]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/input/input.c
Merge branch 'for-next' of git://github.com/rydberg/linux into next
[mirror_ubuntu-focal-kernel.git] / drivers / input / input.c
1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/input/mt.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/random.h>
21 #include <linux/major.h>
22 #include <linux/proc_fs.h>
23 #include <linux/sched.h>
24 #include <linux/seq_file.h>
25 #include <linux/poll.h>
26 #include <linux/device.h>
27 #include <linux/mutex.h>
28 #include <linux/rcupdate.h>
29 #include "input-compat.h"
30
31 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
32 MODULE_DESCRIPTION("Input core");
33 MODULE_LICENSE("GPL");
34
35 #define INPUT_DEVICES 256
36
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39
40 /*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46 static DEFINE_MUTEX(input_mutex);
47
48 static struct input_handler *input_table[8];
49
50 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
51
52 static inline int is_event_supported(unsigned int code,
53 unsigned long *bm, unsigned int max)
54 {
55 return code <= max && test_bit(code, bm);
56 }
57
58 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
59 {
60 if (fuzz) {
61 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
62 return old_val;
63
64 if (value > old_val - fuzz && value < old_val + fuzz)
65 return (old_val * 3 + value) / 4;
66
67 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
68 return (old_val + value) / 2;
69 }
70
71 return value;
72 }
73
74 static void input_start_autorepeat(struct input_dev *dev, int code)
75 {
76 if (test_bit(EV_REP, dev->evbit) &&
77 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
78 dev->timer.data) {
79 dev->repeat_key = code;
80 mod_timer(&dev->timer,
81 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
82 }
83 }
84
85 static void input_stop_autorepeat(struct input_dev *dev)
86 {
87 del_timer(&dev->timer);
88 }
89
90 /*
91 * Pass event first through all filters and then, if event has not been
92 * filtered out, through all open handles. This function is called with
93 * dev->event_lock held and interrupts disabled.
94 */
95 static unsigned int input_to_handler(struct input_handle *handle,
96 struct input_value *vals, unsigned int count)
97 {
98 struct input_handler *handler = handle->handler;
99 struct input_value *end = vals;
100 struct input_value *v;
101
102 for (v = vals; v != vals + count; v++) {
103 if (handler->filter &&
104 handler->filter(handle, v->type, v->code, v->value))
105 continue;
106 if (end != v)
107 *end = *v;
108 end++;
109 }
110
111 count = end - vals;
112 if (!count)
113 return 0;
114
115 if (handler->events)
116 handler->events(handle, vals, count);
117 else if (handler->event)
118 for (v = vals; v != end; v++)
119 handler->event(handle, v->type, v->code, v->value);
120
121 return count;
122 }
123
124 /*
125 * Pass values first through all filters and then, if event has not been
126 * filtered out, through all open handles. This function is called with
127 * dev->event_lock held and interrupts disabled.
128 */
129 static void input_pass_values(struct input_dev *dev,
130 struct input_value *vals, unsigned int count)
131 {
132 struct input_handle *handle;
133 struct input_value *v;
134
135 if (!count)
136 return;
137
138 rcu_read_lock();
139
140 handle = rcu_dereference(dev->grab);
141 if (handle) {
142 count = input_to_handler(handle, vals, count);
143 } else {
144 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
145 if (handle->open)
146 count = input_to_handler(handle, vals, count);
147 }
148
149 rcu_read_unlock();
150
151 add_input_randomness(vals->type, vals->code, vals->value);
152
153 /* trigger auto repeat for key events */
154 for (v = vals; v != vals + count; v++) {
155 if (v->type == EV_KEY && v->value != 2) {
156 if (v->value)
157 input_start_autorepeat(dev, v->code);
158 else
159 input_stop_autorepeat(dev);
160 }
161 }
162 }
163
164 static void input_pass_event(struct input_dev *dev,
165 unsigned int type, unsigned int code, int value)
166 {
167 struct input_value vals[] = { { type, code, value } };
168
169 input_pass_values(dev, vals, ARRAY_SIZE(vals));
170 }
171
172 /*
173 * Generate software autorepeat event. Note that we take
174 * dev->event_lock here to avoid racing with input_event
175 * which may cause keys get "stuck".
176 */
177 static void input_repeat_key(unsigned long data)
178 {
179 struct input_dev *dev = (void *) data;
180 unsigned long flags;
181
182 spin_lock_irqsave(&dev->event_lock, flags);
183
184 if (test_bit(dev->repeat_key, dev->key) &&
185 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
186 struct input_value vals[] = {
187 { EV_KEY, dev->repeat_key, 2 },
188 input_value_sync
189 };
190
191 input_pass_values(dev, vals, ARRAY_SIZE(vals));
192
193 if (dev->rep[REP_PERIOD])
194 mod_timer(&dev->timer, jiffies +
195 msecs_to_jiffies(dev->rep[REP_PERIOD]));
196 }
197
198 spin_unlock_irqrestore(&dev->event_lock, flags);
199 }
200
201 #define INPUT_IGNORE_EVENT 0
202 #define INPUT_PASS_TO_HANDLERS 1
203 #define INPUT_PASS_TO_DEVICE 2
204 #define INPUT_SLOT 4
205 #define INPUT_FLUSH 8
206 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
207
208 static int input_handle_abs_event(struct input_dev *dev,
209 unsigned int code, int *pval)
210 {
211 struct input_mt *mt = dev->mt;
212 bool is_mt_event;
213 int *pold;
214
215 if (code == ABS_MT_SLOT) {
216 /*
217 * "Stage" the event; we'll flush it later, when we
218 * get actual touch data.
219 */
220 if (mt && *pval >= 0 && *pval < mt->num_slots)
221 mt->slot = *pval;
222
223 return INPUT_IGNORE_EVENT;
224 }
225
226 is_mt_event = input_is_mt_value(code);
227
228 if (!is_mt_event) {
229 pold = &dev->absinfo[code].value;
230 } else if (mt) {
231 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
232 } else {
233 /*
234 * Bypass filtering for multi-touch events when
235 * not employing slots.
