 ret = ib_modify_qp(qp, attr,
1022 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1023 IB_QP_PKEY_INDEX);
1024
1025 kfree(attr);
1026 return ret;
1027 }
1028
1029 /**
1030 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
1031 * @ch: channel of the queue pair.
1032 * @qp: queue pair to change the state of.
1033 *
1034 * Returns zero upon success and a negative value upon failure.
1035 *
1036 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1037 * If this structure ever becomes larger, it might be necessary to allocate
1038 * it dynamically instead of on the stack.
1039 */
1040 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1041 {
1042 struct ib_qp_attr qp_attr;
1043 int attr_mask;
1044 int ret;
1045
1046 qp_attr.qp_state = IB_QPS_RTR;
1047 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1048 if (ret)
1049 goto out;
1050
1051 qp_attr.max_dest_rd_atomic = 4;
1052
1053 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1054
1055 out:
1056 return ret;
1057 }
1058
1059 /**
1060 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1061 * @ch: channel of the queue pair.
1062 * @qp: queue pair to change the state of.
1063 *
1064 * Returns zero upon success and a negative value upon failure.
1065 *
1066 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1067 * If this structure ever becomes larger, it might be necessary to allocate
1068 * it dynamically instead of on the stack.
1069 */
1070 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1071 {
1072 struct ib_qp_attr qp_attr;
1073 int attr_mask;
1074 int ret;
1075
1076 qp_attr.qp_state = IB_QPS_RTS;
1077 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1078 if (ret)
1079 goto out;
1080
1081 qp_attr.max_rd_atomic = 4;
1082
1083 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1084
1085 out:
1086 return ret;
1087 }
1088
1089 /**
1090 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1091 */
1092 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1093 {
1094 struct ib_qp_attr qp_attr;
1095
1096 qp_attr.qp_state = IB_QPS_ERR;
1097 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1098 }
1099
1100 /**
1101 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1102 */
1103 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1104 {
1105 struct srpt_send_ioctx *ioctx;
1106 unsigned long flags;
1107
1108 BUG_ON(!ch);
1109
1110 ioctx = NULL;
1111 spin_lock_irqsave(&ch->spinlock, flags);
1112 if (!list_empty(&ch->free_list)) {
1113 ioctx = list_first_entry(&ch->free_list,
1114 struct srpt_send_ioctx, free_list);
1115 list_del(&ioctx->free_list);
1116 }
1117 spin_unlock_irqrestore(&ch->spinlock, flags);
1118
1119 if (!ioctx)
1120 return ioctx;
1121
1122 BUG_ON(ioctx->ch != ch);
1123 spin_lock_init(&ioctx->spinlock);
1124 ioctx->state = SRPT_STATE_NEW;
1125 ioctx->n_rdma = 0;
1126 ioctx->n_rw_ctx = 0;
1127 init_completion(&ioctx->tx_done);
1128 ioctx->queue_status_only = false;
1129 /*
1130 * transport_init_se_cmd() does not initialize all fields, so do it
1131 * here.
1132 */
1133 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1134 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1135
1136 return ioctx;
1137 }
1138
1139 /**
1140 * srpt_abort_cmd() - Abort a SCSI command.
1141 * @ioctx: I/O context associated with the SCSI command.
1142 * @context: Preferred execution context.
1143 */
1144 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1145 {
1146 enum srpt_command_state state;
1147 unsigned long flags;
1148
1149 BUG_ON(!ioctx);
1150
1151 /*
1152 * If the command is in a state where the target core is waiting for
1153 * the ib_srpt driver, change the state to the next state.
1154 */
1155
1156 spin_lock_irqsave(&ioctx->spinlock, flags);
1157 state = ioctx->state;
1158 switch (state) {
1159 case SRPT_STATE_NEED_DATA:
1160 ioctx->state = SRPT_STATE_DATA_IN;
1161 break;
1162 case SRPT_STATE_CMD_RSP_SENT:
1163 case SRPT_STATE_MGMT_RSP_SENT:
1164 ioctx->state = SRPT_STATE_DONE;
1165 break;
1166 default:
1167 WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1168 __func__, state);
1169 break;
1170 }
1171 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1172
1173 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1174 ioctx->state, ioctx->cmd.tag);
1175
1176 switch (state) {
1177 case SRPT_STATE_NEW:
1178 case SRPT_STATE_DATA_IN:
1179 case SRPT_STATE_MGMT:
1180 case SRPT_STATE_DONE:
1181 /*
1182 * Do nothing - defer abort processing until
1183 * srpt_queue_response() is invoked.
1184 */
1185 break;
1186 case SRPT_STATE_NEED_DATA:
1187 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1188 transport_generic_request_failure(&ioctx->cmd,
1189 TCM_CHECK_CONDITION_ABORT_CMD);
1190 break;
1191 case SRPT_STATE_CMD_RSP_SENT:
1192 /*
1193 * SRP_RSP sending failed or the SRP_RSP send completion has
1194 * not been received in time.
1195 */
1196 transport_generic_free_cmd(&ioctx->cmd, 0);
1197 break;
1198 case SRPT_STATE_MGMT_RSP_SENT:
1199 transport_generic_free_cmd(&ioctx->cmd, 0);
1200 break;
1201 default:
1202 WARN(1, "Unexpected command state (%d)", state);
1203 break;
1204 }
1205
1206 return state;
1207 }
1208
1209 /**
1210 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1211 * the data that has been transferred via IB RDMA had to be postponed until the
1212 * check_stop_free() callback. None of this is necessary anymore and needs to
1213 * be cleaned up.
1214 */
1215 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1216 {
1217 struct srpt_rdma_ch *ch = cq->cq_context;
1218 struct srpt_send_ioctx *ioctx =
1219 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1220
1221 WARN_ON(ioctx->n_rdma <= 0);
1222 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1223 ioctx->n_rdma = 0;
1224
1225 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1226 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1227 ioctx, wc->status);
1228 srpt_abort_cmd(ioctx);
1229 return;
1230 }
1231
1232 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1233 SRPT_STATE_DATA_IN))
1234 target_execute_cmd(&ioctx->cmd);
1235 else
1236 pr_err("%s[%d]: wrong state = %d\n", __func__,
1237 __LINE__, srpt_get_cmd_state(ioctx));
1238 }
1239
1240 /**
1241 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1242 * @ch: RDMA channel through which the request has been received.
1243 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1244 * be built in the buffer ioctx->buf points at and hence this function will
1245 * overwrite the request data.
1246 * @tag: tag of the request for which this response is being generated.
1247 * @status: value for the STATUS field of the SRP_RSP information unit.
1248 *
1249 * Returns the size in bytes of the SRP_RSP response.
1250 *
1251 * An SRP_RSP response contains a SCSI status or service response. See also
1252 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1253 * response. See also SPC-2 for more information about sense data.
1254 */
1255 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1256 struct srpt_send_ioctx *ioctx, u64 tag,
1257 int status)
1258 {
1259 struct srp_rsp *srp_rsp;
1260 const u8 *sense_data;
1261 int sense_data_len, max_sense_len;
1262
1263 /*
1264 * The lowest bit of all SAM-3 status codes is zero (see also
1265 * paragraph 5.3 in SAM-3).
1266 */
1267 WARN_ON(status & 1);
1268
1269 srp_rsp = ioctx->ioctx.buf;
1270 BUG_ON(!srp_rsp);
1271
1272 sense_data = ioctx->sense_data;
1273 sense_data_len = ioctx->cmd.scsi_sense_length;
1274 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1275
1276 memset(srp_rsp, 0, sizeof(*srp_rsp));
1277 srp_rsp->opcode = SRP_RSP;
1278 srp_rsp->req_lim_delta =
1279 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1280 srp_rsp->tag = tag;
1281 srp_rsp->status = status;
1282
1283 if (sense_data_len) {
1284 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1285 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1286 if (sense_data_len > max_sense_len) {
1287 pr_warn("truncated sense data from %d to %d"
1288 " bytes\n", sense_data_len, max_sense_len);
1289 sense_data_len = max_sense_len;
1290 }
1291
1292 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1293 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1294 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1295 }
1296
1297 return sizeof(*srp_rsp) + sense_data_len;
1298 }
1299
1300 /**
1301 * srpt_build_tskmgmt_rsp() - Build a task management response.
1302 * @ch: RDMA channel through which the request has been received.
1303 * @ioctx: I/O context in which the SRP_RSP response will be built.
1304 * @rsp_code: RSP_CODE that will be stored in the response.
1305 * @tag: Tag of the request for which this response is being generated.
1306 *
1307 * Returns the size in bytes of the SRP_RSP response.
1308 *
1309 * An SRP_RSP response contains a SCSI status or service response. See also
1310 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1311 * response.
