]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/infiniband/ulp/srpt/ib_srpt.c
Merge tag 'wireless-drivers-for-davem-2016-06-21' of git://git.kernel.org/pub/scm...
[mirror_ubuntu-eoan-kernel.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_proto.h>
45 #include <scsi/scsi_tcq.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric.h>
48 #include "ib_srpt.h"
49
50 /* Name of this kernel module. */
51 #define DRV_NAME "ib_srpt"
52 #define DRV_VERSION "2.0.0"
53 #define DRV_RELDATE "2011-02-14"
54
55 #define SRPT_ID_STRING "Linux SRP target"
56
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
59
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
62 "v" DRV_VERSION " (" DRV_RELDATE ")");
63 MODULE_LICENSE("Dual BSD/GPL");
64
65 /*
66 * Global Variables
67 */
68
69 static u64 srpt_service_guid;
70 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
71 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
72
73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
74 module_param(srp_max_req_size, int, 0444);
75 MODULE_PARM_DESC(srp_max_req_size,
76 "Maximum size of SRP request messages in bytes.");
77
78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
79 module_param(srpt_srq_size, int, 0444);
80 MODULE_PARM_DESC(srpt_srq_size,
81 "Shared receive queue (SRQ) size.");
82
83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
84 {
85 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
86 }
87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
88 0444);
89 MODULE_PARM_DESC(srpt_service_guid,
90 "Using this value for ioc_guid, id_ext, and cm_listen_id"
91 " instead of using the node_guid of the first HCA.");
92
93 static struct ib_client srpt_client;
94 static void srpt_release_cmd(struct se_cmd *se_cmd);
95 static void srpt_free_ch(struct kref *kref);
96 static int srpt_queue_status(struct se_cmd *cmd);
97 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
98 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
99 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
100
101 /*
102 * The only allowed channel state changes are those that change the channel
103 * state into a state with a higher numerical value. Hence the new > prev test.
104 */
105 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
106 {
107 unsigned long flags;
108 enum rdma_ch_state prev;
109 bool changed = false;
110
111 spin_lock_irqsave(&ch->spinlock, flags);
112 prev = ch->state;
113 if (new > prev) {
114 ch->state = new;
115 changed = true;
116 }
117 spin_unlock_irqrestore(&ch->spinlock, flags);
118
119 return changed;
120 }
121
122 /**
123 * srpt_event_handler() - Asynchronous IB event callback function.
124 *
125 * Callback function called by the InfiniBand core when an asynchronous IB
126 * event occurs. This callback may occur in interrupt context. See also
127 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
128 * Architecture Specification.
129 */
130 static void srpt_event_handler(struct ib_event_handler *handler,
131 struct ib_event *event)
132 {
133 struct srpt_device *sdev;
134 struct srpt_port *sport;
135
136 sdev = ib_get_client_data(event->device, &srpt_client);
137 if (!sdev || sdev->device != event->device)
138 return;
139
140 pr_debug("ASYNC event= %d on device= %s\n", event->event,
141 sdev->device->name);
142
143 switch (event->event) {
144 case IB_EVENT_PORT_ERR:
145 if (event->element.port_num <= sdev->device->phys_port_cnt) {
146 sport = &sdev->port[event->element.port_num - 1];
147 sport->lid = 0;
148 sport->sm_lid = 0;
149 }
150 break;
151 case IB_EVENT_PORT_ACTIVE:
152 case IB_EVENT_LID_CHANGE:
153 case IB_EVENT_PKEY_CHANGE:
154 case IB_EVENT_SM_CHANGE:
155 case IB_EVENT_CLIENT_REREGISTER:
156 case IB_EVENT_GID_CHANGE:
157 /* Refresh port data asynchronously. */
158 if (event->element.port_num <= sdev->device->phys_port_cnt) {
159 sport = &sdev->port[event->element.port_num - 1];
160 if (!sport->lid && !sport->sm_lid)
161 schedule_work(&sport->work);
162 }
163 break;
164 default:
165 pr_err("received unrecognized IB event %d\n",
166 event->event);
167 break;
168 }
169 }
170
171 /**
172 * srpt_srq_event() - SRQ event callback function.
173 */
174 static void srpt_srq_event(struct ib_event *event, void *ctx)
175 {
176 pr_info("SRQ event %d\n", event->event);
177 }
178
179 static const char *get_ch_state_name(enum rdma_ch_state s)
180 {
181 switch (s) {
182 case CH_CONNECTING:
183 return "connecting";
184 case CH_LIVE:
185 return "live";
186 case CH_DISCONNECTING:
187 return "disconnecting";
188 case CH_DRAINING:
189 return "draining";
190 case CH_DISCONNECTED:
191 return "disconnected";
192 }
193 return "???";
194 }
195
196 /**
197 * srpt_qp_event() - QP event callback function.
198 */
199 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
200 {
201 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
202 event->event, ch->cm_id, ch->sess_name, ch->state);
203
204 switch (event->event) {
205 case IB_EVENT_COMM_EST:
206 ib_cm_notify(ch->cm_id, event->event);
207 break;
208 case IB_EVENT_QP_LAST_WQE_REACHED:
209 pr_debug("%s-%d, state %s: received Last WQE event.\n",
210 ch->sess_name, ch->qp->qp_num,
211 get_ch_state_name(ch->state));
212 break;
213 default:
214 pr_err("received unrecognized IB QP event %d\n", event->event);
215 break;
216 }
217 }
218
219 /**
220 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
221 *
222 * @slot: one-based slot number.
223 * @value: four-bit value.
224 *
225 * Copies the lowest four bits of value in element slot of the array of four
226 * bit elements called c_list (controller list). The index slot is one-based.
227 */
228 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
229 {
230 u16 id;
231 u8 tmp;
232
233 id = (slot - 1) / 2;
234 if (slot & 0x1) {
235 tmp = c_list[id] & 0xf;
236 c_list[id] = (value << 4) | tmp;
237 } else {
238 tmp = c_list[id] & 0xf0;
239 c_list[id] = (value & 0xf) | tmp;
240 }
241 }
242
243 /**
244 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
245 *
246 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
247 * Specification.
248 */
249 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
250 {
251 struct ib_class_port_info *cif;
252
253 cif = (struct ib_class_port_info *)mad->data;
254 memset(cif, 0, sizeof(*cif));
255 cif->base_version = 1;
256 cif->class_version = 1;
257
258 ib_set_cpi_resp_time(cif, 20);
259 mad->mad_hdr.status = 0;
260 }
261
262 /**
263 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
264 *
265 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
266 * Specification. See also section B.7, table B.6 in the SRP r16a document.
267 */
268 static void srpt_get_iou(struct ib_dm_mad *mad)
269 {
270 struct ib_dm_iou_info *ioui;
271 u8 slot;
272 int i;
273
274 ioui = (struct ib_dm_iou_info *)mad->data;
275 ioui->change_id = cpu_to_be16(1);
276 ioui->max_controllers = 16;
277
278 /* set present for slot 1 and empty for the rest */
279 srpt_set_ioc(ioui->controller_list, 1, 1);
280 for (i = 1, slot = 2; i < 16; i++, slot++)
281 srpt_set_ioc(ioui->controller_list, slot, 0);
282
283 mad->mad_hdr.status = 0;
284 }
285
286 /**
287 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
288 *
289 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
290 * Architecture Specification. See also section B.7, table B.7 in the SRP
291 * r16a document.
292 */
293 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
294 struct ib_dm_mad *mad)
295 {
296 struct srpt_device *sdev = sport->sdev;
297 struct ib_dm_ioc_profile *iocp;
298
299 iocp = (struct ib_dm_ioc_profile *)mad->data;
300
301 if (!slot || slot > 16) {
302 mad->mad_hdr.status
303 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
304 return;
305 }
306
307 if (slot > 2) {
308 mad->mad_hdr.status
309 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
310 return;
311 }
312
313 memset(iocp, 0, sizeof(*iocp));
314 strcpy(iocp->id_string, SRPT_ID_STRING);
315 iocp->guid = cpu_to_be64(srpt_service_guid);
316 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
317 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
318 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
319 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
320 iocp->subsys_device_id = 0x0;
321 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
322 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
323 iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
324 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
325 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
326 iocp->rdma_read_depth = 4;
327 iocp->send_size = cpu_to_be32(srp_max_req_size);
328 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
329 1U << 24));
330 iocp->num_svc_entries = 1;
331 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
332 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
333
334 mad->mad_hdr.status = 0;
335 }
336
337 /**
338 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
339 *
340 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
341 * Specification. See also section B.7, table B.8 in the SRP r16a document.
342 */
343 static void srpt_get_svc_entries(u64 ioc_guid,
344 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
345 {
346 struct ib_dm_svc_entries *svc_entries;
347
348 WARN_ON(!ioc_guid);
349
350 if (!slot || slot > 16) {
351 mad->mad_hdr.status
352 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
353 return;
354 }
355
356 if (slot > 2 || lo > hi || hi > 1) {
357 mad->mad_hdr.status
358 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
359 return;
360 }
361
362 svc_entries = (struct ib_dm_svc_entries *)mad->data;
363 memset(svc_entries, 0, sizeof(*svc_entries));
364 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
365 snprintf(svc_entries->service_entries[0].name,
366 sizeof(svc_entries->service_entries[0].name),
367 "%s%016llx",
368 SRP_SERVICE_NAME_PREFIX,
369 ioc_guid);
370
371 mad->mad_hdr.status = 0;
372 }
373
374 /**
375 * srpt_mgmt_method_get() - Process a received management datagram.
376 * @sp: source port through which the MAD has been received.
377 * @rq_mad: received MAD.
378 * @rsp_mad: response MAD.
379 */
380 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
381 struct ib_dm_mad *rsp_mad)
382 {
383 u16 attr_id;
384 u32 slot;
385 u8 hi, lo;
386
387 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
388 switch (attr_id) {
389 case DM_ATTR_CLASS_PORT_INFO:
390 srpt_get_class_port_info(rsp_mad);
391 break;
392 case DM_ATTR_IOU_INFO:
393 srpt_get_iou(rsp_mad);
394 break;
395 case DM_ATTR_IOC_PROFILE:
396 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
397 srpt_get_ioc(sp, slot, rsp_mad);
398 break;
399 case DM_ATTR_SVC_ENTRIES:
400 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
401 hi = (u8) ((slot >> 8) & 0xff);
402 lo = (u8) (slot & 0xff);
403 slot = (u16) ((slot >> 16) & 0xffff);
404 srpt_get_svc_entries(srpt_service_guid,
405 slot, hi, lo, rsp_mad);
406 break;
407 default:
408 rsp_mad->mad_hdr.status =
409 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
410 break;
411 }
412 }
413
414 /**
415 * srpt_mad_send_handler() - Post MAD-send callback function.
416 */
417 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
418 struct ib_mad_send_wc *mad_wc)
419 {
420 ib_destroy_ah(mad_wc->send_buf->ah);
421 ib_free_send_mad(mad_wc->send_buf);
422 }
423
424 /**
425 * srpt_mad_recv_handler() - MAD reception callback function.