236 */
237 pold = NULL;
238 }
239
240 if (pold) {
241 *pval = input_defuzz_abs_event(*pval, *pold,
242 dev->absinfo[code].fuzz);
243 if (*pold == *pval)
244 return INPUT_IGNORE_EVENT;
245
246 *pold = *pval;
247 }
248
249 /* Flush pending "slot" event */
250 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
251 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
252 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
253 }
254
255 return INPUT_PASS_TO_HANDLERS;
256 }
257
258 static int input_get_disposition(struct input_dev *dev,
259 unsigned int type, unsigned int code, int value)
260 {
261 int disposition = INPUT_IGNORE_EVENT;
262
263 switch (type) {
264
265 case EV_SYN:
266 switch (code) {
267 case SYN_CONFIG:
268 disposition = INPUT_PASS_TO_ALL;
269 break;
270
271 case SYN_REPORT:
272 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
273 break;
274 case SYN_MT_REPORT:
275 disposition = INPUT_PASS_TO_HANDLERS;
276 break;
277 }
278 break;
279
280 case EV_KEY:
281 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
282
283 /* auto-repeat bypasses state updates */
284 if (value == 2) {
285 disposition = INPUT_PASS_TO_HANDLERS;
286 break;
287 }
288
289 if (!!test_bit(code, dev->key) != !!value) {
290
291 __change_bit(code, dev->key);
292 disposition = INPUT_PASS_TO_HANDLERS;
293 }
294 }
295 break;
296
297 case EV_SW:
298 if (is_event_supported(code, dev->swbit, SW_MAX) &&
299 !!test_bit(code, dev->sw) != !!value) {
300
301 __change_bit(code, dev->sw);
302 disposition = INPUT_PASS_TO_HANDLERS;
303 }
304 break;
305
306 case EV_ABS:
307 if (is_event_supported(code, dev->absbit, ABS_MAX))
308 disposition = input_handle_abs_event(dev, code, &value);
309
310 break;
311
312 case EV_REL:
313 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
314 disposition = INPUT_PASS_TO_HANDLERS;
315
316 break;
317
318 case EV_MSC:
319 if (is_event_supported(code, dev->mscbit, MSC_MAX))
320 disposition = INPUT_PASS_TO_ALL;
321
322 break;
323
324 case EV_LED:
325 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
326 !!test_bit(code, dev->led) != !!value) {
327
328 __change_bit(code, dev->led);
329 disposition = INPUT_PASS_TO_ALL;
330 }
331 break;
332
333 case EV_SND:
334 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
335
336 if (!!test_bit(code, dev->snd) != !!value)
337 __change_bit(code, dev->snd);
338 disposition = INPUT_PASS_TO_ALL;
339 }
340 break;
341
342 case EV_REP:
343 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
344 dev->rep[code] = value;
345 disposition = INPUT_PASS_TO_ALL;
346 }
347 break;
348
349 case EV_FF:
350 if (value >= 0)
351 disposition = INPUT_PASS_TO_ALL;
352 break;
353
354 case EV_PWR:
355 disposition = INPUT_PASS_TO_ALL;
356 break;
357 }
358
359 return disposition;
360 }
361
362 static void input_handle_event(struct input_dev *dev,
363 unsigned int type, unsigned int code, int value)
364 {
365 int disposition;
366
367 disposition = input_get_disposition(dev, type, code, value);
368
369 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
370 dev->event(dev, type, code, value);
371
372 if (!dev->vals)
373 return;
374
375 if (disposition & INPUT_PASS_TO_HANDLERS) {
376 struct input_value *v;
377
378 if (disposition & INPUT_SLOT) {
379 v = &dev->vals[dev->num_vals++];
380 v->type = EV_ABS;
381 v->code = ABS_MT_SLOT;
382 v->value = dev->mt->slot;
383 }
384
385 v = &dev->vals[dev->num_vals++];
386 v->type = type;
387 v->code = code;
388 v->value = value;
389 }
390
391 if (disposition & INPUT_FLUSH) {
392 if (dev->num_vals >= 2)
393 input_pass_values(dev, dev->vals, dev->num_vals);
394 dev->num_vals = 0;
395 } else if (dev->num_vals >= dev->max_vals - 2) {
396 dev->vals[dev->num_vals++] = input_value_sync;
397 input_pass_values(dev, dev->vals, dev->num_vals);
398 dev->num_vals = 0;
399 }
400
401 }
402
403 /**
404 * input_event() - report new input event
405 * @dev: device that generated the event
406 * @type: type of the event
407 * @code: event code
408 * @value: value of the event
409 *
410 * This function should be used by drivers implementing various input
411 * devices to report input events. See also input_inject_event().
412 *
413 * NOTE: input_event() may be safely used right after input device was
414 * allocated with input_allocate_device(), even before it is registered
415 * with input_register_device(), but the event will not reach any of the
416 * input handlers. Such early invocation of input_event() may be used
417 * to 'seed' initial state of a switch or initial position of absolute
418 * axis, etc.
419 */
420 void input_event(struct input_dev *dev,
421 unsigned int type, unsigned int code, int value)
422 {
423 unsigned long flags;
424
425 if (is_event_supported(type, dev->evbit, EV_MAX)) {
426
427 spin_lock_irqsave(&dev->event_lock, flags);
428 input_handle_event(dev, type, code, value);
429 spin_unlock_irqrestore(&dev->event_lock, flags);
430 }
431 }
432 EXPORT_SYMBOL(input_event);
433
434 /**
435 * input_inject_event() - send input event from input handler
436 * @handle: input handle to send event through
437 * @type: type of the event
438 * @code: event code
439 * @value: value of the event
440 *
441 * Similar to input_event() but will ignore event if device is
442 * "grabbed" and handle injecting event is not the one that owns
443 * the device.
444 */
445 void input_inject_event(struct input_handle *handle,
446 unsigned int type, unsigned int code, int value)
447 {
448 struct input_dev *dev = handle->dev;
449 struct input_handle *grab;
450 unsigned long flags;
451
452 if (is_event_supported(type, dev->evbit, EV_MAX)) {
453 spin_lock_irqsave(&dev->event_lock, flags);
454
455 rcu_read_lock();
456 grab = rcu_dereference(dev->grab);
457 if (!grab || grab == handle)
458 input_handle_event(dev, type, code, value);
459 rcu_read_unlock();
460
461 spin_unlock_irqrestore(&dev->event_lock, flags);
462 }
463 }
464 EXPORT_SYMBOL(input_inject_event);
465
466 /**
467 * input_alloc_absinfo - allocates array of input_absinfo structs
468 * @dev: the input device emitting absolute events
469 *
470 * If the absinfo struct the caller asked for is already allocated, this
471 * functions will not do anything.
472 */
473 void input_alloc_absinfo(struct input_dev *dev)
474 {
475 if (!dev->absinfo)
476 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
477 GFP_KERNEL);
478
479 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
480 }
481 EXPORT_SYMBOL(input_alloc_absinfo);
482
483 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
484 int min, int max, int fuzz, int flat)
485 {
486 struct input_absinfo *absinfo;
487
488 input_alloc_absinfo(dev);
489 if (!dev->absinfo)
490 return;
491
492 absinfo = &dev->absinfo[axis];
493 absinfo->minimum = min;
494 absinfo->maximum = max;
495 absinfo->fuzz = fuzz;
496 absinfo->flat = flat;
497
498 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
499 }
500 EXPORT_SYMBOL(input_set_abs_params);
501
502
503 /**
504 * input_grab_device - grabs device for exclusive use
505 * @handle: input handle that wants to own the device
506 *
507 * When a device is grabbed by an input handle all events generated by
508 * the device are delivered only to this handle. Also events injected
509 * by other input handles are ignored while device is grabbed.
510 */
511 int input_grab_device(struct input_handle *handle)
512 {
513 struct input_dev *dev = handle->dev;
514 int retval;
515
516 retval = mutex_lock_interruptible(&dev->mutex);
517 if (retval)
518 return retval;
519
520 if (dev->grab) {
521 retval = -EBUSY;
522 goto out;
523 }
524
525 rcu_assign_pointer(dev->grab, handle);
526
527 out:
528 mutex_unlock(&dev->mutex);
529 return retval;
530 }
531 EXPORT_SYMBOL(input_grab_device);
532
533 static void __input_release_device(struct input_handle *handle)
534 {
535 struct input_dev *dev = handle->dev;
536
537 if (dev->grab == handle) {
538 rcu_assign_pointer(dev->grab, NULL);
539 /* Make sure input_pass_event() notices that grab is gone */
540 synchronize_rcu();
541
542 list_for_each_entry(handle, &dev->h_list, d_node)
543 if (handle->open && handle->handler->start)
544 handle->handler->start(handle);
545 }
546 }
547
548 /**
549 * input_release_device - release previously grabbed device
550 * @handle: input handle that owns the device
551 *
552 * Releases previously grabbed device so that other input handles can
553 * start receiving input events. Upon release all handlers attached
554 * to the device have their start() method called so they have a change
555 * to synchronize device state with the rest of the system.
556 */
557 void input_release_device(struct input_handle *handle)
558 {
559 struct input_dev *dev = handle->dev;
560
561 mutex_lock(&dev->mutex);
562 __input_release_device(handle);
563 mutex_unlock(&dev->mutex);
564 }
565 EXPORT_SYMBOL(input_release_device);
566
567 /**
568 * input_open_device - open input device
569 * @handle: handle through which device is being accessed
570 *
571 * This function should be called by input handlers when they
572 * want to start receive events from given input device.
