]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/input/input.c
Merge tag 'perf-urgent-2020-08-15' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / drivers / input / input.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
8
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
28
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32
33 #define INPUT_MAX_CHAR_DEVICES 1024
34 #define INPUT_FIRST_DYNAMIC_DEV 256
35 static DEFINE_IDA(input_ida);
36
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39
40 /*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46 static DEFINE_MUTEX(input_mutex);
47
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49
50 static inline int is_event_supported(unsigned int code,
51 unsigned long *bm, unsigned int max)
52 {
53 return code <= max && test_bit(code, bm);
54 }
55
56 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57 {
58 if (fuzz) {
59 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 return old_val;
61
62 if (value > old_val - fuzz && value < old_val + fuzz)
63 return (old_val * 3 + value) / 4;
64
65 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 return (old_val + value) / 2;
67 }
68
69 return value;
70 }
71
72 static void input_start_autorepeat(struct input_dev *dev, int code)
73 {
74 if (test_bit(EV_REP, dev->evbit) &&
75 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
76 dev->timer.function) {
77 dev->repeat_key = code;
78 mod_timer(&dev->timer,
79 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
80 }
81 }
82
83 static void input_stop_autorepeat(struct input_dev *dev)
84 {
85 del_timer(&dev->timer);
86 }
87
88 /*
89 * Pass event first through all filters and then, if event has not been
90 * filtered out, through all open handles. This function is called with
91 * dev->event_lock held and interrupts disabled.
92 */
93 static unsigned int input_to_handler(struct input_handle *handle,
94 struct input_value *vals, unsigned int count)
95 {
96 struct input_handler *handler = handle->handler;
97 struct input_value *end = vals;
98 struct input_value *v;
99
100 if (handler->filter) {
101 for (v = vals; v != vals + count; v++) {
102 if (handler->filter(handle, v->type, v->code, v->value))
103 continue;
104 if (end != v)
105 *end = *v;
106 end++;
107 }
108 count = end - vals;
109 }
110
111 if (!count)
112 return 0;
113
114 if (handler->events)
115 handler->events(handle, vals, count);
116 else if (handler->event)
117 for (v = vals; v != vals + count; v++)
118 handler->event(handle, v->type, v->code, v->value);
119
120 return count;
121 }
122
123 /*
124 * Pass values first through all filters and then, if event has not been
125 * filtered out, through all open handles. This function is called with
126 * dev->event_lock held and interrupts disabled.
127 */
128 static void input_pass_values(struct input_dev *dev,
129 struct input_value *vals, unsigned int count)
130 {
131 struct input_handle *handle;
132 struct input_value *v;
133
134 if (!count)
135 return;
136
137 rcu_read_lock();
138
139 handle = rcu_dereference(dev->grab);
140 if (handle) {
141 count = input_to_handler(handle, vals, count);
142 } else {
143 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
144 if (handle->open) {
145 count = input_to_handler(handle, vals, count);
146 if (!count)
147 break;
148 }
149 }
150
151 rcu_read_unlock();
152
153 /* trigger auto repeat for key events */
154 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
155 for (v = vals; v != vals + count; v++) {
156 if (v->type == EV_KEY && v->value != 2) {
157 if (v->value)
158 input_start_autorepeat(dev, v->code);
159 else
160 input_stop_autorepeat(dev);
161 }
162 }
163 }
164 }
165
166 static void input_pass_event(struct input_dev *dev,
167 unsigned int type, unsigned int code, int value)
168 {
169 struct input_value vals[] = { { type, code, value } };
170
171 input_pass_values(dev, vals, ARRAY_SIZE(vals));
172 }
173
174 /*
175 * Generate software autorepeat event. Note that we take
176 * dev->event_lock here to avoid racing with input_event
177 * which may cause keys get "stuck".
178 */
179 static void input_repeat_key(struct timer_list *t)
180 {
181 struct input_dev *dev = from_timer(dev, t, timer);
182 unsigned long flags;
183
184 spin_lock_irqsave(&dev->event_lock, flags);
185
186 if (test_bit(dev->repeat_key, dev->key) &&
187 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
188 struct input_value vals[] = {
189 { EV_KEY, dev->repeat_key, 2 },
190 input_value_sync
191 };
192
193 input_set_timestamp(dev, ktime_get());
194 input_pass_values(dev, vals, ARRAY_SIZE(vals));
195
196 if (dev->rep[REP_PERIOD])
197 mod_timer(&dev->timer, jiffies +
198 msecs_to_jiffies(dev->rep[REP_PERIOD]));
199 }
200
201 spin_unlock_irqrestore(&dev->event_lock, flags);
202 }
203
204 #define INPUT_IGNORE_EVENT 0
205 #define INPUT_PASS_TO_HANDLERS 1
206 #define INPUT_PASS_TO_DEVICE 2
207 #define INPUT_SLOT 4
208 #define INPUT_FLUSH 8
209 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
210
211 static int input_handle_abs_event(struct input_dev *dev,
212 unsigned int code, int *pval)
213 {
214 struct input_mt *mt = dev->mt;
215 bool is_mt_event;
216 int *pold;
217
218 if (code == ABS_MT_SLOT) {
219 /*
220 * "Stage" the event; we'll flush it later, when we
221 * get actual touch data.
222 */
223 if (mt && *pval >= 0 && *pval < mt->num_slots)
224 mt->slot = *pval;
225
226 return INPUT_IGNORE_EVENT;
227 }
228
229 is_mt_event = input_is_mt_value(code);
230
231 if (!is_mt_event) {
232 pold = &dev->absinfo[code].value;
233 } else if (mt) {
234 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
235 } else {
236 /*
237 * Bypass filtering for multi-touch events when
238 * not employing slots.
239 */
240 pold = NULL;
241 }
242
243 if (pold) {
244 *pval = input_defuzz_abs_event(*pval, *pold,
245 dev->absinfo[code].fuzz);
246 if (*pold == *pval)
247 return INPUT_IGNORE_EVENT;
248
249 *pold = *pval;
250 }
251
252 /* Flush pending "slot" event */
253 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
254 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
255 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
256 }
257
258 return INPUT_PASS_TO_HANDLERS;
259 }
260
261 static int input_get_disposition(struct input_dev *dev,
262 unsigned int type, unsigned int code, int *pval)
263 {
264 int disposition = INPUT_IGNORE_EVENT;
265 int value = *pval;
266
267 switch (type) {
268
269 case EV_SYN:
270 switch (code) {
271 case SYN_CONFIG:
272 disposition = INPUT_PASS_TO_ALL;
273 break;
274
275 case SYN_REPORT:
276 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
277 break;
278 case SYN_MT_REPORT:
279 disposition = INPUT_PASS_TO_HANDLERS;
280 break;
281 }
282 break;
283
284 case EV_KEY:
285 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
286
287 /* auto-repeat bypasses state updates */
288 if (value == 2) {
289 disposition = INPUT_PASS_TO_HANDLERS;
290 break;
291 }
292
293 if (!!test_bit(code, dev->key) != !!value) {
294
295 __change_bit(code, dev->key);
296 disposition = INPUT_PASS_TO_HANDLERS;
297 }
298 }
299 break;
300
301 case EV_SW:
302 if (is_event_supported(code, dev->swbit, SW_MAX) &&
303 !!test_bit(code, dev->sw) != !!value) {
304
305 __change_bit(code, dev->sw);
306 disposition = INPUT_PASS_TO_HANDLERS;
307 }
308 break;
309
310 case EV_ABS:
311 if (is_event_supported(code, dev->absbit, ABS_MAX))
312 disposition = input_handle_abs_event(dev, code, &value);
313
314 break;
315
316 case EV_REL:
317 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
318 disposition = INPUT_PASS_TO_HANDLERS;
319
320 break;
321
322 case EV_MSC:
323 if (is_event_supported(code, dev->mscbit, MSC_MAX))
324 disposition = INPUT_PASS_TO_ALL;
325
326 break;
327
328 case EV_LED:
329 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
330 !!test_bit(code, dev->led) != !!value) {
331
332 __change_bit(code, dev->led);
333 disposition = INPUT_PASS_TO_ALL;
334 }
335 break;
336
337 case EV_SND:
338 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
339
340 if (!!test_bit(code, dev->snd) != !!value)
341 __change_bit(code, dev->snd);
342 disposition = INPUT_PASS_TO_ALL;
343 }
344 break;
345
346 case EV_REP:
347 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
348 dev->rep[code] = value;
349 disposition = INPUT_PASS_TO_ALL;
350 }
351 break;
352
353 case EV_FF:
354 if (value >= 0)
355 disposition = INPUT_PASS_TO_ALL;
356 break;
357
358 case EV_PWR:
359 disposition = INPUT_PASS_TO_ALL;
360 break;
361 }
362
363 *pval = value;
364 return disposition;
365 }
366
367 static void input_handle_event(struct input_dev *dev,
368 unsigned int type, unsigned int code, int value)
369 {
370 int disposition = input_get_disposition(dev, type, code, &value);
371
372 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
373 add_input_randomness(type, code, value);
374
375 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
376 dev->event(dev, type, code, value);
377
378 if (!dev->vals)
379 return;
380
381 if (disposition & INPUT_PASS_TO_HANDLERS) {
382 struct input_value *v;
383
384 if (disposition & INPUT_SLOT) {
385 v = &dev->vals[dev->num_vals++];
386 v->type = EV_ABS;
387 v->code = ABS_MT_SLOT;
388 v->value = dev->mt->slot;
389 }
390
391 v = &dev->vals[dev->num_vals++];
392 v->type = type;
393 v->code = code;
394 v->value = value;
395 }
396
397 if (disposition & INPUT_FLUSH) {
398 if (dev->num_vals >= 2)
399 input_pass_values(dev, dev->vals, dev->num_vals);
400 dev->num_vals = 0;
401 /*
402 * Reset the timestamp on flush so we won't end up
403 * with a stale one. Note we only need to reset the
404 * monolithic one as we use its presence when deciding
405 * whether to generate a synthetic timestamp.