426 */
427 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
428 struct ib_mad_send_buf *send_buf,
429 struct ib_mad_recv_wc *mad_wc)
430 {
431 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
432 struct ib_ah *ah;
433 struct ib_mad_send_buf *rsp;
434 struct ib_dm_mad *dm_mad;
435
436 if (!mad_wc || !mad_wc->recv_buf.mad)
437 return;
438
439 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
440 mad_wc->recv_buf.grh, mad_agent->port_num);
441 if (IS_ERR(ah))
442 goto err;
443
444 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
445
446 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
447 mad_wc->wc->pkey_index, 0,
448 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
449 GFP_KERNEL,
450 IB_MGMT_BASE_VERSION);
451 if (IS_ERR(rsp))
452 goto err_rsp;
453
454 rsp->ah = ah;
455
456 dm_mad = rsp->mad;
457 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
458 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
459 dm_mad->mad_hdr.status = 0;
460
461 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
462 case IB_MGMT_METHOD_GET:
463 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
464 break;
465 case IB_MGMT_METHOD_SET:
466 dm_mad->mad_hdr.status =
467 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
468 break;
469 default:
470 dm_mad->mad_hdr.status =
471 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
472 break;
473 }
474
475 if (!ib_post_send_mad(rsp, NULL)) {
476 ib_free_recv_mad(mad_wc);
477 /* will destroy_ah & free_send_mad in send completion */
478 return;
479 }
480
481 ib_free_send_mad(rsp);
482
483 err_rsp:
484 ib_destroy_ah(ah);
485 err:
486 ib_free_recv_mad(mad_wc);
487 }
488
489 /**
490 * srpt_refresh_port() - Configure a HCA port.
491 *
492 * Enable InfiniBand management datagram processing, update the cached sm_lid,
493 * lid and gid values, and register a callback function for processing MADs
494 * on the specified port.
495 *
496 * Note: It is safe to call this function more than once for the same port.
497 */
498 static int srpt_refresh_port(struct srpt_port *sport)
499 {
500 struct ib_mad_reg_req reg_req;
501 struct ib_port_modify port_modify;
502 struct ib_port_attr port_attr;
503 int ret;
504
505 memset(&port_modify, 0, sizeof(port_modify));
506 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
507 port_modify.clr_port_cap_mask = 0;
508
509 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
510 if (ret)
511 goto err_mod_port;
512
513 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
514 if (ret)
515 goto err_query_port;
516
517 sport->sm_lid = port_attr.sm_lid;
518 sport->lid = port_attr.lid;
519
520 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
521 NULL);
522 if (ret)
523 goto err_query_port;
524
525 if (!sport->mad_agent) {
526 memset(&reg_req, 0, sizeof(reg_req));
527 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
528 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
529 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
530 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
531
532 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
533 sport->port,
534 IB_QPT_GSI,
535 &reg_req, 0,
536 srpt_mad_send_handler,
537 srpt_mad_recv_handler,
538 sport, 0);
539 if (IS_ERR(sport->mad_agent)) {
540 ret = PTR_ERR(sport->mad_agent);
541 sport->mad_agent = NULL;
542 goto err_query_port;
543 }
544 }
545
546 return 0;
547
548 err_query_port:
549
550 port_modify.set_port_cap_mask = 0;
551 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
552 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
553
554 err_mod_port:
555
556 return ret;
557 }
558
559 /**
560 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
561 *
562 * Note: It is safe to call this function more than once for the same device.
563 */
564 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
565 {
566 struct ib_port_modify port_modify = {
567 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
568 };
569 struct srpt_port *sport;
570 int i;
571
572 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
573 sport = &sdev->port[i - 1];
574 WARN_ON(sport->port != i);
575 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
576 pr_err("disabling MAD processing failed.\n");
577 if (sport->mad_agent) {
578 ib_unregister_mad_agent(sport->mad_agent);
579 sport->mad_agent = NULL;
580 }
581 }
582 }
583
584 /**
585 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
586 */
587 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
588 int ioctx_size, int dma_size,
589 enum dma_data_direction dir)
590 {
591 struct srpt_ioctx *ioctx;
592
593 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
594 if (!ioctx)
595 goto err;
596
597 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
598 if (!ioctx->buf)
599 goto err_free_ioctx;
600
601 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
602 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
603 goto err_free_buf;
604
605 return ioctx;
606
607 err_free_buf:
608 kfree(ioctx->buf);
609 err_free_ioctx:
610 kfree(ioctx);
611 err:
612 return NULL;
613 }
614
615 /**
616 * srpt_free_ioctx() - Free an SRPT I/O context structure.
617 */
618 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
619 int dma_size, enum dma_data_direction dir)
620 {
621 if (!ioctx)
622 return;
623
624 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
625 kfree(ioctx->buf);
626 kfree(ioctx);
627 }
628
629 /**
630 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
631 * @sdev: Device to allocate the I/O context ring for.
632 * @ring_size: Number of elements in the I/O context ring.
633 * @ioctx_size: I/O context size.
634 * @dma_size: DMA buffer size.
635 * @dir: DMA data direction.
636 */
637 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
638 int ring_size, int ioctx_size,
639 int dma_size, enum dma_data_direction dir)
640 {
641 struct srpt_ioctx **ring;
642 int i;
643
644 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
645 && ioctx_size != sizeof(struct srpt_send_ioctx));
646
647 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
648 if (!ring)
649 goto out;
650 for (i = 0; i < ring_size; ++i) {
651 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
652 if (!ring[i])
653 goto err;
654 ring[i]->index = i;
655 }
656 goto out;
657
658 err:
659 while (--i >= 0)
660 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
661 kfree(ring);
662 ring = NULL;
663 out:
664 return ring;
665 }
666
667 /**
668 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
669 */
670 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
671 struct srpt_device *sdev, int ring_size,
672 int dma_size, enum dma_data_direction dir)
673 {
674 int i;
675
676 for (i = 0; i < ring_size; ++i)
677 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
678 kfree(ioctx_ring);
679 }
680
681 /**
682 * srpt_get_cmd_state() - Get the state of a SCSI command.
683 */
684 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
685 {
686 enum srpt_command_state state;
687 unsigned long flags;
688
689 BUG_ON(!ioctx);
690
691 spin_lock_irqsave(&ioctx->spinlock, flags);
692 state = ioctx->state;
693 spin_unlock_irqrestore(&ioctx->spinlock, flags);
694 return state;
695 }
696
697 /**
698 * srpt_set_cmd_state() - Set the state of a SCSI command.
699 *
700 * Does not modify the state of aborted commands. Returns the previous command
701 * state.
702 */
703 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
704 enum srpt_command_state new)
705 {
706 enum srpt_command_state previous;
707 unsigned long flags;
708
709 BUG_ON(!ioctx);
710
711 spin_lock_irqsave(&ioctx->spinlock, flags);
712 previous = ioctx->state;
713 if (previous != SRPT_STATE_DONE)
714 ioctx->state = new;
715 spin_unlock_irqrestore(&ioctx->spinlock, flags);
716
717 return previous;
718 }
719
720 /**
721 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
722 *
723 * Returns true if and only if the previous command state was equal to 'old'.
724 */
725 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
726 enum srpt_command_state old,
727 enum srpt_command_state new)
728 {
729 enum srpt_command_state previous;
730 unsigned long flags;
731
732 WARN_ON(!ioctx);
733 WARN_ON(old == SRPT_STATE_DONE);
734 WARN_ON(new == SRPT_STATE_NEW);
735
736 spin_lock_irqsave(&ioctx->spinlock, flags);
737 previous = ioctx->state;
738 if (previous == old)
739 ioctx->state = new;
740 spin_unlock_irqrestore(&ioctx->spinlock, flags);
741 return previous == old;
742 }
743
744 /**
745 * srpt_post_recv() - Post an IB receive request.
746 */
747 static int srpt_post_recv(struct srpt_device *sdev,
748 struct srpt_recv_ioctx *ioctx)
749 {
750 struct ib_sge list;
751 struct ib_recv_wr wr, *bad_wr;
752
753 BUG_ON(!sdev);
754 list.addr = ioctx->ioctx.dma;
755 list.length = srp_max_req_size;
756 list.lkey = sdev->pd->local_dma_lkey;
757
758 ioctx->ioctx.cqe.done = srpt_recv_done;
759 wr.wr_cqe = &ioctx->ioctx.cqe;
760 wr.next = NULL;
761 wr.sg_list = &list;
762 wr.num_sge = 1;
763
764 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
765 }
766
767 /**
768 * srpt_zerolength_write() - Perform a zero-length RDMA write.
769 *
770 * A quote from the InfiniBand specification: C9-88: For an HCA responder
771 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
772 * request, the R_Key shall not be validated, even if the request includes
773 * Immediate data.
774 */
775 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
776 {
777 struct ib_send_wr wr, *bad_wr;
778
779 memset(&wr, 0, sizeof(wr));
780 wr.opcode = IB_WR_RDMA_WRITE;
781 wr.wr_cqe = &ch->zw_cqe;
782 wr.send_flags = IB_SEND_SIGNALED;
783 return ib_post_send(ch->qp, &wr, &bad_wr);
784 }
785
786 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
787 {
788 struct srpt_rdma_ch *ch = cq->cq_context;
789
790 if (wc->status == IB_WC_SUCCESS) {
791 srpt_process_wait_list(ch);
792 } else {
793 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
794 schedule_work(&ch->release_work);
795 else
796 WARN_ONCE(1, "%s-%d\n", ch->sess_name, ch->qp->qp_num);
797 }
798 }
799
800 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
801 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
802 unsigned *sg_cnt)
803 {
804 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
805 struct srpt_rdma_ch *ch = ioctx->ch;
806 struct scatterlist *prev = NULL;
807 unsigned prev_nents;
808 int ret, i;
809
810 if (nbufs == 1) {
811 ioctx->rw_ctxs = &ioctx->s_rw_ctx;
812 } else {
813 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
814 GFP_KERNEL);
815 if (!ioctx->rw_ctxs)
816 return -ENOMEM;
817 }
818
819 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
820 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
821 u64 remote_addr = be64_to_cpu(db->va);
822 u32 size = be32_to_cpu(db->len);
823 u32 rkey = be32_to_cpu(db->key);
824
825 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
826 i < nbufs - 1);
827 if (ret)
828 goto unwind;
829
830 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
831 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
832 if (ret < 0) {
833 target_free_sgl(ctx->sg, ctx->nents);
834 goto unwind;
835 }
836
837 ioctx->n_rdma += ret;
838 ioctx->n_rw_ctx++;
839
840 if (prev) {
841 sg_unmark_end(&prev[prev_nents - 1]);
842 sg_chain(prev, prev_nents + 1, ctx->sg);
843 } else {
844 *sg = ctx->sg;
845 }
846
847 prev = ctx->sg;
848 prev_nents = ctx->nents;
849
850 *sg_cnt += ctx->nents;
851 }
852
853 return 0;
854
855 unwind:
856 while (--i >= 0) {
857 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
858
859 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
860 ctx->sg, ctx->nents, dir);
861 target_free_sgl(ctx->sg, ctx->nents);
862 }
863 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
864 kfree(ioctx->rw_ctxs);
865 return ret;
866 }
867
868 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
869 struct srpt_send_ioctx *ioctx)
870 {
871 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
872 int i;
873
874 for (i = 0; i < ioctx->n_rw_ctx; i++) {
875 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
876
877 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
878 ctx->sg, ctx->nents, dir);
879 target_free_sgl(ctx->sg, ctx->nents);
880 }
881
882 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
883 kfree(ioctx->rw_ctxs);
884 }
885
886 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
887 {
888 /*
889 * The pointer computations below will only be compiled correctly
890 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
891 * whether srp_cmd::add_data has been declared as a byte pointer.
892 */
893 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
894 !__same_type(srp_cmd->add_data[0], (u8)0));
895
896 /*
897 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
898 * CDB LENGTH' field are reserved and the size in bytes of this field
899 * is four times the value specified in bits 3..7. Hence the "& ~3".