573 */
574 int input_open_device(struct input_handle *handle)
575 {
576 struct input_dev *dev = handle->dev;
577 int retval;
578
579 retval = mutex_lock_interruptible(&dev->mutex);
580 if (retval)
581 return retval;
582
583 if (dev->going_away) {
584 retval = -ENODEV;
585 goto out;
586 }
587
588 handle->open++;
589
590 if (!dev->users++ && dev->open)
591 retval = dev->open(dev);
592
593 if (retval) {
594 dev->users--;
595 if (!--handle->open) {
596 /*
597 * Make sure we are not delivering any more events
598 * through this handle
599 */
600 synchronize_rcu();
601 }
602 }
603
604 out:
605 mutex_unlock(&dev->mutex);
606 return retval;
607 }
608 EXPORT_SYMBOL(input_open_device);
609
610 int input_flush_device(struct input_handle *handle, struct file *file)
611 {
612 struct input_dev *dev = handle->dev;
613 int retval;
614
615 retval = mutex_lock_interruptible(&dev->mutex);
616 if (retval)
617 return retval;
618
619 if (dev->flush)
620 retval = dev->flush(dev, file);
621
622 mutex_unlock(&dev->mutex);
623 return retval;
624 }
625 EXPORT_SYMBOL(input_flush_device);
626
627 /**
628 * input_close_device - close input device
629 * @handle: handle through which device is being accessed
630 *
631 * This function should be called by input handlers when they
632 * want to stop receive events from given input device.
633 */
634 void input_close_device(struct input_handle *handle)
635 {
636 struct input_dev *dev = handle->dev;
637
638 mutex_lock(&dev->mutex);
639
640 __input_release_device(handle);
641
642 if (!--dev->users && dev->close)
643 dev->close(dev);
644
645 if (!--handle->open) {
646 /*
647 * synchronize_rcu() makes sure that input_pass_event()
648 * completed and that no more input events are delivered
649 * through this handle
650 */
651 synchronize_rcu();
652 }
653
654 mutex_unlock(&dev->mutex);
655 }
656 EXPORT_SYMBOL(input_close_device);
657
658 /*
659 * Simulate keyup events for all keys that are marked as pressed.
660 * The function must be called with dev->event_lock held.
661 */
662 static void input_dev_release_keys(struct input_dev *dev)
663 {
664 int code;
665
666 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
667 for (code = 0; code <= KEY_MAX; code++) {
668 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
669 __test_and_clear_bit(code, dev->key)) {
670 input_pass_event(dev, EV_KEY, code, 0);
671 }
672 }
673 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
674 }
675 }
676
677 /*
678 * Prepare device for unregistering
679 */
680 static void input_disconnect_device(struct input_dev *dev)
681 {
682 struct input_handle *handle;
683
684 /*
685 * Mark device as going away. Note that we take dev->mutex here
686 * not to protect access to dev->going_away but rather to ensure
687 * that there are no threads in the middle of input_open_device()
688 */
689 mutex_lock(&dev->mutex);
690 dev->going_away = true;
691 mutex_unlock(&dev->mutex);
692
693 spin_lock_irq(&dev->event_lock);
694
695 /*
696 * Simulate keyup events for all pressed keys so that handlers
697 * are not left with "stuck" keys. The driver may continue
698 * generate events even after we done here but they will not
699 * reach any handlers.
700 */
701 input_dev_release_keys(dev);
702
703 list_for_each_entry(handle, &dev->h_list, d_node)
704 handle->open = 0;
705
706 spin_unlock_irq(&dev->event_lock);
707 }
708
709 /**
710 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
711 * @ke: keymap entry containing scancode to be converted.
712 * @scancode: pointer to the location where converted scancode should
713 * be stored.
714 *
715 * This function is used to convert scancode stored in &struct keymap_entry
716 * into scalar form understood by legacy keymap handling methods. These
717 * methods expect scancodes to be represented as 'unsigned int'.
718 */
719 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
720 unsigned int *scancode)
721 {
722 switch (ke->len) {
723 case 1:
724 *scancode = *((u8 *)ke->scancode);
725 break;
726
727 case 2:
728 *scancode = *((u16 *)ke->scancode);
729 break;
730
731 case 4:
732 *scancode = *((u32 *)ke->scancode);
733 break;
734
735 default:
736 return -EINVAL;
737 }
738
739 return 0;
740 }
741 EXPORT_SYMBOL(input_scancode_to_scalar);
742
743 /*
744 * Those routines handle the default case where no [gs]etkeycode() is
745 * defined. In this case, an array indexed by the scancode is used.
746 */
747
748 static unsigned int input_fetch_keycode(struct input_dev *dev,
749 unsigned int index)
750 {
751 switch (dev->keycodesize) {
752 case 1:
753 return ((u8 *)dev->keycode)[index];
754
755 case 2:
756 return ((u16 *)dev->keycode)[index];
757
758 default:
759 return ((u32 *)dev->keycode)[index];
760 }
761 }
762
763 static int input_default_getkeycode(struct input_dev *dev,
764 struct input_keymap_entry *ke)
765 {
766 unsigned int index;
767 int error;
768
769 if (!dev->keycodesize)
770 return -EINVAL;
771
772 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
773 index = ke->index;
774 else {
775 error = input_scancode_to_scalar(ke, &index);
776 if (error)
777 return error;
778 }
779
780 if (index >= dev->keycodemax)
781 return -EINVAL;
782
783 ke->keycode = input_fetch_keycode(dev, index);
784 ke->index = index;
785 ke->len = sizeof(index);
786 memcpy(ke->scancode, &index, sizeof(index));
787
788 return 0;
789 }
790
791 static int input_default_setkeycode(struct input_dev *dev,
792 const struct input_keymap_entry *ke,
793 unsigned int *old_keycode)
794 {
795 unsigned int index;
796 int error;
797 int i;
798
799 if (!dev->keycodesize)
800 return -EINVAL;
801
802 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
803 index = ke->index;
804 } else {
805 error = input_scancode_to_scalar(ke, &index);
806 if (error)
807 return error;
808 }
809
810 if (index >= dev->keycodemax)
811 return -EINVAL;
812
813 if (dev->keycodesize < sizeof(ke->keycode) &&
814 (ke->keycode >> (dev->keycodesize * 8)))
815 return -EINVAL;
816
817 switch (dev->keycodesize) {
818 case 1: {
819 u8 *k = (u8 *)dev->keycode;
820 *old_keycode = k[index];
821 k[index] = ke->keycode;
822 break;
823 }
824 case 2: {
825 u16 *k = (u16 *)dev->keycode;
826 *old_keycode = k[index];
827 k[index] = ke->keycode;
828 break;
829 }
830 default: {
831 u32 *k = (u32 *)dev->keycode;
832 *old_keycode = k[index];
833 k[index] = ke->keycode;
834 break;
835 }
836 }
837
838 __clear_bit(*old_keycode, dev->keybit);
839 __set_bit(ke->keycode, dev->keybit);
840
841 for (i = 0; i < dev->keycodemax; i++) {
842 if (input_fetch_keycode(dev, i) == *old_keycode) {
843 __set_bit(*old_keycode, dev->keybit);
844 break; /* Setting the bit twice is useless, so break */
845 }
846 }
847
848 return 0;
849 }
850
851 /**
852 * input_get_keycode - retrieve keycode currently mapped to a given scancode
853 * @dev: input device which keymap is being queried
854 * @ke: keymap entry
855 *
856 * This function should be called by anyone interested in retrieving current
857 * keymap. Presently evdev handlers use it.
858 */
859 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
860 {
861 unsigned long flags;
862 int retval;
863
864 spin_lock_irqsave(&dev->event_lock, flags);
865 retval = dev->getkeycode(dev, ke);
866 spin_unlock_irqrestore(&dev->event_lock, flags);
867
868 return retval;
869 }
870 EXPORT_SYMBOL(input_get_keycode);
871
872 /**
873 * input_set_keycode - attribute a keycode to a given scancode
874 * @dev: input device which keymap is being updated
875 * @ke: new keymap entry
876 *
877 * This function should be called by anyone needing to update current
878 * keymap. Presently keyboard and evdev handlers use it.
