]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/input/input.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / drivers / input / input.c
1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/major.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/mutex.h>
26 #include <linux/rcupdate.h>
27 #include <linux/smp_lock.h>
28 #include "input-compat.h"
29
30 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
31 MODULE_DESCRIPTION("Input core");
32 MODULE_LICENSE("GPL");
33
34 #define INPUT_DEVICES 256
35
36 /*
37 * EV_ABS events which should not be cached are listed here.
38 */
39 static unsigned int input_abs_bypass_init_data[] __initdata = {
40 ABS_MT_TOUCH_MAJOR,
41 ABS_MT_TOUCH_MINOR,
42 ABS_MT_WIDTH_MAJOR,
43 ABS_MT_WIDTH_MINOR,
44 ABS_MT_ORIENTATION,
45 ABS_MT_POSITION_X,
46 ABS_MT_POSITION_Y,
47 ABS_MT_TOOL_TYPE,
48 ABS_MT_BLOB_ID,
49 ABS_MT_TRACKING_ID,
50 ABS_MT_PRESSURE,
51 0
52 };
53 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
54
55 static LIST_HEAD(input_dev_list);
56 static LIST_HEAD(input_handler_list);
57
58 /*
59 * input_mutex protects access to both input_dev_list and input_handler_list.
60 * This also causes input_[un]register_device and input_[un]register_handler
61 * be mutually exclusive which simplifies locking in drivers implementing
62 * input handlers.
63 */
64 static DEFINE_MUTEX(input_mutex);
65
66 static struct input_handler *input_table[8];
67
68 static inline int is_event_supported(unsigned int code,
69 unsigned long *bm, unsigned int max)
70 {
71 return code <= max && test_bit(code, bm);
72 }
73
74 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
75 {
76 if (fuzz) {
77 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
78 return old_val;
79
80 if (value > old_val - fuzz && value < old_val + fuzz)
81 return (old_val * 3 + value) / 4;
82
83 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
84 return (old_val + value) / 2;
85 }
86
87 return value;
88 }
89
90 /*
91 * Pass event first through all filters and then, if event has not been
92 * filtered out, through all open handles. This function is called with
93 * dev->event_lock held and interrupts disabled.
94 */
95 static void input_pass_event(struct input_dev *dev,
96 unsigned int type, unsigned int code, int value)
97 {
98 struct input_handler *handler;
99 struct input_handle *handle;
100
101 rcu_read_lock();
102
103 handle = rcu_dereference(dev->grab);
104 if (handle)
105 handle->handler->event(handle, type, code, value);
106 else {
107 bool filtered = false;
108
109 list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
110 if (!handle->open)
111 continue;
112
113 handler = handle->handler;
114 if (!handler->filter) {
115 if (filtered)
116 break;
117
118 handler->event(handle, type, code, value);
119
120 } else if (handler->filter(handle, type, code, value))
121 filtered = true;
122 }
123 }
124
125 rcu_read_unlock();
126 }
127
128 /*
129 * Generate software autorepeat event. Note that we take
130 * dev->event_lock here to avoid racing with input_event
131 * which may cause keys get "stuck".
132 */
133 static void input_repeat_key(unsigned long data)
134 {
135 struct input_dev *dev = (void *) data;
136 unsigned long flags;
137
138 spin_lock_irqsave(&dev->event_lock, flags);
139
140 if (test_bit(dev->repeat_key, dev->key) &&
141 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
142
143 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
144
145 if (dev->sync) {
146 /*
147 * Only send SYN_REPORT if we are not in a middle
148 * of driver parsing a new hardware packet.
149 * Otherwise assume that the driver will send
150 * SYN_REPORT once it's done.
151 */
152 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
153 }
154
155 if (dev->rep[REP_PERIOD])
156 mod_timer(&dev->timer, jiffies +
157 msecs_to_jiffies(dev->rep[REP_PERIOD]));
158 }
159
160 spin_unlock_irqrestore(&dev->event_lock, flags);
161 }
162
163 static void input_start_autorepeat(struct input_dev *dev, int code)
164 {
165 if (test_bit(EV_REP, dev->evbit) &&
166 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
167 dev->timer.data) {
168 dev->repeat_key = code;
169 mod_timer(&dev->timer,
170 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
171 }
172 }
173
174 static void input_stop_autorepeat(struct input_dev *dev)
175 {
176 del_timer(&dev->timer);
177 }
178
179 #define INPUT_IGNORE_EVENT 0
180 #define INPUT_PASS_TO_HANDLERS 1
181 #define INPUT_PASS_TO_DEVICE 2
182 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
183
184 static void input_handle_event(struct input_dev *dev,
185 unsigned int type, unsigned int code, int value)
186 {
187 int disposition = INPUT_IGNORE_EVENT;
188
189 switch (type) {
190
191 case EV_SYN:
192 switch (code) {
193 case SYN_CONFIG:
194 disposition = INPUT_PASS_TO_ALL;
195 break;
196
197 case SYN_REPORT:
198 if (!dev->sync) {
199 dev->sync = 1;
200 disposition = INPUT_PASS_TO_HANDLERS;
201 }
202 break;
203 case SYN_MT_REPORT:
204 dev->sync = 0;
205 disposition = INPUT_PASS_TO_HANDLERS;
206 break;
207 }
208 break;
209
210 case EV_KEY:
211 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
212 !!test_bit(code, dev->key) != value) {
213
214 if (value != 2) {
215 __change_bit(code, dev->key);
216 if (value)
217 input_start_autorepeat(dev, code);
218 else
219 input_stop_autorepeat(dev);
220 }
221
222 disposition = INPUT_PASS_TO_HANDLERS;
223 }
224 break;
225
226 case EV_SW:
227 if (is_event_supported(code, dev->swbit, SW_MAX) &&
228 !!test_bit(code, dev->sw) != value) {
229
230 __change_bit(code, dev->sw);
231 disposition = INPUT_PASS_TO_HANDLERS;
232 }
233 break;
234
235 case EV_ABS:
236 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
237
238 if (test_bit(code, input_abs_bypass)) {
239 disposition = INPUT_PASS_TO_HANDLERS;
240 break;
241 }
242
243 value = input_defuzz_abs_event(value,
244 dev->abs[code], dev->absfuzz[code]);
245
246 if (dev->abs[code] != value) {
247 dev->abs[code] = value;
248 disposition = INPUT_PASS_TO_HANDLERS;
249 }
250 }
251 break;
252
253 case EV_REL:
254 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
255 disposition = INPUT_PASS_TO_HANDLERS;
256
257 break;
258
259 case EV_MSC:
260 if (is_event_supported(code, dev->mscbit, MSC_MAX))
261 disposition = INPUT_PASS_TO_ALL;
262
263 break;
264
265 case EV_LED:
266 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
267 !!test_bit(code, dev->led) != value) {
268
269 __change_bit(code, dev->led);
270 disposition = INPUT_PASS_TO_ALL;
271 }
272 break;
273
274 case EV_SND:
275 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
276
277 if (!!test_bit(code, dev->snd) != !!value)
278 __change_bit(code, dev->snd);
279 disposition = INPUT_PASS_TO_ALL;
280 }
281 break;
282
283 case EV_REP:
284 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
285 dev->rep[code] = value;
286 disposition = INPUT_PASS_TO_ALL;
287 }
288 break;
289
290 case EV_FF:
291 if (value >= 0)
292 disposition = INPUT_PASS_TO_ALL;
293 break;
294
295 case EV_PWR:
296 disposition = INPUT_PASS_TO_ALL;
297 break;
298 }
299
300 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
301 dev->sync = 0;
302
303 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
304 dev->event(dev, type, code, value);
305
306 if (disposition & INPUT_PASS_TO_HANDLERS)
307 input_pass_event(dev, type, code, value);
308 }
309
310 /**
311 * input_event() - report new input event
312 * @dev: device that generated the event
313 * @type: type of the event
314 * @code: event code
315 * @value: value of the event
316 *
317 * This function should be used by drivers implementing various input
318 * devices to report input events. See also input_inject_event().