406 */
407 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
408 } else if (dev->num_vals >= dev->max_vals - 2) {
409 dev->vals[dev->num_vals++] = input_value_sync;
410 input_pass_values(dev, dev->vals, dev->num_vals);
411 dev->num_vals = 0;
412 }
413
414 }
415
416 /**
417 * input_event() - report new input event
418 * @dev: device that generated the event
419 * @type: type of the event
420 * @code: event code
421 * @value: value of the event
422 *
423 * This function should be used by drivers implementing various input
424 * devices to report input events. See also input_inject_event().
425 *
426 * NOTE: input_event() may be safely used right after input device was
427 * allocated with input_allocate_device(), even before it is registered
428 * with input_register_device(), but the event will not reach any of the
429 * input handlers. Such early invocation of input_event() may be used
430 * to 'seed' initial state of a switch or initial position of absolute
431 * axis, etc.
432 */
433 void input_event(struct input_dev *dev,
434 unsigned int type, unsigned int code, int value)
435 {
436 unsigned long flags;
437
438 if (is_event_supported(type, dev->evbit, EV_MAX)) {
439
440 spin_lock_irqsave(&dev->event_lock, flags);
441 input_handle_event(dev, type, code, value);
442 spin_unlock_irqrestore(&dev->event_lock, flags);
443 }
444 }
445 EXPORT_SYMBOL(input_event);
446
447 /**
448 * input_inject_event() - send input event from input handler
449 * @handle: input handle to send event through
450 * @type: type of the event
451 * @code: event code
452 * @value: value of the event
453 *
454 * Similar to input_event() but will ignore event if device is
455 * "grabbed" and handle injecting event is not the one that owns
456 * the device.
457 */
458 void input_inject_event(struct input_handle *handle,
459 unsigned int type, unsigned int code, int value)
460 {
461 struct input_dev *dev = handle->dev;
462 struct input_handle *grab;
463 unsigned long flags;
464
465 if (is_event_supported(type, dev->evbit, EV_MAX)) {
466 spin_lock_irqsave(&dev->event_lock, flags);
467
468 rcu_read_lock();
469 grab = rcu_dereference(dev->grab);
470 if (!grab || grab == handle)
471 input_handle_event(dev, type, code, value);
472 rcu_read_unlock();
473
474 spin_unlock_irqrestore(&dev->event_lock, flags);
475 }
476 }
477 EXPORT_SYMBOL(input_inject_event);
478
479 /**
480 * input_alloc_absinfo - allocates array of input_absinfo structs
481 * @dev: the input device emitting absolute events
482 *
483 * If the absinfo struct the caller asked for is already allocated, this
484 * functions will not do anything.
485 */
486 void input_alloc_absinfo(struct input_dev *dev)
487 {
488 if (dev->absinfo)
489 return;
490
491 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
492 if (!dev->absinfo) {
493 dev_err(dev->dev.parent ?: &dev->dev,
494 "%s: unable to allocate memory\n", __func__);
495 /*
496 * We will handle this allocation failure in
497 * input_register_device() when we refuse to register input
498 * device with ABS bits but without absinfo.
499 */
500 }
501 }
502 EXPORT_SYMBOL(input_alloc_absinfo);
503
504 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
505 int min, int max, int fuzz, int flat)
506 {
507 struct input_absinfo *absinfo;
508
509 input_alloc_absinfo(dev);
510 if (!dev->absinfo)
511 return;
512
513 absinfo = &dev->absinfo[axis];
514 absinfo->minimum = min;
515 absinfo->maximum = max;
516 absinfo->fuzz = fuzz;
517 absinfo->flat = flat;
518
519 __set_bit(EV_ABS, dev->evbit);
520 __set_bit(axis, dev->absbit);
521 }
522 EXPORT_SYMBOL(input_set_abs_params);
523
524
525 /**
526 * input_grab_device - grabs device for exclusive use
527 * @handle: input handle that wants to own the device
528 *
529 * When a device is grabbed by an input handle all events generated by
530 * the device are delivered only to this handle. Also events injected
531 * by other input handles are ignored while device is grabbed.
532 */
533 int input_grab_device(struct input_handle *handle)
534 {
535 struct input_dev *dev = handle->dev;
536 int retval;
537
538 retval = mutex_lock_interruptible(&dev->mutex);
539 if (retval)
540 return retval;
541
542 if (dev->grab) {
543 retval = -EBUSY;
544 goto out;
545 }
546
547 rcu_assign_pointer(dev->grab, handle);
548
549 out:
550 mutex_unlock(&dev->mutex);
551 return retval;
552 }
553 EXPORT_SYMBOL(input_grab_device);
554
555 static void __input_release_device(struct input_handle *handle)
556 {
557 struct input_dev *dev = handle->dev;
558 struct input_handle *grabber;
559
560 grabber = rcu_dereference_protected(dev->grab,
561 lockdep_is_held(&dev->mutex));
562 if (grabber == handle) {
563 rcu_assign_pointer(dev->grab, NULL);
564 /* Make sure input_pass_event() notices that grab is gone */
565 synchronize_rcu();
566
567 list_for_each_entry(handle, &dev->h_list, d_node)
568 if (handle->open && handle->handler->start)
569 handle->handler->start(handle);
570 }
571 }
572
573 /**
574 * input_release_device - release previously grabbed device
575 * @handle: input handle that owns the device
576 *
577 * Releases previously grabbed device so that other input handles can
578 * start receiving input events. Upon release all handlers attached
579 * to the device have their start() method called so they have a change
580 * to synchronize device state with the rest of the system.
581 */
582 void input_release_device(struct input_handle *handle)
583 {
584 struct input_dev *dev = handle->dev;
585
586 mutex_lock(&dev->mutex);
587 __input_release_device(handle);
588 mutex_unlock(&dev->mutex);
589 }
590 EXPORT_SYMBOL(input_release_device);
591
592 /**
593 * input_open_device - open input device
594 * @handle: handle through which device is being accessed
595 *
596 * This function should be called by input handlers when they
597 * want to start receive events from given input device.
598 */
599 int input_open_device(struct input_handle *handle)
600 {
601 struct input_dev *dev = handle->dev;
602 int retval;
603
604 retval = mutex_lock_interruptible(&dev->mutex);
605 if (retval)
606 return retval;
607
608 if (dev->going_away) {
609 retval = -ENODEV;
610 goto out;
611 }
612
613 handle->open++;
614
615 if (dev->users++) {
616 /*
617 * Device is already opened, so we can exit immediately and
618 * report success.
619 */
620 goto out;
621 }
622
623 if (dev->open) {
624 retval = dev->open(dev);
625 if (retval) {
626 dev->users--;
627 handle->open--;
628 /*
629 * Make sure we are not delivering any more events
630 * through this handle
631 */
632 synchronize_rcu();
633 goto out;
634 }
635 }
636
637 if (dev->poller)
638 input_dev_poller_start(dev->poller);
639
640 out:
641 mutex_unlock(&dev->mutex);
642 return retval;
643 }
644 EXPORT_SYMBOL(input_open_device);
645
646 int input_flush_device(struct input_handle *handle, struct file *file)
647 {
648 struct input_dev *dev = handle->dev;
649 int retval;
650
651 retval = mutex_lock_interruptible(&dev->mutex);
652 if (retval)
653 return retval;
654
655 if (dev->flush)
656 retval = dev->flush(dev, file);
657
658 mutex_unlock(&dev->mutex);
659 return retval;
660 }
661 EXPORT_SYMBOL(input_flush_device);
662
663 /**
664 * input_close_device - close input device
665 * @handle: handle through which device is being accessed
666 *
667 * This function should be called by input handlers when they
668 * want to stop receive events from given input device.
669 */
670 void input_close_device(struct input_handle *handle)
671 {
672 struct input_dev *dev = handle->dev;
673
674 mutex_lock(&dev->mutex);
675
676 __input_release_device(handle);
677
678 if (!--dev->users) {
679 if (dev->poller)
680 input_dev_poller_stop(dev->poller);
681
682 if (dev->close)
683 dev->close(dev);
684 }
685
686 if (!--handle->open) {
687 /*
688 * synchronize_rcu() makes sure that input_pass_event()
689 * completed and that no more input events are delivered
690 * through this handle
691 */
692 synchronize_rcu();
693 }
694
695 mutex_unlock(&dev->mutex);
696 }
697 EXPORT_SYMBOL(input_close_device);
698
699 /*
700 * Simulate keyup events for all keys that are marked as pressed.