879 */
880 int input_set_keycode(struct input_dev *dev,
881 const struct input_keymap_entry *ke)
882 {
883 unsigned long flags;
884 unsigned int old_keycode;
885 int retval;
886
887 if (ke->keycode > KEY_MAX)
888 return -EINVAL;
889
890 spin_lock_irqsave(&dev->event_lock, flags);
891
892 retval = dev->setkeycode(dev, ke, &old_keycode);
893 if (retval)
894 goto out;
895
896 /* Make sure KEY_RESERVED did not get enabled. */
897 __clear_bit(KEY_RESERVED, dev->keybit);
898
899 /*
900 * Simulate keyup event if keycode is not present
901 * in the keymap anymore
902 */
903 if (test_bit(EV_KEY, dev->evbit) &&
904 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
905 __test_and_clear_bit(old_keycode, dev->key)) {
906 struct input_value vals[] = {
907 { EV_KEY, old_keycode, 0 },
908 input_value_sync
909 };
910
911 input_pass_values(dev, vals, ARRAY_SIZE(vals));
912 }
913
914 out:
915 spin_unlock_irqrestore(&dev->event_lock, flags);
916
917 return retval;
918 }
919 EXPORT_SYMBOL(input_set_keycode);
920
921 static const struct input_device_id *input_match_device(struct input_handler *handler,
922 struct input_dev *dev)
923 {
924 const struct input_device_id *id;
925
926 for (id = handler->id_table; id->flags || id->driver_info; id++) {
927
928 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
929 if (id->bustype != dev->id.bustype)
930 continue;
931
932 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
933 if (id->vendor != dev->id.vendor)
934 continue;
935
936 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
937 if (id->product != dev->id.product)
938 continue;
939
940 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
941 if (id->version != dev->id.version)
942 continue;
943
944 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
945 continue;
946
947 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
948 continue;
949
950 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
951 continue;
952
953 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
954 continue;
955
956 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
957 continue;
958
959 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
960 continue;
961
962 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
963 continue;
964
965 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
966 continue;
967
968 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
969 continue;
970
971 if (!handler->match || handler->match(handler, dev))
972 return id;
973 }
974
975 return NULL;
976 }
977
978 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
979 {
980 const struct input_device_id *id;
981 int error;
982
983 id = input_match_device(handler, dev);
984 if (!id)
985 return -ENODEV;
986
987 error = handler->connect(handler, dev, id);
988 if (error && error != -ENODEV)
989 pr_err("failed to attach handler %s to device %s, error: %d\n",
990 handler->name, kobject_name(&dev->dev.kobj), error);
991
992 return error;
993 }
994
995 #ifdef CONFIG_COMPAT
996
997 static int input_bits_to_string(char *buf, int buf_size,
998 unsigned long bits, bool skip_empty)
999 {
1000 int len = 0;
1001
1002 if (INPUT_COMPAT_TEST) {
1003 u32 dword = bits >> 32;
1004 if (dword || !skip_empty)
1005 len += snprintf(buf, buf_size, "%x ", dword);
1006
1007 dword = bits & 0xffffffffUL;
1008 if (dword || !skip_empty || len)
1009 len += snprintf(buf + len, max(buf_size - len, 0),
1010 "%x", dword);
1011 } else {
1012 if (bits || !skip_empty)
1013 len += snprintf(buf, buf_size, "%lx", bits);
1014 }
1015
1016 return len;
1017 }
1018
1019 #else /* !CONFIG_COMPAT */
1020
1021 static int input_bits_to_string(char *buf, int buf_size,
1022 unsigned long bits, bool skip_empty)
1023 {
1024 return bits || !skip_empty ?
1025 snprintf(buf, buf_size, "%lx", bits) : 0;
1026 }
1027
1028 #endif
1029
1030 #ifdef CONFIG_PROC_FS
1031
1032 static struct proc_dir_entry *proc_bus_input_dir;
1033 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1034 static int input_devices_state;
1035
1036 static inline void input_wakeup_procfs_readers(void)
1037 {
1038 input_devices_state++;
1039 wake_up(&input_devices_poll_wait);
1040 }
1041
1042 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1043 {
1044 poll_wait(file, &input_devices_poll_wait, wait);
1045 if (file->f_version != input_devices_state) {
1046 file->f_version = input_devices_state;
1047 return POLLIN | POLLRDNORM;
1048 }
1049
1050 return 0;
1051 }
1052
1053 union input_seq_state {
1054 struct {
1055 unsigned short pos;
1056 bool mutex_acquired;
1057 };
1058 void *p;
1059 };
1060
1061 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1062 {
1063 union input_seq_state *state = (union input_seq_state *)&seq->private;
1064 int error;
1065
1066 /* We need to fit into seq->private pointer */
1067 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1068
1069 error = mutex_lock_interruptible(&input_mutex);
1070 if (error) {
1071 state->mutex_acquired = false;
1072 return ERR_PTR(error);
1073 }
1074
1075 state->mutex_acquired = true;
1076
1077 return seq_list_start(&input_dev_list, *pos);
1078 }
1079
1080 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1081 {
1082 return seq_list_next(v, &input_dev_list, pos);
1083 }
1084
1085 static void input_seq_stop(struct seq_file *seq, void *v)
1086 {
1087 union input_seq_state *state = (union input_seq_state *)&seq->private;
1088
1089 if (state->mutex_acquired)
1090 mutex_unlock(&input_mutex);
1091 }
1092
1093 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1094 unsigned long *bitmap, int max)
1095 {
1096 int i;
1097 bool skip_empty = true;
1098 char buf[18];
1099
1100 seq_printf(seq, "B: %s=", name);
1101
1102 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1103 if (input_bits_to_string(buf, sizeof(buf),
1104 bitmap[i], skip_empty)) {
1105 skip_empty = false;
1106 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1107 }
1108 }
1109
1110 /*
1111 * If no output was produced print a single 0.
1112 */
1113 if (skip_empty)
1114 seq_puts(seq, "0");
1115
1116 seq_putc(seq, '\n');
1117 }
1118
1119 static int input_devices_seq_show(struct seq_file *seq, void *v)
1120 {
1121 struct input_dev *dev = container_of(v, struct input_dev, node);
1122 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1123 struct input_handle *handle;
1124
1125 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1126 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1127
1128 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1129 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1130 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1131 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1132 seq_printf(seq, "H: Handlers=");
1133
1134 list_for_each_entry(handle, &dev->h_list, d_node)
1135 seq_printf(seq, "%s ", handle->name);
1136 seq_putc(seq, '\n');
1137
1138 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1139
1140 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1141 if (test_bit(EV_KEY, dev->evbit))
1142 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1143 if (test_bit(EV_REL, dev->evbit))
1144 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1145 if (test_bit(EV_ABS, dev->evbit))
1146 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1147 if (test_bit(EV_MSC, dev->evbit))
1148 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1149 if (test_bit(EV_LED, dev->evbit))
1150 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1151 if (test_bit(EV_SND, dev->evbit))
1152 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1153 if (test_bit(EV_FF, dev->evbit))
1154 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1155 if (test_bit(EV_SW, dev->evbit))
1156 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1157
1158 seq_putc(seq, '\n');
1159
1160 kfree(path);
1161 return 0;
1162 }
1163
1164 static const struct seq_operations input_devices_seq_ops = {
1165 .start = input_devices_seq_start,
1166 .next = input_devices_seq_next,
1167 .stop = input_seq_stop,
1168 .show = input_devices_seq_show,
1169 };
1170