900 */
901 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
902 }
903
904 /**
905 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
906 * @ioctx: Pointer to the I/O context associated with the request.
907 * @srp_cmd: Pointer to the SRP_CMD request data.
908 * @dir: Pointer to the variable to which the transfer direction will be
909 * written.
910 * @data_len: Pointer to the variable to which the total data length of all
911 * descriptors in the SRP_CMD request will be written.
912 *
913 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
914 *
915 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
916 * -ENOMEM when memory allocation fails and zero upon success.
917 */
918 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
919 struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
920 struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
921 {
922 BUG_ON(!dir);
923 BUG_ON(!data_len);
924
925 /*
926 * The lower four bits of the buffer format field contain the DATA-IN
927 * buffer descriptor format, and the highest four bits contain the
928 * DATA-OUT buffer descriptor format.
929 */
930 if (srp_cmd->buf_fmt & 0xf)
931 /* DATA-IN: transfer data from target to initiator (read). */
932 *dir = DMA_FROM_DEVICE;
933 else if (srp_cmd->buf_fmt >> 4)
934 /* DATA-OUT: transfer data from initiator to target (write). */
935 *dir = DMA_TO_DEVICE;
936 else
937 *dir = DMA_NONE;
938
939 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
940 ioctx->cmd.data_direction = *dir;
941
942 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
943 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
944 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
945
946 *data_len = be32_to_cpu(db->len);
947 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
948 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
949 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
950 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
951 int nbufs = be32_to_cpu(idb->table_desc.len) /
952 sizeof(struct srp_direct_buf);
953
954 if (nbufs >
955 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
956 pr_err("received unsupported SRP_CMD request"
957 " type (%u out + %u in != %u / %zu)\n",
958 srp_cmd->data_out_desc_cnt,
959 srp_cmd->data_in_desc_cnt,
960 be32_to_cpu(idb->table_desc.len),
961 sizeof(struct srp_direct_buf));
962 return -EINVAL;
963 }
964
965 *data_len = be32_to_cpu(idb->len);
966 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
967 sg, sg_cnt);
968 } else {
969 *data_len = 0;
970 return 0;
971 }
972 }
973
974 /**
975 * srpt_init_ch_qp() - Initialize queue pair attributes.
976 *
977 * Initialized the attributes of queue pair 'qp' by allowing local write,
978 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
979 */
980 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
981 {
982 struct ib_qp_attr *attr;
983 int ret;
984
985 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
986 if (!attr)
987 return -ENOMEM;
988
989 attr->qp_state = IB_QPS_INIT;
990 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
991 IB_ACCESS_REMOTE_WRITE;
992 attr->port_num = ch->sport->port;
993 attr->pkey_index = 0;
994
995 ret = ib_modify_qp(qp, attr,
996 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
997 IB_QP_PKEY_INDEX);
998
999 kfree(attr);
1000 return ret;
1001 }
1002
1003 /**
1004 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
1005 * @ch: channel of the queue pair.
1006 * @qp: queue pair to change the state of.
1007 *
1008 * Returns zero upon success and a negative value upon failure.
1009 *
1010 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1011 * If this structure ever becomes larger, it might be necessary to allocate
1012 * it dynamically instead of on the stack.
1013 */
1014 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1015 {
1016 struct ib_qp_attr qp_attr;
1017 int attr_mask;
1018 int ret;
1019
1020 qp_attr.qp_state = IB_QPS_RTR;
1021 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1022 if (ret)
1023 goto out;
1024
1025 qp_attr.max_dest_rd_atomic = 4;
1026
1027 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1028
1029 out:
1030 return ret;
1031 }
1032
1033 /**
1034 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1035 * @ch: channel of the queue pair.
1036 * @qp: queue pair to change the state of.
1037 *
1038 * Returns zero upon success and a negative value upon failure.
1039 *
1040 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1041 * If this structure ever becomes larger, it might be necessary to allocate
1042 * it dynamically instead of on the stack.
1043 */
1044 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1045 {
1046 struct ib_qp_attr qp_attr;
1047 int attr_mask;
1048 int ret;
1049
1050 qp_attr.qp_state = IB_QPS_RTS;
1051 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1052 if (ret)
1053 goto out;
1054
1055 qp_attr.max_rd_atomic = 4;
1056
1057 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1058
1059 out:
1060 return ret;
1061 }
1062
1063 /**
1064 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1065 */
1066 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1067 {
1068 struct ib_qp_attr qp_attr;
1069
1070 qp_attr.qp_state = IB_QPS_ERR;
1071 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1072 }
1073
1074 /**
1075 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1076 */
1077 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1078 {
1079 struct srpt_send_ioctx *ioctx;
1080 unsigned long flags;
1081
1082 BUG_ON(!ch);
1083
1084 ioctx = NULL;
1085 spin_lock_irqsave(&ch->spinlock, flags);
1086 if (!list_empty(&ch->free_list)) {
1087 ioctx = list_first_entry(&ch->free_list,
1088 struct srpt_send_ioctx, free_list);
1089 list_del(&ioctx->free_list);
1090 }
1091 spin_unlock_irqrestore(&ch->spinlock, flags);
1092
1093 if (!ioctx)
1094 return ioctx;
1095
1096 BUG_ON(ioctx->ch != ch);
1097 spin_lock_init(&ioctx->spinlock);
1098 ioctx->state = SRPT_STATE_NEW;
1099 ioctx->n_rdma = 0;
1100 ioctx->n_rw_ctx = 0;
1101 init_completion(&ioctx->tx_done);
1102 ioctx->queue_status_only = false;
1103 /*
1104 * transport_init_se_cmd() does not initialize all fields, so do it
1105 * here.
1106 */
1107 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1108 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1109
1110 return ioctx;
1111 }
1112
1113 /**
1114 * srpt_abort_cmd() - Abort a SCSI command.
1115 * @ioctx: I/O context associated with the SCSI command.
1116 * @context: Preferred execution context.
1117 */
1118 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1119 {
1120 enum srpt_command_state state;
1121 unsigned long flags;
1122
1123 BUG_ON(!ioctx);
1124
1125 /*
1126 * If the command is in a state where the target core is waiting for
1127 * the ib_srpt driver, change the state to the next state.
1128 */
1129
1130 spin_lock_irqsave(&ioctx->spinlock, flags);
1131 state = ioctx->state;
1132 switch (state) {
1133 case SRPT_STATE_NEED_DATA:
1134 ioctx->state = SRPT_STATE_DATA_IN;
1135 break;
1136 case SRPT_STATE_CMD_RSP_SENT:
1137 case SRPT_STATE_MGMT_RSP_SENT:
1138 ioctx->state = SRPT_STATE_DONE;
1139 break;
1140 default:
1141 WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1142 __func__, state);
1143 break;
1144 }
1145 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1146
1147 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1148 ioctx->cmd.tag);
1149
1150 switch (state) {
1151 case SRPT_STATE_NEW:
1152 case SRPT_STATE_DATA_IN:
1153 case SRPT_STATE_MGMT:
1154 case SRPT_STATE_DONE:
1155 /*
1156 * Do nothing - defer abort processing until
1157 * srpt_queue_response() is invoked.
1158 */
1159 break;
1160 case SRPT_STATE_NEED_DATA:
1161 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1162 transport_generic_request_failure(&ioctx->cmd,
1163 TCM_CHECK_CONDITION_ABORT_CMD);
1164 break;
1165 case SRPT_STATE_CMD_RSP_SENT:
1166 /*
1167 * SRP_RSP sending failed or the SRP_RSP send completion has
1168 * not been received in time.
1169 */
1170 transport_generic_free_cmd(&ioctx->cmd, 0);
1171 break;
1172 case SRPT_STATE_MGMT_RSP_SENT:
1173 transport_generic_free_cmd(&ioctx->cmd, 0);
1174 break;
1175 default:
1176 WARN(1, "Unexpected command state (%d)", state);
1177 break;
1178 }
1179
1180 return state;
1181 }
1182
1183 /**
1184 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1185 * the data that has been transferred via IB RDMA had to be postponed until the
1186 * check_stop_free() callback. None of this is necessary anymore and needs to
1187 * be cleaned up.
1188 */
1189 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1190 {
1191 struct srpt_rdma_ch *ch = cq->cq_context;
1192 struct srpt_send_ioctx *ioctx =
1193 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1194
1195 WARN_ON(ioctx->n_rdma <= 0);
1196 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1197 ioctx->n_rdma = 0;
1198
1199 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1200 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1201 ioctx, wc->status);
1202 srpt_abort_cmd(ioctx);
1203 return;
1204 }
1205
1206 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1207 SRPT_STATE_DATA_IN))
1208 target_execute_cmd(&ioctx->cmd);
1209 else
1210 pr_err("%s[%d]: wrong state = %d\n", __func__,
1211 __LINE__, srpt_get_cmd_state(ioctx));
1212 }
1213
1214 /**
1215 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1216 * @ch: RDMA channel through which the request has been received.
1217 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1218 * be built in the buffer ioctx->buf points at and hence this function will
1219 * overwrite the request data.
1220 * @tag: tag of the request for which this response is being generated.
1221 * @status: value for the STATUS field of the SRP_RSP information unit.
1222 *
1223 * Returns the size in bytes of the SRP_RSP response.
1224 *
1225 * An SRP_RSP response contains a SCSI status or service response. See also
1226 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1227 * response. See also SPC-2 for more information about sense data.
1228 */
1229 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1230 struct srpt_send_ioctx *ioctx, u64 tag,
1231 int status)
1232 {
1233 struct srp_rsp *srp_rsp;
1234 const u8 *sense_data;
1235 int sense_data_len, max_sense_len;
1236
1237 /*
1238 * The lowest bit of all SAM-3 status codes is zero (see also
1239 * paragraph 5.3 in SAM-3).
1240 */
1241 WARN_ON(status & 1);
1242
1243 srp_rsp = ioctx->ioctx.buf;
1244 BUG_ON(!srp_rsp);
1245
1246 sense_data = ioctx->sense_data;
1247 sense_data_len = ioctx->cmd.scsi_sense_length;
1248 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1249
1250 memset(srp_rsp, 0, sizeof(*srp_rsp));
1251 srp_rsp->opcode = SRP_RSP;
1252 srp_rsp->req_lim_delta =
1253 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1254 srp_rsp->tag = tag;
1255 srp_rsp->status = status;
1256
1257 if (sense_data_len) {
1258 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1259 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1260 if (sense_data_len > max_sense_len) {
1261 pr_warn("truncated sense data from %d to %d"
1262 " bytes\n", sense_data_len, max_sense_len);
1263 sense_data_len = max_sense_len;
1264 }
1265
1266 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1267 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1268 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1269 }
1270
1271 return sizeof(*srp_rsp) + sense_data_len;
1272 }
1273
1274 /**
1275 * srpt_build_tskmgmt_rsp() - Build a task management response.
1276 * @ch: RDMA channel through which the request has been received.
1277 * @ioctx: I/O context in which the SRP_RSP response will be built.
1278 * @rsp_code: RSP_CODE that will be stored in the response.
1279 * @tag: Tag of the request for which this response is being generated.
1280 *
1281 * Returns the size in bytes of the SRP_RSP response.
1282 *
1283 * An SRP_RSP response contains a SCSI status or service response. See also
1284 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1285 * response.