319 *
320 * NOTE: input_event() may be safely used right after input device was
321 * allocated with input_allocate_device(), even before it is registered
322 * with input_register_device(), but the event will not reach any of the
323 * input handlers. Such early invocation of input_event() may be used
324 * to 'seed' initial state of a switch or initial position of absolute
325 * axis, etc.
326 */
327 void input_event(struct input_dev *dev,
328 unsigned int type, unsigned int code, int value)
329 {
330 unsigned long flags;
331
332 if (is_event_supported(type, dev->evbit, EV_MAX)) {
333
334 spin_lock_irqsave(&dev->event_lock, flags);
335 add_input_randomness(type, code, value);
336 input_handle_event(dev, type, code, value);
337 spin_unlock_irqrestore(&dev->event_lock, flags);
338 }
339 }
340 EXPORT_SYMBOL(input_event);
341
342 /**
343 * input_inject_event() - send input event from input handler
344 * @handle: input handle to send event through
345 * @type: type of the event
346 * @code: event code
347 * @value: value of the event
348 *
349 * Similar to input_event() but will ignore event if device is
350 * "grabbed" and handle injecting event is not the one that owns
351 * the device.
352 */
353 void input_inject_event(struct input_handle *handle,
354 unsigned int type, unsigned int code, int value)
355 {
356 struct input_dev *dev = handle->dev;
357 struct input_handle *grab;
358 unsigned long flags;
359
360 if (is_event_supported(type, dev->evbit, EV_MAX)) {
361 spin_lock_irqsave(&dev->event_lock, flags);
362
363 rcu_read_lock();
364 grab = rcu_dereference(dev->grab);
365 if (!grab || grab == handle)
366 input_handle_event(dev, type, code, value);
367 rcu_read_unlock();
368
369 spin_unlock_irqrestore(&dev->event_lock, flags);
370 }
371 }
372 EXPORT_SYMBOL(input_inject_event);
373
374 /**
375 * input_grab_device - grabs device for exclusive use
376 * @handle: input handle that wants to own the device
377 *
378 * When a device is grabbed by an input handle all events generated by
379 * the device are delivered only to this handle. Also events injected
380 * by other input handles are ignored while device is grabbed.
381 */
382 int input_grab_device(struct input_handle *handle)
383 {
384 struct input_dev *dev = handle->dev;
385 int retval;
386
387 retval = mutex_lock_interruptible(&dev->mutex);
388 if (retval)
389 return retval;
390
391 if (dev->grab) {
392 retval = -EBUSY;
393 goto out;
394 }
395
396 rcu_assign_pointer(dev->grab, handle);
397 synchronize_rcu();
398
399 out:
400 mutex_unlock(&dev->mutex);
401 return retval;
402 }
403 EXPORT_SYMBOL(input_grab_device);
404
405 static void __input_release_device(struct input_handle *handle)
406 {
407 struct input_dev *dev = handle->dev;
408
409 if (dev->grab == handle) {
410 rcu_assign_pointer(dev->grab, NULL);
411 /* Make sure input_pass_event() notices that grab is gone */
412 synchronize_rcu();
413
414 list_for_each_entry(handle, &dev->h_list, d_node)
415 if (handle->open && handle->handler->start)
416 handle->handler->start(handle);
417 }
418 }
419
420 /**
421 * input_release_device - release previously grabbed device
422 * @handle: input handle that owns the device
423 *
424 * Releases previously grabbed device so that other input handles can
425 * start receiving input events. Upon release all handlers attached
426 * to the device have their start() method called so they have a change
427 * to synchronize device state with the rest of the system.
428 */
429 void input_release_device(struct input_handle *handle)
430 {
431 struct input_dev *dev = handle->dev;
432
433 mutex_lock(&dev->mutex);
434 __input_release_device(handle);
435 mutex_unlock(&dev->mutex);
436 }
437 EXPORT_SYMBOL(input_release_device);
438
439 /**
440 * input_open_device - open input device
441 * @handle: handle through which device is being accessed
442 *
443 * This function should be called by input handlers when they
444 * want to start receive events from given input device.
445 */
446 int input_open_device(struct input_handle *handle)
447 {
448 struct input_dev *dev = handle->dev;
449 int retval;
450
451 retval = mutex_lock_interruptible(&dev->mutex);
452 if (retval)
453 return retval;
454
455 if (dev->going_away) {
456 retval = -ENODEV;
457 goto out;
458 }
459
460 handle->open++;
461
462 if (!dev->users++ && dev->open)
463 retval = dev->open(dev);
464
465 if (retval) {
466 dev->users--;
467 if (!--handle->open) {
468 /*
469 * Make sure we are not delivering any more events
470 * through this handle
471 */
472 synchronize_rcu();
473 }
474 }
475
476 out:
477 mutex_unlock(&dev->mutex);
478 return retval;
479 }
480 EXPORT_SYMBOL(input_open_device);
481
482 int input_flush_device(struct input_handle *handle, struct file *file)
483 {
484 struct input_dev *dev = handle->dev;
485 int retval;
486
487 retval = mutex_lock_interruptible(&dev->mutex);
488 if (retval)
489 return retval;
490
491 if (dev->flush)
492 retval = dev->flush(dev, file);
493
494 mutex_unlock(&dev->mutex);
495 return retval;
496 }
497 EXPORT_SYMBOL(input_flush_device);
498
499 /**
500 * input_close_device - close input device
501 * @handle: handle through which device is being accessed
502 *
503 * This function should be called by input handlers when they
504 * want to stop receive events from given input device.