1171 static int input_proc_devices_open(struct inode *inode, struct file *file)
1172 {
1173 return seq_open(file, &input_devices_seq_ops);
1174 }
1175
1176 static const struct file_operations input_devices_fileops = {
1177 .owner = THIS_MODULE,
1178 .open = input_proc_devices_open,
1179 .poll = input_proc_devices_poll,
1180 .read = seq_read,
1181 .llseek = seq_lseek,
1182 .release = seq_release,
1183 };
1184
1185 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1186 {
1187 union input_seq_state *state = (union input_seq_state *)&seq->private;
1188 int error;
1189
1190 /* We need to fit into seq->private pointer */
1191 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1192
1193 error = mutex_lock_interruptible(&input_mutex);
1194 if (error) {
1195 state->mutex_acquired = false;
1196 return ERR_PTR(error);
1197 }
1198
1199 state->mutex_acquired = true;
1200 state->pos = *pos;
1201
1202 return seq_list_start(&input_handler_list, *pos);
1203 }
1204
1205 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1206 {
1207 union input_seq_state *state = (union input_seq_state *)&seq->private;
1208
1209 state->pos = *pos + 1;
1210 return seq_list_next(v, &input_handler_list, pos);
1211 }
1212
1213 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1214 {
1215 struct input_handler *handler = container_of(v, struct input_handler, node);
1216 union input_seq_state *state = (union input_seq_state *)&seq->private;
1217
1218 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1219 if (handler->filter)
1220 seq_puts(seq, " (filter)");
1221 if (handler->fops)
1222 seq_printf(seq, " Minor=%d", handler->minor);
1223 seq_putc(seq, '\n');
1224
1225 return 0;
1226 }
1227
1228 static const struct seq_operations input_handlers_seq_ops = {
1229 .start = input_handlers_seq_start,
1230 .next = input_handlers_seq_next,
1231 .stop = input_seq_stop,
1232 .show = input_handlers_seq_show,
1233 };
1234
1235 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1236 {
1237 return seq_open(file, &input_handlers_seq_ops);
1238 }
1239
1240 static const struct file_operations input_handlers_fileops = {
1241 .owner = THIS_MODULE,
1242 .open = input_proc_handlers_open,
1243 .read = seq_read,
1244 .llseek = seq_lseek,
1245 .release = seq_release,
1246 };
1247
1248 static int __init input_proc_init(void)
1249 {
1250 struct proc_dir_entry *entry;
1251
1252 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1253 if (!proc_bus_input_dir)
1254 return -ENOMEM;
1255
1256 entry = proc_create("devices", 0, proc_bus_input_dir,
1257 &input_devices_fileops);
1258 if (!entry)
1259 goto fail1;
1260
1261 entry = proc_create("handlers", 0, proc_bus_input_dir,
1262 &input_handlers_fileops);
1263 if (!entry)
1264 goto fail2;
1265
1266 return 0;
1267
1268 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1269 fail1: remove_proc_entry("bus/input", NULL);
1270 return -ENOMEM;
1271 }
1272
1273 static void input_proc_exit(void)
1274 {
1275 remove_proc_entry("devices", proc_bus_input_dir);
1276 remove_proc_entry("handlers", proc_bus_input_dir);
1277 remove_proc_entry("bus/input", NULL);
1278 }
1279
1280 #else /* !CONFIG_PROC_FS */
1281 static inline void input_wakeup_procfs_readers(void) { }
1282 static inline int input_proc_init(void) { return 0; }
1283 static inline void input_proc_exit(void) { }
1284 #endif
1285
1286 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1287 static ssize_t input_dev_show_##name(struct device *dev, \
1288 struct device_attribute *attr, \
1289 char *buf) \
1290 { \
1291 struct input_dev *input_dev = to_input_dev(dev); \
1292 \
1293 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1294 input_dev->name ? input_dev->name : ""); \
1295 } \
1296 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1297
1298 INPUT_DEV_STRING_ATTR_SHOW(name);
1299 INPUT_DEV_STRING_ATTR_SHOW(phys);
1300 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1301
1302 static int input_print_modalias_bits(char *buf, int size,
1303 char name, unsigned long *bm,
1304 unsigned int min_bit, unsigned int max_bit)
1305 {
1306 int len = 0, i;
1307
1308 len += snprintf(buf, max(size, 0), "%c", name);
1309 for (i = min_bit; i < max_bit; i++)
1310 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1311 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1312 return len;
1313 }
1314
1315 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1316 int add_cr)
1317 {
1318 int len;
1319
1320 len = snprintf(buf, max(size, 0),
1321 "input:b%04Xv%04Xp%04Xe%04X-",
1322 id->id.bustype, id->id.vendor,
1323 id->id.product, id->id.version);
1324
1325 len += input_print_modalias_bits(buf + len, size - len,
1326 'e', id->evbit, 0, EV_MAX);
1327 len += input_print_modalias_bits(buf + len, size - len,
1328 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1329 len += input_print_modalias_bits(buf + len, size - len,
1330 'r', id->relbit, 0, REL_MAX);
1331 len += input_print_modalias_bits(buf + len, size - len,
1332 'a', id->absbit, 0, ABS_MAX);
1333 len += input_print_modalias_bits(buf + len, size - len,
1334 'm', id->mscbit, 0, MSC_MAX);
1335 len += input_print_modalias_bits(buf + len, size - len,
1336 'l', id->ledbit, 0, LED_MAX);
1337 len += input_print_modalias_bits(buf + len, size - len,
1338 's', id->sndbit, 0, SND_MAX);
1339 len += input_print_modalias_bits(buf + len, size - len,
1340 'f', id->ffbit, 0, FF_MAX);
1341 len += input_print_modalias_bits(buf + len, size - len,
1342 'w', id->swbit, 0, SW_MAX);
1343
1344 if (add_cr)
1345 len += snprintf(buf + len, max(size - len, 0), "\n");
1346
1347 return len;
1348 }
1349
1350 static ssize_t input_dev_show_modalias(struct device *dev,
1351 struct device_attribute *attr,
1352 char *buf)
1353 {
1354 struct input_dev *id = to_input_dev(dev);
1355 ssize_t len;
1356
1357 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1358
1359 return min_t(int, len, PAGE_SIZE);
1360 }
1361 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1362
1363 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1364 int max, int add_cr);
1365
1366 static ssize_t input_dev_show_properties(struct device *dev,
1367 struct device_attribute *attr,
1368 char *buf)
1369 {
1370 struct input_dev *input_dev = to_input_dev(dev);
1371 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1372 INPUT_PROP_MAX, true);
1373 return min_t(int, len, PAGE_SIZE);
1374 }
1375 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1376
1377 static struct attribute *input_dev_attrs[] = {
1378 &dev_attr_name.attr,
1379 &dev_attr_phys.attr,
1380 &dev_attr_uniq.attr,
1381 &dev_attr_modalias.attr,
1382 &dev_attr_properties.attr,
1383 NULL
1384 };
1385
1386 static struct attribute_group input_dev_attr_group = {
1387 .attrs = input_dev_attrs,
1388 };
1389
1390 #define INPUT_DEV_ID_ATTR(name) \
1391 static ssize_t input_dev_show_id_##name(struct device *dev, \
1392 struct device_attribute *attr, \
1393 char *buf) \
1394 { \
1395 struct input_dev *input_dev = to_input_dev(dev); \
1396 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1397 } \
1398 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1399
1400 INPUT_DEV_ID_ATTR(bustype);
1401 INPUT_DEV_ID_ATTR(vendor);
1402 INPUT_DEV_ID_ATTR(product);
1403 INPUT_DEV_ID_ATTR(version);
1404
1405 static struct attribute *input_dev_id_attrs[] = {
1406 &dev_attr_bustype.attr,
1407 &dev_attr_vendor.attr,
1408 &dev_attr_product.attr,
1409 &dev_attr_version.attr,
1410 NULL
1411 };
1412
1413 static struct attribute_group input_dev_id_attr_group = {
1414 .name = "id",
1415 .attrs = input_dev_id_attrs,
1416 };
1417
1418 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1419 int max, int add_cr)
1420 {
1421 int i;
1422 int len = 0;
1423 bool skip_empty = true;
1424
1425 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1426 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1427 bitmap[i], skip_empty);
1428 if (len) {
1429 skip_empty = false;
1430 if (i > 0)
1431 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1432 }
1433 }
1434
1435 /*
1436 * If no output was produced print a single 0.