1312 */
1313 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1314 struct srpt_send_ioctx *ioctx,
1315 u8 rsp_code, u64 tag)
1316 {
1317 struct srp_rsp *srp_rsp;
1318 int resp_data_len;
1319 int resp_len;
1320
1321 resp_data_len = 4;
1322 resp_len = sizeof(*srp_rsp) + resp_data_len;
1323
1324 srp_rsp = ioctx->ioctx.buf;
1325 BUG_ON(!srp_rsp);
1326 memset(srp_rsp, 0, sizeof(*srp_rsp));
1327
1328 srp_rsp->opcode = SRP_RSP;
1329 srp_rsp->req_lim_delta =
1330 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1331 srp_rsp->tag = tag;
1332
1333 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1334 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1335 srp_rsp->data[3] = rsp_code;
1336
1337 return resp_len;
1338 }
1339
1340 static int srpt_check_stop_free(struct se_cmd *cmd)
1341 {
1342 struct srpt_send_ioctx *ioctx = container_of(cmd,
1343 struct srpt_send_ioctx, cmd);
1344
1345 return target_put_sess_cmd(&ioctx->cmd);
1346 }
1347
1348 /**
1349 * srpt_handle_cmd() - Process SRP_CMD.
1350 */
1351 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1352 struct srpt_recv_ioctx *recv_ioctx,
1353 struct srpt_send_ioctx *send_ioctx)
1354 {
1355 struct se_cmd *cmd;
1356 struct srp_cmd *srp_cmd;
1357 struct scatterlist *sg = NULL;
1358 unsigned sg_cnt = 0;
1359 u64 data_len;
1360 enum dma_data_direction dir;
1361 int rc;
1362
1363 BUG_ON(!send_ioctx);
1364
1365 srp_cmd = recv_ioctx->ioctx.buf;
1366 cmd = &send_ioctx->cmd;
1367 cmd->tag = srp_cmd->tag;
1368
1369 switch (srp_cmd->task_attr) {
1370 case SRP_CMD_SIMPLE_Q:
1371 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1372 break;
1373 case SRP_CMD_ORDERED_Q:
1374 default:
1375 cmd->sam_task_attr = TCM_ORDERED_TAG;
1376 break;
1377 case SRP_CMD_HEAD_OF_Q:
1378 cmd->sam_task_attr = TCM_HEAD_TAG;
1379 break;
1380 case SRP_CMD_ACA:
1381 cmd->sam_task_attr = TCM_ACA_TAG;
1382 break;
1383 }
1384
1385 rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
1386 &data_len);
1387 if (rc) {
1388 if (rc != -EAGAIN) {
1389 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1390 srp_cmd->tag);
1391 }
1392 goto release_ioctx;
1393 }
1394
1395 rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
1396 &send_ioctx->sense_data[0],
1397 scsilun_to_int(&srp_cmd->lun), data_len,
1398 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
1399 sg, sg_cnt, NULL, 0, NULL, 0);
1400 if (rc != 0) {
1401 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1402 srp_cmd->tag);
1403 goto release_ioctx;
1404 }
1405 return;
1406
1407 release_ioctx:
1408 send_ioctx->state = SRPT_STATE_DONE;
1409 srpt_release_cmd(cmd);
1410 }
1411
1412 static int srp_tmr_to_tcm(int fn)
1413 {
1414 switch (fn) {
1415 case SRP_TSK_ABORT_TASK:
1416 return TMR_ABORT_TASK;
1417 case SRP_TSK_ABORT_TASK_SET:
1418 return TMR_ABORT_TASK_SET;
1419 case SRP_TSK_CLEAR_TASK_SET:
1420 return TMR_CLEAR_TASK_SET;
1421 case SRP_TSK_LUN_RESET:
1422 return TMR_LUN_RESET;
1423 case SRP_TSK_CLEAR_ACA:
1424 return TMR_CLEAR_ACA;
1425 default:
1426 return -1;
1427 }
1428 }
1429
1430 /**
1431 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1432 *
1433 * Returns 0 if and only if the request will be processed by the target core.
1434 *
1435 * For more information about SRP_TSK_MGMT information units, see also section
1436 * 6.7 in the SRP r16a document.
1437 */
1438 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1439 struct srpt_recv_ioctx *recv_ioctx,
1440 struct srpt_send_ioctx *send_ioctx)
1441 {
1442 struct srp_tsk_mgmt *srp_tsk;
1443 struct se_cmd *cmd;
1444 struct se_session *sess = ch->sess;
1445 int tcm_tmr;
1446 int rc;
1447
1448 BUG_ON(!send_ioctx);
1449
1450 srp_tsk = recv_ioctx->ioctx.buf;
1451 cmd = &send_ioctx->cmd;
1452
1453 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1454 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1455 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1456
1457 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1458 send_ioctx->cmd.tag = srp_tsk->tag;
1459 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1460 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1461 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1462 GFP_KERNEL, srp_tsk->task_tag,
1463 TARGET_SCF_ACK_KREF);
1464 if (rc != 0) {
1465 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1466 goto fail;
1467 }
1468 return;
1469 fail:
1470 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1471 }
1472
1473 /**
1474 * srpt_handle_new_iu() - Process a newly received information unit.
1475 * @ch: RDMA channel through which the information unit has been received.
1476 * @ioctx: SRPT I/O context associated with the information unit.
1477 */
1478 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1479 struct srpt_recv_ioctx *recv_ioctx,
1480 struct srpt_send_ioctx *send_ioctx)
1481 {
1482 struct srp_cmd *srp_cmd;
1483
1484 BUG_ON(!ch);
1485 BUG_ON(!recv_ioctx);
1486
1487 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1488 recv_ioctx->ioctx.dma, srp_max_req_size,
1489 DMA_FROM_DEVICE);
1490
1491 if (unlikely(ch->state == CH_CONNECTING))
1492 goto out_wait;
1493
1494 if (unlikely(ch->state != CH_LIVE))
1495 return;
1496
1497 srp_cmd = recv_ioctx->ioctx.buf;
1498 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1499 if (!send_ioctx) {
1500 if (!list_empty(&ch->cmd_wait_list))
1501 goto out_wait;
1502 send_ioctx = srpt_get_send_ioctx(ch);
1503 }
1504 if (unlikely(!send_ioctx))
1505 goto out_wait;
1506 }
1507
1508 switch (srp_cmd->opcode) {
1509 case SRP_CMD:
1510 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1511 break;
1512 case SRP_TSK_MGMT:
1513 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1514 break;
1515 case SRP_I_LOGOUT:
1516 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1517 break;
1518 case SRP_CRED_RSP:
1519 pr_debug("received SRP_CRED_RSP\n");
1520 break;
1521 case SRP_AER_RSP:
1522 pr_debug("received SRP_AER_RSP\n");
1523 break;
1524 case SRP_RSP:
1525 pr_err("Received SRP_RSP\n");
1526 break;
1527 default:
1528 pr_err("received IU with unknown opcode 0x%x\n",
1529 srp_cmd->opcode);
1530 break;
1531 }
1532
1533 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1534 return;
1535
1536 out_wait:
1537 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1538 }
1539
1540 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1541 {
1542 struct srpt_rdma_ch *ch = cq->cq_context;
1543 struct srpt_recv_ioctx *ioctx =
1544 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1545
1546 if (wc->status == IB_WC_SUCCESS) {
1547 int req_lim;
1548
1549 req_lim = atomic_dec_return(&ch->req_lim);
1550 if (unlikely(req_lim < 0))
1551 pr_err("req_lim = %d < 0\n", req_lim);
1552 srpt_handle_new_iu(ch, ioctx, NULL);
1553 } else {
1554 pr_info("receiving failed for ioctx %p with status %d\n",
1555 ioctx, wc->status);
1556 }
1557 }
1558
1559 /*
1560 * This function must be called from the context in which RDMA completions are
1561 * processed because it accesses the wait list without protection against
1562 * access from other threads.
1563 */
1564 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1565 {
1566 struct srpt_send_ioctx *ioctx;
1567
1568 while (!list_empty(&ch->cmd_wait_list) &&
1569 ch->state >= CH_LIVE &&
1570 (ioctx = srpt_get_send_ioctx(ch)) != NULL) {
1571 struct srpt_recv_ioctx *recv_ioctx;
1572
1573 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
1574 struct srpt_recv_ioctx,
1575 wait_list);
1576 list_del(&recv_ioctx->wait_list);
1577 srpt_handle_new_iu(ch, recv_ioctx, ioctx);
1578 }
1579 }
1580
1581 /**
1582 * Note: Although this has not yet been observed during tests, at least in
1583 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1584 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1585 * value in each response is set to one, and it is possible that this response
1586 * makes the initiator send a new request before the send completion for that
1587 * response has been processed. This could e.g. happen if the call to
1588 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1589 * if IB retransmission causes generation of the send completion to be
1590 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1591 * are queued on cmd_wait_list. The code below processes these delayed
1592 * requests one at a time.