505 */
506 void input_close_device(struct input_handle *handle)
507 {
508 struct input_dev *dev = handle->dev;
509
510 mutex_lock(&dev->mutex);
511
512 __input_release_device(handle);
513
514 if (!--dev->users && dev->close)
515 dev->close(dev);
516
517 if (!--handle->open) {
518 /*
519 * synchronize_rcu() makes sure that input_pass_event()
520 * completed and that no more input events are delivered
521 * through this handle
522 */
523 synchronize_rcu();
524 }
525
526 mutex_unlock(&dev->mutex);
527 }
528 EXPORT_SYMBOL(input_close_device);
529
530 /*
531 * Prepare device for unregistering
532 */
533 static void input_disconnect_device(struct input_dev *dev)
534 {
535 struct input_handle *handle;
536 int code;
537
538 /*
539 * Mark device as going away. Note that we take dev->mutex here
540 * not to protect access to dev->going_away but rather to ensure
541 * that there are no threads in the middle of input_open_device()
542 */
543 mutex_lock(&dev->mutex);
544 dev->going_away = true;
545 mutex_unlock(&dev->mutex);
546
547 spin_lock_irq(&dev->event_lock);
548
549 /*
550 * Simulate keyup events for all pressed keys so that handlers
551 * are not left with "stuck" keys. The driver may continue
552 * generate events even after we done here but they will not
553 * reach any handlers.
554 */
555 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
556 for (code = 0; code <= KEY_MAX; code++) {
557 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
558 __test_and_clear_bit(code, dev->key)) {
559 input_pass_event(dev, EV_KEY, code, 0);
560 }
561 }
562 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
563 }
564
565 list_for_each_entry(handle, &dev->h_list, d_node)
566 handle->open = 0;
567
568 spin_unlock_irq(&dev->event_lock);
569 }
570
571 static int input_fetch_keycode(struct input_dev *dev, int scancode)
572 {
573 switch (dev->keycodesize) {
574 case 1:
575 return ((u8 *)dev->keycode)[scancode];
576
577 case 2:
578 return ((u16 *)dev->keycode)[scancode];
579
580 default:
581 return ((u32 *)dev->keycode)[scancode];
582 }
583 }
584
585 static int input_default_getkeycode(struct input_dev *dev,
586 unsigned int scancode,
587 unsigned int *keycode)
588 {
589 if (!dev->keycodesize)
590 return -EINVAL;
591
592 if (scancode >= dev->keycodemax)
593 return -EINVAL;
594
595 *keycode = input_fetch_keycode(dev, scancode);
596
597 return 0;
598 }
599
600 static int input_default_setkeycode(struct input_dev *dev,
601 unsigned int scancode,
602 unsigned int keycode)
603 {
604 int old_keycode;
605 int i;
606
607 if (scancode >= dev->keycodemax)
608 return -EINVAL;
609
610 if (!dev->keycodesize)
611 return -EINVAL;
612
613 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
614 return -EINVAL;
615
616 switch (dev->keycodesize) {
617 case 1: {
618 u8 *k = (u8 *)dev->keycode;
619 old_keycode = k[scancode];
620 k[scancode] = keycode;
621 break;
622 }
623 case 2: {
624 u16 *k = (u16 *)dev->keycode;
625 old_keycode = k[scancode];
626 k[scancode] = keycode;
627 break;
628 }
629 default: {
630 u32 *k = (u32 *)dev->keycode;
631 old_keycode = k[scancode];
632 k[scancode] = keycode;
633 break;
634 }
635 }
636
637 __clear_bit(old_keycode, dev->keybit);
638 __set_bit(keycode, dev->keybit);
639
640 for (i = 0; i < dev->keycodemax; i++) {
641 if (input_fetch_keycode(dev, i) == old_keycode) {
642 __set_bit(old_keycode, dev->keybit);
643 break; /* Setting the bit twice is useless, so break */
644 }
645 }
646
647 return 0;
648 }
649
650 /**
651 * input_get_keycode - retrieve keycode currently mapped to a given scancode
652 * @dev: input device which keymap is being queried
653 * @scancode: scancode (or its equivalent for device in question) for which
654 * keycode is needed
655 * @keycode: result
656 *
657 * This function should be called by anyone interested in retrieving current
658 * keymap. Presently keyboard and evdev handlers use it.
659 */
660 int input_get_keycode(struct input_dev *dev,
661 unsigned int scancode, unsigned int *keycode)
662 {
663 return dev->getkeycode(dev, scancode, keycode);
664 }
665 EXPORT_SYMBOL(input_get_keycode);
666
667 /**
668 * input_get_keycode - assign new keycode to a given scancode
669 * @dev: input device which keymap is being updated
670 * @scancode: scancode (or its equivalent for device in question)
671 * @keycode: new keycode to be assigned to the scancode
672 *
673 * This function should be called by anyone needing to update current
674 * keymap. Presently keyboard and evdev handlers use it.
675 */
676 int input_set_keycode(struct input_dev *dev,
677 unsigned int scancode, unsigned int keycode)
678 {
679 unsigned long flags;
680 int old_keycode;
681 int retval;
682
683 if (keycode > KEY_MAX)
684 return -EINVAL;
685
686 spin_lock_irqsave(&dev->event_lock, flags);
687
688 retval = dev->getkeycode(dev, scancode, &old_keycode);
689 if (retval)
690 goto out;
691
692 retval = dev->setkeycode(dev, scancode, keycode);
693 if (retval)
694 goto out;
695
696 /* Make sure KEY_RESERVED did not get enabled. */
697 __clear_bit(KEY_RESERVED, dev->keybit);
698
699 /*
700 * Simulate keyup event if keycode is not present
701 * in the keymap anymore
702 */
703 if (test_bit(EV_KEY, dev->evbit) &&
704 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
705 __test_and_clear_bit(old_keycode, dev->key)) {
706
707 input_pass_event(dev, EV_KEY, old_keycode, 0);
708 if (dev->sync)
709 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
710 }
711
712 out:
713 spin_unlock_irqrestore(&dev->event_lock, flags);
714
715 return retval;
716 }
717 EXPORT_SYMBOL(input_set_keycode);
718
719 #define MATCH_BIT(bit, max) \
720 for (i = 0; i < BITS_TO_LONGS(max); i++) \
721 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
722 break; \
723 if (i != BITS_TO_LONGS(max)) \
724 continue;
725
726 static const struct input_device_id *input_match_device(struct input_handler *handler,
727 struct input_dev *dev)
728 {
729 const struct input_device_id *id;
730 int i;
731
732 for (id = handler->id_table; id->flags || id->driver_info; id++) {
733
734 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
735 if (id->bustype != dev->id.bustype)
736 continue;
737
738 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
739 if (id->vendor != dev->id.vendor)
740 continue;
741
742 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
743 if (id->product != dev->id.product)
744 continue;
745
746 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
747 if (id->version != dev->id.version)
748 continue;
749
750 MATCH_BIT(evbit, EV_MAX);
751 MATCH_BIT(keybit, KEY_MAX);
752 MATCH_BIT(relbit, REL_MAX);
753 MATCH_BIT(absbit, ABS_MAX);
754 MATCH_BIT(mscbit, MSC_MAX);
755 MATCH_BIT(ledbit, LED_MAX);
756 MATCH_BIT(sndbit, SND_MAX);
757 MATCH_BIT(ffbit, FF_MAX);
758 MATCH_BIT(swbit, SW_MAX);
759
760 if (!handler->match || handler->match(handler, dev))
761 return id;
762 }
763
764 return NULL;
765 }
766
767 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
768 {
769 const struct input_device_id *id;
770 int error;
771
772 id = input_match_device(handler, dev);
773 if (!id)
774 return -ENODEV;
775
776 error = handler->connect(handler, dev, id);
777 if (error && error != -ENODEV)
778 printk(KERN_ERR
779 "input: failed to attach handler %s to device %s, "
780 "error: %d\n",
781 handler->name, kobject_name(&dev->dev.kobj), error);
782
783 return error;
784 }
785
786 #ifdef CONFIG_COMPAT
787
788 static int input_bits_to_string(char *buf, int buf_size,
789 unsigned long bits, bool skip_empty)
790 {
791 int len = 0;
792
793 if (INPUT_COMPAT_TEST) {
794 u32 dword = bits >> 32;
795 if (dword || !skip_empty)
796 len += snprintf(buf, buf_size, "%x ", dword);
797
798 dword = bits & 0xffffffffUL;
799 if (dword || !skip_empty || len)
800 len += snprintf(buf + len, max(buf_size - len, 0),
801 "%x", dword);
802 } else {
803 if (bits || !skip_empty)
804 len += snprintf(buf, buf_size, "%lx", bits);
805 }
806
807 return len;
808 }
809
810 #else /* !CONFIG_COMPAT */
811
812 static int input_bits_to_string(char *buf, int buf_size,
813 unsigned long bits, bool skip_empty)
814 {
815 return bits || !skip_empty ?
