]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/input/input.c
Merge git://git.infradead.org/battery-2.6
[mirror_ubuntu-zesty-kernel.git] / drivers / input / input.c
1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/input/mt.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/random.h>
21 #include <linux/major.h>
22 #include <linux/proc_fs.h>
23 #include <linux/sched.h>
24 #include <linux/seq_file.h>
25 #include <linux/poll.h>
26 #include <linux/device.h>
27 #include <linux/mutex.h>
28 #include <linux/rcupdate.h>
29 #include "input-compat.h"
30
31 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
32 MODULE_DESCRIPTION("Input core");
33 MODULE_LICENSE("GPL");
34
35 #define INPUT_DEVICES 256
36
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39
40 /*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46 static DEFINE_MUTEX(input_mutex);
47
48 static struct input_handler *input_table[8];
49
50 static inline int is_event_supported(unsigned int code,
51 unsigned long *bm, unsigned int max)
52 {
53 return code <= max && test_bit(code, bm);
54 }
55
56 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57 {
58 if (fuzz) {
59 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 return old_val;
61
62 if (value > old_val - fuzz && value < old_val + fuzz)
63 return (old_val * 3 + value) / 4;
64
65 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 return (old_val + value) / 2;
67 }
68
69 return value;
70 }
71
72 /*
73 * Pass event first through all filters and then, if event has not been
74 * filtered out, through all open handles. This function is called with
75 * dev->event_lock held and interrupts disabled.
76 */
77 static void input_pass_event(struct input_dev *dev,
78 unsigned int type, unsigned int code, int value)
79 {
80 struct input_handler *handler;
81 struct input_handle *handle;
82
83 rcu_read_lock();
84
85 handle = rcu_dereference(dev->grab);
86 if (handle)
87 handle->handler->event(handle, type, code, value);
88 else {
89 bool filtered = false;
90
91 list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
92 if (!handle->open)
93 continue;
94
95 handler = handle->handler;
96 if (!handler->filter) {
97 if (filtered)
98 break;
99
100 handler->event(handle, type, code, value);
101
102 } else if (handler->filter(handle, type, code, value))
103 filtered = true;
104 }
105 }
106
107 rcu_read_unlock();
108 }
109
110 /*
111 * Generate software autorepeat event. Note that we take
112 * dev->event_lock here to avoid racing with input_event
113 * which may cause keys get "stuck".
114 */
115 static void input_repeat_key(unsigned long data)
116 {
117 struct input_dev *dev = (void *) data;
118 unsigned long flags;
119
120 spin_lock_irqsave(&dev->event_lock, flags);
121
122 if (test_bit(dev->repeat_key, dev->key) &&
123 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
124
125 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
126
127 if (dev->sync) {
128 /*
129 * Only send SYN_REPORT if we are not in a middle
130 * of driver parsing a new hardware packet.
131 * Otherwise assume that the driver will send
132 * SYN_REPORT once it's done.
133 */
134 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
135 }
136
137 if (dev->rep[REP_PERIOD])
138 mod_timer(&dev->timer, jiffies +
139 msecs_to_jiffies(dev->rep[REP_PERIOD]));
140 }
141
142 spin_unlock_irqrestore(&dev->event_lock, flags);
143 }
144
145 static void input_start_autorepeat(struct input_dev *dev, int code)
146 {
147 if (test_bit(EV_REP, dev->evbit) &&
148 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
149 dev->timer.data) {
150 dev->repeat_key = code;
151 mod_timer(&dev->timer,
152 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
153 }
154 }
155
156 static void input_stop_autorepeat(struct input_dev *dev)
157 {
158 del_timer(&dev->timer);
159 }
160
161 #define INPUT_IGNORE_EVENT 0
162 #define INPUT_PASS_TO_HANDLERS 1
163 #define INPUT_PASS_TO_DEVICE 2
164 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
165
166 static int input_handle_abs_event(struct input_dev *dev,
167 unsigned int code, int *pval)
168 {
169 bool is_mt_event;
170 int *pold;
171
172 if (code == ABS_MT_SLOT) {
173 /*
174 * "Stage" the event; we'll flush it later, when we
175 * get actual touch data.