1593 */
1594 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1595 {
1596 struct srpt_rdma_ch *ch = cq->cq_context;
1597 struct srpt_send_ioctx *ioctx =
1598 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1599 enum srpt_command_state state;
1600
1601 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1602
1603 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1604 state != SRPT_STATE_MGMT_RSP_SENT);
1605
1606 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1607
1608 if (wc->status != IB_WC_SUCCESS)
1609 pr_info("sending response for ioctx 0x%p failed"
1610 " with status %d\n", ioctx, wc->status);
1611
1612 if (state != SRPT_STATE_DONE) {
1613 transport_generic_free_cmd(&ioctx->cmd, 0);
1614 } else {
1615 pr_err("IB completion has been received too late for"
1616 " wr_id = %u.\n", ioctx->ioctx.index);
1617 }
1618
1619 srpt_process_wait_list(ch);
1620 }
1621
1622 /**
1623 * srpt_create_ch_ib() - Create receive and send completion queues.
1624 */
1625 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1626 {
1627 struct ib_qp_init_attr *qp_init;
1628 struct srpt_port *sport = ch->sport;
1629 struct srpt_device *sdev = sport->sdev;
1630 const struct ib_device_attr *attrs = &sdev->device->attrs;
1631 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
1632 int i, ret;
1633
1634 WARN_ON(ch->rq_size < 1);
1635
1636 ret = -ENOMEM;
1637 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1638 if (!qp_init)
1639 goto out;
1640
1641 retry:
1642 ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + srp_sq_size,
1643 0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1644 if (IS_ERR(ch->cq)) {
1645 ret = PTR_ERR(ch->cq);
1646 pr_err("failed to create CQ cqe= %d ret= %d\n",
1647 ch->rq_size + srp_sq_size, ret);
1648 goto out;
1649 }
1650
1651 qp_init->qp_context = (void *)ch;
1652 qp_init->event_handler
1653 = (void(*)(struct ib_event *, void*))srpt_qp_event;
1654 qp_init->send_cq = ch->cq;
1655 qp_init->recv_cq = ch->cq;
1656 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1657 qp_init->qp_type = IB_QPT_RC;
1658 /*
1659 * We divide up our send queue size into half SEND WRs to send the
1660 * completions, and half R/W contexts to actually do the RDMA
1661 * READ/WRITE transfers. Note that we need to allocate CQ slots for
1662 * both both, as RDMA contexts will also post completions for the
1663 * RDMA READ case.
1664 */
1665 qp_init->cap.max_send_wr = min(srp_sq_size / 2, attrs->max_qp_wr + 0U);
1666 qp_init->cap.max_rdma_ctxs = srp_sq_size / 2;
1667 qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE);
1668 qp_init->port_num = ch->sport->port;
1669 if (sdev->use_srq) {
1670 qp_init->srq = sdev->srq;
1671 } else {
1672 qp_init->cap.max_recv_wr = ch->rq_size;
1673 qp_init->cap.max_recv_sge = qp_init->cap.max_send_sge;
1674 }
1675
1676 ch->qp = ib_create_qp(sdev->pd, qp_init);
1677 if (IS_ERR(ch->qp)) {
1678 ret = PTR_ERR(ch->qp);
1679 if (ret == -ENOMEM) {
1680 srp_sq_size /= 2;
1681 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
1682 ib_destroy_cq(ch->cq);
1683 goto retry;
1684 }
1685 }
1686 pr_err("failed to create_qp ret= %d\n", ret);
1687 goto err_destroy_cq;
1688 }
1689
1690 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1691
1692 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1693 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1694 qp_init->cap.max_send_wr, ch->cm_id);
1695
1696 ret = srpt_init_ch_qp(ch, ch->qp);
1697 if (ret)
1698 goto err_destroy_qp;
1699
1700 if (!sdev->use_srq)
1701 for (i = 0; i < ch->rq_size; i++)
1702 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1703
1704 out:
1705 kfree(qp_init);
1706 return ret;
1707
1708 err_destroy_qp:
1709 ib_destroy_qp(ch->qp);
1710 err_destroy_cq:
1711 ib_free_cq(ch->cq);
1712 goto out;
1713 }
1714
1715 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1716 {
1717 ib_destroy_qp(ch->qp);
1718 ib_free_cq(ch->cq);
1719 }
1720
1721 /**
1722 * srpt_close_ch() - Close an RDMA channel.
1723 *
1724 * Make sure all resources associated with the channel will be deallocated at
1725 * an appropriate time.
1726 *
1727 * Returns true if and only if the channel state has been modified into
1728 * CH_DRAINING.
1729 */
1730 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1731 {
1732 int ret;
1733
1734 if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1735 pr_debug("%s-%d: already closed\n", ch->sess_name,
1736 ch->qp->qp_num);
1737 return false;
1738 }
1739
1740 kref_get(&ch->kref);
1741
1742 ret = srpt_ch_qp_err(ch);
1743 if (ret < 0)
1744 pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1745 ch->sess_name, ch->qp->qp_num, ret);
1746
1747 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
1748 ch->qp->qp_num);
1749 ret = srpt_zerolength_write(ch);
1750 if (ret < 0) {
1751 pr_err("%s-%d: queuing zero-length write failed: %d\n",
1752 ch->sess_name, ch->qp->qp_num, ret);
1753 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1754 schedule_work(&ch->release_work);
1755 else
1756 WARN_ON_ONCE(true);
1757 }
1758
1759 kref_put(&ch->kref, srpt_free_ch);
1760
1761 return true;
1762 }
1763
1764 /*
1765 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1766 * reached the connected state, close it. If a channel is in the connected
1767 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1768 * the responsibility of the caller to ensure that this function is not
1769 * invoked concurrently with the code that accepts a connection. This means
1770 * that this function must either be invoked from inside a CM callback
1771 * function or that it must be invoked with the srpt_port.mutex held.
1772 */
1773 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1774 {
1775 int ret;
1776
1777 if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1778 return -ENOTCONN;
1779
1780 ret = ib_send_cm_dreq(ch->cm_id, NULL, 0);
1781 if (ret < 0)
1782 ret = ib_send_cm_drep(ch->cm_id, NULL, 0);
1783
1784 if (ret < 0 && srpt_close_ch(ch))
1785 ret = 0;
1786
1787 return ret;
1788 }
1789
1790 /*
1791 * Send DREQ and wait for DREP. Return true if and only if this function
1792 * changed the state of @ch.
1793 */
1794 static bool srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1795 __must_hold(&sdev->mutex)
1796 {
1797 DECLARE_COMPLETION_ONSTACK(release_done);
1798 struct srpt_device *sdev = ch->sport->sdev;
1799 bool wait;
1800
1801 lockdep_assert_held(&sdev->mutex);
1802
1803 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1804 ch->state);
1805
1806 WARN_ON(ch->release_done);
1807 ch->release_done = &release_done;
1808 wait = !list_empty(&ch->list);
1809 srpt_disconnect_ch(ch);
1810 mutex_unlock(&sdev->mutex);
1811
1812 if (!wait)
1813 goto out;
1814
1815 while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0)
1816 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1817 ch->sess_name, ch->qp->qp_num, ch->state);
1818
1819 out:
1820 mutex_lock(&sdev->mutex);
1821 return wait;
1822 }
1823
1824 static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
1825 __must_hold(&sdev->mutex)
1826 {
1827 struct srpt_device *sdev = sport->sdev;
1828 struct srpt_rdma_ch *ch;
1829
1830 lockdep_assert_held(&sdev->mutex);
1831
1832 if (sport->enabled == enabled)
1833 return;
1834 sport->enabled = enabled;
1835 if (sport->enabled)
1836 return;
1837
1838 again:
1839 list_for_each_entry(ch, &sdev->rch_list, list) {
1840 if (ch->sport == sport) {
1841 pr_info("%s: closing channel %s-%d\n",
1842 sdev->device->name, ch->sess_name,
1843 ch->qp->qp_num);
1844 if (srpt_disconnect_ch_sync(ch))
1845 goto again;
1846 }
1847 }
1848
1849 }
1850
1851 static void srpt_free_ch(struct kref *kref)
1852 {
1853 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
1854
1855 kfree(ch);
1856 }
1857
1858 static void srpt_release_channel_work(struct work_struct *w)
1859 {
1860 struct srpt_rdma_ch *ch;
1861 struct srpt_device *sdev;
1862 struct se_session *se_sess;
1863
1864 ch = container_of(w, struct srpt_rdma_ch, release_work);
1865 pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name,
1866 ch->qp->qp_num, ch->release_done);
1867
1868 sdev = ch->sport->sdev;
1869 BUG_ON(!sdev);
1870
1871 se_sess = ch->sess;
1872 BUG_ON(!se_sess);
1873
1874 target_sess_cmd_list_set_waiting(se_sess);
1875 target_wait_for_sess_cmds(se_sess);
1876
1877 transport_deregister_session_configfs(se_sess);
1878 transport_deregister_session(se_sess);
1879 ch->sess = NULL;
1880
1881 ib_destroy_cm_id(ch->cm_id);
1882
1883 srpt_destroy_ch_ib(ch);
1884
1885 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
1886 ch->sport->sdev, ch->rq_size,
1887 ch->rsp_size, DMA_TO_DEVICE);
1888
1889 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
1890 sdev, ch->rq_size,
1891 srp_max_req_size, DMA_FROM_DEVICE);
1892
1893 mutex_lock(&sdev->mutex);
1894 list_del_init(&ch->list);
1895 if (ch->release_done)
1896 complete(ch->release_done);
1897 mutex_unlock(&sdev->mutex);
1898
1899 wake_up(&sdev->ch_releaseQ);
1900
1901 kref_put(&ch->kref, srpt_free_ch);
1902 }
1903
1904 /**
1905 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
1906 *
1907 * Ownership of the cm_id is transferred to the target session if this
1908 * functions returns zero. Otherwise the caller remains the owner of cm_id.