816 snprintf(buf, buf_size, "%lx", bits) : 0;
817 }
818
819 #endif
820
821 #ifdef CONFIG_PROC_FS
822
823 static struct proc_dir_entry *proc_bus_input_dir;
824 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
825 static int input_devices_state;
826
827 static inline void input_wakeup_procfs_readers(void)
828 {
829 input_devices_state++;
830 wake_up(&input_devices_poll_wait);
831 }
832
833 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
834 {
835 poll_wait(file, &input_devices_poll_wait, wait);
836 if (file->f_version != input_devices_state) {
837 file->f_version = input_devices_state;
838 return POLLIN | POLLRDNORM;
839 }
840
841 return 0;
842 }
843
844 union input_seq_state {
845 struct {
846 unsigned short pos;
847 bool mutex_acquired;
848 };
849 void *p;
850 };
851
852 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
853 {
854 union input_seq_state *state = (union input_seq_state *)&seq->private;
855 int error;
856
857 /* We need to fit into seq->private pointer */
858 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
859
860 error = mutex_lock_interruptible(&input_mutex);
861 if (error) {
862 state->mutex_acquired = false;
863 return ERR_PTR(error);
864 }
865
866 state->mutex_acquired = true;
867
868 return seq_list_start(&input_dev_list, *pos);
869 }
870
871 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
872 {
873 return seq_list_next(v, &input_dev_list, pos);
874 }
875
876 static void input_seq_stop(struct seq_file *seq, void *v)
877 {
878 union input_seq_state *state = (union input_seq_state *)&seq->private;
879
880 if (state->mutex_acquired)
881 mutex_unlock(&input_mutex);
882 }
883
884 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
885 unsigned long *bitmap, int max)
886 {
887 int i;
888 bool skip_empty = true;
889 char buf[18];
890
891 seq_printf(seq, "B: %s=", name);
892
893 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
894 if (input_bits_to_string(buf, sizeof(buf),
895 bitmap[i], skip_empty)) {
896 skip_empty = false;
897 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
898 }
899 }
900
901 /*
902 * If no output was produced print a single 0.
903 */
904 if (skip_empty)
905 seq_puts(seq, "0");
906
907 seq_putc(seq, '\n');
908 }
909
910 static int input_devices_seq_show(struct seq_file *seq, void *v)
911 {
912 struct input_dev *dev = container_of(v, struct input_dev, node);
913 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
914 struct input_handle *handle;
915
916 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
917 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
918
919 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
920 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
921 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
922 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
923 seq_printf(seq, "H: Handlers=");
924
925 list_for_each_entry(handle, &dev->h_list, d_node)
926 seq_printf(seq, "%s ", handle->name);
927 seq_putc(seq, '\n');
928
929 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
930 if (test_bit(EV_KEY, dev->evbit))
931 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
932 if (test_bit(EV_REL, dev->evbit))
933 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
934 if (test_bit(EV_ABS, dev->evbit))
935 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
936 if (test_bit(EV_MSC, dev->evbit))
937 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
938 if (test_bit(EV_LED, dev->evbit))
939 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
940 if (test_bit(EV_SND, dev->evbit))
941 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
942 if (test_bit(EV_FF, dev->evbit))
943 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
944 if (test_bit(EV_SW, dev->evbit))
945 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
946
947 seq_putc(seq, '\n');
948
949 kfree(path);
950 return 0;
951 }
952
953 static const struct seq_operations input_devices_seq_ops = {
954 .start = input_devices_seq_start,
955 .next = input_devices_seq_next,
956 .stop = input_seq_stop,
957 .show = input_devices_seq_show,
958 };
959
960 static int input_proc_devices_open(struct inode *inode, struct file *file)
961 {
962 return seq_open(file, &input_devices_seq_ops);
963 }
964
965 static const struct file_operations input_devices_fileops = {
966 .owner = THIS_MODULE,
967 .open = input_proc_devices_open,
968 .poll = input_proc_devices_poll,
969 .read = seq_read,
970 .llseek = seq_lseek,
971 .release = seq_release,
972 };
973
974 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
975 {
976 union input_seq_state *state = (union input_seq_state *)&seq->private;
977 int error;
978
979 /* We need to fit into seq->private pointer */
980 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
981
982 error = mutex_lock_interruptible(&input_mutex);
983 if (error) {
984 state->mutex_acquired = false;
985 return ERR_PTR(error);
986 }
987
988 state->mutex_acquired = true;
989 state->pos = *pos;
990
991 return seq_list_start(&input_handler_list, *pos);
992 }
993
994 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
995 {
996 union input_seq_state *state = (union input_seq_state *)&seq->private;
997
998 state->pos = *pos + 1;
999 return seq_list_next(v, &input_handler_list, pos);
1000 }
1001
1002 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1003 {
1004 struct input_handler *handler = container_of(v, struct input_handler, node);
1005 union input_seq_state *state = (union input_seq_state *)&seq->private;
1006
1007 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1008 if (handler->filter)
1009 seq_puts(seq, " (filter)");
1010 if (handler->fops)
1011 seq_printf(seq, " Minor=%d", handler->minor);
1012 seq_putc(seq, '\n');
1013
1014 return 0;
1015 }
1016
1017 static const struct seq_operations input_handlers_seq_ops = {
1018 .start = input_handlers_seq_start,
1019 .next = input_handlers_seq_next,
1020 .stop = input_seq_stop,
1021 .show = input_handlers_seq_show,
1022 };
1023
1024 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1025 {
1026 return seq_open(file, &input_handlers_seq_ops);
1027 }
1028
1029 static const struct file_operations input_handlers_fileops = {
1030 .owner = THIS_MODULE,
1031 .open = input_proc_handlers_open,
1032 .read = seq_read,
1033 .llseek = seq_lseek,
1034 .release = seq_release,
1035 };
1036
1037 static int __init input_proc_init(void)
1038 {
1039 struct proc_dir_entry *entry;
1040
1041 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1042 if (!proc_bus_input_dir)
1043 return -ENOMEM;
1044
1045 entry = proc_create("devices", 0, proc_bus_input_dir,
1046 &input_devices_fileops);
1047 if (!entry)
1048 goto fail1;
1049
1050 entry = proc_create("handlers", 0, proc_bus_input_dir,
1051 &input_handlers_fileops);