1286 */
1287 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1288 struct srpt_send_ioctx *ioctx,
1289 u8 rsp_code, u64 tag)
1290 {
1291 struct srp_rsp *srp_rsp;
1292 int resp_data_len;
1293 int resp_len;
1294
1295 resp_data_len = 4;
1296 resp_len = sizeof(*srp_rsp) + resp_data_len;
1297
1298 srp_rsp = ioctx->ioctx.buf;
1299 BUG_ON(!srp_rsp);
1300 memset(srp_rsp, 0, sizeof(*srp_rsp));
1301
1302 srp_rsp->opcode = SRP_RSP;
1303 srp_rsp->req_lim_delta =
1304 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1305 srp_rsp->tag = tag;
1306
1307 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1308 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1309 srp_rsp->data[3] = rsp_code;
1310
1311 return resp_len;
1312 }
1313
1314 static int srpt_check_stop_free(struct se_cmd *cmd)
1315 {
1316 struct srpt_send_ioctx *ioctx = container_of(cmd,
1317 struct srpt_send_ioctx, cmd);
1318
1319 return target_put_sess_cmd(&ioctx->cmd);
1320 }
1321
1322 /**
1323 * srpt_handle_cmd() - Process SRP_CMD.
1324 */
1325 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1326 struct srpt_recv_ioctx *recv_ioctx,
1327 struct srpt_send_ioctx *send_ioctx)
1328 {
1329 struct se_cmd *cmd;
1330 struct srp_cmd *srp_cmd;
1331 struct scatterlist *sg = NULL;
1332 unsigned sg_cnt = 0;
1333 u64 data_len;
1334 enum dma_data_direction dir;
1335 int rc;
1336
1337 BUG_ON(!send_ioctx);
1338
1339 srp_cmd = recv_ioctx->ioctx.buf;
1340 cmd = &send_ioctx->cmd;
1341 cmd->tag = srp_cmd->tag;
1342
1343 switch (srp_cmd->task_attr) {
1344 case SRP_CMD_SIMPLE_Q:
1345 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1346 break;
1347 case SRP_CMD_ORDERED_Q:
1348 default:
1349 cmd->sam_task_attr = TCM_ORDERED_TAG;
1350 break;
1351 case SRP_CMD_HEAD_OF_Q:
1352 cmd->sam_task_attr = TCM_HEAD_TAG;
1353 break;
1354 case SRP_CMD_ACA:
1355 cmd->sam_task_attr = TCM_ACA_TAG;
1356 break;
1357 }
1358
1359 rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
1360 &data_len);
1361 if (rc) {
1362 if (rc != -EAGAIN) {
1363 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1364 srp_cmd->tag);
1365 }
1366 goto release_ioctx;
1367 }
1368
1369 rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
1370 &send_ioctx->sense_data[0],
1371 scsilun_to_int(&srp_cmd->lun), data_len,
1372 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
1373 sg, sg_cnt, NULL, 0, NULL, 0);
1374 if (rc != 0) {
1375 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1376 srp_cmd->tag);
1377 goto release_ioctx;
1378 }
1379 return;
1380
1381 release_ioctx:
1382 send_ioctx->state = SRPT_STATE_DONE;
1383 srpt_release_cmd(cmd);
1384 }
1385
1386 static int srp_tmr_to_tcm(int fn)
1387 {
1388 switch (fn) {
1389 case SRP_TSK_ABORT_TASK:
1390 return TMR_ABORT_TASK;
1391 case SRP_TSK_ABORT_TASK_SET:
1392 return TMR_ABORT_TASK_SET;
1393 case SRP_TSK_CLEAR_TASK_SET:
1394 return TMR_CLEAR_TASK_SET;
1395 case SRP_TSK_LUN_RESET:
1396 return TMR_LUN_RESET;
1397 case SRP_TSK_CLEAR_ACA:
1398 return TMR_CLEAR_ACA;
1399 default:
1400 return -1;
1401 }
1402 }
1403
1404 /**
1405 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1406 *
1407 * Returns 0 if and only if the request will be processed by the target core.
1408 *
1409 * For more information about SRP_TSK_MGMT information units, see also section
1410 * 6.7 in the SRP r16a document.
1411 */
1412 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1413 struct srpt_recv_ioctx *recv_ioctx,
1414 struct srpt_send_ioctx *send_ioctx)
1415 {
1416 struct srp_tsk_mgmt *srp_tsk;
1417 struct se_cmd *cmd;
1418 struct se_session *sess = ch->sess;
1419 int tcm_tmr;
1420 int rc;
1421
1422 BUG_ON(!send_ioctx);
1423
1424 srp_tsk = recv_ioctx->ioctx.buf;
1425 cmd = &send_ioctx->cmd;
1426
1427 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1428 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1429 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1430
1431 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1432 send_ioctx->cmd.tag = srp_tsk->tag;
1433 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1434 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1435 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1436 GFP_KERNEL, srp_tsk->task_tag,
1437 TARGET_SCF_ACK_KREF);
1438 if (rc != 0) {
1439 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1440 goto fail;
1441 }
1442 return;
1443 fail:
1444 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1445 }
1446
1447 /**
1448 * srpt_handle_new_iu() - Process a newly received information unit.
1449 * @ch: RDMA channel through which the information unit has been received.
1450 * @ioctx: SRPT I/O context associated with the information unit.
1451 */
1452 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1453 struct srpt_recv_ioctx *recv_ioctx,
1454 struct srpt_send_ioctx *send_ioctx)
1455 {
1456 struct srp_cmd *srp_cmd;
1457
1458 BUG_ON(!ch);
1459 BUG_ON(!recv_ioctx);
1460
1461 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1462 recv_ioctx->ioctx.dma, srp_max_req_size,
1463 DMA_FROM_DEVICE);
1464
1465 if (unlikely(ch->state == CH_CONNECTING))
1466 goto out_wait;
1467
1468 if (unlikely(ch->state != CH_LIVE))
1469 return;
1470
1471 srp_cmd = recv_ioctx->ioctx.buf;
1472 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1473 if (!send_ioctx) {
1474 if (!list_empty(&ch->cmd_wait_list))
1475 goto out_wait;
1476 send_ioctx = srpt_get_send_ioctx(ch);
1477 }
1478 if (unlikely(!send_ioctx))
1479 goto out_wait;
1480 }
1481
1482 switch (srp_cmd->opcode) {
1483 case SRP_CMD:
1484 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1485 break;
1486 case SRP_TSK_MGMT:
1487 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1488 break;
1489 case SRP_I_LOGOUT:
1490 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1491 break;
1492 case SRP_CRED_RSP:
1493 pr_debug("received SRP_CRED_RSP\n");
1494 break;
1495 case SRP_AER_RSP:
1496 pr_debug("received SRP_AER_RSP\n");
1497 break;
1498 case SRP_RSP:
1499 pr_err("Received SRP_RSP\n");
1500 break;
1501 default:
1502 pr_err("received IU with unknown opcode 0x%x\n",
1503 srp_cmd->opcode);
1504 break;
1505 }
1506
1507 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1508 return;
1509
1510 out_wait:
1511 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1512 }
1513
1514 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1515 {
1516 struct srpt_rdma_ch *ch = cq->cq_context;
1517 struct srpt_recv_ioctx *ioctx =
1518 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1519
1520 if (wc->status == IB_WC_SUCCESS) {
1521 int req_lim;
1522
1523 req_lim = atomic_dec_return(&ch->req_lim);
1524 if (unlikely(req_lim < 0))
1525 pr_err("req_lim = %d < 0\n", req_lim);
1526 srpt_handle_new_iu(ch, ioctx, NULL);
1527 } else {
1528 pr_info("receiving failed for ioctx %p with status %d\n",
1529 ioctx, wc->status);
1530 }
1531 }
1532
1533 /*
1534 * This function must be called from the context in which RDMA completions are
1535 * processed because it accesses the wait list without protection against
1536 * access from other threads.
1537 */
1538 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1539 {
1540 struct srpt_send_ioctx *ioctx;
1541
1542 while (!list_empty(&ch->cmd_wait_list) &&
1543 ch->state >= CH_LIVE &&
1544 (ioctx = srpt_get_send_ioctx(ch)) != NULL) {
1545 struct srpt_recv_ioctx *recv_ioctx;
1546
1547 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
1548 struct srpt_recv_ioctx,
1549 wait_list);
1550 list_del(&recv_ioctx->wait_list);
1551 srpt_handle_new_iu(ch, recv_ioctx, ioctx);
1552 }
1553 }
1554
1555 /**
1556 * Note: Although this has not yet been observed during tests, at least in
1557 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1558 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1559 * value in each response is set to one, and it is possible that this response
1560 * makes the initiator send a new request before the send completion for that
1561 * response has been processed. This could e.g. happen if the call to
1562 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1563 * if IB retransmission causes generation of the send completion to be
1564 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1565 * are queued on cmd_wait_list. The code below processes these delayed
1566 * requests one at a time.
1567 */
1568 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1569 {
1570 struct srpt_rdma_ch *ch = cq->cq_context;
1571 struct srpt_send_ioctx *ioctx =
1572 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1573 enum srpt_command_state state;
1574
1575 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1576
1577 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1578 state != SRPT_STATE_MGMT_RSP_SENT);
1579
1580 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1581
1582 if (wc->status != IB_WC_SUCCESS)
1583 pr_info("sending response for ioctx 0x%p failed"
1584 " with status %d\n", ioctx, wc->status);
1585
1586 if (state != SRPT_STATE_DONE) {
1587 transport_generic_free_cmd(&ioctx->cmd, 0);
1588 } else {
1589 pr_err("IB completion has been received too late for"
1590 " wr_id = %u.\n", ioctx->ioctx.index);
1591 }
1592
1593 srpt_process_wait_list(ch);
1594 }
1595
1596 /**
1597 * srpt_create_ch_ib() - Create receive and send completion queues.
1598 */
1599 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1600 {
1601 struct ib_qp_init_attr *qp_init;
1602 struct srpt_port *sport = ch->sport;
1603 struct srpt_device *sdev = sport->sdev;
1604 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
1605 int ret;
1606
1607 WARN_ON(ch->rq_size < 1);
1608
1609 ret = -ENOMEM;
1610 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1611 if (!qp_init)
1612 goto out;
1613
1614 retry:
1615 ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + srp_sq_size,
1616 0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1617 if (IS_ERR(ch->cq)) {
1618 ret = PTR_ERR(ch->cq);
1619 pr_err("failed to create CQ cqe= %d ret= %d\n",
1620 ch->rq_size + srp_sq_size, ret);
1621 goto out;
1622 }
1623
1624 qp_init->qp_context = (void *)ch;
1625 qp_init->event_handler
1626 = (void(*)(struct ib_event *, void*))srpt_qp_event;
1627 qp_init->send_cq = ch->cq;
1628 qp_init->recv_cq = ch->cq;
1629 qp_init->srq = sdev->srq;
1630 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1631 qp_init->qp_type = IB_QPT_RC;
1632 /*
1633 * We divide up our send queue size into half SEND WRs to send the
1634 * completions, and half R/W contexts to actually do the RDMA
1635 * READ/WRITE transfers. Note that we need to allocate CQ slots for
1636 * both both, as RDMA contexts will also post completions for the
1637 * RDMA READ case.