1437 */
1438 if (len == 0)
1439 len = snprintf(buf, buf_size, "%d", 0);
1440
1441 if (add_cr)
1442 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1443
1444 return len;
1445 }
1446
1447 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1448 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1449 struct device_attribute *attr, \
1450 char *buf) \
1451 { \
1452 struct input_dev *input_dev = to_input_dev(dev); \
1453 int len = input_print_bitmap(buf, PAGE_SIZE, \
1454 input_dev->bm##bit, ev##_MAX, \
1455 true); \
1456 return min_t(int, len, PAGE_SIZE); \
1457 } \
1458 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1459
1460 INPUT_DEV_CAP_ATTR(EV, ev);
1461 INPUT_DEV_CAP_ATTR(KEY, key);
1462 INPUT_DEV_CAP_ATTR(REL, rel);
1463 INPUT_DEV_CAP_ATTR(ABS, abs);
1464 INPUT_DEV_CAP_ATTR(MSC, msc);
1465 INPUT_DEV_CAP_ATTR(LED, led);
1466 INPUT_DEV_CAP_ATTR(SND, snd);
1467 INPUT_DEV_CAP_ATTR(FF, ff);
1468 INPUT_DEV_CAP_ATTR(SW, sw);
1469
1470 static struct attribute *input_dev_caps_attrs[] = {
1471 &dev_attr_ev.attr,
1472 &dev_attr_key.attr,
1473 &dev_attr_rel.attr,
1474 &dev_attr_abs.attr,
1475 &dev_attr_msc.attr,
1476 &dev_attr_led.attr,
1477 &dev_attr_snd.attr,
1478 &dev_attr_ff.attr,
1479 &dev_attr_sw.attr,
1480 NULL
1481 };
1482
1483 static struct attribute_group input_dev_caps_attr_group = {
1484 .name = "capabilities",
1485 .attrs = input_dev_caps_attrs,
1486 };
1487
1488 static const struct attribute_group *input_dev_attr_groups[] = {
1489 &input_dev_attr_group,
1490 &input_dev_id_attr_group,
1491 &input_dev_caps_attr_group,
1492 NULL
1493 };
1494
1495 static void input_dev_release(struct device *device)
1496 {
1497 struct input_dev *dev = to_input_dev(device);
1498
1499 input_ff_destroy(dev);
1500 input_mt_destroy_slots(dev);
1501 kfree(dev->absinfo);
1502 kfree(dev->vals);
1503 kfree(dev);
1504
1505 module_put(THIS_MODULE);
1506 }
1507
1508 /*
1509 * Input uevent interface - loading event handlers based on
1510 * device bitfields.
1511 */
1512 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1513 const char *name, unsigned long *bitmap, int max)
1514 {
1515 int len;
1516
1517 if (add_uevent_var(env, "%s", name))
1518 return -ENOMEM;
1519
1520 len = input_print_bitmap(&env->buf[env->buflen - 1],
1521 sizeof(env->buf) - env->buflen,
1522 bitmap, max, false);
1523 if (len >= (sizeof(env->buf) - env->buflen))
1524 return -ENOMEM;
1525
1526 env->buflen += len;
1527 return 0;
1528 }
1529
1530 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1531 struct input_dev *dev)
1532 {
1533 int len;
1534
1535 if (add_uevent_var(env, "MODALIAS="))
1536 return -ENOMEM;
1537
1538 len = input_print_modalias(&env->buf[env->buflen - 1],
1539 sizeof(env->buf) - env->buflen,
1540 dev, 0);
1541 if (len >= (sizeof(env->buf) - env->buflen))
1542 return -ENOMEM;
1543
1544 env->buflen += len;
1545 return 0;
1546 }
1547
1548 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1549 do { \
1550 int err = add_uevent_var(env, fmt, val); \
1551 if (err) \
1552 return err; \
1553 } while (0)
1554
1555 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1556 do { \
1557 int err = input_add_uevent_bm_var(env, name, bm, max); \
1558 if (err) \
1559 return err; \
1560 } while (0)
1561
1562 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1563 do { \
1564 int err = input_add_uevent_modalias_var(env, dev); \
1565 if (err) \
1566 return err; \
1567 } while (0)
1568
1569 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1570 {
1571 struct input_dev *dev = to_input_dev(device);
1572
1573 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1574 dev->id.bustype, dev->id.vendor,
1575 dev->id.product, dev->id.version);
1576 if (dev->name)
1577 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1578 if (dev->phys)
1579 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1580 if (dev->uniq)
1581 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1582
1583 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1584
1585 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1586 if (test_bit(EV_KEY, dev->evbit))
1587 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1588 if (test_bit(EV_REL, dev->evbit))
1589 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1590 if (test_bit(EV_ABS, dev->evbit))
1591 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1592 if (test_bit(EV_MSC, dev->evbit))
1593 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1594 if (test_bit(EV_LED, dev->evbit))
1595 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1596 if (test_bit(EV_SND, dev->evbit))
1597 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1598 if (test_bit(EV_FF, dev->evbit))
1599 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1600 if (test_bit(EV_SW, dev->evbit))
1601 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1602
1603 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1604
1605 return 0;
1606 }
1607
1608 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1609 do { \
1610 int i; \
1611 bool active; \
1612 \
1613 if (!test_bit(EV_##type, dev->evbit)) \
1614 break; \
1615 \
1616 for (i = 0; i < type##_MAX; i++) { \
1617 if (!test_bit(i, dev->bits##bit)) \
1618 continue; \
1619 \
1620 active = test_bit(i, dev->bits); \
1621 if (!active && !on) \
1622 continue; \
1623 \
1624 dev->event(dev, EV_##type, i, on ? active : 0); \
1625 } \
1626 } while (0)
1627
1628 static void input_dev_toggle(struct input_dev *dev, bool activate)
1629 {
1630 if (!dev->event)
1631 return;
1632
1633 INPUT_DO_TOGGLE(dev, LED, led, activate);
1634 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1635
1636 if (activate && test_bit(EV_REP, dev->evbit)) {
1637 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1638 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1639 }
1640 }
1641
1642 /**
1643 * input_reset_device() - reset/restore the state of input device
1644 * @dev: input device whose state needs to be reset
1645 *
1646 * This function tries to reset the state of an opened input device and
1647 * bring internal state and state if the hardware in sync with each other.
1648 * We mark all keys as released, restore LED state, repeat rate, etc.
1649 */
1650 void input_reset_device(struct input_dev *dev)
1651 {
1652 mutex_lock(&dev->mutex);
1653
1654 if (dev->users) {
1655 input_dev_toggle(dev, true);
1656
1657 /*
1658 * Keys that have been pressed at suspend time are unlikely
1659 * to be still pressed when we resume.
1660 */
1661 spin_lock_irq(&dev->event_lock);
1662 input_dev_release_keys(dev);
1663 spin_unlock_irq(&dev->event_lock);
1664 }
1665
1666 mutex_unlock(&dev->mutex);
1667 }
1668 EXPORT_SYMBOL(input_reset_device);
1669
1670 #ifdef CONFIG_PM
1671 static int input_dev_suspend(struct device *dev)
1672 {
1673 struct input_dev *input_dev = to_input_dev(dev);
1674
1675 mutex_lock(&input_dev->mutex);
1676
1677 if (input_dev->users)
1678 input_dev_toggle(input_dev, false);
1679
1680 mutex_unlock(&input_dev->mutex);
1681
1682 return 0;
1683 }
1684
1685 static int input_dev_resume(struct device *dev)
1686 {
1687 struct input_dev *input_dev = to_input_dev(dev);
1688
1689 input_reset_device(input_dev);
1690
1691 return 0;
1692 }
1693
1694 static const struct dev_pm_ops input_dev_pm_ops = {
1695 .suspend = input_dev_suspend,
1696 .resume = input_dev_resume,
1697 .poweroff = input_dev_suspend,
1698 .restore = input_dev_resume,
1699 };
1700 #endif /* CONFIG_PM */
1701
1702 static struct device_type input_dev_type = {
1703 .groups = input_dev_attr_groups,
1704 .release = input_dev_release,
1705 .uevent = input_dev_uevent,
1706 #ifdef CONFIG_PM
1707 .pm = &input_dev_pm_ops,
1708 #endif
1709 };
1710
1711 static char *input_devnode(struct device *dev, umode_t *mode)
1712 {
1713 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1714 }
1715
1716 struct class input_class = {
1717 .name = "input",
1718 .devnode = input_devnode,
1719 };
1720 EXPORT_SYMBOL_GPL(input_class);
1721
1722 /**
1723 * input_allocate_device - allocate memory for new input device
1724 *
1725 * Returns prepared struct input_dev or NULL.