1052 if (!entry)
1053 goto fail2;
1054
1055 return 0;
1056
1057 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1058 fail1: remove_proc_entry("bus/input", NULL);
1059 return -ENOMEM;
1060 }
1061
1062 static void input_proc_exit(void)
1063 {
1064 remove_proc_entry("devices", proc_bus_input_dir);
1065 remove_proc_entry("handlers", proc_bus_input_dir);
1066 remove_proc_entry("bus/input", NULL);
1067 }
1068
1069 #else /* !CONFIG_PROC_FS */
1070 static inline void input_wakeup_procfs_readers(void) { }
1071 static inline int input_proc_init(void) { return 0; }
1072 static inline void input_proc_exit(void) { }
1073 #endif
1074
1075 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1076 static ssize_t input_dev_show_##name(struct device *dev, \
1077 struct device_attribute *attr, \
1078 char *buf) \
1079 { \
1080 struct input_dev *input_dev = to_input_dev(dev); \
1081 \
1082 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1083 input_dev->name ? input_dev->name : ""); \
1084 } \
1085 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1086
1087 INPUT_DEV_STRING_ATTR_SHOW(name);
1088 INPUT_DEV_STRING_ATTR_SHOW(phys);
1089 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1090
1091 static int input_print_modalias_bits(char *buf, int size,
1092 char name, unsigned long *bm,
1093 unsigned int min_bit, unsigned int max_bit)
1094 {
1095 int len = 0, i;
1096
1097 len += snprintf(buf, max(size, 0), "%c", name);
1098 for (i = min_bit; i < max_bit; i++)
1099 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1100 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1101 return len;
1102 }
1103
1104 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1105 int add_cr)
1106 {
1107 int len;
1108
1109 len = snprintf(buf, max(size, 0),
1110 "input:b%04Xv%04Xp%04Xe%04X-",
1111 id->id.bustype, id->id.vendor,
1112 id->id.product, id->id.version);
1113
1114 len += input_print_modalias_bits(buf + len, size - len,
1115 'e', id->evbit, 0, EV_MAX);
1116 len += input_print_modalias_bits(buf + len, size - len,
1117 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1118 len += input_print_modalias_bits(buf + len, size - len,
1119 'r', id->relbit, 0, REL_MAX);
1120 len += input_print_modalias_bits(buf + len, size - len,
1121 'a', id->absbit, 0, ABS_MAX);
1122 len += input_print_modalias_bits(buf + len, size - len,
1123 'm', id->mscbit, 0, MSC_MAX);
1124 len += input_print_modalias_bits(buf + len, size - len,
1125 'l', id->ledbit, 0, LED_MAX);
1126 len += input_print_modalias_bits(buf + len, size - len,
1127 's', id->sndbit, 0, SND_MAX);
1128 len += input_print_modalias_bits(buf + len, size - len,
1129 'f', id->ffbit, 0, FF_MAX);
1130 len += input_print_modalias_bits(buf + len, size - len,
1131 'w', id->swbit, 0, SW_MAX);
1132
1133 if (add_cr)
1134 len += snprintf(buf + len, max(size - len, 0), "\n");
1135
1136 return len;
1137 }
1138
1139 static ssize_t input_dev_show_modalias(struct device *dev,
1140 struct device_attribute *attr,
1141 char *buf)
1142 {
1143 struct input_dev *id = to_input_dev(dev);
1144 ssize_t len;
1145
1146 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1147
1148 return min_t(int, len, PAGE_SIZE);
1149 }
1150 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1151
1152 static struct attribute *input_dev_attrs[] = {
1153 &dev_attr_name.attr,
1154 &dev_attr_phys.attr,
1155 &dev_attr_uniq.attr,
1156 &dev_attr_modalias.attr,
1157 NULL
1158 };
1159
1160 static struct attribute_group input_dev_attr_group = {
1161 .attrs = input_dev_attrs,
1162 };
1163
1164 #define INPUT_DEV_ID_ATTR(name) \
1165 static ssize_t input_dev_show_id_##name(struct device *dev, \
1166 struct device_attribute *attr, \
1167 char *buf) \
1168 { \
1169 struct input_dev *input_dev = to_input_dev(dev); \
1170 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1171 } \
1172 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1173
1174 INPUT_DEV_ID_ATTR(bustype);
1175 INPUT_DEV_ID_ATTR(vendor);
1176 INPUT_DEV_ID_ATTR(product);
1177 INPUT_DEV_ID_ATTR(version);
1178
1179 static struct attribute *input_dev_id_attrs[] = {
1180 &dev_attr_bustype.attr,
1181 &dev_attr_vendor.attr,
1182 &dev_attr_product.attr,
1183 &dev_attr_version.attr,
1184 NULL
1185 };
1186
1187 static struct attribute_group input_dev_id_attr_group = {
1188 .name = "id",
1189 .attrs = input_dev_id_attrs,
1190 };
1191
1192 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1193 int max, int add_cr)
1194 {
1195 int i;
1196 int len = 0;
1197 bool skip_empty = true;
1198
1199 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1200 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1201 bitmap[i], skip_empty);
1202 if (len) {
1203 skip_empty = false;
1204 if (i > 0)
1205 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1206 }
1207 }
1208
1209 /*
1210 * If no output was produced print a single 0.
1211 */
1212 if (len == 0)
1213 len = snprintf(buf, buf_size, "%d", 0);
1214
1215 if (add_cr)
1216 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1217
1218 return len;
1219 }
1220
1221 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1222 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1223 struct device_attribute *attr, \
1224 char *buf) \
1225 { \
1226 struct input_dev *input_dev = to_input_dev(dev); \
1227 int len = input_print_bitmap(buf, PAGE_SIZE, \
1228 input_dev->bm##bit, ev##_MAX, \
1229 true); \
1230 return min_t(int, len, PAGE_SIZE); \
1231 } \
1232 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1233
1234 INPUT_DEV_CAP_ATTR(EV, ev);
1235 INPUT_DEV_CAP_ATTR(KEY, key);
1236 INPUT_DEV_CAP_ATTR(REL, rel);
1237 INPUT_DEV_CAP_ATTR(ABS, abs);
1238 INPUT_DEV_CAP_ATTR(MSC, msc);
1239 INPUT_DEV_CAP_ATTR(LED, led);
1240 INPUT_DEV_CAP_ATTR(SND, snd);
1241 INPUT_DEV_CAP_ATTR(FF, ff);
1242 INPUT_DEV_CAP_ATTR(SW, sw);
1243
1244 static struct attribute *input_dev_caps_attrs[] = {
1245 &dev_attr_ev.attr,
1246 &dev_attr_key.attr,
1247 &dev_attr_rel.attr,
1248 &dev_attr_abs.attr,
1249 &dev_attr_msc.attr,
1250 &dev_attr_led.attr,
1251 &dev_attr_snd.attr,
1252 &dev_attr_ff.attr,
1253 &dev_attr_sw.attr,
1254 NULL
1255 };
1256
1257 static struct attribute_group input_dev_caps_attr_group = {
1258 .name = "capabilities",
1259 .attrs = input_dev_caps_attrs,
1260 };
1261
1262 static const struct attribute_group *input_dev_attr_groups[] = {
1263 &input_dev_attr_group,
1264 &input_dev_id_attr_group,
1265 &input_dev_caps_attr_group,
1266 NULL
1267 };
1268
1269 static void input_dev_release(struct device *device)
1270 {
1271 struct input_dev *dev = to_input_dev(device);
1272
1273 input_ff_destroy(dev);
1274 kfree(dev);
1275
1276 module_put(THIS_MODULE);
1277 }
1278
1279 /*
1280 * Input uevent interface - loading event handlers based on
1281 * device bitfields.