1638 */
1639 qp_init->cap.max_send_wr = srp_sq_size / 2;
1640 qp_init->cap.max_rdma_ctxs = srp_sq_size / 2;
1641 qp_init->cap.max_send_sge = max(sdev->device->attrs.max_sge_rd,
1642 sdev->device->attrs.max_sge);
1643 qp_init->port_num = ch->sport->port;
1644
1645 ch->qp = ib_create_qp(sdev->pd, qp_init);
1646 if (IS_ERR(ch->qp)) {
1647 ret = PTR_ERR(ch->qp);
1648 if (ret == -ENOMEM) {
1649 srp_sq_size /= 2;
1650 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
1651 ib_destroy_cq(ch->cq);
1652 goto retry;
1653 }
1654 }
1655 pr_err("failed to create_qp ret= %d\n", ret);
1656 goto err_destroy_cq;
1657 }
1658
1659 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1660
1661 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1662 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1663 qp_init->cap.max_send_wr, ch->cm_id);
1664
1665 ret = srpt_init_ch_qp(ch, ch->qp);
1666 if (ret)
1667 goto err_destroy_qp;
1668
1669 out:
1670 kfree(qp_init);
1671 return ret;
1672
1673 err_destroy_qp:
1674 ib_destroy_qp(ch->qp);
1675 err_destroy_cq:
1676 ib_free_cq(ch->cq);
1677 goto out;
1678 }
1679
1680 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1681 {
1682 ib_destroy_qp(ch->qp);
1683 ib_free_cq(ch->cq);
1684 }
1685
1686 /**
1687 * srpt_close_ch() - Close an RDMA channel.
1688 *
1689 * Make sure all resources associated with the channel will be deallocated at
1690 * an appropriate time.
1691 *
1692 * Returns true if and only if the channel state has been modified into
1693 * CH_DRAINING.
1694 */
1695 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1696 {
1697 int ret;
1698
1699 if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1700 pr_debug("%s-%d: already closed\n", ch->sess_name,
1701 ch->qp->qp_num);
1702 return false;
1703 }
1704
1705 kref_get(&ch->kref);
1706
1707 ret = srpt_ch_qp_err(ch);
1708 if (ret < 0)
1709 pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1710 ch->sess_name, ch->qp->qp_num, ret);
1711
1712 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
1713 ch->qp->qp_num);
1714 ret = srpt_zerolength_write(ch);
1715 if (ret < 0) {
1716 pr_err("%s-%d: queuing zero-length write failed: %d\n",
1717 ch->sess_name, ch->qp->qp_num, ret);
1718 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1719 schedule_work(&ch->release_work);
1720 else
1721 WARN_ON_ONCE(true);
1722 }
1723
1724 kref_put(&ch->kref, srpt_free_ch);
1725
1726 return true;
1727 }
1728
1729 /*
1730 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1731 * reached the connected state, close it. If a channel is in the connected
1732 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1733 * the responsibility of the caller to ensure that this function is not
1734 * invoked concurrently with the code that accepts a connection. This means
1735 * that this function must either be invoked from inside a CM callback
1736 * function or that it must be invoked with the srpt_port.mutex held.
1737 */
1738 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1739 {
1740 int ret;
1741
1742 if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1743 return -ENOTCONN;
1744
1745 ret = ib_send_cm_dreq(ch->cm_id, NULL, 0);
1746 if (ret < 0)
1747 ret = ib_send_cm_drep(ch->cm_id, NULL, 0);
1748
1749 if (ret < 0 && srpt_close_ch(ch))
1750 ret = 0;
1751
1752 return ret;
1753 }
1754
1755 static void __srpt_close_all_ch(struct srpt_device *sdev)
1756 {
1757 struct srpt_rdma_ch *ch;
1758
1759 lockdep_assert_held(&sdev->mutex);
1760
1761 list_for_each_entry(ch, &sdev->rch_list, list) {
1762 if (srpt_disconnect_ch(ch) >= 0)
1763 pr_info("Closing channel %s-%d because target %s has been disabled\n",
1764 ch->sess_name, ch->qp->qp_num,
1765 sdev->device->name);
1766 srpt_close_ch(ch);
1767 }
1768 }
1769
1770 static void srpt_free_ch(struct kref *kref)
1771 {
1772 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
1773
1774 kfree(ch);
1775 }
1776
1777 static void srpt_release_channel_work(struct work_struct *w)
1778 {
1779 struct srpt_rdma_ch *ch;
1780 struct srpt_device *sdev;
1781 struct se_session *se_sess;
1782
1783 ch = container_of(w, struct srpt_rdma_ch, release_work);
1784 pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name,
1785 ch->qp->qp_num, ch->release_done);
1786
1787 sdev = ch->sport->sdev;
1788 BUG_ON(!sdev);
1789
1790 se_sess = ch->sess;
1791 BUG_ON(!se_sess);
1792
1793 target_sess_cmd_list_set_waiting(se_sess);
1794 target_wait_for_sess_cmds(se_sess);
1795
1796 transport_deregister_session_configfs(se_sess);
1797 transport_deregister_session(se_sess);
1798 ch->sess = NULL;
1799
1800 ib_destroy_cm_id(ch->cm_id);
1801
1802 srpt_destroy_ch_ib(ch);
1803
1804 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
1805 ch->sport->sdev, ch->rq_size,
1806 ch->rsp_size, DMA_TO_DEVICE);
1807
1808 mutex_lock(&sdev->mutex);
1809 list_del_init(&ch->list);
1810 if (ch->release_done)
1811 complete(ch->release_done);
1812 mutex_unlock(&sdev->mutex);
1813
1814 wake_up(&sdev->ch_releaseQ);
1815
1816 kref_put(&ch->kref, srpt_free_ch);
1817 }
1818
1819 /**
1820 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
1821 *
1822 * Ownership of the cm_id is transferred to the target session if this
1823 * functions returns zero. Otherwise the caller remains the owner of cm_id.
1824 */
1825 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
1826 struct ib_cm_req_event_param *param,
1827 void *private_data)
1828 {
1829 struct srpt_device *sdev = cm_id->context;
1830 struct srpt_port *sport = &sdev->port[param->port - 1];
1831 struct srp_login_req *req;
1832 struct srp_login_rsp *rsp;
1833 struct srp_login_rej *rej;
1834 struct ib_cm_rep_param *rep_param;
1835 struct srpt_rdma_ch *ch, *tmp_ch;
1836 u32 it_iu_len;
1837 int i, ret = 0;
1838 unsigned char *p;
1839
1840 WARN_ON_ONCE(irqs_disabled());
1841
1842 if (WARN_ON(!sdev || !private_data))
1843 return -EINVAL;
1844
1845 req = (struct srp_login_req *)private_data;
1846
1847 it_iu_len = be32_to_cpu(req->req_it_iu_len);
1848
1849 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
1850 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
1851 " (guid=0x%llx:0x%llx)\n",
1852 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
1853 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
1854 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
1855 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
1856 it_iu_len,
1857 param->port,
1858 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
1859 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
1860
1861 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
1862 rej = kzalloc(sizeof(*rej), GFP_KERNEL);
1863 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
1864
1865 if (!rsp || !rej || !rep_param) {
1866 ret = -ENOMEM;
1867 goto out;
1868 }
1869
1870 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
1871 rej->reason = cpu_to_be32(
1872 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
1873 ret = -EINVAL;
1874 pr_err("rejected SRP_LOGIN_REQ because its"
1875 " length (%d bytes) is out of range (%d .. %d)\n",
1876 it_iu_len, 64, srp_max_req_size);
1877 goto reject;
1878 }
1879
1880 if (!sport->enabled) {
1881 rej->reason = cpu_to_be32(
1882 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
1883 ret = -EINVAL;
1884 pr_err("rejected SRP_LOGIN_REQ because the target port"
1885 " has not yet been enabled\n");
1886 goto reject;
1887 }
1888
1889 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
1890 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
1891
1892 mutex_lock(&sdev->mutex);
1893
1894 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
1895 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
1896 && !memcmp(ch->t_port_id, req->target_port_id, 16)
1897 && param->port == ch->sport->port
1898 && param->listen_id == ch->sport->sdev->cm_id
1899 && ch->cm_id) {
1900 if (srpt_disconnect_ch(ch) < 0)
1901 continue;
1902 pr_info("Relogin - closed existing channel %s\n",
1903 ch->sess_name);
1904 rsp->rsp_flags =
1905 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
1906 }
1907 }
1908
1909 mutex_unlock(&sdev->mutex);
1910
1911 } else
1912 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
1913
1914 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
1915 || *(__be64 *)(req->target_port_id + 8) !=
1916 cpu_to_be64(srpt_service_guid)) {
1917 rej->reason = cpu_to_be32(
1918 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
1919 ret = -ENOMEM;
1920 pr_err("rejected SRP_LOGIN_REQ because it"
1921 " has an invalid target port identifier.\n");
1922 goto reject;
1923 }
1924
1925 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
1926 if (!ch) {
1927 rej->reason = cpu_to_be32(
1928 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
1929 pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
1930 ret = -ENOMEM;
1931 goto reject;
1932 }
1933
1934 kref_init(&ch->kref);
1935 ch->zw_cqe.done = srpt_zerolength_write_done;
1936 INIT_WORK(&ch->release_work, srpt_release_channel_work);
1937 memcpy(ch->i_port_id, req->initiator_port_id, 16);
1938 memcpy(ch->t_port_id, req->target_port_id, 16);
1939 ch->sport = &sdev->port[param->port - 1];
1940 ch->cm_id = cm_id;
1941 cm_id->context = ch;
1942 /*
1943 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
1944 * for the SRP protocol to the command queue size.
1945 */
1946 ch->rq_size = SRPT_RQ_SIZE;
1947 spin_lock_init(&ch->spinlock);
1948 ch->state = CH_CONNECTING;
1949 INIT_LIST_HEAD(&ch->cmd_wait_list);
1950 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
1951
1952 ch->ioctx_ring = (struct srpt_send_ioctx **)
1953 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
1954 sizeof(*ch->ioctx_ring[0]),
1955 ch->rsp_size, DMA_TO_DEVICE);
1956 if (!ch->ioctx_ring)
1957 goto free_ch;
1958
1959 INIT_LIST_HEAD(&ch->free_list);
1960 for (i = 0; i < ch->rq_size; i++) {
1961 ch->ioctx_ring[i]->ch = ch;
1962 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
1963 }
1964
1965 ret = srpt_create_ch_ib(ch);
1966 if (ret) {
1967 rej->reason = cpu_to_be32(
1968 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
1969 pr_err("rejected SRP_LOGIN_REQ because creating"
1970 " a new RDMA channel failed.\n");
1971 goto free_ring;
1972 }
1973
1974 ret = srpt_ch_qp_rtr(ch, ch->qp);
1975 if (ret) {
1976 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
1977 pr_err("rejected SRP_LOGIN_REQ because enabling"
1978 " RTR failed (error code = %d)\n", ret);
1979 goto destroy_ib;
1980 }
1981
1982 /*
1983 * Use the initator port identifier as the session name, when
1984 * checking against se_node_acl->initiatorname[] this can be
1985 * with or without preceeding '0x'.
1986 */
1987 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
1988 be64_to_cpu(*(__be64 *)ch->i_port_id),
1989 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
1990
1991 pr_debug("registering session %s\n", ch->sess_name);
1992 p = &ch->sess_name[0];
1993
1994 try_again:
1995 ch->sess = target_alloc_session(&sport->port_tpg_1, 0, 0,
1996 TARGET_PROT_NORMAL, p, ch, NULL);
1997 if (IS_ERR(ch->sess)) {
1998 pr_info("Rejected login because no ACL has been"
1999 " configured yet for initiator %s.\n", p);
2000 /*
2001 * XXX: Hack to retry of ch->i_port_id without leading '0x'
2002 */
2003 if (p == &ch->sess_name[0]) {
2004 p += 2;
2005 goto try_again;
2006 }
2007 rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ?