701 * The function must be called with dev->event_lock held.
702 */
703 static void input_dev_release_keys(struct input_dev *dev)
704 {
705 bool need_sync = false;
706 int code;
707
708 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
709 for_each_set_bit(code, dev->key, KEY_CNT) {
710 input_pass_event(dev, EV_KEY, code, 0);
711 need_sync = true;
712 }
713
714 if (need_sync)
715 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
716
717 memset(dev->key, 0, sizeof(dev->key));
718 }
719 }
720
721 /*
722 * Prepare device for unregistering
723 */
724 static void input_disconnect_device(struct input_dev *dev)
725 {
726 struct input_handle *handle;
727
728 /*
729 * Mark device as going away. Note that we take dev->mutex here
730 * not to protect access to dev->going_away but rather to ensure
731 * that there are no threads in the middle of input_open_device()
732 */
733 mutex_lock(&dev->mutex);
734 dev->going_away = true;
735 mutex_unlock(&dev->mutex);
736
737 spin_lock_irq(&dev->event_lock);
738
739 /*
740 * Simulate keyup events for all pressed keys so that handlers
741 * are not left with "stuck" keys. The driver may continue
742 * generate events even after we done here but they will not
743 * reach any handlers.
744 */
745 input_dev_release_keys(dev);
746
747 list_for_each_entry(handle, &dev->h_list, d_node)
748 handle->open = 0;
749
750 spin_unlock_irq(&dev->event_lock);
751 }
752
753 /**
754 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
755 * @ke: keymap entry containing scancode to be converted.
756 * @scancode: pointer to the location where converted scancode should
757 * be stored.
758 *
759 * This function is used to convert scancode stored in &struct keymap_entry
760 * into scalar form understood by legacy keymap handling methods. These
761 * methods expect scancodes to be represented as 'unsigned int'.
762 */
763 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
764 unsigned int *scancode)
765 {
766 switch (ke->len) {
767 case 1:
768 *scancode = *((u8 *)ke->scancode);
769 break;
770
771 case 2:
772 *scancode = *((u16 *)ke->scancode);
773 break;
774
775 case 4:
776 *scancode = *((u32 *)ke->scancode);
777 break;
778
779 default:
780 return -EINVAL;
781 }
782
783 return 0;
784 }
785 EXPORT_SYMBOL(input_scancode_to_scalar);
786
787 /*
788 * Those routines handle the default case where no [gs]etkeycode() is
789 * defined. In this case, an array indexed by the scancode is used.
790 */
791
792 static unsigned int input_fetch_keycode(struct input_dev *dev,
793 unsigned int index)
794 {
795 switch (dev->keycodesize) {
796 case 1:
797 return ((u8 *)dev->keycode)[index];
798
799 case 2:
800 return ((u16 *)dev->keycode)[index];
801
802 default:
803 return ((u32 *)dev->keycode)[index];
804 }
805 }
806
807 static int input_default_getkeycode(struct input_dev *dev,
808 struct input_keymap_entry *ke)
809 {
810 unsigned int index;
811 int error;
812
813 if (!dev->keycodesize)
814 return -EINVAL;
815
816 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
817 index = ke->index;
818 else {
819 error = input_scancode_to_scalar(ke, &index);
820 if (error)
821 return error;
822 }
823
824 if (index >= dev->keycodemax)
825 return -EINVAL;
826
827 ke->keycode = input_fetch_keycode(dev, index);
828 ke->index = index;
829 ke->len = sizeof(index);
830 memcpy(ke->scancode, &index, sizeof(index));
831
832 return 0;
833 }
834
835 static int input_default_setkeycode(struct input_dev *dev,
836 const struct input_keymap_entry *ke,
837 unsigned int *old_keycode)
838 {
839 unsigned int index;
840 int error;
841 int i;
842
843 if (!dev->keycodesize)
844 return -EINVAL;
845
846 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
847 index = ke->index;
848 } else {
849 error = input_scancode_to_scalar(ke, &index);
850 if (error)
851 return error;
852 }
853
854 if (index >= dev->keycodemax)
855 return -EINVAL;
856
857 if (dev->keycodesize < sizeof(ke->keycode) &&
858 (ke->keycode >> (dev->keycodesize * 8)))
859 return -EINVAL;
860
861 switch (dev->keycodesize) {
862 case 1: {
863 u8 *k = (u8 *)dev->keycode;
864 *old_keycode = k[index];
865 k[index] = ke->keycode;
866 break;
867 }
868 case 2: {
869 u16 *k = (u16 *)dev->keycode;
870 *old_keycode = k[index];
871 k[index] = ke->keycode;
872 break;
873 }
874 default: {
875 u32 *k = (u32 *)dev->keycode;
876 *old_keycode = k[index];
877 k[index] = ke->keycode;
878 break;
879 }
880 }
881
882 if (*old_keycode <= KEY_MAX) {
883 __clear_bit(*old_keycode, dev->keybit);
884 for (i = 0; i < dev->keycodemax; i++) {
885 if (input_fetch_keycode(dev, i) == *old_keycode) {
886 __set_bit(*old_keycode, dev->keybit);
887 /* Setting the bit twice is useless, so break */
888 break;
889 }
890 }
891 }
892
893 __set_bit(ke->keycode, dev->keybit);
894 return 0;
895 }
896
897 /**
898 * input_get_keycode - retrieve keycode currently mapped to a given scancode
899 * @dev: input device which keymap is being queried
900 * @ke: keymap entry
901 *
902 * This function should be called by anyone interested in retrieving current
903 * keymap. Presently evdev handlers use it.
904 */
905 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
906 {
907 unsigned long flags;
908 int retval;
909
910 spin_lock_irqsave(&dev->event_lock, flags);
911 retval = dev->getkeycode(dev, ke);
912 spin_unlock_irqrestore(&dev->event_lock, flags);
913
914 return retval;
915 }
916 EXPORT_SYMBOL(input_get_keycode);
917
918 /**
919 * input_set_keycode - attribute a keycode to a given scancode
920 * @dev: input device which keymap is being updated
921 * @ke: new keymap entry
922 *
923 * This function should be called by anyone needing to update current
924 * keymap. Presently keyboard and evdev handlers use it.
925 */
926 int input_set_keycode(struct input_dev *dev,
927 const struct input_keymap_entry *ke)
928 {
929 unsigned long flags;
930 unsigned int old_keycode;
931 int retval;
932
933 if (ke->keycode > KEY_MAX)
934 return -EINVAL;
935
936 spin_lock_irqsave(&dev->event_lock, flags);
937
938 retval = dev->setkeycode(dev, ke, &old_keycode);
939 if (retval)
940 goto out;
941
942 /* Make sure KEY_RESERVED did not get enabled. */
943 __clear_bit(KEY_RESERVED, dev->keybit);
944
945 /*
946 * Simulate keyup event if keycode is not present
947 * in the keymap anymore
948 */
949 if (old_keycode > KEY_MAX) {
950 dev_warn(dev->dev.parent ?: &dev->dev,
951 "%s: got too big old keycode %#x\n",
952 __func__, old_keycode);
953 } else if (test_bit(EV_KEY, dev->evbit) &&
954 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
955 __test_and_clear_bit(old_keycode, dev->key)) {
956 struct input_value vals[] = {
957 { EV_KEY, old_keycode, 0 },
958 input_value_sync
959 };
960
961 input_pass_values(dev, vals, ARRAY_SIZE(vals));
962 }
963
964 out:
965 spin_unlock_irqrestore(&dev->event_lock, flags);
966
967 return retval;
968 }
969 EXPORT_SYMBOL(input_set_keycode);
970
971 bool input_match_device_id(const struct input_dev *dev,
972 const struct input_device_id *id)
973 {
974 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
975 if (id->bustype != dev->id.bustype)
976 return false;
977
978 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
979 if (id->vendor != dev->id.vendor)
980 return false;
981
982 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
983 if (id->product != dev->id.product)
984 return false;
985
986 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
987 if (id->version != dev->id.version)
988 return false;
989
990 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
991 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
992 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
993 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
994 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
995 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
996 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
997 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
998 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
999 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1000 return false;
1001 }
1002
1003 return true;
1004 }
1005 EXPORT_SYMBOL(input_match_device_id);
1006
1007 static const struct input_device_id *input_match_device(struct input_handler *handler,
1008 struct input_dev *dev)
1009 {
1010 const struct input_device_id *id;
1011
1012 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1013 if (input_match_device_id(dev, id) &&
1014 (!handler->match || handler->match(handler, dev))) {
1015 return id;
1016 }
1017 }
1018
1019 return NULL;
1020 }
1021
1022 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1023 {
1024 const struct input_device_id *id;
1025 int error;
1026
1027 id = input_match_device(handler, dev);
1028 if (!id)
1029 return -ENODEV;
1030
1031 error = handler->connect(handler, dev, id);
1032 if (error && error != -ENODEV)
1033 pr_err("failed to attach handler %s to device %s, error: %d\n",
1034 handler->name, kobject_name(&dev->dev.kobj), error);
1035
1036 return error;
1037 }
1038
1039 #ifdef CONFIG_COMPAT
1040
1041 static int input_bits_to_string(char *buf, int buf_size,
1042 unsigned long bits, bool skip_empty)
1043 {
1044 int len = 0;
1045
1046 if (in_compat_syscall()) {
1047 u32 dword = bits >> 32;
1048 if (dword || !skip_empty)
1049 len += snprintf(buf, buf_size, "%x ", dword);
1050
1051 dword = bits & 0xffffffffUL;
1052 if (dword || !skip_empty || len)
1053 len += snprintf(buf + len, max(buf_size - len, 0),
1054 "%x", dword);
1055 } else {
1056 if (bits || !skip_empty)
1057 len += snprintf(buf, buf_size, "%lx", bits);
1058 }
1059
1060 return len;
1061 }
1062
1063 #else /* !CONFIG_COMPAT */
1064
1065 static int input_bits_to_string(char *buf, int buf_size,
1066 unsigned long bits, bool skip_empty)
1067 {
1068 return bits || !skip_empty ?