1282 */
1283 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1284 const char *name, unsigned long *bitmap, int max)
1285 {
1286 int len;
1287
1288 if (add_uevent_var(env, "%s=", name))
1289 return -ENOMEM;
1290
1291 len = input_print_bitmap(&env->buf[env->buflen - 1],
1292 sizeof(env->buf) - env->buflen,
1293 bitmap, max, false);
1294 if (len >= (sizeof(env->buf) - env->buflen))
1295 return -ENOMEM;
1296
1297 env->buflen += len;
1298 return 0;
1299 }
1300
1301 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1302 struct input_dev *dev)
1303 {
1304 int len;
1305
1306 if (add_uevent_var(env, "MODALIAS="))
1307 return -ENOMEM;
1308
1309 len = input_print_modalias(&env->buf[env->buflen - 1],
1310 sizeof(env->buf) - env->buflen,
1311 dev, 0);
1312 if (len >= (sizeof(env->buf) - env->buflen))
1313 return -ENOMEM;
1314
1315 env->buflen += len;
1316 return 0;
1317 }
1318
1319 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1320 do { \
1321 int err = add_uevent_var(env, fmt, val); \
1322 if (err) \
1323 return err; \
1324 } while (0)
1325
1326 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1327 do { \
1328 int err = input_add_uevent_bm_var(env, name, bm, max); \
1329 if (err) \
1330 return err; \
1331 } while (0)
1332
1333 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1334 do { \
1335 int err = input_add_uevent_modalias_var(env, dev); \
1336 if (err) \
1337 return err; \
1338 } while (0)
1339
1340 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1341 {
1342 struct input_dev *dev = to_input_dev(device);
1343
1344 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1345 dev->id.bustype, dev->id.vendor,
1346 dev->id.product, dev->id.version);
1347 if (dev->name)
1348 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1349 if (dev->phys)
1350 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1351 if (dev->uniq)
1352 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1353
1354 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1355 if (test_bit(EV_KEY, dev->evbit))
1356 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1357 if (test_bit(EV_REL, dev->evbit))
1358 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1359 if (test_bit(EV_ABS, dev->evbit))
1360 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1361 if (test_bit(EV_MSC, dev->evbit))
1362 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1363 if (test_bit(EV_LED, dev->evbit))
1364 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1365 if (test_bit(EV_SND, dev->evbit))
1366 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1367 if (test_bit(EV_FF, dev->evbit))
1368 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1369 if (test_bit(EV_SW, dev->evbit))
1370 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1371
1372 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1373
1374 return 0;
1375 }
1376
1377 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1378 do { \
1379 int i; \
1380 bool active; \
1381 \
1382 if (!test_bit(EV_##type, dev->evbit)) \
1383 break; \
1384 \
1385 for (i = 0; i < type##_MAX; i++) { \
1386 if (!test_bit(i, dev->bits##bit)) \
1387 continue; \
1388 \
1389 active = test_bit(i, dev->bits); \
1390 if (!active && !on) \
1391 continue; \
1392 \
1393 dev->event(dev, EV_##type, i, on ? active : 0); \
1394 } \
1395 } while (0)
1396
1397 #ifdef CONFIG_PM
1398 static void input_dev_reset(struct input_dev *dev, bool activate)
1399 {
1400 if (!dev->event)
1401 return;
1402
1403 INPUT_DO_TOGGLE(dev, LED, led, activate);
1404 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1405
1406 if (activate && test_bit(EV_REP, dev->evbit)) {
1407 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1408 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1409 }
1410 }
1411
1412 static int input_dev_suspend(struct device *dev)
1413 {
1414 struct input_dev *input_dev = to_input_dev(dev);
1415
1416 mutex_lock(&input_dev->mutex);
1417 input_dev_reset(input_dev, false);
1418 mutex_unlock(&input_dev->mutex);
1419
1420 return 0;
1421 }
1422
1423 static int input_dev_resume(struct device *dev)
1424 {
1425 struct input_dev *input_dev = to_input_dev(dev);
1426
1427 mutex_lock(&input_dev->mutex);
1428 input_dev_reset(input_dev, true);
1429 mutex_unlock(&input_dev->mutex);
1430
1431 return 0;
1432 }
1433
1434 static const struct dev_pm_ops input_dev_pm_ops = {
1435 .suspend = input_dev_suspend,
1436 .resume = input_dev_resume,
1437 .poweroff = input_dev_suspend,
1438 .restore = input_dev_resume,
1439 };
1440 #endif /* CONFIG_PM */
1441
1442 static struct device_type input_dev_type = {
1443 .groups = input_dev_attr_groups,
1444 .release = input_dev_release,
1445 .uevent = input_dev_uevent,
1446 #ifdef CONFIG_PM
1447 .pm = &input_dev_pm_ops,
1448 #endif
1449 };
1450
1451 static char *input_devnode(struct device *dev, mode_t *mode)
1452 {
1453 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1454 }
1455
1456 struct class input_class = {
1457 .name = "input",
1458 .devnode = input_devnode,
1459 };
1460 EXPORT_SYMBOL_GPL(input_class);
1461
1462 /**
1463 * input_allocate_device - allocate memory for new input device
1464 *
1465 * Returns prepared struct input_dev or NULL.
1466 *
1467 * NOTE: Use input_free_device() to free devices that have not been
1468 * registered; input_unregister_device() should be used for already
1469 * registered devices.
1470 */
1471 struct input_dev *input_allocate_device(void)
1472 {
1473 struct input_dev *dev;
1474
1475 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1476 if (dev) {
1477 dev->dev.type = &input_dev_type;
1478 dev->dev.class = &input_class;
1479 device_initialize(&dev->dev);
1480 mutex_init(&dev->mutex);
1481 spin_lock_init(&dev->event_lock);
1482 INIT_LIST_HEAD(&dev->h_list);
1483 INIT_LIST_HEAD(&dev->node);
1484
1485 __module_get(THIS_MODULE);
1486 }
1487
1488 return dev;
1489 }
1490 EXPORT_SYMBOL(input_allocate_device);
1491
1492 /**
1493 * input_free_device - free memory occupied by input_dev structure
1494 * @dev: input device to free
1495 *
1496 * This function should only be used if input_register_device()
1497 * was not called yet or if it failed. Once device was registered
1498 * use input_unregister_device() and memory will be freed once last
1499 * reference to the device is dropped.