1909 */
1910 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
1911 struct ib_cm_req_event_param *param,
1912 void *private_data)
1913 {
1914 struct srpt_device *sdev = cm_id->context;
1915 struct srpt_port *sport = &sdev->port[param->port - 1];
1916 struct srp_login_req *req;
1917 struct srp_login_rsp *rsp;
1918 struct srp_login_rej *rej;
1919 struct ib_cm_rep_param *rep_param;
1920 struct srpt_rdma_ch *ch, *tmp_ch;
1921 __be16 *guid;
1922 u32 it_iu_len;
1923 int i, ret = 0;
1924
1925 WARN_ON_ONCE(irqs_disabled());
1926
1927 if (WARN_ON(!sdev || !private_data))
1928 return -EINVAL;
1929
1930 req = (struct srp_login_req *)private_data;
1931
1932 it_iu_len = be32_to_cpu(req->req_it_iu_len);
1933
1934 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
1935 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
1936 " (guid=0x%llx:0x%llx)\n",
1937 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
1938 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
1939 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
1940 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
1941 it_iu_len,
1942 param->port,
1943 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
1944 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
1945
1946 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
1947 rej = kzalloc(sizeof(*rej), GFP_KERNEL);
1948 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
1949
1950 if (!rsp || !rej || !rep_param) {
1951 ret = -ENOMEM;
1952 goto out;
1953 }
1954
1955 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
1956 rej->reason = cpu_to_be32(
1957 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
1958 ret = -EINVAL;
1959 pr_err("rejected SRP_LOGIN_REQ because its"
1960 " length (%d bytes) is out of range (%d .. %d)\n",
1961 it_iu_len, 64, srp_max_req_size);
1962 goto reject;
1963 }
1964
1965 if (!sport->enabled) {
1966 rej->reason = cpu_to_be32(
1967 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
1968 ret = -EINVAL;
1969 pr_err("rejected SRP_LOGIN_REQ because the target port"
1970 " has not yet been enabled\n");
1971 goto reject;
1972 }
1973
1974 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
1975 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
1976
1977 mutex_lock(&sdev->mutex);
1978
1979 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
1980 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
1981 && !memcmp(ch->t_port_id, req->target_port_id, 16)
1982 && param->port == ch->sport->port
1983 && param->listen_id == ch->sport->sdev->cm_id
1984 && ch->cm_id) {
1985 if (srpt_disconnect_ch(ch) < 0)
1986 continue;
1987 pr_info("Relogin - closed existing channel %s\n",
1988 ch->sess_name);
1989 rsp->rsp_flags =
1990 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
1991 }
1992 }
1993
1994 mutex_unlock(&sdev->mutex);
1995
1996 } else
1997 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
1998
1999 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2000 || *(__be64 *)(req->target_port_id + 8) !=
2001 cpu_to_be64(srpt_service_guid)) {
2002 rej->reason = cpu_to_be32(
2003 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2004 ret = -ENOMEM;
2005 pr_err("rejected SRP_LOGIN_REQ because it"
2006 " has an invalid target port identifier.\n");
2007 goto reject;
2008 }
2009
2010 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2011 if (!ch) {
2012 rej->reason = cpu_to_be32(
2013 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2014 pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2015 ret = -ENOMEM;
2016 goto reject;
2017 }
2018
2019 kref_init(&ch->kref);
2020 ch->zw_cqe.done = srpt_zerolength_write_done;
2021 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2022 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2023 memcpy(ch->t_port_id, req->target_port_id, 16);
2024 ch->sport = &sdev->port[param->port - 1];
2025 ch->cm_id = cm_id;
2026 cm_id->context = ch;
2027 /*
2028 * ch->rq_size should be at least as large as the initiator queue
2029 * depth to avoid that the initiator driver has to report QUEUE_FULL
2030 * to the SCSI mid-layer.
2031 */
2032 ch->rq_size = min(SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2033 spin_lock_init(&ch->spinlock);
2034 ch->state = CH_CONNECTING;
2035 INIT_LIST_HEAD(&ch->cmd_wait_list);
2036 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2037
2038 ch->ioctx_ring = (struct srpt_send_ioctx **)
2039 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2040 sizeof(*ch->ioctx_ring[0]),
2041 ch->rsp_size, DMA_TO_DEVICE);
2042 if (!ch->ioctx_ring)
2043 goto free_ch;
2044
2045 INIT_LIST_HEAD(&ch->free_list);
2046 for (i = 0; i < ch->rq_size; i++) {
2047 ch->ioctx_ring[i]->ch = ch;
2048 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2049 }
2050 if (!sdev->use_srq) {
2051 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2052 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2053 sizeof(*ch->ioctx_recv_ring[0]),
2054 srp_max_req_size,
2055 DMA_FROM_DEVICE);
2056 if (!ch->ioctx_recv_ring) {
2057 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2058 rej->reason =
2059 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2060 goto free_ring;
2061 }
2062 }
2063
2064 ret = srpt_create_ch_ib(ch);
2065 if (ret) {
2066 rej->reason = cpu_to_be32(
2067 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2068 pr_err("rejected SRP_LOGIN_REQ because creating"
2069 " a new RDMA channel failed.\n");
2070 goto free_recv_ring;
2071 }
2072
2073 ret = srpt_ch_qp_rtr(ch, ch->qp);
2074 if (ret) {
2075 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2076 pr_err("rejected SRP_LOGIN_REQ because enabling"
2077 " RTR failed (error code = %d)\n", ret);
2078 goto destroy_ib;
2079 }
2080
2081 guid = (__be16 *)&param->primary_path->sgid.global.interface_id;
2082 snprintf(ch->ini_guid, sizeof(ch->ini_guid), "%04x:%04x:%04x:%04x",
2083 be16_to_cpu(guid[0]), be16_to_cpu(guid[1]),
2084 be16_to_cpu(guid[2]), be16_to_cpu(guid[3]));
2085 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2086 be64_to_cpu(*(__be64 *)ch->i_port_id),
2087 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2088
2089 pr_debug("registering session %s\n", ch->sess_name);
2090
2091 if (sport->port_guid_tpg.se_tpg_wwn)
2092 ch->sess = target_alloc_session(&sport->port_guid_tpg, 0, 0,
2093 TARGET_PROT_NORMAL,
2094 ch->ini_guid, ch, NULL);
2095 if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
2096 ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2097 TARGET_PROT_NORMAL, ch->sess_name, ch,
2098 NULL);
2099 /* Retry without leading "0x" */
2100 if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess))
2101 ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0,
2102 TARGET_PROT_NORMAL,
2103 ch->sess_name + 2, ch, NULL);
2104 if (IS_ERR_OR_NULL(ch->sess)) {
2105 pr_info("Rejected login because no ACL has been configured yet for initiator %s.\n",
2106 ch->sess_name);
2107 rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ?