2008 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2009 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2010 goto destroy_ib;
2011 }
2012
2013 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2014 ch->sess_name, ch->cm_id);
2015
2016 /* create srp_login_response */
2017 rsp->opcode = SRP_LOGIN_RSP;
2018 rsp->tag = req->tag;
2019 rsp->max_it_iu_len = req->req_it_iu_len;
2020 rsp->max_ti_iu_len = req->req_it_iu_len;
2021 ch->max_ti_iu_len = it_iu_len;
2022 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2023 | SRP_BUF_FORMAT_INDIRECT);
2024 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2025 atomic_set(&ch->req_lim, ch->rq_size);
2026 atomic_set(&ch->req_lim_delta, 0);
2027
2028 /* create cm reply */
2029 rep_param->qp_num = ch->qp->qp_num;
2030 rep_param->private_data = (void *)rsp;
2031 rep_param->private_data_len = sizeof(*rsp);
2032 rep_param->rnr_retry_count = 7;
2033 rep_param->flow_control = 1;
2034 rep_param->failover_accepted = 0;
2035 rep_param->srq = 1;
2036 rep_param->responder_resources = 4;
2037 rep_param->initiator_depth = 4;
2038
2039 ret = ib_send_cm_rep(cm_id, rep_param);
2040 if (ret) {
2041 pr_err("sending SRP_LOGIN_REQ response failed"
2042 " (error code = %d)\n", ret);
2043 goto release_channel;
2044 }
2045
2046 mutex_lock(&sdev->mutex);
2047 list_add_tail(&ch->list, &sdev->rch_list);
2048 mutex_unlock(&sdev->mutex);
2049
2050 goto out;
2051
2052 release_channel:
2053 srpt_disconnect_ch(ch);
2054 transport_deregister_session_configfs(ch->sess);
2055 transport_deregister_session(ch->sess);
2056 ch->sess = NULL;
2057
2058 destroy_ib:
2059 srpt_destroy_ch_ib(ch);
2060
2061 free_ring:
2062 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2063 ch->sport->sdev, ch->rq_size,
2064 ch->rsp_size, DMA_TO_DEVICE);
2065 free_ch:
2066 kfree(ch);
2067
2068 reject:
2069 rej->opcode = SRP_LOGIN_REJ;
2070 rej->tag = req->tag;
2071 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2072 | SRP_BUF_FORMAT_INDIRECT);
2073
2074 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2075 (void *)rej, sizeof(*rej));
2076
2077 out:
2078 kfree(rep_param);
2079 kfree(rsp);
2080 kfree(rej);
2081
2082 return ret;
2083 }
2084
2085 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2086 enum ib_cm_rej_reason reason,
2087 const u8 *private_data,
2088 u8 private_data_len)
2089 {
2090 char *priv = NULL;
2091 int i;
2092
2093 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2094 GFP_KERNEL))) {
2095 for (i = 0; i < private_data_len; i++)
2096 sprintf(priv + 3 * i, " %02x", private_data[i]);
2097 }
2098 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2099 ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2100 "; private data" : "", priv ? priv : " (?)");
2101 kfree(priv);
2102 }
2103
2104 /**
2105 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2106 *
2107 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2108 * and that the recipient may begin transmitting (RTU = ready to use).
2109 */
2110 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2111 {
2112 int ret;
2113
2114 if (srpt_set_ch_state(ch, CH_LIVE)) {
2115 ret = srpt_ch_qp_rts(ch, ch->qp);
2116
2117 if (ret == 0) {
2118 /* Trigger wait list processing. */
2119 ret = srpt_zerolength_write(ch);
2120 WARN_ONCE(ret < 0, "%d\n", ret);
2121 } else {
2122 srpt_close_ch(ch);
2123 }
2124 }
2125 }
2126
2127 /**
2128 * srpt_cm_handler() - IB connection manager callback function.
2129 *
2130 * A non-zero return value will cause the caller destroy the CM ID.
2131 *
2132 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2133 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2134 * a non-zero value in any other case will trigger a race with the
2135 * ib_destroy_cm_id() call in srpt_release_channel().
2136 */
2137 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2138 {
2139 struct srpt_rdma_ch *ch = cm_id->context;
2140 int ret;
2141
2142 ret = 0;
2143 switch (event->event) {
2144 case IB_CM_REQ_RECEIVED:
2145 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2146 event->private_data);
2147 break;
2148 case IB_CM_REJ_RECEIVED:
2149 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2150 event->private_data,
2151 IB_CM_REJ_PRIVATE_DATA_SIZE);
2152 break;
2153 case IB_CM_RTU_RECEIVED:
2154 case IB_CM_USER_ESTABLISHED:
2155 srpt_cm_rtu_recv(ch);
2156 break;
2157 case IB_CM_DREQ_RECEIVED:
2158 srpt_disconnect_ch(ch);
2159 break;
2160 case IB_CM_DREP_RECEIVED:
2161 pr_info("Received CM DREP message for ch %s-%d.\n",
2162 ch->sess_name, ch->qp->qp_num);
2163 srpt_close_ch(ch);
2164 break;
2165 case IB_CM_TIMEWAIT_EXIT:
2166 pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2167 ch->sess_name, ch->qp->qp_num);
2168 srpt_close_ch(ch);
2169 break;
2170 case IB_CM_REP_ERROR:
2171 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2172 ch->qp->qp_num);
2173 break;
2174 case IB_CM_DREQ_ERROR:
2175 pr_info("Received CM DREQ ERROR event.\n");
2176 break;
2177 case IB_CM_MRA_RECEIVED:
2178 pr_info("Received CM MRA event\n");
2179 break;
2180 default:
2181 pr_err("received unrecognized CM event %d\n", event->event);
2182 break;
2183 }
2184
2185 return ret;
2186 }
2187
2188 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2189 {
2190 struct srpt_send_ioctx *ioctx;
2191
2192 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2193 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2194 }
2195
2196 /*
2197 * srpt_write_pending() - Start data transfer from initiator to target (write).
2198 */
2199 static int srpt_write_pending(struct se_cmd *se_cmd)
2200 {
2201 struct srpt_send_ioctx *ioctx =
2202 container_of(se_cmd, struct srpt_send_ioctx, cmd);
2203 struct srpt_rdma_ch *ch = ioctx->ch;
2204 struct ib_send_wr *first_wr = NULL, *bad_wr;
2205 struct ib_cqe *cqe = &ioctx->rdma_cqe;
2206 enum srpt_command_state new_state;
2207 int ret, i;
2208
2209 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2210 WARN_ON(new_state == SRPT_STATE_DONE);
2211
2212 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2213 pr_warn("%s: IB send queue full (needed %d)\n",
2214 __func__, ioctx->n_rdma);
2215 ret = -ENOMEM;
2216 goto out_undo;
2217 }
2218
2219 cqe->done = srpt_rdma_read_done;
2220 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2221 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2222
2223 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2224 cqe, first_wr);
2225 cqe = NULL;
2226 }
2227
2228 ret = ib_post_send(ch->qp, first_wr, &bad_wr);
2229 if (ret) {
2230 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2231 __func__, ret, ioctx->n_rdma,
2232 atomic_read(&ch->sq_wr_avail));
2233 goto out_undo;
2234 }
2235
2236 return 0;
2237 out_undo:
2238 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2239 return ret;
2240 }
2241
2242 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2243 {
2244 switch (tcm_mgmt_status) {
2245 case TMR_FUNCTION_COMPLETE:
2246 return SRP_TSK_MGMT_SUCCESS;
2247 case TMR_FUNCTION_REJECTED:
2248 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2249 }
2250 return SRP_TSK_MGMT_FAILED;
2251 }
2252
2253 /**
2254 * srpt_queue_response() - Transmits the response to a SCSI command.
2255 *
2256 * Callback function called by the TCM core. Must not block since it can be
2257 * invoked on the context of the IB completion handler.
2258 */
2259 static void srpt_queue_response(struct se_cmd *cmd)
2260 {
2261 struct srpt_send_ioctx *ioctx =
2262 container_of(cmd, struct srpt_send_ioctx, cmd);
2263 struct srpt_rdma_ch *ch = ioctx->ch;
2264 struct srpt_device *sdev = ch->sport->sdev;
2265 struct ib_send_wr send_wr, *first_wr = NULL, *bad_wr;
2266 struct ib_sge sge;
2267 enum srpt_command_state state;
2268 unsigned long flags;
2269 int resp_len, ret, i;
2270 u8 srp_tm_status;
2271
2272 BUG_ON(!ch);
2273
2274 spin_lock_irqsave(&ioctx->spinlock, flags);
2275 state = ioctx->state;
2276 switch (state) {
2277 case SRPT_STATE_NEW:
2278 case SRPT_STATE_DATA_IN:
2279 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2280 break;
2281 case SRPT_STATE_MGMT:
2282 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2283 break;
2284 default:
2285 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2286 ch, ioctx->ioctx.index, ioctx->state);
2287 break;
2288 }
2289 spin_unlock_irqrestore(&ioctx->spinlock, flags);
2290
2291 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
2292 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
2293 atomic_inc(&ch->req_lim_delta);
2294 srpt_abort_cmd(ioctx);
2295 return;
2296 }
2297
2298 /* For read commands, transfer the data to the initiator. */
2299 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2300 ioctx->cmd.data_length &&
2301 !ioctx->queue_status_only) {
2302 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2303 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2304
2305 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2306 ch->sport->port, NULL,
2307 first_wr ? first_wr : &send_wr);
2308 }
2309 } else {
2310 first_wr = &send_wr;
2311 }
2312
2313 if (state != SRPT_STATE_MGMT)
2314 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2315 cmd->scsi_status);
2316 else {
2317 srp_tm_status
2318 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2319 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2320 ioctx->cmd.tag);
2321 }
2322
2323 atomic_inc(&ch->req_lim);
2324
2325 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2326 &ch->sq_wr_avail) < 0)) {
2327 pr_warn("%s: IB send queue full (needed %d)\n",
2328 __func__, ioctx->n_rdma);
2329 ret = -ENOMEM;
2330 goto out;
2331 }
2332
2333 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2334 DMA_TO_DEVICE);
2335
2336 sge.addr = ioctx->ioctx.dma;
2337 sge.length = resp_len;
2338 sge.lkey = sdev->pd->local_dma_lkey;
2339
2340 ioctx->ioctx.cqe.done = srpt_send_done;
2341 send_wr.next = NULL;
2342 send_wr.wr_cqe = &ioctx->ioctx.cqe;
2343 send_wr.sg_list = &sge;
2344 send_wr.num_sge = 1;
2345 send_wr.opcode = IB_WR_SEND;
2346 send_wr.send_flags = IB_SEND_SIGNALED;
2347
2348 ret = ib_post_send(ch->qp, first_wr, &bad_wr);
2349 if (ret < 0) {
2350 pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2351 __func__, ioctx->cmd.tag, ret);
2352 goto out;
2353 }
2354
2355 return;
2356
2357 out:
2358 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2359 atomic_dec(&ch->req_lim);
2360 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2361 target_put_sess_cmd(&ioctx->cmd);
2362 }
2363
2364 static int srpt_queue_data_in(struct se_cmd *cmd)
2365 {
2366 srpt_queue_response(cmd);
2367 return 0;
2368 }
2369
2370 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2371 {
2372 srpt_queue_response(cmd);
2373 }
2374
2375 static void srpt_aborted_task(struct se_cmd *cmd)
2376 {
2377 }
2378
2379 static int srpt_queue_status(struct se_cmd *cmd)
2380 {
2381 struct srpt_send_ioctx *ioctx;
2382
2383 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2384 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2385 if (cmd->se_cmd_flags &
2386 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2387 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2388 ioctx->queue_status_only = true;
2389 srpt_queue_response(cmd);
2390 return 0;
2391 }
2392
2393 static void srpt_refresh_port_work(struct work_struct *work)
2394 {
2395 struct srpt_port *sport = container_of(work, struct srpt_port, work);
2396
2397 srpt_refresh_port(sport);
2398 }
2399
2400 /**
2401 * srpt_release_sdev() - Free the channel resources associated with a target.