176 */
177 if (*pval >= 0 && *pval < dev->mtsize)
178 dev->slot = *pval;
179
180 return INPUT_IGNORE_EVENT;
181 }
182
183 is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
184
185 if (!is_mt_event) {
186 pold = &dev->absinfo[code].value;
187 } else if (dev->mt) {
188 struct input_mt_slot *mtslot = &dev->mt[dev->slot];
189 pold = &mtslot->abs[code - ABS_MT_FIRST];
190 } else {
191 /*
192 * Bypass filtering for multi-touch events when
193 * not employing slots.
194 */
195 pold = NULL;
196 }
197
198 if (pold) {
199 *pval = input_defuzz_abs_event(*pval, *pold,
200 dev->absinfo[code].fuzz);
201 if (*pold == *pval)
202 return INPUT_IGNORE_EVENT;
203
204 *pold = *pval;
205 }
206
207 /* Flush pending "slot" event */
208 if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
209 input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
210 input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
211 }
212
213 return INPUT_PASS_TO_HANDLERS;
214 }
215
216 static void input_handle_event(struct input_dev *dev,
217 unsigned int type, unsigned int code, int value)
218 {
219 int disposition = INPUT_IGNORE_EVENT;
220
221 switch (type) {
222
223 case EV_SYN:
224 switch (code) {
225 case SYN_CONFIG:
226 disposition = INPUT_PASS_TO_ALL;
227 break;
228
229 case SYN_REPORT:
230 if (!dev->sync) {
231 dev->sync = true;
232 disposition = INPUT_PASS_TO_HANDLERS;
233 }
234 break;
235 case SYN_MT_REPORT:
236 dev->sync = false;
237 disposition = INPUT_PASS_TO_HANDLERS;
238 break;
239 }
240 break;
241
242 case EV_KEY:
243 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
244 !!test_bit(code, dev->key) != value) {
245
246 if (value != 2) {
247 __change_bit(code, dev->key);
248 if (value)
249 input_start_autorepeat(dev, code);
250 else
251 input_stop_autorepeat(dev);
252 }
253
254 disposition = INPUT_PASS_TO_HANDLERS;
255 }
256 break;
257
258 case EV_SW:
259 if (is_event_supported(code, dev->swbit, SW_MAX) &&
260 !!test_bit(code, dev->sw) != value) {
261
262 __change_bit(code, dev->sw);
263 disposition = INPUT_PASS_TO_HANDLERS;
264 }
265 break;
266
267 case EV_ABS:
268 if (is_event_supported(code, dev->absbit, ABS_MAX))
269 disposition = input_handle_abs_event(dev, code, &value);
270
271 break;
272
273 case EV_REL:
274 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
275 disposition = INPUT_PASS_TO_HANDLERS;
276
277 break;
278
279 case EV_MSC:
280 if (is_event_supported(code, dev->mscbit, MSC_MAX))
281 disposition = INPUT_PASS_TO_ALL;
282
283 break;
284
285 case EV_LED:
286 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
287 !!test_bit(code, dev->led) != value) {
288
289 __change_bit(code, dev->led);
290 disposition = INPUT_PASS_TO_ALL;
291 }
292 break;
293
294 case EV_SND:
295 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
296
297 if (!!test_bit(code, dev->snd) != !!value)
298 __change_bit(code, dev->snd);
299 disposition = INPUT_PASS_TO_ALL;
300 }
301 break;
302
303 case EV_REP:
304 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
305 dev->rep[code] = value;
306 disposition = INPUT_PASS_TO_ALL;
307 }
308 break;
309
310 case EV_FF:
311 if (value >= 0)
312 disposition = INPUT_PASS_TO_ALL;
313 break;
314
315 case EV_PWR:
316 disposition = INPUT_PASS_TO_ALL;
317 break;
318 }
319
320 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
321 dev->sync = false;
322
323 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
324 dev->event(dev, type, code, value);
325
326 if (disposition & INPUT_PASS_TO_HANDLERS)
327 input_pass_event(dev, type, code, value);
328 }
329
330 /**
331 * input_event() - report new input event
332 * @dev: device that generated the event
333 * @type: type of the event
334 * @code: event code
335 * @value: value of the event
336 *
337 * This function should be used by drivers implementing various input
338 * devices to report input events. See also input_inject_event().