1069 snprintf(buf, buf_size, "%lx", bits) : 0;
1070 }
1071
1072 #endif
1073
1074 #ifdef CONFIG_PROC_FS
1075
1076 static struct proc_dir_entry *proc_bus_input_dir;
1077 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1078 static int input_devices_state;
1079
1080 static inline void input_wakeup_procfs_readers(void)
1081 {
1082 input_devices_state++;
1083 wake_up(&input_devices_poll_wait);
1084 }
1085
1086 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1087 {
1088 poll_wait(file, &input_devices_poll_wait, wait);
1089 if (file->f_version != input_devices_state) {
1090 file->f_version = input_devices_state;
1091 return EPOLLIN | EPOLLRDNORM;
1092 }
1093
1094 return 0;
1095 }
1096
1097 union input_seq_state {
1098 struct {
1099 unsigned short pos;
1100 bool mutex_acquired;
1101 };
1102 void *p;
1103 };
1104
1105 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1106 {
1107 union input_seq_state *state = (union input_seq_state *)&seq->private;
1108 int error;
1109
1110 /* We need to fit into seq->private pointer */
1111 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1112
1113 error = mutex_lock_interruptible(&input_mutex);
1114 if (error) {
1115 state->mutex_acquired = false;
1116 return ERR_PTR(error);
1117 }
1118
1119 state->mutex_acquired = true;
1120
1121 return seq_list_start(&input_dev_list, *pos);
1122 }
1123
1124 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1125 {
1126 return seq_list_next(v, &input_dev_list, pos);
1127 }
1128
1129 static void input_seq_stop(struct seq_file *seq, void *v)
1130 {
1131 union input_seq_state *state = (union input_seq_state *)&seq->private;
1132
1133 if (state->mutex_acquired)
1134 mutex_unlock(&input_mutex);
1135 }
1136
1137 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1138 unsigned long *bitmap, int max)
1139 {
1140 int i;
1141 bool skip_empty = true;
1142 char buf[18];
1143
1144 seq_printf(seq, "B: %s=", name);
1145
1146 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1147 if (input_bits_to_string(buf, sizeof(buf),
1148 bitmap[i], skip_empty)) {
1149 skip_empty = false;
1150 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1151 }
1152 }
1153
1154 /*
1155 * If no output was produced print a single 0.
1156 */
1157 if (skip_empty)
1158 seq_putc(seq, '0');
1159
1160 seq_putc(seq, '\n');
1161 }
1162
1163 static int input_devices_seq_show(struct seq_file *seq, void *v)
1164 {
1165 struct input_dev *dev = container_of(v, struct input_dev, node);
1166 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1167 struct input_handle *handle;
1168
1169 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1170 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1171
1172 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1173 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1174 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1175 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1176 seq_puts(seq, "H: Handlers=");
1177
1178 list_for_each_entry(handle, &dev->h_list, d_node)
1179 seq_printf(seq, "%s ", handle->name);
1180 seq_putc(seq, '\n');
1181
1182 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1183
1184 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1185 if (test_bit(EV_KEY, dev->evbit))
1186 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1187 if (test_bit(EV_REL, dev->evbit))
1188 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1189 if (test_bit(EV_ABS, dev->evbit))
1190 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1191 if (test_bit(EV_MSC, dev->evbit))
1192 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1193 if (test_bit(EV_LED, dev->evbit))
1194 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1195 if (test_bit(EV_SND, dev->evbit))
1196 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1197 if (test_bit(EV_FF, dev->evbit))
1198 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1199 if (test_bit(EV_SW, dev->evbit))
1200 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1201
1202 seq_putc(seq, '\n');
1203
1204 kfree(path);
1205 return 0;
1206 }
1207
1208 static const struct seq_operations input_devices_seq_ops = {
1209 .start = input_devices_seq_start,
1210 .next = input_devices_seq_next,
1211 .stop = input_seq_stop,
1212 .show = input_devices_seq_show,
1213 };
1214
1215 static int input_proc_devices_open(struct inode *inode, struct file *file)
1216 {
1217 return seq_open(file, &input_devices_seq_ops);
1218 }
1219
1220 static const struct proc_ops input_devices_proc_ops = {
1221 .proc_open = input_proc_devices_open,
1222 .proc_poll = input_proc_devices_poll,
1223 .proc_read = seq_read,
1224 .proc_lseek = seq_lseek,
1225 .proc_release = seq_release,
1226 };
1227
1228 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1229 {
1230 union input_seq_state *state = (union input_seq_state *)&seq->private;
1231 int error;
1232
1233 /* We need to fit into seq->private pointer */
1234 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1235
1236 error = mutex_lock_interruptible(&input_mutex);
1237 if (error) {
1238 state->mutex_acquired = false;
1239 return ERR_PTR(error);
1240 }
1241
1242 state->mutex_acquired = true;
1243 state->pos = *pos;
1244
1245 return seq_list_start(&input_handler_list, *pos);
1246 }
1247
1248 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1249 {
1250 union input_seq_state *state = (union input_seq_state *)&seq->private;
1251
1252 state->pos = *pos + 1;
1253 return seq_list_next(v, &input_handler_list, pos);
1254 }
1255
1256 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1257 {
1258 struct input_handler *handler = container_of(v, struct input_handler, node);
1259 union input_seq_state *state = (union input_seq_state *)&seq->private;
1260
1261 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1262 if (handler->filter)
1263 seq_puts(seq, " (filter)");
1264 if (handler->legacy_minors)
1265 seq_printf(seq, " Minor=%d", handler->minor);
1266 seq_putc(seq, '\n');
1267
1268 return 0;
1269 }
1270
1271 static const struct seq_operations input_handlers_seq_ops = {
1272 .start = input_handlers_seq_start,
1273 .next = input_handlers_seq_next,
1274 .stop = input_seq_stop,
1275 .show = input_handlers_seq_show,
1276 };
1277
1278 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1279 {
1280 return seq_open(file, &input_handlers_seq_ops);
1281 }
1282
1283 static const struct proc_ops input_handlers_proc_ops = {
1284 .proc_open = input_proc_handlers_open,
1285 .proc_read = seq_read,
1286 .proc_lseek = seq_lseek,
1287 .proc_release = seq_release,
1288 };
1289
1290 static int __init input_proc_init(void)
1291 {
1292 struct proc_dir_entry *entry;
1293
1294 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1295 if (!proc_bus_input_dir)
1296 return -ENOMEM;
1297
1298 entry = proc_create("devices", 0, proc_bus_input_dir,
1299 &input_devices_proc_ops);
1300 if (!entry)
1301 goto fail1;
1302
1303 entry = proc_create("handlers", 0, proc_bus_input_dir,
1304 &input_handlers_proc_ops);
1305 if (!entry)
1306 goto fail2;
1307
1308 return 0;
1309
1310 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1311 fail1: remove_proc_entry("bus/input", NULL);
1312 return -ENOMEM;
1313 }
1314
1315 static void input_proc_exit(void)
1316 {
1317 remove_proc_entry("devices", proc_bus_input_dir);
1318 remove_proc_entry("handlers", proc_bus_input_dir);
1319 remove_proc_entry("bus/input", NULL);
1320 }
1321
1322 #else /* !CONFIG_PROC_FS */
1323 static inline void input_wakeup_procfs_readers(void) { }
1324 static inline int input_proc_init(void) { return 0; }
1325 static inline void input_proc_exit(void) { }
1326 #endif
1327
1328 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1329 static ssize_t input_dev_show_##name(struct device *dev, \
1330 struct device_attribute *attr, \
1331 char *buf) \
1332 { \
1333 struct input_dev *input_dev = to_input_dev(dev); \
1334 \
1335 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1336 input_dev->name ? input_dev->name : ""); \
1337 } \
1338 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1339
1340 INPUT_DEV_STRING_ATTR_SHOW(name);
1341 INPUT_DEV_STRING_ATTR_SHOW(phys);
1342 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1343
1344 static int input_print_modalias_bits(char *buf, int size,
1345 char name, unsigned long *bm,
1346 unsigned int min_bit, unsigned int max_bit)
1347 {
1348 int len = 0, i;
1349
1350 len += snprintf(buf, max(size, 0), "%c", name);
1351 for (i = min_bit; i < max_bit; i++)
1352 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1353 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1354 return len;
1355 }
1356
1357 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1358 int add_cr)
1359 {
1360 int len;
1361
1362 len = snprintf(buf, max(size, 0),
1363 "input:b%04Xv%04Xp%04Xe%04X-",
1364 id->id.bustype, id->id.vendor,
1365 id->id.product, id->id.version);
1366
1367 len += input_print_modalias_bits(buf + len, size - len,
1368 'e', id->evbit, 0, EV_MAX);
1369 len += input_print_modalias_bits(buf + len, size - len,
1370 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1371 len += input_print_modalias_bits(buf + len, size - len,
1372 'r', id->relbit, 0, REL_MAX);
1373 len += input_print_modalias_bits(buf + len, size - len,