2108 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2109 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2110 goto destroy_ib;
2111 }
2112
2113 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2114 ch->sess_name, ch->cm_id);
2115
2116 /* create srp_login_response */
2117 rsp->opcode = SRP_LOGIN_RSP;
2118 rsp->tag = req->tag;
2119 rsp->max_it_iu_len = req->req_it_iu_len;
2120 rsp->max_ti_iu_len = req->req_it_iu_len;
2121 ch->max_ti_iu_len = it_iu_len;
2122 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2123 | SRP_BUF_FORMAT_INDIRECT);
2124 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2125 atomic_set(&ch->req_lim, ch->rq_size);
2126 atomic_set(&ch->req_lim_delta, 0);
2127
2128 /* create cm reply */
2129 rep_param->qp_num = ch->qp->qp_num;
2130 rep_param->private_data = (void *)rsp;
2131 rep_param->private_data_len = sizeof(*rsp);
2132 rep_param->rnr_retry_count = 7;
2133 rep_param->flow_control = 1;
2134 rep_param->failover_accepted = 0;
2135 rep_param->srq = 1;
2136 rep_param->responder_resources = 4;
2137 rep_param->initiator_depth = 4;
2138
2139 ret = ib_send_cm_rep(cm_id, rep_param);
2140 if (ret) {
2141 pr_err("sending SRP_LOGIN_REQ response failed"
2142 " (error code = %d)\n", ret);
2143 goto release_channel;
2144 }
2145
2146 mutex_lock(&sdev->mutex);
2147 list_add_tail(&ch->list, &sdev->rch_list);
2148 mutex_unlock(&sdev->mutex);
2149
2150 goto out;
2151
2152 release_channel:
2153 srpt_disconnect_ch(ch);
2154 transport_deregister_session_configfs(ch->sess);
2155 transport_deregister_session(ch->sess);
2156 ch->sess = NULL;
2157
2158 destroy_ib:
2159 srpt_destroy_ch_ib(ch);
2160
2161 free_recv_ring:
2162 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2163 ch->sport->sdev, ch->rq_size,
2164 srp_max_req_size, DMA_FROM_DEVICE);
2165
2166 free_ring:
2167 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2168 ch->sport->sdev, ch->rq_size,
2169 ch->rsp_size, DMA_TO_DEVICE);
2170 free_ch:
2171 kfree(ch);
2172
2173 reject:
2174 rej->opcode = SRP_LOGIN_REJ;
2175 rej->tag = req->tag;
2176 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2177 | SRP_BUF_FORMAT_INDIRECT);
2178
2179 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2180 (void *)rej, sizeof(*rej));
2181
2182 out:
2183 kfree(rep_param);
2184 kfree(rsp);
2185 kfree(rej);
2186
2187 return ret;
2188 }
2189
2190 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2191 enum ib_cm_rej_reason reason,
2192 const u8 *private_data,
2193 u8 private_data_len)
2194 {
2195 char *priv = NULL;
2196 int i;
2197
2198 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2199 GFP_KERNEL))) {
2200 for (i = 0; i < private_data_len; i++)
2201 sprintf(priv + 3 * i, " %02x", private_data[i]);
2202 }
2203 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2204 ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2205 "; private data" : "", priv ? priv : " (?)");
2206 kfree(priv);
2207 }
2208
2209 /**
2210 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2211 *
2212 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2213 * and that the recipient may begin transmitting (RTU = ready to use).
2214 */
2215 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2216 {
2217 int ret;
2218
2219 if (srpt_set_ch_state(ch, CH_LIVE)) {
2220 ret = srpt_ch_qp_rts(ch, ch->qp);
2221
2222 if (ret == 0) {
2223 /* Trigger wait list processing. */
2224 ret = srpt_zerolength_write(ch);
2225 WARN_ONCE(ret < 0, "%d\n", ret);
2226 } else {
2227 srpt_close_ch(ch);
2228 }
2229 }
2230 }
2231
2232 /**
2233 * srpt_cm_handler() - IB connection manager callback function.
2234 *
2235 * A non-zero return value will cause the caller destroy the CM ID.
2236 *
2237 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2238 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2239 * a non-zero value in any other case will trigger a race with the
2240 * ib_destroy_cm_id() call in srpt_release_channel().
2241 */
2242 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2243 {
2244 struct srpt_rdma_ch *ch = cm_id->context;
2245 int ret;
2246
2247 ret = 0;
2248 switch (event->event) {
2249 case IB_CM_REQ_RECEIVED:
2250 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2251 event->private_data);
2252 break;
2253 case IB_CM_REJ_RECEIVED:
2254 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2255 event->private_data,
2256 IB_CM_REJ_PRIVATE_DATA_SIZE);
2257 break;
2258 case IB_CM_RTU_RECEIVED:
2259 case IB_CM_USER_ESTABLISHED:
2260 srpt_cm_rtu_recv(ch);
2261 break;
2262 case IB_CM_DREQ_RECEIVED:
2263 srpt_disconnect_ch(ch);
2264 break;
2265 case IB_CM_DREP_RECEIVED:
2266 pr_info("Received CM DREP message for ch %s-%d.\n",
2267 ch->sess_name, ch->qp->qp_num);
2268 srpt_close_ch(ch);
2269 break;
2270 case IB_CM_TIMEWAIT_EXIT:
2271 pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2272 ch->sess_name, ch->qp->qp_num);
2273 srpt_close_ch(ch);
2274 break;
2275 case IB_CM_REP_ERROR:
2276 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2277 ch->qp->qp_num);
2278 break;
2279 case IB_CM_DREQ_ERROR:
2280 pr_info("Received CM DREQ ERROR event.\n");
2281 break;
2282 case IB_CM_MRA_RECEIVED:
2283 pr_info("Received CM MRA event\n");
2284 break;
2285 default:
2286 pr_err("received unrecognized CM event %d\n", event->event);
2287 break;
2288 }
2289
2290 return ret;
2291 }
2292
2293 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2294 {
2295 struct srpt_send_ioctx *ioctx;
2296
2297 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2298 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2299 }
2300
2301 /*
2302 * srpt_write_pending() - Start data transfer from initiator to target (write).
2303 */
2304 static int srpt_write_pending(struct se_cmd *se_cmd)
2305 {
2306 struct srpt_send_ioctx *ioctx =
2307 container_of(se_cmd, struct srpt_send_ioctx, cmd);
2308 struct srpt_rdma_ch *ch = ioctx->ch;
2309 struct ib_send_wr *first_wr = NULL, *bad_wr;
2310 struct ib_cqe *cqe = &ioctx->rdma_cqe;
2311 enum srpt_command_state new_state;
2312 int ret, i;
2313
2314 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2315 WARN_ON(new_state == SRPT_STATE_DONE);
2316
2317 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2318 pr_warn("%s: IB send queue full (needed %d)\n",
2319 __func__, ioctx->n_rdma);
2320 ret = -ENOMEM;
2321 goto out_undo;
2322 }
2323
2324 cqe->done = srpt_rdma_read_done;
2325 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2326 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2327
2328 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2329 cqe, first_wr);
2330 cqe = NULL;
2331 }
2332
2333 ret = ib_post_send(ch->qp, first_wr, &bad_wr);
2334 if (ret) {
2335 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2336 __func__, ret, ioctx->n_rdma,
2337 atomic_read(&ch->sq_wr_avail));
2338 goto out_undo;
2339 }
2340
2341 return 0;
2342 out_undo:
2343 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2344 return ret;
2345 }
2346
2347 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2348 {
2349 switch (tcm_mgmt_status) {
2350 case TMR_FUNCTION_COMPLETE:
2351 return SRP_TSK_MGMT_SUCCESS;
2352 case TMR_FUNCTION_REJECTED:
2353 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2354 }
2355 return SRP_TSK_MGMT_FAILED;
2356 }
2357
2358 /**
2359 * srpt_queue_response() - Transmits the response to a SCSI command.
2360 *
2361 * Callback function called by the TCM core. Must not block since it can be
2362 * invoked on the context of the IB completion handler.