2402 */
2403 static int srpt_release_sdev(struct srpt_device *sdev)
2404 {
2405 int i, res;
2406
2407 WARN_ON_ONCE(irqs_disabled());
2408
2409 BUG_ON(!sdev);
2410
2411 mutex_lock(&sdev->mutex);
2412 for (i = 0; i < ARRAY_SIZE(sdev->port); i++)
2413 sdev->port[i].enabled = false;
2414 __srpt_close_all_ch(sdev);
2415 mutex_unlock(&sdev->mutex);
2416
2417 res = wait_event_interruptible(sdev->ch_releaseQ,
2418 list_empty_careful(&sdev->rch_list));
2419 if (res)
2420 pr_err("%s: interrupted.\n", __func__);
2421
2422 return 0;
2423 }
2424
2425 static struct srpt_port *__srpt_lookup_port(const char *name)
2426 {
2427 struct ib_device *dev;
2428 struct srpt_device *sdev;
2429 struct srpt_port *sport;
2430 int i;
2431
2432 list_for_each_entry(sdev, &srpt_dev_list, list) {
2433 dev = sdev->device;
2434 if (!dev)
2435 continue;
2436
2437 for (i = 0; i < dev->phys_port_cnt; i++) {
2438 sport = &sdev->port[i];
2439
2440 if (!strcmp(sport->port_guid, name))
2441 return sport;
2442 }
2443 }
2444
2445 return NULL;
2446 }
2447
2448 static struct srpt_port *srpt_lookup_port(const char *name)
2449 {
2450 struct srpt_port *sport;
2451
2452 spin_lock(&srpt_dev_lock);
2453 sport = __srpt_lookup_port(name);
2454 spin_unlock(&srpt_dev_lock);
2455
2456 return sport;
2457 }
2458
2459 /**
2460 * srpt_add_one() - Infiniband device addition callback function.
2461 */
2462 static void srpt_add_one(struct ib_device *device)
2463 {
2464 struct srpt_device *sdev;
2465 struct srpt_port *sport;
2466 struct ib_srq_init_attr srq_attr;
2467 int i;
2468
2469 pr_debug("device = %p, device->dma_ops = %p\n", device,
2470 device->dma_ops);
2471
2472 sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2473 if (!sdev)
2474 goto err;
2475
2476 sdev->device = device;
2477 INIT_LIST_HEAD(&sdev->rch_list);
2478 init_waitqueue_head(&sdev->ch_releaseQ);
2479 mutex_init(&sdev->mutex);
2480
2481 sdev->pd = ib_alloc_pd(device);
2482 if (IS_ERR(sdev->pd))
2483 goto free_dev;
2484
2485 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2486
2487 srq_attr.event_handler = srpt_srq_event;
2488 srq_attr.srq_context = (void *)sdev;
2489 srq_attr.attr.max_wr = sdev->srq_size;
2490 srq_attr.attr.max_sge = 1;
2491 srq_attr.attr.srq_limit = 0;
2492 srq_attr.srq_type = IB_SRQT_BASIC;
2493
2494 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
2495 if (IS_ERR(sdev->srq))
2496 goto err_pd;
2497
2498 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
2499 __func__, sdev->srq_size, sdev->device->attrs.max_srq_wr,
2500 device->name);
2501
2502 if (!srpt_service_guid)
2503 srpt_service_guid = be64_to_cpu(device->node_guid);
2504
2505 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
2506 if (IS_ERR(sdev->cm_id))
2507 goto err_srq;
2508
2509 /* print out target login information */
2510 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
2511 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
2512 srpt_service_guid, srpt_service_guid);
2513
2514 /*
2515 * We do not have a consistent service_id (ie. also id_ext of target_id)
2516 * to identify this target. We currently use the guid of the first HCA
2517 * in the system as service_id; therefore, the target_id will change
2518 * if this HCA is gone bad and replaced by different HCA
2519 */
2520 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
2521 goto err_cm;
2522
2523 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
2524 srpt_event_handler);
2525 if (ib_register_event_handler(&sdev->event_handler))
2526 goto err_cm;
2527
2528 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
2529 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
2530 sizeof(*sdev->ioctx_ring[0]),
2531 srp_max_req_size, DMA_FROM_DEVICE);
2532 if (!sdev->ioctx_ring)
2533 goto err_event;
2534
2535 for (i = 0; i < sdev->srq_size; ++i)
2536 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
2537
2538 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
2539
2540 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
2541 sport = &sdev->port[i - 1];
2542 sport->sdev = sdev;
2543 sport->port = i;
2544 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
2545 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
2546 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
2547 INIT_WORK(&sport->work, srpt_refresh_port_work);
2548
2549 if (srpt_refresh_port(sport)) {
2550 pr_err("MAD registration failed for %s-%d.\n",
2551 sdev->device->name, i);
2552 goto err_ring;
2553 }
2554 snprintf(sport->port_guid, sizeof(sport->port_guid),
2555 "0x%016llx%016llx",
2556 be64_to_cpu(sport->gid.global.subnet_prefix),
2557 be64_to_cpu(sport->gid.global.interface_id));
2558 }
2559
2560 spin_lock(&srpt_dev_lock);
2561 list_add_tail(&sdev->list, &srpt_dev_list);
2562 spin_unlock(&srpt_dev_lock);
2563
2564 out:
2565 ib_set_client_data(device, &srpt_client, sdev);
2566 pr_debug("added %s.\n", device->name);
2567 return;
2568
2569 err_ring:
2570 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
2571 sdev->srq_size, srp_max_req_size,
2572 DMA_FROM_DEVICE);
2573 err_event:
2574 ib_unregister_event_handler(&sdev->event_handler);
2575 err_cm:
2576 ib_destroy_cm_id(sdev->cm_id);
2577 err_srq:
2578 ib_destroy_srq(sdev->srq);
2579 err_pd:
2580 ib_dealloc_pd(sdev->pd);
2581 free_dev:
2582 kfree(sdev);
2583 err:
2584 sdev = NULL;
2585 pr_info("%s(%s) failed.\n", __func__, device->name);
2586 goto out;
2587 }
2588
2589 /**
2590 * srpt_remove_one() - InfiniBand device removal callback function.
2591 */
2592 static void srpt_remove_one(struct ib_device *device, void *client_data)
2593 {
2594 struct srpt_device *sdev = client_data;
2595 int i;
2596
2597 if (!sdev) {
2598 pr_info("%s(%s): nothing to do.\n", __func__, device->name);
2599 return;
2600 }
2601
2602 srpt_unregister_mad_agent(sdev);
2603
2604 ib_unregister_event_handler(&sdev->event_handler);
2605
2606 /* Cancel any work queued by the just unregistered IB event handler. */
2607 for (i = 0; i < sdev->device->phys_port_cnt; i++)
2608 cancel_work_sync(&sdev->port[i].work);
2609
2610 ib_destroy_cm_id(sdev->cm_id);
2611
2612 /*
2613 * Unregistering a target must happen after destroying sdev->cm_id
2614 * such that no new SRP_LOGIN_REQ information units can arrive while
2615 * destroying the target.
2616 */
2617 spin_lock(&srpt_dev_lock);
2618 list_del(&sdev->list);
2619 spin_unlock(&srpt_dev_lock);
2620 srpt_release_sdev(sdev);
2621
2622 ib_destroy_srq(sdev->srq);
2623 ib_dealloc_pd(sdev->pd);
2624
2625 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
2626 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
2627 sdev->ioctx_ring = NULL;
2628 kfree(sdev);
2629 }
2630
2631 static struct ib_client srpt_client = {
2632 .name = DRV_NAME,
2633 .add = srpt_add_one,
2634 .remove = srpt_remove_one
2635 };
2636
2637 static int srpt_check_true(struct se_portal_group *se_tpg)
2638 {
2639 return 1;
2640 }
2641
2642 static int srpt_check_false(struct se_portal_group *se_tpg)
2643 {
2644 return 0;
2645 }
2646
2647 static char *srpt_get_fabric_name(void)
2648 {
2649 return "srpt";
2650 }
2651
2652 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
2653 {
2654 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
2655
2656 return sport->port_guid;
2657 }
2658
2659 static u16 srpt_get_tag(struct se_portal_group *tpg)
2660 {
2661 return 1;
2662 }
2663
2664 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
2665 {
2666 return 1;
2667 }
2668
2669 static void srpt_release_cmd(struct se_cmd *se_cmd)
2670 {
2671 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
2672 struct srpt_send_ioctx, cmd);
2673 struct srpt_rdma_ch *ch = ioctx->ch;
2674 unsigned long flags;
2675
2676 WARN_ON(ioctx->state != SRPT_STATE_DONE);
2677
2678 if (ioctx->n_rw_ctx) {
2679 srpt_free_rw_ctxs(ch, ioctx);
2680 ioctx->n_rw_ctx = 0;
2681 }
2682
2683 spin_lock_irqsave(&ch->spinlock, flags);
2684 list_add(&ioctx->free_list, &ch->free_list);
2685 spin_unlock_irqrestore(&ch->spinlock, flags);
2686 }
2687
2688 /**
2689 * srpt_close_session() - Forcibly close a session.
2690 *
2691 * Callback function invoked by the TCM core to clean up sessions associated
2692 * with a node ACL when the user invokes
2693 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
2694 */
2695 static void srpt_close_session(struct se_session *se_sess)
2696 {
2697 DECLARE_COMPLETION_ONSTACK(release_done);
2698 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2699 struct srpt_device *sdev = ch->sport->sdev;
2700 bool wait;
2701
2702 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
2703 ch->state);
2704
2705 mutex_lock(&sdev->mutex);
2706 BUG_ON(ch->release_done);
2707 ch->release_done = &release_done;
2708 wait = !list_empty(&ch->list);
2709 srpt_disconnect_ch(ch);
2710 mutex_unlock(&sdev->mutex);
2711
2712 if (!wait)
2713 return;
2714
2715 while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0)
2716 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
2717 ch->sess_name, ch->qp->qp_num, ch->state);
2718 }
2719
2720 /**
2721 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
2722 *
2723 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
2724 * This object represents an arbitrary integer used to uniquely identify a
2725 * particular attached remote initiator port to a particular SCSI target port
2726 * within a particular SCSI target device within a particular SCSI instance.
2727 */
2728 static u32 srpt_sess_get_index(struct se_session *se_sess)
2729 {
2730 return 0;
2731 }
2732
2733 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
2734 {
2735 }
2736
2737 /* Note: only used from inside debug printk's by the TCM core. */
2738 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
2739 {
2740 struct srpt_send_ioctx *ioctx;
2741
2742 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2743 return srpt_get_cmd_state(ioctx);
2744 }
2745
2746 /**
2747 * srpt_parse_i_port_id() - Parse an initiator port ID.
2748 * @name: ASCII representation of a 128-bit initiator port ID.
2749 * @i_port_id: Binary 128-bit port ID.