1374 'a', id->absbit, 0, ABS_MAX);
1375 len += input_print_modalias_bits(buf + len, size - len,
1376 'm', id->mscbit, 0, MSC_MAX);
1377 len += input_print_modalias_bits(buf + len, size - len,
1378 'l', id->ledbit, 0, LED_MAX);
1379 len += input_print_modalias_bits(buf + len, size - len,
1380 's', id->sndbit, 0, SND_MAX);
1381 len += input_print_modalias_bits(buf + len, size - len,
1382 'f', id->ffbit, 0, FF_MAX);
1383 len += input_print_modalias_bits(buf + len, size - len,
1384 'w', id->swbit, 0, SW_MAX);
1385
1386 if (add_cr)
1387 len += snprintf(buf + len, max(size - len, 0), "\n");
1388
1389 return len;
1390 }
1391
1392 static ssize_t input_dev_show_modalias(struct device *dev,
1393 struct device_attribute *attr,
1394 char *buf)
1395 {
1396 struct input_dev *id = to_input_dev(dev);
1397 ssize_t len;
1398
1399 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1400
1401 return min_t(int, len, PAGE_SIZE);
1402 }
1403 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1404
1405 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1406 int max, int add_cr);
1407
1408 static ssize_t input_dev_show_properties(struct device *dev,
1409 struct device_attribute *attr,
1410 char *buf)
1411 {
1412 struct input_dev *input_dev = to_input_dev(dev);
1413 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1414 INPUT_PROP_MAX, true);
1415 return min_t(int, len, PAGE_SIZE);
1416 }
1417 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1418
1419 static struct attribute *input_dev_attrs[] = {
1420 &dev_attr_name.attr,
1421 &dev_attr_phys.attr,
1422 &dev_attr_uniq.attr,
1423 &dev_attr_modalias.attr,
1424 &dev_attr_properties.attr,
1425 NULL
1426 };
1427
1428 static const struct attribute_group input_dev_attr_group = {
1429 .attrs = input_dev_attrs,
1430 };
1431
1432 #define INPUT_DEV_ID_ATTR(name) \
1433 static ssize_t input_dev_show_id_##name(struct device *dev, \
1434 struct device_attribute *attr, \
1435 char *buf) \
1436 { \
1437 struct input_dev *input_dev = to_input_dev(dev); \
1438 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1439 } \
1440 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1441
1442 INPUT_DEV_ID_ATTR(bustype);
1443 INPUT_DEV_ID_ATTR(vendor);
1444 INPUT_DEV_ID_ATTR(product);
1445 INPUT_DEV_ID_ATTR(version);
1446
1447 static struct attribute *input_dev_id_attrs[] = {
1448 &dev_attr_bustype.attr,
1449 &dev_attr_vendor.attr,
1450 &dev_attr_product.attr,
1451 &dev_attr_version.attr,
1452 NULL
1453 };
1454
1455 static const struct attribute_group input_dev_id_attr_group = {
1456 .name = "id",
1457 .attrs = input_dev_id_attrs,
1458 };
1459
1460 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1461 int max, int add_cr)
1462 {
1463 int i;
1464 int len = 0;
1465 bool skip_empty = true;
1466
1467 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1468 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1469 bitmap[i], skip_empty);
1470 if (len) {
1471 skip_empty = false;
1472 if (i > 0)
1473 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1474 }
1475 }
1476
1477 /*
1478 * If no output was produced print a single 0.
1479 */
1480 if (len == 0)
1481 len = snprintf(buf, buf_size, "%d", 0);
1482
1483 if (add_cr)
1484 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1485
1486 return len;
1487 }
1488
1489 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1490 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1491 struct device_attribute *attr, \
1492 char *buf) \
1493 { \
1494 struct input_dev *input_dev = to_input_dev(dev); \
1495 int len = input_print_bitmap(buf, PAGE_SIZE, \
1496 input_dev->bm##bit, ev##_MAX, \
1497 true); \
1498 return min_t(int, len, PAGE_SIZE); \
1499 } \
1500 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1501
1502 INPUT_DEV_CAP_ATTR(EV, ev);
1503 INPUT_DEV_CAP_ATTR(KEY, key);
1504 INPUT_DEV_CAP_ATTR(REL, rel);
1505 INPUT_DEV_CAP_ATTR(ABS, abs);
1506 INPUT_DEV_CAP_ATTR(MSC, msc);
1507 INPUT_DEV_CAP_ATTR(LED, led);
1508 INPUT_DEV_CAP_ATTR(SND, snd);
1509 INPUT_DEV_CAP_ATTR(FF, ff);
1510 INPUT_DEV_CAP_ATTR(SW, sw);
1511
1512 static struct attribute *input_dev_caps_attrs[] = {
1513 &dev_attr_ev.attr,
1514 &dev_attr_key.attr,
1515 &dev_attr_rel.attr,
1516 &dev_attr_abs.attr,
1517 &dev_attr_msc.attr,
1518 &dev_attr_led.attr,
1519 &dev_attr_snd.attr,
1520 &dev_attr_ff.attr,
1521 &dev_attr_sw.attr,
1522 NULL
1523 };
1524
1525 static const struct attribute_group input_dev_caps_attr_group = {
1526 .name = "capabilities",
1527 .attrs = input_dev_caps_attrs,
1528 };
1529
1530 static const struct attribute_group *input_dev_attr_groups[] = {
1531 &input_dev_attr_group,
1532 &input_dev_id_attr_group,
1533 &input_dev_caps_attr_group,
1534 &input_poller_attribute_group,
1535 NULL
1536 };
1537
1538 static void input_dev_release(struct device *device)
1539 {
1540 struct input_dev *dev = to_input_dev(device);
1541
1542 input_ff_destroy(dev);
1543 input_mt_destroy_slots(dev);
1544 kfree(dev->poller);
1545 kfree(dev->absinfo);
1546 kfree(dev->vals);
1547 kfree(dev);
1548
1549 module_put(THIS_MODULE);
1550 }
1551
1552 /*
1553 * Input uevent interface - loading event handlers based on
1554 * device bitfields.
1555 */
1556 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1557 const char *name, unsigned long *bitmap, int max)
1558 {
1559 int len;
1560
1561 if (add_uevent_var(env, "%s", name))
1562 return -ENOMEM;
1563
1564 len = input_print_bitmap(&env->buf[env->buflen - 1],
1565 sizeof(env->buf) - env->buflen,
1566 bitmap, max, false);
1567 if (len >= (sizeof(env->buf) - env->buflen))
1568 return -ENOMEM;
1569
1570 env->buflen += len;
1571 return 0;
1572 }
1573
1574 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1575 struct input_dev *dev)
1576 {
1577 int len;
1578
1579 if (add_uevent_var(env, "MODALIAS="))
1580 return -ENOMEM;
1581
1582 len = input_print_modalias(&env->buf[env->buflen - 1],
1583 sizeof(env->buf) - env->buflen,
1584 dev, 0);
1585 if (len >= (sizeof(env->buf) - env->buflen))
1586 return -ENOMEM;
1587
1588 env->buflen += len;
1589 return 0;
1590 }
1591
1592 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1593 do { \
1594 int err = add_uevent_var(env, fmt, val); \
1595 if (err) \
1596 return err; \
1597 } while (0)
1598
1599 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1600 do { \
1601 int err = input_add_uevent_bm_var(env, name, bm, max); \
1602 if (err) \
1603 return err; \
1604 } while (0)
1605
1606 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1607 do { \
1608 int err = input_add_uevent_modalias_var(env, dev); \
1609 if (err) \
1610 return err; \
1611 } while (0)
1612
1613 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1614 {
1615 struct input_dev *dev = to_input_dev(device);
1616
1617 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1618 dev->id.bustype, dev->id.vendor,
1619 dev->id.product, dev->id.version);
1620 if (dev->name)
1621 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1622 if (dev->phys)
1623 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1624 if (dev->uniq)
1625 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1626
1627 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1628
1629 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1630 if (test_bit(EV_KEY, dev->evbit))
1631 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1632 if (test_bit(EV_REL, dev->evbit))
1633 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1634 if (test_bit(EV_ABS, dev->evbit))
1635 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1636 if (test_bit(EV_MSC, dev->evbit))
1637 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1638 if (test_bit(EV_LED, dev->evbit))
1639 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1640 if (test_bit(EV_SND, dev->evbit))
1641 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1642 if (test_bit(EV_FF, dev->evbit))
1643 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1644 if (test_bit(EV_SW, dev->evbit))
1645 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1646
1647 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1648
1649 return 0;
1650 }
1651
1652 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1653 do { \
1654 int i; \
1655 bool active; \
1656 \
1657 if (!test_bit(EV_##type, dev->evbit)) \
1658 break; \
1659 \
1660 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1661 active = test_bit(i, dev->bits); \
1662 if (!active && !on) \
1663 continue; \
1664 \
1665 dev->event(dev, EV_##type, i, on ? active : 0); \
1666 } \
1667 } while (0)
1668
1669 static void input_dev_toggle(struct input_dev *dev, bool activate)
1670 {
1671 if (!dev->event)
1672 return;
1673
1674 INPUT_DO_TOGGLE(dev, LED, led, activate);
1675 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1676
1677 if (activate && test_bit(EV_REP, dev->evbit)) {
1678 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1679 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1680 }
1681 }
1682
1683 /**
1684 * input_reset_device() - reset/restore the state of input device
1685 * @dev: input device whose state needs to be reset
1686 *
1687 * This function tries to reset the state of an opened input device and
1688 * bring internal state and state if the hardware in sync with each other.