2363 */
2364 static void srpt_queue_response(struct se_cmd *cmd)
2365 {
2366 struct srpt_send_ioctx *ioctx =
2367 container_of(cmd, struct srpt_send_ioctx, cmd);
2368 struct srpt_rdma_ch *ch = ioctx->ch;
2369 struct srpt_device *sdev = ch->sport->sdev;
2370 struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr;
2371 struct ib_sge sge;
2372 enum srpt_command_state state;
2373 unsigned long flags;
2374 int resp_len, ret, i;
2375 u8 srp_tm_status;
2376
2377 BUG_ON(!ch);
2378
2379 spin_lock_irqsave(&ioctx->spinlock, flags);
2380 state = ioctx->state;
2381 switch (state) {
2382 case SRPT_STATE_NEW:
2383 case SRPT_STATE_DATA_IN:
2384 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2385 break;
2386 case SRPT_STATE_MGMT:
2387 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2388 break;
2389 default:
2390 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2391 ch, ioctx->ioctx.index, ioctx->state);
2392 break;
2393 }
2394 spin_unlock_irqrestore(&ioctx->spinlock, flags);
2395
2396 if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)))
2397 return;
2398
2399 /* For read commands, transfer the data to the initiator. */
2400 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2401 ioctx->cmd.data_length &&
2402 !ioctx->queue_status_only) {
2403 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2404 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2405
2406 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2407 ch->sport->port, NULL, first_wr);
2408 }
2409 }
2410
2411 if (state != SRPT_STATE_MGMT)
2412 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2413 cmd->scsi_status);
2414 else {
2415 srp_tm_status
2416 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2417 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2418 ioctx->cmd.tag);
2419 }
2420
2421 atomic_inc(&ch->req_lim);
2422
2423 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2424 &ch->sq_wr_avail) < 0)) {
2425 pr_warn("%s: IB send queue full (needed %d)\n",
2426 __func__, ioctx->n_rdma);
2427 ret = -ENOMEM;
2428 goto out;
2429 }
2430
2431 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2432 DMA_TO_DEVICE);
2433
2434 sge.addr = ioctx->ioctx.dma;
2435 sge.length = resp_len;
2436 sge.lkey = sdev->lkey;
2437
2438 ioctx->ioctx.cqe.done = srpt_send_done;
2439 send_wr.next = NULL;
2440 send_wr.wr_cqe = &ioctx->ioctx.cqe;
2441 send_wr.sg_list = &sge;
2442 send_wr.num_sge = 1;
2443 send_wr.opcode = IB_WR_SEND;
2444 send_wr.send_flags = IB_SEND_SIGNALED;
2445
2446 ret = ib_post_send(ch->qp, first_wr, &bad_wr);
2447 if (ret < 0) {
2448 pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2449 __func__, ioctx->cmd.tag, ret);
2450 goto out;
2451 }
2452
2453 return;
2454
2455 out:
2456 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2457 atomic_dec(&ch->req_lim);
2458 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2459 target_put_sess_cmd(&ioctx->cmd);
2460 }
2461
2462 static int srpt_queue_data_in(struct se_cmd *cmd)
2463 {
2464 srpt_queue_response(cmd);
2465 return 0;
2466 }
2467
2468 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2469 {
2470 srpt_queue_response(cmd);
2471 }
2472
2473 static void srpt_aborted_task(struct se_cmd *cmd)
2474 {
2475 }
2476
2477 static int srpt_queue_status(struct se_cmd *cmd)
2478 {
2479 struct srpt_send_ioctx *ioctx;
2480
2481 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2482 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2483 if (cmd->se_cmd_flags &
2484 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2485 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2486 ioctx->queue_status_only = true;
2487 srpt_queue_response(cmd);
2488 return 0;
2489 }
2490
2491 static void srpt_refresh_port_work(struct work_struct *work)
2492 {
2493 struct srpt_port *sport = container_of(work, struct srpt_port, work);
2494
2495 srpt_refresh_port(sport);
2496 }
2497
2498 /**
2499 * srpt_release_sdev() - Free the channel resources associated with a target.
2500 */
2501 static int srpt_release_sdev(struct srpt_device *sdev)
2502 {
2503 int i, res;
2504
2505 WARN_ON_ONCE(irqs_disabled());
2506
2507 BUG_ON(!sdev);
2508
2509 mutex_lock(&sdev->mutex);
2510 for (i = 0; i < ARRAY_SIZE(sdev->port); i++)
2511 srpt_set_enabled(&sdev->port[i], false);
2512 mutex_unlock(&sdev->mutex);
2513
2514 res = wait_event_interruptible(sdev->ch_releaseQ,
2515 list_empty_careful(&sdev->rch_list));
2516 if (res)
2517 pr_err("%s: interrupted.\n", __func__);
2518
2519 return 0;
2520 }
2521
2522 static struct se_wwn *__srpt_lookup_wwn(const char *name)
2523 {
2524 struct ib_device *dev;
2525 struct srpt_device *sdev;
2526 struct srpt_port *sport;
2527 int i;
2528
2529 list_for_each_entry(sdev, &srpt_dev_list, list) {
2530 dev = sdev->device;
2531 if (!dev)
2532 continue;
2533
2534 for (i = 0; i < dev->phys_port_cnt; i++) {
2535 sport = &sdev->port[i];
2536
2537 if (strcmp(sport->port_guid, name) == 0)
2538 return &sport->port_guid_wwn;
2539 if (strcmp(sport->port_gid, name) == 0)
2540 return &sport->port_gid_wwn;
2541 }
2542 }
2543
2544 return NULL;
2545 }
2546
2547 static struct se_wwn *srpt_lookup_wwn(const char *name)
2548 {
2549 struct se_wwn *wwn;
2550
2551 spin_lock(&srpt_dev_lock);
2552 wwn = __srpt_lookup_wwn(name);
2553 spin_unlock(&srpt_dev_lock);
2554
2555 return wwn;
2556 }
2557
2558 static void srpt_free_srq(struct srpt_device *sdev)
2559 {
2560 if (!sdev->srq)
2561 return;
2562
2563 ib_destroy_srq(sdev->srq);
2564 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
2565 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
2566 sdev->srq = NULL;
2567 }
2568
2569 static int srpt_alloc_srq(struct srpt_device *sdev)
2570 {
2571 struct ib_srq_init_attr srq_attr = {
2572 .event_handler = srpt_srq_event,
2573 .srq_context = (void *)sdev,
2574 .attr.max_wr = sdev->srq_size,
2575 .attr.max_sge = 1,
2576 .srq_type = IB_SRQT_BASIC,
2577 };
2578 struct ib_device *device = sdev->device;
2579 struct ib_srq *srq;
2580 int i;
2581
2582 WARN_ON_ONCE(sdev->srq);
2583 srq = ib_create_srq(sdev->pd, &srq_attr);
2584 if (IS_ERR(srq)) {
2585 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
2586 return PTR_ERR(srq);
2587 }
2588
2589 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
2590 sdev->device->attrs.max_srq_wr, device->name);
2591
2592 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
2593 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
2594 sizeof(*sdev->ioctx_ring[0]),
2595 srp_max_req_size, DMA_FROM_DEVICE);
2596 if (!sdev->ioctx_ring) {
2597 ib_destroy_srq(srq);
2598 return -ENOMEM;
2599 }
2600
2601 sdev->use_srq = true;
2602 sdev->srq = srq;
2603
2604 for (i = 0; i < sdev->srq_size; ++i)
2605 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
2606
2607 return 0;
2608 }
2609
2610 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
2611 {
2612 struct ib_device *device = sdev->device;
2613 int ret = 0;
2614
2615 if (!use_srq) {
2616 srpt_free_srq(sdev);
2617 sdev->use_srq = false;
2618 } else if (use_srq && !sdev->srq) {
2619 ret = srpt_alloc_srq(sdev);
2620 }
2621 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, device->name,
2622 sdev->use_srq, ret);
2623 return ret;
2624 }
2625
2626 /**
2627 * srpt_add_one() - Infiniband device addition callback function.
2628 */
2629 static void srpt_add_one(struct ib_device *device)
2630 {
2631 struct srpt_device *sdev;
2632 struct srpt_port *sport;
2633 int i;
2634
2635 pr_debug("device = %p\n", device);
2636
2637 sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2638 if (!sdev)
2639 goto err;
2640
2641 sdev->device = device;
2642 INIT_LIST_HEAD(&sdev->rch_list);
2643 init_waitqueue_head(&sdev->ch_releaseQ);
2644 mutex_init(&sdev->mutex);
2645
2646 sdev->pd = ib_alloc_pd(device, 0);
2647 if (IS_ERR(sdev->pd))
2648 goto free_dev;
2649
2650 sdev->lkey = sdev->pd->local_dma_lkey;
2651
2652 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2653
2654 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
2655
2656 if (!srpt_service_guid)
2657 srpt_service_guid = be64_to_cpu(device->node_guid);
2658
2659 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
2660 if (IS_ERR(sdev->cm_id))
2661 goto err_ring;
2662
2663 /* print out target login information */
2664 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
2665 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
2666 srpt_service_guid, srpt_service_guid);
2667
2668 /*
2669 * We do not have a consistent service_id (ie. also id_ext of target_id)
2670 * to identify this target. We currently use the guid of the first HCA
2671 * in the system as service_id; therefore, the target_id will change
2672 * if this HCA is gone bad and replaced by different HCA
2673 */
2674 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
2675 goto err_cm;
2676
2677 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
2678 srpt_event_handler);
2679 ib_register_event_handler(&sdev->event_handler);
2680
2681 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
2682
2683 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
2684 sport = &sdev->port[i - 1];
2685 sport->sdev = sdev;
2686 sport->port = i;
2687 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
2688 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
2689 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
2690 sport->port_attrib.use_srq = false;
2691 INIT_WORK(&sport->work, srpt_refresh_port_work);
2692
2693 if (srpt_refresh_port(sport)) {
2694 pr_err("MAD registration failed for %s-%d.\n",
2695 sdev->device->name, i);
2696 goto err_event;
2697 }
2698 }
2699
2700 spin_lock(&srpt_dev_lock);
2701 list_add_tail(&sdev->list, &srpt_dev_list);
2702 spin_unlock(&srpt_dev_lock);
2703
2704 out:
2705 ib_set_client_data(device, &srpt_client, sdev);
2706 pr_debug("added %s.\n", device->name);
2707 return;
2708
2709 err_event:
2710 ib_unregister_event_handler(&sdev->event_handler);
2711 err_cm:
2712 ib_destroy_cm_id(sdev->cm_id);
2713 err_ring:
2714 srpt_free_srq(sdev);
2715 ib_dealloc_pd(sdev->pd);
2716 free_dev:
2717 kfree(sdev);
2718 err:
2719 sdev = NULL;
2720 pr_info("%s(%s) failed.\n", __func__, device->name);
2721 goto out;
2722 }
2723
2724 /**
2725 * srpt_remove_one() - InfiniBand device removal callback function.