1726 *
1727 * NOTE: Use input_free_device() to free devices that have not been
1728 * registered; input_unregister_device() should be used for already
1729 * registered devices.
1730 */
1731 struct input_dev *input_allocate_device(void)
1732 {
1733 struct input_dev *dev;
1734
1735 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1736 if (dev) {
1737 dev->dev.type = &input_dev_type;
1738 dev->dev.class = &input_class;
1739 device_initialize(&dev->dev);
1740 mutex_init(&dev->mutex);
1741 spin_lock_init(&dev->event_lock);
1742 INIT_LIST_HEAD(&dev->h_list);
1743 INIT_LIST_HEAD(&dev->node);
1744
1745 __module_get(THIS_MODULE);
1746 }
1747
1748 return dev;
1749 }
1750 EXPORT_SYMBOL(input_allocate_device);
1751
1752 /**
1753 * input_free_device - free memory occupied by input_dev structure
1754 * @dev: input device to free
1755 *
1756 * This function should only be used if input_register_device()
1757 * was not called yet or if it failed. Once device was registered
1758 * use input_unregister_device() and memory will be freed once last
1759 * reference to the device is dropped.
1760 *
1761 * Device should be allocated by input_allocate_device().
1762 *
1763 * NOTE: If there are references to the input device then memory
1764 * will not be freed until last reference is dropped.
1765 */
1766 void input_free_device(struct input_dev *dev)
1767 {
1768 if (dev)
1769 input_put_device(dev);
1770 }
1771 EXPORT_SYMBOL(input_free_device);
1772
1773 /**
1774 * input_set_capability - mark device as capable of a certain event
1775 * @dev: device that is capable of emitting or accepting event
1776 * @type: type of the event (EV_KEY, EV_REL, etc...)
1777 * @code: event code
1778 *
1779 * In addition to setting up corresponding bit in appropriate capability
1780 * bitmap the function also adjusts dev->evbit.
1781 */
1782 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1783 {
1784 switch (type) {
1785 case EV_KEY:
1786 __set_bit(code, dev->keybit);
1787 break;
1788
1789 case EV_REL:
1790 __set_bit(code, dev->relbit);
1791 break;
1792
1793 case EV_ABS:
1794 __set_bit(code, dev->absbit);
1795 break;
1796
1797 case EV_MSC:
1798 __set_bit(code, dev->mscbit);
1799 break;
1800
1801 case EV_SW:
1802 __set_bit(code, dev->swbit);
1803 break;
1804
1805 case EV_LED:
1806 __set_bit(code, dev->ledbit);
1807 break;
1808
1809 case EV_SND:
1810 __set_bit(code, dev->sndbit);
1811 break;
1812
1813 case EV_FF:
1814 __set_bit(code, dev->ffbit);
1815 break;
1816
1817 case EV_PWR:
1818 /* do nothing */
1819 break;
1820
1821 default:
1822 pr_err("input_set_capability: unknown type %u (code %u)\n",
1823 type, code);
1824 dump_stack();
1825 return;
1826 }
1827
1828 __set_bit(type, dev->evbit);
1829 }
1830 EXPORT_SYMBOL(input_set_capability);
1831
1832 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1833 {
1834 int mt_slots;
1835 int i;
1836 unsigned int events;
1837
1838 if (dev->mt) {
1839 mt_slots = dev->mt->num_slots;
1840 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1841 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1842 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1843 mt_slots = clamp(mt_slots, 2, 32);
1844 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1845 mt_slots = 2;
1846 } else {
1847 mt_slots = 0;
1848 }
1849
1850 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1851
1852 for (i = 0; i < ABS_CNT; i++) {
1853 if (test_bit(i, dev->absbit)) {
1854 if (input_is_mt_axis(i))
1855 events += mt_slots;
1856 else
1857 events++;
1858 }
1859 }
1860
1861 for (i = 0; i < REL_CNT; i++)
1862 if (test_bit(i, dev->relbit))
1863 events++;
1864
1865 /* Make room for KEY and MSC events */
1866 events += 7;
1867
1868 return events;
1869 }
1870
1871 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1872 do { \
1873 if (!test_bit(EV_##type, dev->evbit)) \
1874 memset(dev->bits##bit, 0, \
1875 sizeof(dev->bits##bit)); \
1876 } while (0)
1877
1878 static void input_cleanse_bitmasks(struct input_dev *dev)
1879 {
1880 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1881 INPUT_CLEANSE_BITMASK(dev, REL, rel);
1882 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1883 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1884 INPUT_CLEANSE_BITMASK(dev, LED, led);
1885 INPUT_CLEANSE_BITMASK(dev, SND, snd);
1886 INPUT_CLEANSE_BITMASK(dev, FF, ff);
1887 INPUT_CLEANSE_BITMASK(dev, SW, sw);
1888 }
1889
1890 /**
1891 * input_register_device - register device with input core
1892 * @dev: device to be registered
1893 *
1894 * This function registers device with input core. The device must be
1895 * allocated with input_allocate_device() and all it's capabilities
1896 * set up before registering.
1897 * If function fails the device must be freed with input_free_device().
1898 * Once device has been successfully registered it can be unregistered
1899 * with input_unregister_device(); input_free_device() should not be
1900 * called in this case.
1901 */
1902 int input_register_device(struct input_dev *dev)
1903 {
1904 static atomic_t input_no = ATOMIC_INIT(0);
1905 struct input_handler *handler;
1906 unsigned int packet_size;
1907 const char *path;
1908 int error;
1909
1910 /* Every input device generates EV_SYN/SYN_REPORT events. */
1911 __set_bit(EV_SYN, dev->evbit);
1912
1913 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1914 __clear_bit(KEY_RESERVED, dev->keybit);
1915
1916 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1917 input_cleanse_bitmasks(dev);
1918
1919 packet_size = input_estimate_events_per_packet(dev);
1920 if (dev->hint_events_per_packet < packet_size)
1921 dev->hint_events_per_packet = packet_size;
1922
1923 dev->max_vals = max(dev->hint_events_per_packet, packet_size) + 2;
1924 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1925 if (!dev->vals)
1926 return -ENOMEM;
1927
1928 /*
1929 * If delay and period are pre-set by the driver, then autorepeating
1930 * is handled by the driver itself and we don't do it in input.c.
1931 */
1932 init_timer(&dev->timer);
1933 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1934 dev->timer.data = (long) dev;
1935 dev->timer.function = input_repeat_key;
1936 dev->rep[REP_DELAY] = 250;
1937 dev->rep[REP_PERIOD] = 33;
1938 }
1939
1940 if (!dev->getkeycode)
1941 dev->getkeycode = input_default_getkeycode;
1942
1943 if (!dev->setkeycode)
1944 dev->setkeycode = input_default_setkeycode;
1945
1946 dev_set_name(&dev->dev, "input%ld",
1947 (unsigned long) atomic_inc_return(&input_no) - 1);
1948
1949 error = device_add(&dev->dev);
1950 if (error)
1951 return error;
1952
1953 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1954 pr_info("%s as %s\n",
1955 dev->name ? dev->name : "Unspecified device",
1956 path ? path : "N/A");
1957 kfree(path);
1958
1959 error = mutex_lock_interruptible(&input_mutex);
1960 if (error) {
1961 device_del(&dev->dev);
1962 return error;
1963 }
1964
1965 list_add_tail(&dev->node, &input_dev_list);
1966
1967 list_for_each_entry(handler, &input_handler_list, node)
1968 input_attach_handler(dev, handler);
1969
1970 input_wakeup_procfs_readers();
1971
1972 mutex_unlock(&input_mutex);
1973
1974 return 0;
1975 }
1976 EXPORT_SYMBOL(input_register_device);
1977
1978 /**
1979 * input_unregister_device - unregister previously registered device
1980 * @dev: device to be unregistered
1981 *
1982 * This function unregisters an input device. Once device is unregistered
1983 * the caller should not try to access it as it may get freed at any moment.