1689 * We mark all keys as released, restore LED state, repeat rate, etc.
1690 */
1691 void input_reset_device(struct input_dev *dev)
1692 {
1693 unsigned long flags;
1694
1695 mutex_lock(&dev->mutex);
1696 spin_lock_irqsave(&dev->event_lock, flags);
1697
1698 input_dev_toggle(dev, true);
1699 input_dev_release_keys(dev);
1700
1701 spin_unlock_irqrestore(&dev->event_lock, flags);
1702 mutex_unlock(&dev->mutex);
1703 }
1704 EXPORT_SYMBOL(input_reset_device);
1705
1706 #ifdef CONFIG_PM_SLEEP
1707 static int input_dev_suspend(struct device *dev)
1708 {
1709 struct input_dev *input_dev = to_input_dev(dev);
1710
1711 spin_lock_irq(&input_dev->event_lock);
1712
1713 /*
1714 * Keys that are pressed now are unlikely to be
1715 * still pressed when we resume.
1716 */
1717 input_dev_release_keys(input_dev);
1718
1719 /* Turn off LEDs and sounds, if any are active. */
1720 input_dev_toggle(input_dev, false);
1721
1722 spin_unlock_irq(&input_dev->event_lock);
1723
1724 return 0;
1725 }
1726
1727 static int input_dev_resume(struct device *dev)
1728 {
1729 struct input_dev *input_dev = to_input_dev(dev);
1730
1731 spin_lock_irq(&input_dev->event_lock);
1732
1733 /* Restore state of LEDs and sounds, if any were active. */
1734 input_dev_toggle(input_dev, true);
1735
1736 spin_unlock_irq(&input_dev->event_lock);
1737
1738 return 0;
1739 }
1740
1741 static int input_dev_freeze(struct device *dev)
1742 {
1743 struct input_dev *input_dev = to_input_dev(dev);
1744
1745 spin_lock_irq(&input_dev->event_lock);
1746
1747 /*
1748 * Keys that are pressed now are unlikely to be
1749 * still pressed when we resume.
1750 */
1751 input_dev_release_keys(input_dev);
1752
1753 spin_unlock_irq(&input_dev->event_lock);
1754
1755 return 0;
1756 }
1757
1758 static int input_dev_poweroff(struct device *dev)
1759 {
1760 struct input_dev *input_dev = to_input_dev(dev);
1761
1762 spin_lock_irq(&input_dev->event_lock);
1763
1764 /* Turn off LEDs and sounds, if any are active. */
1765 input_dev_toggle(input_dev, false);
1766
1767 spin_unlock_irq(&input_dev->event_lock);
1768
1769 return 0;
1770 }
1771
1772 static const struct dev_pm_ops input_dev_pm_ops = {
1773 .suspend = input_dev_suspend,
1774 .resume = input_dev_resume,
1775 .freeze = input_dev_freeze,
1776 .poweroff = input_dev_poweroff,
1777 .restore = input_dev_resume,
1778 };
1779 #endif /* CONFIG_PM */
1780
1781 static const struct device_type input_dev_type = {
1782 .groups = input_dev_attr_groups,
1783 .release = input_dev_release,
1784 .uevent = input_dev_uevent,
1785 #ifdef CONFIG_PM_SLEEP
1786 .pm = &input_dev_pm_ops,
1787 #endif
1788 };
1789
1790 static char *input_devnode(struct device *dev, umode_t *mode)
1791 {
1792 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1793 }
1794
1795 struct class input_class = {
1796 .name = "input",
1797 .devnode = input_devnode,
1798 };
1799 EXPORT_SYMBOL_GPL(input_class);
1800
1801 /**
1802 * input_allocate_device - allocate memory for new input device
1803 *
1804 * Returns prepared struct input_dev or %NULL.
1805 *
1806 * NOTE: Use input_free_device() to free devices that have not been
1807 * registered; input_unregister_device() should be used for already
1808 * registered devices.
1809 */
1810 struct input_dev *input_allocate_device(void)
1811 {
1812 static atomic_t input_no = ATOMIC_INIT(-1);
1813 struct input_dev *dev;
1814
1815 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1816 if (dev) {
1817 dev->dev.type = &input_dev_type;
1818 dev->dev.class = &input_class;
1819 device_initialize(&dev->dev);
1820 mutex_init(&dev->mutex);
1821 spin_lock_init(&dev->event_lock);
1822 timer_setup(&dev->timer, NULL, 0);
1823 INIT_LIST_HEAD(&dev->h_list);
1824 INIT_LIST_HEAD(&dev->node);
1825
1826 dev_set_name(&dev->dev, "input%lu",
1827 (unsigned long)atomic_inc_return(&input_no));
1828
1829 __module_get(THIS_MODULE);
1830 }
1831
1832 return dev;
1833 }
1834 EXPORT_SYMBOL(input_allocate_device);
1835
1836 struct input_devres {
1837 struct input_dev *input;
1838 };
1839
1840 static int devm_input_device_match(struct device *dev, void *res, void *data)
1841 {
1842 struct input_devres *devres = res;
1843
1844 return devres->input == data;
1845 }
1846
1847 static void devm_input_device_release(struct device *dev, void *res)
1848 {
1849 struct input_devres *devres = res;
1850 struct input_dev *input = devres->input;
1851
1852 dev_dbg(dev, "%s: dropping reference to %s\n",
1853 __func__, dev_name(&input->dev));
1854 input_put_device(input);
1855 }
1856
1857 /**
1858 * devm_input_allocate_device - allocate managed input device
1859 * @dev: device owning the input device being created
1860 *
1861 * Returns prepared struct input_dev or %NULL.
1862 *
1863 * Managed input devices do not need to be explicitly unregistered or
1864 * freed as it will be done automatically when owner device unbinds from
1865 * its driver (or binding fails). Once managed input device is allocated,
1866 * it is ready to be set up and registered in the same fashion as regular
1867 * input device. There are no special devm_input_device_[un]register()
1868 * variants, regular ones work with both managed and unmanaged devices,
1869 * should you need them. In most cases however, managed input device need
1870 * not be explicitly unregistered or freed.
1871 *
1872 * NOTE: the owner device is set up as parent of input device and users
1873 * should not override it.
1874 */
1875 struct input_dev *devm_input_allocate_device(struct device *dev)
1876 {
1877 struct input_dev *input;
1878 struct input_devres *devres;
1879
1880 devres = devres_alloc(devm_input_device_release,
1881 sizeof(*devres), GFP_KERNEL);
1882 if (!devres)
1883 return NULL;
1884
1885 input = input_allocate_device();
1886 if (!input) {
1887 devres_free(devres);
1888 return NULL;
1889 }
1890
1891 input->dev.parent = dev;
1892 input->devres_managed = true;
1893
1894 devres->input = input;
1895 devres_add(dev, devres);
1896
1897 return input;
1898 }
1899 EXPORT_SYMBOL(devm_input_allocate_device);
1900
1901 /**
1902 * input_free_device - free memory occupied by input_dev structure
1903 * @dev: input device to free
1904 *
1905 * This function should only be used if input_register_device()
1906 * was not called yet or if it failed. Once device was registered
1907 * use input_unregister_device() and memory will be freed once last
1908 * reference to the device is dropped.
1909 *
1910 * Device should be allocated by input_allocate_device().
1911 *
1912 * NOTE: If there are references to the input device then memory
1913 * will not be freed until last reference is dropped.