2726 */
2727 static void srpt_remove_one(struct ib_device *device, void *client_data)
2728 {
2729 struct srpt_device *sdev = client_data;
2730 int i;
2731
2732 if (!sdev) {
2733 pr_info("%s(%s): nothing to do.\n", __func__, device->name);
2734 return;
2735 }
2736
2737 srpt_unregister_mad_agent(sdev);
2738
2739 ib_unregister_event_handler(&sdev->event_handler);
2740
2741 /* Cancel any work queued by the just unregistered IB event handler. */
2742 for (i = 0; i < sdev->device->phys_port_cnt; i++)
2743 cancel_work_sync(&sdev->port[i].work);
2744
2745 ib_destroy_cm_id(sdev->cm_id);
2746
2747 /*
2748 * Unregistering a target must happen after destroying sdev->cm_id
2749 * such that no new SRP_LOGIN_REQ information units can arrive while
2750 * destroying the target.
2751 */
2752 spin_lock(&srpt_dev_lock);
2753 list_del(&sdev->list);
2754 spin_unlock(&srpt_dev_lock);
2755 srpt_release_sdev(sdev);
2756
2757 srpt_free_srq(sdev);
2758
2759 ib_dealloc_pd(sdev->pd);
2760
2761 kfree(sdev);
2762 }
2763
2764 static struct ib_client srpt_client = {
2765 .name = DRV_NAME,
2766 .add = srpt_add_one,
2767 .remove = srpt_remove_one
2768 };
2769
2770 static int srpt_check_true(struct se_portal_group *se_tpg)
2771 {
2772 return 1;
2773 }
2774
2775 static int srpt_check_false(struct se_portal_group *se_tpg)
2776 {
2777 return 0;
2778 }
2779
2780 static char *srpt_get_fabric_name(void)
2781 {
2782 return "srpt";
2783 }
2784
2785 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
2786 {
2787 return tpg->se_tpg_wwn->priv;
2788 }
2789
2790 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
2791 {
2792 struct srpt_port *sport = srpt_tpg_to_sport(tpg);
2793
2794 WARN_ON_ONCE(tpg != &sport->port_guid_tpg &&
2795 tpg != &sport->port_gid_tpg);
2796 return tpg == &sport->port_guid_tpg ? sport->port_guid :
2797 sport->port_gid;
2798 }
2799
2800 static u16 srpt_get_tag(struct se_portal_group *tpg)
2801 {
2802 return 1;
2803 }
2804
2805 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
2806 {
2807 return 1;
2808 }
2809
2810 static void srpt_release_cmd(struct se_cmd *se_cmd)
2811 {
2812 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
2813 struct srpt_send_ioctx, cmd);
2814 struct srpt_rdma_ch *ch = ioctx->ch;
2815 unsigned long flags;
2816
2817 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
2818 !(ioctx->cmd.transport_state & CMD_T_ABORTED));
2819
2820 if (ioctx->n_rw_ctx) {
2821 srpt_free_rw_ctxs(ch, ioctx);
2822 ioctx->n_rw_ctx = 0;
2823 }
2824
2825 spin_lock_irqsave(&ch->spinlock, flags);
2826 list_add(&ioctx->free_list, &ch->free_list);
2827 spin_unlock_irqrestore(&ch->spinlock, flags);
2828 }
2829
2830 /**
2831 * srpt_close_session() - Forcibly close a session.
2832 *
2833 * Callback function invoked by the TCM core to clean up sessions associated
2834 * with a node ACL when the user invokes
2835 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
2836 */
2837 static void srpt_close_session(struct se_session *se_sess)
2838 {
2839 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2840 struct srpt_device *sdev = ch->sport->sdev;
2841
2842 mutex_lock(&sdev->mutex);
2843 srpt_disconnect_ch_sync(ch);
2844 mutex_unlock(&sdev->mutex);
2845 }
2846
2847 /**
2848 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
2849 *
2850 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
2851 * This object represents an arbitrary integer used to uniquely identify a
2852 * particular attached remote initiator port to a particular SCSI target port
2853 * within a particular SCSI target device within a particular SCSI instance.
2854 */
2855 static u32 srpt_sess_get_index(struct se_session *se_sess)
2856 {
2857 return 0;
2858 }
2859
2860 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
2861 {
2862 }
2863
2864 /* Note: only used from inside debug printk's by the TCM core. */
2865 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
2866 {
2867 struct srpt_send_ioctx *ioctx;
2868
2869 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2870 return srpt_get_cmd_state(ioctx);
2871 }
2872
2873 static int srpt_parse_guid(u64 *guid, const char *name)
2874 {
2875 u16 w[4];
2876 int ret = -EINVAL;
2877
2878 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
2879 goto out;
2880 *guid = get_unaligned_be64(w);
2881 ret = 0;
2882 out:
2883 return ret;
2884 }
2885
2886 /**
2887 * srpt_parse_i_port_id() - Parse an initiator port ID.
2888 * @name: ASCII representation of a 128-bit initiator port ID.
2889 * @i_port_id: Binary 128-bit port ID.
2890 */
2891 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
2892 {
2893 const char *p;
2894 unsigned len, count, leading_zero_bytes;
2895 int ret;
2896
2897 p = name;
2898 if (strncasecmp(p, "0x", 2) == 0)
2899 p += 2;
2900 ret = -EINVAL;
2901 len = strlen(p);
2902 if (len % 2)
2903 goto out;
2904 count = min(len / 2, 16U);
2905 leading_zero_bytes = 16 - count;
2906 memset(i_port_id, 0, leading_zero_bytes);
2907 ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
2908 if (ret < 0)
2909 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", ret);
2910 out:
2911 return ret;
2912 }
2913
2914 /*
2915 * configfs callback function invoked for
2916 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
2917 */
2918 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
2919 {
2920 u64 guid;
2921 u8 i_port_id[16];
2922 int ret;
2923
2924 ret = srpt_parse_guid(&guid, name);
2925 if (ret < 0)
2926 ret = srpt_parse_i_port_id(i_port_id, name);
2927 if (ret < 0)
2928 pr_err("invalid initiator port ID %s\n", name);
2929 return ret;
2930 }
2931
2932 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
2933 char *page)
2934 {
2935 struct se_portal_group *se_tpg = attrib_to_tpg(item);
2936 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
2937
2938 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
2939 }
2940
2941 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
2942 const char *page, size_t count)
2943 {
2944 struct se_portal_group *se_tpg = attrib_to_tpg(item);
2945 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
2946 unsigned long val;
2947 int ret;
2948
2949 ret = kstrtoul(page, 0, &val);
2950 if (ret < 0) {
2951 pr_err("kstrtoul() failed with ret: %d\n", ret);
2952 return -EINVAL;
2953 }
2954 if (val > MAX_SRPT_RDMA_SIZE) {
2955 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
2956 MAX_SRPT_RDMA_SIZE);
2957 return -EINVAL;
2958 }
2959 if (val < DEFAULT_MAX_RDMA_SIZE) {
2960 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
2961 val, DEFAULT_MAX_RDMA_SIZE);
2962 return -EINVAL;
2963 }
2964 sport->port_attrib.srp_max_rdma_size = val;
2965
2966 return count;
2967 }
2968
2969 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
2970 char *page)
2971 {
2972 struct se_portal_group *se_tpg = attrib_to_tpg(item);
2973 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
2974
2975 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
2976 }
2977
2978 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
2979 const char *page, size_t count)
2980 {
2981 struct se_portal_group *se_tpg = attrib_to_tpg(item);
2982 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
2983 unsigned long val;
2984 int ret;
2985
2986 ret = kstrtoul(page, 0, &val);
2987 if (ret < 0) {
2988 pr_err("kstrtoul() failed with ret: %d\n", ret);
2989 return -EINVAL;
2990 }
2991 if (val > MAX_SRPT_RSP_SIZE) {
2992 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
2993 MAX_SRPT_RSP_SIZE);
2994 return -EINVAL;
2995 }
2996 if (val < MIN_MAX_RSP_SIZE) {
2997 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
2998 MIN_MAX_RSP_SIZE);
2999 return -EINVAL;
3000 }
3001 sport->port_attrib.srp_max_rsp_size = val;
3002
3003 return count;
3004 }
3005
3006 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3007 char *page)
3008 {
3009 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3010 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3011
3012 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3013 }
3014
3015 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3016 const char *page, size_t count)
3017 {
3018 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3019 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3020 unsigned long val;
3021 int ret;
3022