1500 *
1501 * Device should be allocated by input_allocate_device().
1502 *
1503 * NOTE: If there are references to the input device then memory
1504 * will not be freed until last reference is dropped.
1505 */
1506 void input_free_device(struct input_dev *dev)
1507 {
1508 if (dev)
1509 input_put_device(dev);
1510 }
1511 EXPORT_SYMBOL(input_free_device);
1512
1513 /**
1514 * input_set_capability - mark device as capable of a certain event
1515 * @dev: device that is capable of emitting or accepting event
1516 * @type: type of the event (EV_KEY, EV_REL, etc...)
1517 * @code: event code
1518 *
1519 * In addition to setting up corresponding bit in appropriate capability
1520 * bitmap the function also adjusts dev->evbit.
1521 */
1522 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1523 {
1524 switch (type) {
1525 case EV_KEY:
1526 __set_bit(code, dev->keybit);
1527 break;
1528
1529 case EV_REL:
1530 __set_bit(code, dev->relbit);
1531 break;
1532
1533 case EV_ABS:
1534 __set_bit(code, dev->absbit);
1535 break;
1536
1537 case EV_MSC:
1538 __set_bit(code, dev->mscbit);
1539 break;
1540
1541 case EV_SW:
1542 __set_bit(code, dev->swbit);
1543 break;
1544
1545 case EV_LED:
1546 __set_bit(code, dev->ledbit);
1547 break;
1548
1549 case EV_SND:
1550 __set_bit(code, dev->sndbit);
1551 break;
1552
1553 case EV_FF:
1554 __set_bit(code, dev->ffbit);
1555 break;
1556
1557 case EV_PWR:
1558 /* do nothing */
1559 break;
1560
1561 default:
1562 printk(KERN_ERR
1563 "input_set_capability: unknown type %u (code %u)\n",
1564 type, code);
1565 dump_stack();
1566 return;
1567 }
1568
1569 __set_bit(type, dev->evbit);
1570 }
1571 EXPORT_SYMBOL(input_set_capability);
1572
1573 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1574 do { \
1575 if (!test_bit(EV_##type, dev->evbit)) \
1576 memset(dev->bits##bit, 0, \
1577 sizeof(dev->bits##bit)); \
1578 } while (0)
1579
1580 static void input_cleanse_bitmasks(struct input_dev *dev)
1581 {
1582 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1583 INPUT_CLEANSE_BITMASK(dev, REL, rel);
1584 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1585 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1586 INPUT_CLEANSE_BITMASK(dev, LED, led);
1587 INPUT_CLEANSE_BITMASK(dev, SND, snd);
1588 INPUT_CLEANSE_BITMASK(dev, FF, ff);
1589 INPUT_CLEANSE_BITMASK(dev, SW, sw);
1590 }
1591
1592 /**
1593 * input_register_device - register device with input core
1594 * @dev: device to be registered
1595 *
1596 * This function registers device with input core. The device must be
1597 * allocated with input_allocate_device() and all it's capabilities
1598 * set up before registering.
1599 * If function fails the device must be freed with input_free_device().
1600 * Once device has been successfully registered it can be unregistered
1601 * with input_unregister_device(); input_free_device() should not be
1602 * called in this case.
1603 */
1604 int input_register_device(struct input_dev *dev)
1605 {
1606 static atomic_t input_no = ATOMIC_INIT(0);
1607 struct input_handler *handler;
1608 const char *path;
1609 int error;
1610
1611 /* Every input device generates EV_SYN/SYN_REPORT events. */
1612 __set_bit(EV_SYN, dev->evbit);
1613
1614 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1615 __clear_bit(KEY_RESERVED, dev->keybit);
1616
1617 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1618 input_cleanse_bitmasks(dev);
1619
1620 /*
1621 * If delay and period are pre-set by the driver, then autorepeating
1622 * is handled by the driver itself and we don't do it in input.c.
1623 */
1624 init_timer(&dev->timer);
1625 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1626 dev->timer.data = (long) dev;
1627 dev->timer.function = input_repeat_key;
1628 dev->rep[REP_DELAY] = 250;
1629 dev->rep[REP_PERIOD] = 33;
1630 }
1631
1632 if (!dev->getkeycode)
1633 dev->getkeycode = input_default_getkeycode;
1634
1635 if (!dev->setkeycode)
1636 dev->setkeycode = input_default_setkeycode;
1637
1638 dev_set_name(&dev->dev, "input%ld",
1639 (unsigned long) atomic_inc_return(&input_no) - 1);
1640
1641 error = device_add(&dev->dev);
1642 if (error)
1643 return error;
1644
1645 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1646 printk(KERN_INFO "input: %s as %s\n",
1647 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1648 kfree(path);
1649
1650 error = mutex_lock_interruptible(&input_mutex);
1651 if (error) {
1652 device_del(&dev->dev);
1653 return error;
1654 }
1655
1656 list_add_tail(&dev->node, &input_dev_list);
1657
1658 list_for_each_entry(handler, &input_handler_list, node)
1659 input_attach_handler(dev, handler);
1660
1661 input_wakeup_procfs_readers();
1662
1663 mutex_unlock(&input_mutex);
1664
1665 return 0;
1666 }
1667 EXPORT_SYMBOL(input_register_device);
1668
1669 /**
1670 * input_unregister_device - unregister previously registered device
1671 * @dev: device to be unregistered
1672 *
1673 * This function unregisters an input device. Once device is unregistered
1674 * the caller should not try to access it as it may get freed at any moment.
1675 */
1676 void input_unregister_device(struct input_dev *dev)
1677 {
1678 struct input_handle *handle, *next;
1679
1680 input_disconnect_device(dev);
1681
1682 mutex_lock(&input_mutex);
1683
1684 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1685 handle->handler->disconnect(handle);
1686 WARN_ON(!list_empty(&dev->h_list));
1687
1688 del_timer_sync(&dev->timer);
1689 list_del_init(&dev->node);
1690
1691 input_wakeup_procfs_readers();
1692
1693 mutex_unlock(&input_mutex);
1694
1695 device_unregister(&dev->dev);
1696 }
1697 EXPORT_SYMBOL(input_unregister_device);
1698
1699 /**
1700 * input_register_handler - register a new input handler
1701 * @handler: handler to be registered
1702 *
1703 * This function registers a new input handler (interface) for input
1704 * devices in the system and attaches it to all input devices that
1705 * are compatible with the handler.