1914 */
1915 void input_free_device(struct input_dev *dev)
1916 {
1917 if (dev) {
1918 if (dev->devres_managed)
1919 WARN_ON(devres_destroy(dev->dev.parent,
1920 devm_input_device_release,
1921 devm_input_device_match,
1922 dev));
1923 input_put_device(dev);
1924 }
1925 }
1926 EXPORT_SYMBOL(input_free_device);
1927
1928 /**
1929 * input_set_timestamp - set timestamp for input events
1930 * @dev: input device to set timestamp for
1931 * @timestamp: the time at which the event has occurred
1932 * in CLOCK_MONOTONIC
1933 *
1934 * This function is intended to provide to the input system a more
1935 * accurate time of when an event actually occurred. The driver should
1936 * call this function as soon as a timestamp is acquired ensuring
1937 * clock conversions in input_set_timestamp are done correctly.
1938 *
1939 * The system entering suspend state between timestamp acquisition and
1940 * calling input_set_timestamp can result in inaccurate conversions.
1941 */
1942 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1943 {
1944 dev->timestamp[INPUT_CLK_MONO] = timestamp;
1945 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1946 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1947 TK_OFFS_BOOT);
1948 }
1949 EXPORT_SYMBOL(input_set_timestamp);
1950
1951 /**
1952 * input_get_timestamp - get timestamp for input events
1953 * @dev: input device to get timestamp from
1954 *
1955 * A valid timestamp is a timestamp of non-zero value.
1956 */
1957 ktime_t *input_get_timestamp(struct input_dev *dev)
1958 {
1959 const ktime_t invalid_timestamp = ktime_set(0, 0);
1960
1961 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1962 input_set_timestamp(dev, ktime_get());
1963
1964 return dev->timestamp;
1965 }
1966 EXPORT_SYMBOL(input_get_timestamp);
1967
1968 /**
1969 * input_set_capability - mark device as capable of a certain event
1970 * @dev: device that is capable of emitting or accepting event
1971 * @type: type of the event (EV_KEY, EV_REL, etc...)
1972 * @code: event code
1973 *
1974 * In addition to setting up corresponding bit in appropriate capability
1975 * bitmap the function also adjusts dev->evbit.
1976 */
1977 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1978 {
1979 switch (type) {
1980 case EV_KEY:
1981 __set_bit(code, dev->keybit);
1982 break;
1983
1984 case EV_REL:
1985 __set_bit(code, dev->relbit);
1986 break;
1987
1988 case EV_ABS:
1989 input_alloc_absinfo(dev);
1990 if (!dev->absinfo)
1991 return;
1992
1993 __set_bit(code, dev->absbit);
1994 break;
1995
1996 case EV_MSC:
1997 __set_bit(code, dev->mscbit);
1998 break;
1999
2000 case EV_SW:
2001 __set_bit(code, dev->swbit);
2002 break;
2003
2004 case EV_LED:
2005 __set_bit(code, dev->ledbit);
2006 break;
2007
2008 case EV_SND:
2009 __set_bit(code, dev->sndbit);
2010 break;
2011
2012 case EV_FF:
2013 __set_bit(code, dev->ffbit);
2014 break;
2015
2016 case EV_PWR:
2017 /* do nothing */
2018 break;
2019
2020 default:
2021 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2022 dump_stack();
2023 return;
2024 }
2025
2026 __set_bit(type, dev->evbit);
2027 }
2028 EXPORT_SYMBOL(input_set_capability);
2029
2030 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2031 {
2032 int mt_slots;
2033 int i;
2034 unsigned int events;
2035
2036 if (dev->mt) {
2037 mt_slots = dev->mt->num_slots;
2038 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2039 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2040 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2041 mt_slots = clamp(mt_slots, 2, 32);
2042 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2043 mt_slots = 2;
2044 } else {
2045 mt_slots = 0;
2046 }
2047
2048 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2049
2050 if (test_bit(EV_ABS, dev->evbit))
2051 for_each_set_bit(i, dev->absbit, ABS_CNT)
2052 events += input_is_mt_axis(i) ? mt_slots : 1;
2053
2054 if (test_bit(EV_REL, dev->evbit))
2055 events += bitmap_weight(dev->relbit, REL_CNT);
2056
2057 /* Make room for KEY and MSC events */
2058 events += 7;
2059
2060 return events;
2061 }
2062
2063 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2064 do { \
2065 if (!test_bit(EV_##type, dev->evbit)) \
2066 memset(dev->bits##bit, 0, \
2067 sizeof(dev->bits##bit)); \
2068 } while (0)
2069
2070 static void input_cleanse_bitmasks(struct input_dev *dev)
2071 {
2072 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2073 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2074 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2075 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2076 INPUT_CLEANSE_BITMASK(dev, LED, led);
2077 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2078 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2079 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2080 }
2081
2082 static void __input_unregister_device(struct input_dev *dev)
2083 {
2084 struct input_handle *handle, *next;
2085
2086 input_disconnect_device(dev);
2087
2088 mutex_lock(&input_mutex);
2089
2090 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2091 handle->handler->disconnect(handle);
2092 WARN_ON(!list_empty(&dev->h_list));
2093
2094 del_timer_sync(&dev->timer);
2095 list_del_init(&dev->node);
2096
2097 input_wakeup_procfs_readers();
2098
2099 mutex_unlock(&input_mutex);
2100
2101 device_del(&dev->dev);
2102 }
2103
2104 static void devm_input_device_unregister(struct device *dev, void *res)
2105 {
2106 struct input_devres *devres = res;
2107 struct input_dev *input = devres->input;
2108
2109 dev_dbg(dev, "%s: unregistering device %s\n",
2110 __func__, dev_name(&input->dev));
2111 __input_unregister_device(input);
2112 }
2113
2114 /**
2115 * input_enable_softrepeat - enable software autorepeat
2116 * @dev: input device
2117 * @delay: repeat delay
2118 * @period: repeat period
2119 *
2120 * Enable software autorepeat on the input device.
2121 */
2122 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2123 {
2124 dev->timer.function = input_repeat_key;
2125 dev->rep[REP_DELAY] = delay;
2126 dev->rep[REP_PERIOD] = period;
2127 }
2128 EXPORT_SYMBOL(input_enable_softrepeat);
2129
2130 /**
2131 * input_register_device - register device with input core
2132 * @dev: device to be registered
2133 *
2134 * This function registers device with input core. The device must be
2135 * allocated with input_allocate_device() and all it's capabilities
2136 * set up before registering.
2137 * If function fails the device must be freed with input_free_device().
2138 * Once device has been successfully registered it can be unregistered
2139 * with input_unregister_device(); input_free_device() should not be
2140 * called in this case.
2141 *
2142 * Note that this function is also used to register managed input devices
2143 * (ones allocated with devm_input_allocate_device()). Such managed input
2144 * devices need not be explicitly unregistered or freed, their tear down
2145 * is controlled by the devres infrastructure. It is also worth noting
2146 * that tear down of managed input devices is internally a 2-step process:
2147 * registered managed input device is first unregistered, but stays in
2148 * memory and can still handle input_event() calls (although events will
2149 * not be delivered anywhere). The freeing of managed input device will
2150 * happen later, when devres stack is unwound to the point where device
2151 * allocation was made.
2152 */
2153 int input_register_device(struct input_dev *dev)
2154 {
2155 struct input_devres *devres = NULL;
2156 struct input_handler *handler;
2157 unsigned int packet_size;
2158 const char *path;
2159 int error;
2160
2161 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2162 dev_err(&dev->dev,
2163 "Absolute device without dev->absinfo, refusing to register\n");
2164 return -EINVAL;
2165 }
2166
2167 if (dev->devres_managed) {
2168 devres = devres_alloc(devm_input_device_unregister,
2169 sizeof(*devres), GFP_KERNEL);
2170 if (!devres)
2171 return -ENOMEM;
2172
2173 devres->input = dev;
2174 }
2175
2176 /* Every input device generates EV_SYN/SYN_REPORT events. */
2177 __set_bit(EV_SYN, dev->evbit);
2178
2179 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2180 __clear_bit(KEY_RESERVED, dev->keybit);
2181
2182 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2183 input_cleanse_bitmasks(dev);
2184
2185 packet_size = input_estimate_events_per_packet(dev);
2186 if (dev->hint_events_per_packet < packet_size)
2187 dev->hint_events_per_packet = packet_size;
2188
2189 dev->max_vals = dev->hint_events_per_packet + 2;
2190 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2191 if (!dev->vals) {
2192 error = -ENOMEM;
2193 goto err_devres_free;
2194 }
2195
2196 /*
2197 * If delay and period are pre-set by the driver, then autorepeating
2198 * is handled by the driver itself and we don't do it in input.c.