339 *
340 * NOTE: input_event() may be safely used right after input device was
341 * allocated with input_allocate_device(), even before it is registered
342 * with input_register_device(), but the event will not reach any of the
343 * input handlers. Such early invocation of input_event() may be used
344 * to 'seed' initial state of a switch or initial position of absolute
345 * axis, etc.
346 */
347 void input_event(struct input_dev *dev,
348 unsigned int type, unsigned int code, int value)
349 {
350 unsigned long flags;
351
352 if (is_event_supported(type, dev->evbit, EV_MAX)) {
353
354 spin_lock_irqsave(&dev->event_lock, flags);
355 add_input_randomness(type, code, value);
356 input_handle_event(dev, type, code, value);
357 spin_unlock_irqrestore(&dev->event_lock, flags);
358 }
359 }
360 EXPORT_SYMBOL(input_event);
361
362 /**
363 * input_inject_event() - send input event from input handler
364 * @handle: input handle to send event through
365 * @type: type of the event
366 * @code: event code
367 * @value: value of the event
368 *
369 * Similar to input_event() but will ignore event if device is
370 * "grabbed" and handle injecting event is not the one that owns
371 * the device.
372 */
373 void input_inject_event(struct input_handle *handle,
374 unsigned int type, unsigned int code, int value)
375 {
376 struct input_dev *dev = handle->dev;
377 struct input_handle *grab;
378 unsigned long flags;
379
380 if (is_event_supported(type, dev->evbit, EV_MAX)) {
381 spin_lock_irqsave(&dev->event_lock, flags);
382
383 rcu_read_lock();
384 grab = rcu_dereference(dev->grab);
385 if (!grab || grab == handle)
386 input_handle_event(dev, type, code, value);
387 rcu_read_unlock();
388
389 spin_unlock_irqrestore(&dev->event_lock, flags);
390 }
391 }
392 EXPORT_SYMBOL(input_inject_event);
393
394 /**
395 * input_alloc_absinfo - allocates array of input_absinfo structs
396 * @dev: the input device emitting absolute events
397 *
398 * If the absinfo struct the caller asked for is already allocated, this
399 * functions will not do anything.
400 */
401 void input_alloc_absinfo(struct input_dev *dev)
402 {
403 if (!dev->absinfo)
404 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
405 GFP_KERNEL);
406
407 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
408 }
409 EXPORT_SYMBOL(input_alloc_absinfo);
410
411 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
412 int min, int max, int fuzz, int flat)
413 {
414 struct input_absinfo *absinfo;
415
416 input_alloc_absinfo(dev);
417 if (!dev->absinfo)
418 return;
419
420 absinfo = &dev->absinfo[axis];
421 absinfo->minimum = min;
422 absinfo->maximum = max;
423 absinfo->fuzz = fuzz;
424 absinfo->flat = flat;
425
426 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
427 }
428 EXPORT_SYMBOL(input_set_abs_params);
429
430
431 /**
432 * input_grab_device - grabs device for exclusive use
433 * @handle: input handle that wants to own the device
434 *
435 * When a device is grabbed by an input handle all events generated by
436 * the device are delivered only to this handle. Also events injected
437 * by other input handles are ignored while device is grabbed.