1984 */
1985 void input_unregister_device(struct input_dev *dev)
1986 {
1987 struct input_handle *handle, *next;
1988
1989 input_disconnect_device(dev);
1990
1991 mutex_lock(&input_mutex);
1992
1993 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1994 handle->handler->disconnect(handle);
1995 WARN_ON(!list_empty(&dev->h_list));
1996
1997 del_timer_sync(&dev->timer);
1998 list_del_init(&dev->node);
1999
2000 input_wakeup_procfs_readers();
2001
2002 mutex_unlock(&input_mutex);
2003
2004 device_unregister(&dev->dev);
2005 }
2006 EXPORT_SYMBOL(input_unregister_device);
2007
2008 /**
2009 * input_register_handler - register a new input handler
2010 * @handler: handler to be registered
2011 *
2012 * This function registers a new input handler (interface) for input
2013 * devices in the system and attaches it to all input devices that
2014 * are compatible with the handler.
2015 */
2016 int input_register_handler(struct input_handler *handler)
2017 {
2018 struct input_dev *dev;
2019 int retval;
2020
2021 retval = mutex_lock_interruptible(&input_mutex);
2022 if (retval)
2023 return retval;
2024
2025 INIT_LIST_HEAD(&handler->h_list);
2026
2027 if (handler->fops != NULL) {
2028 if (input_table[handler->minor >> 5]) {
2029 retval = -EBUSY;
2030 goto out;
2031 }
2032 input_table[handler->minor >> 5] = handler;
2033 }
2034
2035 list_add_tail(&handler->node, &input_handler_list);
2036
2037 list_for_each_entry(dev, &input_dev_list, node)
2038 input_attach_handler(dev, handler);
2039
2040 input_wakeup_procfs_readers();
2041
2042 out:
2043 mutex_unlock(&input_mutex);
2044 return retval;
2045 }
2046 EXPORT_SYMBOL(input_register_handler);
2047
2048 /**
2049 * input_unregister_handler - unregisters an input handler
2050 * @handler: handler to be unregistered
2051 *
2052 * This function disconnects a handler from its input devices and
2053 * removes it from lists of known handlers.
2054 */
2055 void input_unregister_handler(struct input_handler *handler)
2056 {
2057 struct input_handle *handle, *next;
2058
2059 mutex_lock(&input_mutex);
2060
2061 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2062 handler->disconnect(handle);
2063 WARN_ON(!list_empty(&handler->h_list));
2064
2065 list_del_init(&handler->node);
2066
2067 if (handler->fops != NULL)
2068 input_table[handler->minor >> 5] = NULL;
2069
2070 input_wakeup_procfs_readers();
2071
2072 mutex_unlock(&input_mutex);
2073 }
2074 EXPORT_SYMBOL(input_unregister_handler);
2075
2076 /**
2077 * input_handler_for_each_handle - handle iterator
2078 * @handler: input handler to iterate
2079 * @data: data for the callback
2080 * @fn: function to be called for each handle
2081 *
2082 * Iterate over @bus's list of devices, and call @fn for each, passing
2083 * it @data and stop when @fn returns a non-zero value. The function is
2084 * using RCU to traverse the list and therefore may be usind in atonic
2085 * contexts. The @fn callback is invoked from RCU critical section and
2086 * thus must not sleep.
2087 */
2088 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2089 int (*fn)(struct input_handle *, void *))
2090 {
2091 struct input_handle *handle;
2092 int retval = 0;
2093
2094 rcu_read_lock();
2095
2096 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2097 retval = fn(handle, data);
2098 if (retval)
2099 break;
2100 }
2101
2102 rcu_read_unlock();
2103
2104 return retval;
2105 }
2106 EXPORT_SYMBOL(input_handler_for_each_handle);
2107
2108 /**
2109 * input_register_handle - register a new input handle
2110 * @handle: handle to register
2111 *
2112 * This function puts a new input handle onto device's
2113 * and handler's lists so that events can flow through
2114 * it once it is opened using input_open_device().
2115 *
2116 * This function is supposed to be called from handler's
2117 * connect() method.
2118 */
2119 int input_register_handle(struct input_handle *handle)
2120 {
2121 struct input_handler *handler = handle->handler;
2122 struct input_dev *dev = handle->dev;
2123 int error;
2124
2125 /*
2126 * We take dev->mutex here to prevent race with
2127 * input_release_device().
2128 */
2129 error = mutex_lock_interruptible(&dev->mutex);
2130 if (error)
2131 return error;
2132
2133 /*
2134 * Filters go to the head of the list, normal handlers
2135 * to the tail.
2136 */
2137 if (handler->filter)
2138 list_add_rcu(&handle->d_node, &dev->h_list);
2139 else
2140 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2141
2142 mutex_unlock(&dev->mutex);
2143
2144 /*
2145 * Since we are supposed to be called from ->connect()
2146 * which is mutually exclusive with ->disconnect()
2147 * we can't be racing with input_unregister_handle()
2148 * and so separate lock is not needed here.
2149 */
2150 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2151
2152 if (handler->start)
2153 handler->start(handle);
2154
2155 return 0;
2156 }
2157 EXPORT_SYMBOL(input_register_handle);
2158
2159 /**
2160 * input_unregister_handle - unregister an input handle
2161 * @handle: handle to unregister
2162 *
2163 * This function removes input handle from device's
2164 * and handler's lists.
2165 *
2166 * This function is supposed to be called from handler's
2167 * disconnect() method.
2168 */
2169 void input_unregister_handle(struct input_handle *handle)
2170 {
2171 struct input_dev *dev = handle->dev;
2172
2173 list_del_rcu(&handle->h_node);
2174
2175 /*
2176 * Take dev->mutex to prevent race with input_release_device().
2177 */
2178 mutex_lock(&dev->mutex);
2179 list_del_rcu(&handle->d_node);
2180 mutex_unlock(&dev->mutex);
2181
2182 synchronize_rcu();
2183 }
2184 EXPORT_SYMBOL(input_unregister_handle);
2185
2186 static int input_open_file(struct inode *inode, struct file *file)
2187 {
2188 struct input_handler *handler;
2189 const struct file_operations *old_fops, *new_fops = NULL;
2190 int err;
2191
2192 err = mutex_lock_interruptible(&input_mutex);
2193 if (err)
2194 return err;
2195
2196 /* No load-on-demand here? */
2197 handler = input_table[iminor(inode) >> 5];
2198 if (handler)
2199 new_fops = fops_get(handler->fops);
2200
2201 mutex_unlock(&input_mutex);
2202
2203 /*
2204 * That's _really_ odd. Usually NULL ->open means "nothing special",
2205 * not "no device". Oh, well...
2206 */
2207 if (!new_fops || !new_fops->open) {
2208 fops_put(new_fops);
2209 err = -ENODEV;
2210 goto out;
2211 }
2212
2213 old_fops = file->f_op;
2214 file->f_op = new_fops;
2215
2216 err = new_fops->open(inode, file);
2217 if (err) {
2218 fops_put(file->f_op);
2219 file->f_op = fops_get(old_fops);
2220 }
2221 fops_put(old_fops);
2222 out:
2223 return err;
2224 }
2225
2226 static const struct file_operations input_fops = {
2227 .owner = THIS_MODULE,
2228 .open = input_open_file,
2229 .llseek = noop_llseek,
2230 };
2231
2232 static int __init input_init(void)
2233 {
2234 int err;
2235
2236 err = class_register(&input_class);
2237 if (err) {
2238 pr_err("unable to register input_dev class\n");
2239 return err;
2240 }
2241
2242 err = input_proc_init();
2243 if (err)
2244 goto fail1;
2245
2246 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2247 if (err) {
2248 pr_err("unable to register char major %d", INPUT_MAJOR);
2249 goto fail2;
2250 }
2251
2252 return 0;
2253
2254 fail2: input_proc_exit();
2255 fail1: class_unregister(&input_class);
2256 return err;
2257 }
2258
2259 static void __exit input_exit(void)
2260 {
2261 input_proc_exit();
2262 unregister_chrdev(INPUT_MAJOR, "input");
2263 class_unregister(&input_class);
2264 }
2265
2266 subsys_initcall(input_init);
2267 module_exit(input_exit);