2199 */
2200 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2201 input_enable_softrepeat(dev, 250, 33);
2202
2203 if (!dev->getkeycode)
2204 dev->getkeycode = input_default_getkeycode;
2205
2206 if (!dev->setkeycode)
2207 dev->setkeycode = input_default_setkeycode;
2208
2209 if (dev->poller)
2210 input_dev_poller_finalize(dev->poller);
2211
2212 error = device_add(&dev->dev);
2213 if (error)
2214 goto err_free_vals;
2215
2216 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2217 pr_info("%s as %s\n",
2218 dev->name ? dev->name : "Unspecified device",
2219 path ? path : "N/A");
2220 kfree(path);
2221
2222 error = mutex_lock_interruptible(&input_mutex);
2223 if (error)
2224 goto err_device_del;
2225
2226 list_add_tail(&dev->node, &input_dev_list);
2227
2228 list_for_each_entry(handler, &input_handler_list, node)
2229 input_attach_handler(dev, handler);
2230
2231 input_wakeup_procfs_readers();
2232
2233 mutex_unlock(&input_mutex);
2234
2235 if (dev->devres_managed) {
2236 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2237 __func__, dev_name(&dev->dev));
2238 devres_add(dev->dev.parent, devres);
2239 }
2240 return 0;
2241
2242 err_device_del:
2243 device_del(&dev->dev);
2244 err_free_vals:
2245 kfree(dev->vals);
2246 dev->vals = NULL;
2247 err_devres_free:
2248 devres_free(devres);
2249 return error;
2250 }
2251 EXPORT_SYMBOL(input_register_device);
2252
2253 /**
2254 * input_unregister_device - unregister previously registered device
2255 * @dev: device to be unregistered
2256 *
2257 * This function unregisters an input device. Once device is unregistered
2258 * the caller should not try to access it as it may get freed at any moment.
2259 */
2260 void input_unregister_device(struct input_dev *dev)
2261 {
2262 if (dev->devres_managed) {
2263 WARN_ON(devres_destroy(dev->dev.parent,
2264 devm_input_device_unregister,
2265 devm_input_device_match,
2266 dev));
2267 __input_unregister_device(dev);
2268 /*
2269 * We do not do input_put_device() here because it will be done
2270 * when 2nd devres fires up.
2271 */
2272 } else {
2273 __input_unregister_device(dev);
2274 input_put_device(dev);
2275 }
2276 }
2277 EXPORT_SYMBOL(input_unregister_device);
2278
2279 /**
2280 * input_register_handler - register a new input handler
2281 * @handler: handler to be registered
2282 *
2283 * This function registers a new input handler (interface) for input
2284 * devices in the system and attaches it to all input devices that
2285 * are compatible with the handler.
2286 */
2287 int input_register_handler(struct input_handler *handler)
2288 {
2289 struct input_dev *dev;
2290 int error;
2291
2292 error = mutex_lock_interruptible(&input_mutex);
2293 if (error)
2294 return error;
2295
2296 INIT_LIST_HEAD(&handler->h_list);
2297
2298 list_add_tail(&handler->node, &input_handler_list);
2299
2300 list_for_each_entry(dev, &input_dev_list, node)
2301 input_attach_handler(dev, handler);
2302
2303 input_wakeup_procfs_readers();
2304
2305 mutex_unlock(&input_mutex);
2306 return 0;
2307 }
2308 EXPORT_SYMBOL(input_register_handler);
2309
2310 /**
2311 * input_unregister_handler - unregisters an input handler
2312 * @handler: handler to be unregistered
2313 *
2314 * This function disconnects a handler from its input devices and
2315 * removes it from lists of known handlers.
2316 */
2317 void input_unregister_handler(struct input_handler *handler)
2318 {
2319 struct input_handle *handle, *next;
2320
2321 mutex_lock(&input_mutex);
2322
2323 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2324 handler->disconnect(handle);
2325 WARN_ON(!list_empty(&handler->h_list));
2326
2327 list_del_init(&handler->node);
2328
2329 input_wakeup_procfs_readers();
2330
2331 mutex_unlock(&input_mutex);
2332 }
2333 EXPORT_SYMBOL(input_unregister_handler);
2334
2335 /**
2336 * input_handler_for_each_handle - handle iterator
2337 * @handler: input handler to iterate
2338 * @data: data for the callback
2339 * @fn: function to be called for each handle
2340 *
2341 * Iterate over @bus's list of devices, and call @fn for each, passing
2342 * it @data and stop when @fn returns a non-zero value. The function is
2343 * using RCU to traverse the list and therefore may be using in atomic
2344 * contexts. The @fn callback is invoked from RCU critical section and
2345 * thus must not sleep.
2346 */
2347 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2348 int (*fn)(struct input_handle *, void *))
2349 {
2350 struct input_handle *handle;
2351 int retval = 0;
2352
2353 rcu_read_lock();
2354
2355 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2356 retval = fn(handle, data);
2357 if (retval)
2358 break;
2359 }
2360
2361 rcu_read_unlock();
2362
2363 return retval;
2364 }
2365 EXPORT_SYMBOL(input_handler_for_each_handle);
2366
2367 /**
2368 * input_register_handle - register a new input handle
2369 * @handle: handle to register
2370 *
2371 * This function puts a new input handle onto device's
2372 * and handler's lists so that events can flow through
2373 * it once it is opened using input_open_device().
2374 *
2375 * This function is supposed to be called from handler's
2376 * connect() method.
2377 */
2378 int input_register_handle(struct input_handle *handle)
2379 {
2380 struct input_handler *handler = handle->handler;
2381 struct input_dev *dev = handle->dev;
2382 int error;
2383
2384 /*
2385 * We take dev->mutex here to prevent race with
2386 * input_release_device().
2387 */
2388 error = mutex_lock_interruptible(&dev->mutex);
2389 if (error)
2390 return error;
2391
2392 /*
2393 * Filters go to the head of the list, normal handlers
2394 * to the tail.
2395 */
2396 if (handler->filter)
2397 list_add_rcu(&handle->d_node, &dev->h_list);
2398 else
2399 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2400
2401 mutex_unlock(&dev->mutex);
2402
2403 /*
2404 * Since we are supposed to be called from ->connect()
2405 * which is mutually exclusive with ->disconnect()
2406 * we can't be racing with input_unregister_handle()
2407 * and so separate lock is not needed here.
2408 */
2409 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2410
2411 if (handler->start)
2412 handler->start(handle);
2413
2414 return 0;
2415 }
2416 EXPORT_SYMBOL(input_register_handle);
2417
2418 /**
2419 * input_unregister_handle - unregister an input handle
2420 * @handle: handle to unregister
2421 *
2422 * This function removes input handle from device's
2423 * and handler's lists.
2424 *
2425 * This function is supposed to be called from handler's
2426 * disconnect() method.
2427 */
2428 void input_unregister_handle(struct input_handle *handle)
2429 {
2430 struct input_dev *dev = handle->dev;
2431
2432 list_del_rcu(&handle->h_node);
2433
2434 /*
2435 * Take dev->mutex to prevent race with input_release_device().
2436 */
2437 mutex_lock(&dev->mutex);
2438 list_del_rcu(&handle->d_node);
2439 mutex_unlock(&dev->mutex);
2440
2441 synchronize_rcu();
2442 }
2443 EXPORT_SYMBOL(input_unregister_handle);
2444
2445 /**
2446 * input_get_new_minor - allocates a new input minor number
2447 * @legacy_base: beginning or the legacy range to be searched
2448 * @legacy_num: size of legacy range
2449 * @allow_dynamic: whether we can also take ID from the dynamic range
2450 *
2451 * This function allocates a new device minor for from input major namespace.
2452 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2453 * parameters and whether ID can be allocated from dynamic range if there are
2454 * no free IDs in legacy range.
2455 */
2456 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2457 bool allow_dynamic)
2458 {
2459 /*
2460 * This function should be called from input handler's ->connect()
2461 * methods, which are serialized with input_mutex, so no additional
2462 * locking is needed here.
2463 */
2464 if (legacy_base >= 0) {
2465 int minor = ida_simple_get(&input_ida,
2466 legacy_base,
2467 legacy_base + legacy_num,
2468 GFP_KERNEL);
2469 if (minor >= 0 || !allow_dynamic)
2470 return minor;
2471 }
2472
2473 return ida_simple_get(&input_ida,
2474 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2475 GFP_KERNEL);
2476 }
2477 EXPORT_SYMBOL(input_get_new_minor);
2478
2479 /**
2480 * input_free_minor - release previously allocated minor
2481 * @minor: minor to be released
2482 *
2483 * This function releases previously allocated input minor so that it can be
2484 * reused later.
2485 */
2486 void input_free_minor(unsigned int minor)
2487 {
2488 ida_simple_remove(&input_ida, minor);
2489 }
2490 EXPORT_SYMBOL(input_free_minor);
2491
2492 static int __init input_init(void)
2493 {
2494 int err;
2495
2496 err = class_register(&input_class);
2497 if (err) {
2498 pr_err("unable to register input_dev class\n");
2499 return err;
2500 }
2501
2502 err = input_proc_init();
2503 if (err)
2504 goto fail1;
2505
2506 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2507 INPUT_MAX_CHAR_DEVICES, "input");
2508 if (err) {
2509 pr_err("unable to register char major %d", INPUT_MAJOR);
2510 goto fail2;
2511 }
2512
2513 return 0;
2514
2515 fail2: input_proc_exit();
2516 fail1: class_unregister(&input_class);
2517 return err;
2518 }
2519
2520 static void __exit input_exit(void)
2521 {
2522 input_proc_exit();
2523 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2524 INPUT_MAX_CHAR_DEVICES);
2525 class_unregister(&input_class);
2526 }
2527
2528 subsys_initcall(input_init);
2529 module_exit(input_exit);