2750 */
2751 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
2752 {
2753 const char *p;
2754 unsigned len, count, leading_zero_bytes;
2755 int ret, rc;
2756
2757 p = name;
2758 if (strncasecmp(p, "0x", 2) == 0)
2759 p += 2;
2760 ret = -EINVAL;
2761 len = strlen(p);
2762 if (len % 2)
2763 goto out;
2764 count = min(len / 2, 16U);
2765 leading_zero_bytes = 16 - count;
2766 memset(i_port_id, 0, leading_zero_bytes);
2767 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
2768 if (rc < 0)
2769 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
2770 ret = 0;
2771 out:
2772 return ret;
2773 }
2774
2775 /*
2776 * configfs callback function invoked for
2777 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
2778 */
2779 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
2780 {
2781 u8 i_port_id[16];
2782
2783 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
2784 pr_err("invalid initiator port ID %s\n", name);
2785 return -EINVAL;
2786 }
2787 return 0;
2788 }
2789
2790 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
2791 char *page)
2792 {
2793 struct se_portal_group *se_tpg = attrib_to_tpg(item);
2794 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2795
2796 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
2797 }
2798
2799 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
2800 const char *page, size_t count)
2801 {
2802 struct se_portal_group *se_tpg = attrib_to_tpg(item);
2803 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2804 unsigned long val;
2805 int ret;
2806
2807 ret = kstrtoul(page, 0, &val);
2808 if (ret < 0) {
2809 pr_err("kstrtoul() failed with ret: %d\n", ret);
2810 return -EINVAL;
2811 }
2812 if (val > MAX_SRPT_RDMA_SIZE) {
2813 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
2814 MAX_SRPT_RDMA_SIZE);
2815 return -EINVAL;
2816 }
2817 if (val < DEFAULT_MAX_RDMA_SIZE) {
2818 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
2819 val, DEFAULT_MAX_RDMA_SIZE);
2820 return -EINVAL;
2821 }
2822 sport->port_attrib.srp_max_rdma_size = val;
2823
2824 return count;
2825 }
2826
2827 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
2828 char *page)
2829 {
2830 struct se_portal_group *se_tpg = attrib_to_tpg(item);
2831 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2832
2833 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
2834 }
2835
2836 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
2837 const char *page, size_t count)
2838 {
2839 struct se_portal_group *se_tpg = attrib_to_tpg(item);
2840 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2841 unsigned long val;
2842 int ret;
2843
2844 ret = kstrtoul(page, 0, &val);
2845 if (ret < 0) {
2846 pr_err("kstrtoul() failed with ret: %d\n", ret);
2847 return -EINVAL;
2848 }
2849 if (val > MAX_SRPT_RSP_SIZE) {
2850 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
2851 MAX_SRPT_RSP_SIZE);
2852 return -EINVAL;
2853 }
2854 if (val < MIN_MAX_RSP_SIZE) {
2855 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
2856 MIN_MAX_RSP_SIZE);
2857 return -EINVAL;
2858 }
2859 sport->port_attrib.srp_max_rsp_size = val;
2860
2861 return count;
2862 }
2863
2864 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
2865 char *page)
2866 {
2867 struct se_portal_group *se_tpg = attrib_to_tpg(item);
2868 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2869
2870 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
2871 }
2872
2873 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
2874 const char *page, size_t count)
2875 {
2876 struct se_portal_group *se_tpg = attrib_to_tpg(item);
2877 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2878 unsigned long val;
2879 int ret;
2880
2881 ret = kstrtoul(page, 0, &val);
2882 if (ret < 0) {
2883 pr_err("kstrtoul() failed with ret: %d\n", ret);
2884 return -EINVAL;
2885 }
2886 if (val > MAX_SRPT_SRQ_SIZE) {
2887 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
2888 MAX_SRPT_SRQ_SIZE);
2889 return -EINVAL;
2890 }
2891 if (val < MIN_SRPT_SRQ_SIZE) {
2892 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
2893 MIN_SRPT_SRQ_SIZE);
2894 return -EINVAL;
2895 }
2896 sport->port_attrib.srp_sq_size = val;
2897
2898 return count;
2899 }
2900
2901 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size);
2902 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size);
2903 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size);
2904
2905 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
2906 &srpt_tpg_attrib_attr_srp_max_rdma_size,
2907 &srpt_tpg_attrib_attr_srp_max_rsp_size,
2908 &srpt_tpg_attrib_attr_srp_sq_size,
2909 NULL,
2910 };
2911
2912 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
2913 {
2914 struct se_portal_group *se_tpg = to_tpg(item);
2915 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2916
2917 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
2918 }
2919
2920 static ssize_t srpt_tpg_enable_store(struct config_item *item,
2921 const char *page, size_t count)
2922 {
2923 struct se_portal_group *se_tpg = to_tpg(item);
2924 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2925 struct srpt_device *sdev = sport->sdev;
2926 struct srpt_rdma_ch *ch;
2927 unsigned long tmp;
2928 int ret;
2929
2930 ret = kstrtoul(page, 0, &tmp);
2931 if (ret < 0) {
2932 pr_err("Unable to extract srpt_tpg_store_enable\n");
2933 return -EINVAL;
2934 }
2935
2936 if ((tmp != 0) && (tmp != 1)) {
2937 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
2938 return -EINVAL;
2939 }
2940 if (sport->enabled == tmp)
2941 goto out;
2942 sport->enabled = tmp;
2943 if (sport->enabled)
2944 goto out;
2945
2946 mutex_lock(&sdev->mutex);
2947 list_for_each_entry(ch, &sdev->rch_list, list) {
2948 if (ch->sport == sport) {
2949 pr_debug("%s: ch %p %s-%d\n", __func__, ch,
2950 ch->sess_name, ch->qp->qp_num);
2951 srpt_disconnect_ch(ch);
2952 srpt_close_ch(ch);
2953 }
2954 }
2955 mutex_unlock(&sdev->mutex);
2956
2957 out:
2958 return count;
2959 }
2960
2961 CONFIGFS_ATTR(srpt_tpg_, enable);
2962
2963 static struct configfs_attribute *srpt_tpg_attrs[] = {
2964 &srpt_tpg_attr_enable,
2965 NULL,
2966 };
2967
2968 /**
2969 * configfs callback invoked for
2970 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
2971 */
2972 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
2973 struct config_group *group,
2974 const char *name)
2975 {
2976 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
2977 int res;
2978
2979 /* Initialize sport->port_wwn and sport->port_tpg_1 */
2980 res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
2981 if (res)
2982 return ERR_PTR(res);
2983
2984 return &sport->port_tpg_1;
2985 }
2986
2987 /**
2988 * configfs callback invoked for
2989 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
2990 */
2991 static void srpt_drop_tpg(struct se_portal_group *tpg)
2992 {
2993 struct srpt_port *sport = container_of(tpg,
2994 struct srpt_port, port_tpg_1);
2995
2996 sport->enabled = false;
2997 core_tpg_deregister(&sport->port_tpg_1);
2998 }
2999
3000 /**
3001 * configfs callback invoked for
3002 * mkdir /sys/kernel/config/target/$driver/$port
3003 */
3004 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3005 struct config_group *group,
3006 const char *name)
3007 {
3008 struct srpt_port *sport;
3009 int ret;
3010
3011 sport = srpt_lookup_port(name);
3012 pr_debug("make_tport(%s)\n", name);
3013 ret = -EINVAL;
3014 if (!sport)
3015 goto err;
3016
3017 return &sport->port_wwn;
3018
3019 err:
3020 return ERR_PTR(ret);
3021 }
3022
3023 /**
3024 * configfs callback invoked for
3025 * rmdir /sys/kernel/config/target/$driver/$port
3026 */
3027 static void srpt_drop_tport(struct se_wwn *wwn)
3028 {
3029 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3030
3031 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3032 }
3033
3034 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3035 {
3036 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3037 }
3038
3039 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3040
3041 static struct configfs_attribute *srpt_wwn_attrs[] = {
3042 &srpt_wwn_attr_version,
3043 NULL,
3044 };
3045
3046 static const struct target_core_fabric_ops srpt_template = {
3047 .module = THIS_MODULE,
3048 .name = "srpt",
3049 .get_fabric_name = srpt_get_fabric_name,
3050 .tpg_get_wwn = srpt_get_fabric_wwn,
3051 .tpg_get_tag = srpt_get_tag,
3052 .tpg_check_demo_mode = srpt_check_false,
3053 .tpg_check_demo_mode_cache = srpt_check_true,
3054 .tpg_check_demo_mode_write_protect = srpt_check_true,
3055 .tpg_check_prod_mode_write_protect = srpt_check_false,
3056 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3057 .release_cmd = srpt_release_cmd,
3058 .check_stop_free = srpt_check_stop_free,
3059 .close_session = srpt_close_session,
3060 .sess_get_index = srpt_sess_get_index,
3061 .sess_get_initiator_sid = NULL,
3062 .write_pending = srpt_write_pending,
3063 .write_pending_status = srpt_write_pending_status,
3064 .set_default_node_attributes = srpt_set_default_node_attrs,
3065 .get_cmd_state = srpt_get_tcm_cmd_state,
3066 .queue_data_in = srpt_queue_data_in,
3067 .queue_status = srpt_queue_status,
3068 .queue_tm_rsp = srpt_queue_tm_rsp,
3069 .aborted_task = srpt_aborted_task,
3070 /*
3071 * Setup function pointers for generic logic in
3072 * target_core_fabric_configfs.c
3073 */
3074 .fabric_make_wwn = srpt_make_tport,
3075 .fabric_drop_wwn = srpt_drop_tport,
3076 .fabric_make_tpg = srpt_make_tpg,
3077 .fabric_drop_tpg = srpt_drop_tpg,
3078 .fabric_init_nodeacl = srpt_init_nodeacl,
3079
3080 .tfc_wwn_attrs = srpt_wwn_attrs,
3081 .tfc_tpg_base_attrs = srpt_tpg_attrs,
3082 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3083 };
3084
3085 /**
3086 * srpt_init_module() - Kernel module initialization.
3087 *
3088 * Note: Since ib_register_client() registers callback functions, and since at
3089 * least one of these callback functions (srpt_add_one()) calls target core
3090 * functions, this driver must be registered with the target core before
3091 * ib_register_client() is called.
3092 */
3093 static int __init srpt_init_module(void)
3094 {
3095 int ret;
3096
3097 ret = -EINVAL;
3098 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3099 pr_err("invalid value %d for kernel module parameter"
3100 " srp_max_req_size -- must be at least %d.\n",
3101 srp_max_req_size, MIN_MAX_REQ_SIZE);
3102 goto out;
3103 }
3104
3105 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3106 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3107 pr_err("invalid value %d for kernel module parameter"
3108 " srpt_srq_size -- must be in the range [%d..%d].\n",
3109 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3110 goto out;
3111 }
3112
3113 ret = target_register_template(&srpt_template);
3114 if (ret)
3115 goto out;
3116
3117 ret = ib_register_client(&srpt_client);
3118 if (ret) {
3119 pr_err("couldn't register IB client\n");
3120 goto out_unregister_target;
3121 }
3122
3123 return 0;
3124
3125 out_unregister_target:
3126 target_unregister_template(&srpt_template);
3127 out:
3128 return ret;
3129 }
3130
3131 static void __exit srpt_cleanup_module(void)
3132 {
3133 ib_unregister_client(&srpt_client);
3134 target_unregister_template(&srpt_template);
3135 }
3136
3137 module_init(srpt_init_module);
3138 module_exit(srpt_cleanup_module);