1706 */
1707 int input_register_handler(struct input_handler *handler)
1708 {
1709 struct input_dev *dev;
1710 int retval;
1711
1712 retval = mutex_lock_interruptible(&input_mutex);
1713 if (retval)
1714 return retval;
1715
1716 INIT_LIST_HEAD(&handler->h_list);
1717
1718 if (handler->fops != NULL) {
1719 if (input_table[handler->minor >> 5]) {
1720 retval = -EBUSY;
1721 goto out;
1722 }
1723 input_table[handler->minor >> 5] = handler;
1724 }
1725
1726 list_add_tail(&handler->node, &input_handler_list);
1727
1728 list_for_each_entry(dev, &input_dev_list, node)
1729 input_attach_handler(dev, handler);
1730
1731 input_wakeup_procfs_readers();
1732
1733 out:
1734 mutex_unlock(&input_mutex);
1735 return retval;
1736 }
1737 EXPORT_SYMBOL(input_register_handler);
1738
1739 /**
1740 * input_unregister_handler - unregisters an input handler
1741 * @handler: handler to be unregistered
1742 *
1743 * This function disconnects a handler from its input devices and
1744 * removes it from lists of known handlers.
1745 */
1746 void input_unregister_handler(struct input_handler *handler)
1747 {
1748 struct input_handle *handle, *next;
1749
1750 mutex_lock(&input_mutex);
1751
1752 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1753 handler->disconnect(handle);
1754 WARN_ON(!list_empty(&handler->h_list));
1755
1756 list_del_init(&handler->node);
1757
1758 if (handler->fops != NULL)
1759 input_table[handler->minor >> 5] = NULL;
1760
1761 input_wakeup_procfs_readers();
1762
1763 mutex_unlock(&input_mutex);
1764 }
1765 EXPORT_SYMBOL(input_unregister_handler);
1766
1767 /**
1768 * input_handler_for_each_handle - handle iterator
1769 * @handler: input handler to iterate
1770 * @data: data for the callback
1771 * @fn: function to be called for each handle
1772 *
1773 * Iterate over @bus's list of devices, and call @fn for each, passing
1774 * it @data and stop when @fn returns a non-zero value. The function is
1775 * using RCU to traverse the list and therefore may be usind in atonic
1776 * contexts. The @fn callback is invoked from RCU critical section and
1777 * thus must not sleep.
1778 */
1779 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1780 int (*fn)(struct input_handle *, void *))
1781 {
1782 struct input_handle *handle;
1783 int retval = 0;
1784
1785 rcu_read_lock();
1786
1787 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1788 retval = fn(handle, data);
1789 if (retval)
1790 break;
1791 }
1792
1793 rcu_read_unlock();
1794
1795 return retval;
1796 }
1797 EXPORT_SYMBOL(input_handler_for_each_handle);
1798
1799 /**
1800 * input_register_handle - register a new input handle
1801 * @handle: handle to register
1802 *
1803 * This function puts a new input handle onto device's
1804 * and handler's lists so that events can flow through
1805 * it once it is opened using input_open_device().
1806 *
1807 * This function is supposed to be called from handler's
1808 * connect() method.
1809 */
1810 int input_register_handle(struct input_handle *handle)
1811 {
1812 struct input_handler *handler = handle->handler;
1813 struct input_dev *dev = handle->dev;
1814 int error;
1815
1816 /*
1817 * We take dev->mutex here to prevent race with
1818 * input_release_device().
1819 */
1820 error = mutex_lock_interruptible(&dev->mutex);
1821 if (error)
1822 return error;
1823
1824 /*
1825 * Filters go to the head of the list, normal handlers
1826 * to the tail.
1827 */
1828 if (handler->filter)
1829 list_add_rcu(&handle->d_node, &dev->h_list);
1830 else
1831 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1832
1833 mutex_unlock(&dev->mutex);
1834
1835 /*
1836 * Since we are supposed to be called from ->connect()
1837 * which is mutually exclusive with ->disconnect()
1838 * we can't be racing with input_unregister_handle()
1839 * and so separate lock is not needed here.
1840 */
1841 list_add_tail_rcu(&handle->h_node, &handler->h_list);
1842
1843 if (handler->start)
1844 handler->start(handle);
1845
1846 return 0;
1847 }
1848 EXPORT_SYMBOL(input_register_handle);
1849
1850 /**
1851 * input_unregister_handle - unregister an input handle
1852 * @handle: handle to unregister
1853 *
1854 * This function removes input handle from device's
1855 * and handler's lists.
1856 *
1857 * This function is supposed to be called from handler's
1858 * disconnect() method.
1859 */
1860 void input_unregister_handle(struct input_handle *handle)
1861 {
1862 struct input_dev *dev = handle->dev;
1863
1864 list_del_rcu(&handle->h_node);
1865
1866 /*
1867 * Take dev->mutex to prevent race with input_release_device().
1868 */
1869 mutex_lock(&dev->mutex);
1870 list_del_rcu(&handle->d_node);
1871 mutex_unlock(&dev->mutex);
1872
1873 synchronize_rcu();
1874 }
1875 EXPORT_SYMBOL(input_unregister_handle);
1876
1877 static int input_open_file(struct inode *inode, struct file *file)
1878 {
1879 struct input_handler *handler;
1880 const struct file_operations *old_fops, *new_fops = NULL;
1881 int err;
1882
1883 err = mutex_lock_interruptible(&input_mutex);
1884 if (err)
1885 return err;
1886
1887 /* No load-on-demand here? */
1888 handler = input_table[iminor(inode) >> 5];
1889 if (handler)
1890 new_fops = fops_get(handler->fops);
1891
1892 mutex_unlock(&input_mutex);
1893
1894 /*
1895 * That's _really_ odd. Usually NULL ->open means "nothing special",
1896 * not "no device". Oh, well...
1897 */
1898 if (!new_fops || !new_fops->open) {
1899 fops_put(new_fops);
1900 err = -ENODEV;
1901 goto out;
1902 }
1903
1904 old_fops = file->f_op;
1905 file->f_op = new_fops;
1906
1907 err = new_fops->open(inode, file);
1908 if (err) {
1909 fops_put(file->f_op);
1910 file->f_op = fops_get(old_fops);
1911 }
1912 fops_put(old_fops);
1913 out:
1914 return err;
1915 }
1916
1917 static const struct file_operations input_fops = {
1918 .owner = THIS_MODULE,
1919 .open = input_open_file,
1920 };
1921
1922 static void __init input_init_abs_bypass(void)
1923 {
1924 const unsigned int *p;
1925
1926 for (p = input_abs_bypass_init_data; *p; p++)
1927 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1928 }
1929
1930 static int __init input_init(void)
1931 {
1932 int err;
1933
1934 input_init_abs_bypass();
1935
1936 err = class_register(&input_class);
1937 if (err) {
1938 printk(KERN_ERR "input: unable to register input_dev class\n");
1939 return err;
1940 }
1941
1942 err = input_proc_init();
1943 if (err)
1944 goto fail1;
1945
1946 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1947 if (err) {
1948 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1949 goto fail2;
1950 }
1951
1952 return 0;
1953
1954 fail2: input_proc_exit();
1955 fail1: class_unregister(&input_class);
1956 return err;
1957 }
1958
1959 static void __exit input_exit(void)
1960 {
1961 input_proc_exit();
1962 unregister_chrdev(INPUT_MAJOR, "input");
1963 class_unregister(&input_class);
1964 }
1965
1966 subsys_initcall(input_init);
1967 module_exit(input_exit);