3023 ret = kstrtoul(page, 0, &val);
3024 if (ret < 0) {
3025 pr_err("kstrtoul() failed with ret: %d\n", ret);
3026 return -EINVAL;
3027 }
3028 if (val > MAX_SRPT_SRQ_SIZE) {
3029 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3030 MAX_SRPT_SRQ_SIZE);
3031 return -EINVAL;
3032 }
3033 if (val < MIN_SRPT_SRQ_SIZE) {
3034 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3035 MIN_SRPT_SRQ_SIZE);
3036 return -EINVAL;
3037 }
3038 sport->port_attrib.srp_sq_size = val;
3039
3040 return count;
3041 }
3042
3043 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3044 char *page)
3045 {
3046 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3047 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3048
3049 return sprintf(page, "%d\n", sport->port_attrib.use_srq);
3050 }
3051
3052 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3053 const char *page, size_t count)
3054 {
3055 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3056 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3057 struct srpt_device *sdev = sport->sdev;
3058 unsigned long val;
3059 bool enabled;
3060 int ret;
3061
3062 ret = kstrtoul(page, 0, &val);
3063 if (ret < 0)
3064 return ret;
3065 if (val != !!val)
3066 return -EINVAL;
3067
3068 ret = mutex_lock_interruptible(&sdev->mutex);
3069 if (ret < 0)
3070 return ret;
3071 enabled = sport->enabled;
3072 /* Log out all initiator systems before changing 'use_srq'. */
3073 srpt_set_enabled(sport, false);
3074 sport->port_attrib.use_srq = val;
3075 srpt_use_srq(sdev, sport->port_attrib.use_srq);
3076 srpt_set_enabled(sport, enabled);
3077 mutex_unlock(&sdev->mutex);
3078
3079 return count;
3080 }
3081
3082 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size);
3083 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size);
3084 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size);
3085 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq);
3086
3087 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3088 &srpt_tpg_attrib_attr_srp_max_rdma_size,
3089 &srpt_tpg_attrib_attr_srp_max_rsp_size,
3090 &srpt_tpg_attrib_attr_srp_sq_size,
3091 &srpt_tpg_attrib_attr_use_srq,
3092 NULL,
3093 };
3094
3095 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3096 {
3097 struct se_portal_group *se_tpg = to_tpg(item);
3098 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3099
3100 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3101 }
3102
3103 static ssize_t srpt_tpg_enable_store(struct config_item *item,
3104 const char *page, size_t count)
3105 {
3106 struct se_portal_group *se_tpg = to_tpg(item);
3107 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3108 struct srpt_device *sdev = sport->sdev;
3109 unsigned long tmp;
3110 int ret;
3111
3112 ret = kstrtoul(page, 0, &tmp);
3113 if (ret < 0) {
3114 pr_err("Unable to extract srpt_tpg_store_enable\n");
3115 return -EINVAL;
3116 }
3117
3118 if ((tmp != 0) && (tmp != 1)) {
3119 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3120 return -EINVAL;
3121 }
3122
3123 mutex_lock(&sdev->mutex);
3124 srpt_set_enabled(sport, tmp);
3125 mutex_unlock(&sdev->mutex);
3126
3127 return count;
3128 }
3129
3130 CONFIGFS_ATTR(srpt_tpg_, enable);
3131
3132 static struct configfs_attribute *srpt_tpg_attrs[] = {
3133 &srpt_tpg_attr_enable,
3134 NULL,
3135 };
3136
3137 /**
3138 * configfs callback invoked for
3139 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3140 */
3141 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3142 struct config_group *group,
3143 const char *name)
3144 {
3145 struct srpt_port *sport = wwn->priv;
3146 static struct se_portal_group *tpg;
3147 int res;
3148
3149 WARN_ON_ONCE(wwn != &sport->port_guid_wwn &&
3150 wwn != &sport->port_gid_wwn);
3151 tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg :
3152 &sport->port_gid_tpg;
3153 res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP);
3154 if (res)
3155 return ERR_PTR(res);
3156
3157 return tpg;
3158 }
3159
3160 /**
3161 * configfs callback invoked for
3162 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3163 */
3164 static void srpt_drop_tpg(struct se_portal_group *tpg)
3165 {
3166 struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3167
3168 sport->enabled = false;
3169 core_tpg_deregister(tpg);
3170 }
3171
3172 /**
3173 * configfs callback invoked for
3174 * mkdir /sys/kernel/config/target/$driver/$port
3175 */
3176 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3177 struct config_group *group,
3178 const char *name)
3179 {
3180 return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3181 }
3182
3183 /**
3184 * configfs callback invoked for
3185 * rmdir /sys/kernel/config/target/$driver/$port
3186 */
3187 static void srpt_drop_tport(struct se_wwn *wwn)
3188 {
3189 }
3190
3191 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3192 {
3193 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3194 }
3195
3196 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3197
3198 static struct configfs_attribute *srpt_wwn_attrs[] = {
3199 &srpt_wwn_attr_version,
3200 NULL,
3201 };
3202
3203 static const struct target_core_fabric_ops srpt_template = {
3204 .module = THIS_MODULE,
3205 .name = "srpt",
3206 .get_fabric_name = srpt_get_fabric_name,
3207 .tpg_get_wwn = srpt_get_fabric_wwn,
3208 .tpg_get_tag = srpt_get_tag,
3209 .tpg_check_demo_mode = srpt_check_false,
3210 .tpg_check_demo_mode_cache = srpt_check_true,
3211 .tpg_check_demo_mode_write_protect = srpt_check_true,
3212 .tpg_check_prod_mode_write_protect = srpt_check_false,
3213 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3214 .release_cmd = srpt_release_cmd,
3215 .check_stop_free = srpt_check_stop_free,
3216 .close_session = srpt_close_session,
3217 .sess_get_index = srpt_sess_get_index,
3218 .sess_get_initiator_sid = NULL,
3219 .write_pending = srpt_write_pending,
3220 .write_pending_status = srpt_write_pending_status,
3221 .set_default_node_attributes = srpt_set_default_node_attrs,
3222 .get_cmd_state = srpt_get_tcm_cmd_state,
3223 .queue_data_in = srpt_queue_data_in,
3224 .queue_status = srpt_queue_status,
3225 .queue_tm_rsp = srpt_queue_tm_rsp,
3226 .aborted_task = srpt_aborted_task,
3227 /*
3228 * Setup function pointers for generic logic in
3229 * target_core_fabric_configfs.c
3230 */
3231 .fabric_make_wwn = srpt_make_tport,
3232 .fabric_drop_wwn = srpt_drop_tport,
3233 .fabric_make_tpg = srpt_make_tpg,
3234 .fabric_drop_tpg = srpt_drop_tpg,
3235 .fabric_init_nodeacl = srpt_init_nodeacl,
3236
3237 .tfc_wwn_attrs = srpt_wwn_attrs,
3238 .tfc_tpg_base_attrs = srpt_tpg_attrs,
3239 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3240 };
3241
3242 /**
3243 * srpt_init_module() - Kernel module initialization.
3244 *
3245 * Note: Since ib_register_client() registers callback functions, and since at
3246 * least one of these callback functions (srpt_add_one()) calls target core
3247 * functions, this driver must be registered with the target core before
3248 * ib_register_client() is called.
3249 */
3250 static int __init srpt_init_module(void)
3251 {
3252 int ret;
3253
3254 ret = -EINVAL;
3255 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3256 pr_err("invalid value %d for kernel module parameter"
3257 " srp_max_req_size -- must be at least %d.\n",
3258 srp_max_req_size, MIN_MAX_REQ_SIZE);
3259 goto out;
3260 }
3261
3262 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3263 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3264 pr_err("invalid value %d for kernel module parameter"
3265 " srpt_srq_size -- must be in the range [%d..%d].\n",
3266 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3267 goto out;
3268 }
3269
3270 ret = target_register_template(&srpt_template);
3271 if (ret)
3272 goto out;
3273
3274 ret = ib_register_client(&srpt_client);
3275 if (ret) {
3276 pr_err("couldn't register IB client\n");
3277 goto out_unregister_target;
3278 }
3279
3280 return 0;
3281
3282 out_unregister_target:
3283 target_unregister_template(&srpt_template);
3284 out:
3285 return ret;
3286 }
3287
3288 static void __exit srpt_cleanup_module(void)
3289 {
3290 ib_unregister_client(&srpt_client);
3291 target_unregister_template(&srpt_template);
3292 }
3293
3294 module_init(srpt_init_module);
3295 module_exit(srpt_cleanup_module);