438 */
439 int input_grab_device(struct input_handle *handle)
440 {
441 struct input_dev *dev = handle->dev;
442 int retval;
443
444 retval = mutex_lock_interruptible(&dev->mutex);
445 if (retval)
446 return retval;
447
448 if (dev->grab) {
449 retval = -EBUSY;
450 goto out;
451 }
452
453 rcu_assign_pointer(dev->grab, handle);
454 synchronize_rcu();
455
456 out:
457 mutex_unlock(&dev->mutex);
458 return retval;
459 }
460 EXPORT_SYMBOL(input_grab_device);
461
462 static void __input_release_device(struct input_handle *handle)
463 {
464 struct input_dev *dev = handle->dev;
465
466 if (dev->grab == handle) {
467 rcu_assign_pointer(dev->grab, NULL);
468 /* Make sure input_pass_event() notices that grab is gone */
469 synchronize_rcu();
470
471 list_for_each_entry(handle, &dev->h_list, d_node)
472 if (handle->open && handle->handler->start)
473 handle->handler->start(handle);
474 }
475 }
476
477 /**
478 * input_release_device - release previously grabbed device
479 * @handle: input handle that owns the device
480 *
481 * Releases previously grabbed device so that other input handles can
482 * start receiving input events. Upon release all handlers attached
483 * to the device have their start() method called so they have a change
484 * to synchronize device state with the rest of the system.
485 */
486 void input_release_device(struct input_handle *handle)
487 {
488 struct input_dev *dev = handle->dev;
489
490 mutex_lock(&dev->mutex);
491 __input_release_device(handle);
492 mutex_unlock(&dev->mutex);
493 }
494 EXPORT_SYMBOL(input_release_device);
495
496 /**
497 * input_open_device - open input device
498 * @handle: handle through which device is being accessed
499 *
500 * This function should be called by input handlers when they
501 * want to start receive events from given input device.
502 */
503 int input_open_device(struct input_handle *handle)
504 {
505 struct input_dev *dev = handle->dev;
506 int retval;
507
508 retval = mutex_lock_interruptible(&dev->mutex);
509 if (retval)
510 return retval;
511
512 if (dev->going_away) {
513 retval = -ENODEV;
514 goto out;
515 }
516
517 handle->open++;
518
519 if (!dev->users++ && dev->open)
520 retval = dev->open(dev);
521
522 if (retval) {
523 dev->users--;
524 if (!--handle->open) {
525 /*
526 * Make sure we are not delivering any more events
527 * through this handle
528 */
529 synchronize_rcu();
530 }
531 }
532
533 out:
534 mutex_unlock(&dev->mutex);
535 return retval;
536 }
537 EXPORT_SYMBOL(input_open_device);
538
539 int input_flush_device(struct input_handle *handle, struct file *file)
540 {
541 struct input_dev *dev = handle->dev;
542 int retval;
543
544 retval = mutex_lock_interruptible(&dev->mutex);
545 if (retval)
546 return retval;
547
548 if (dev->flush)
549 retval = dev->flush(dev, file);
550
551 mutex_unlock(&dev->mutex);
552 return retval;
553 }
554 EXPORT_SYMBOL(input_flush_device);
555
556 /**
557 * input_close_device - close input device
558 * @handle: handle through which device is being accessed
559 *
560 * This function should be called by input handlers when they
561 * want to stop receive events from given input device.
562 */
563 void input_close_device(struct input_handle *handle)
564 {
565 struct input_dev *dev = handle->dev;
566
567 mutex_lock(&dev->mutex);
568
569 __input_release_device(handle);
570
571 if (!--dev->users && dev->close)
572 dev->close(dev);
573
574 if (!--handle->open) {
575 /*
576 * synchronize_rcu() makes sure that input_pass_event()
577 * completed and that no more input events are delivered
578 * through this handle
579 */
580 synchronize_rcu();
581 }
582
583 mutex_unlock(&dev->mutex);
584 }
585 EXPORT_SYMBOL(input_close_device);
586
587 /*
588 * Simulate keyup events for all keys that are marked as pressed.
589 * The function must be called with dev->event_lock held.
590 */
591 static void input_dev_release_keys(struct input_dev *dev)
592 {
593 int code;
594
595 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
596 for (code = 0; code <= KEY_MAX; code++) {
597 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
598 __test_and_clear_bit(code, dev->key)) {
599 input_pass_event(dev, EV_KEY, code, 0);
600 }
601 }
602 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
603 }
604 }
605
606 /*
607 * Prepare device for unregistering
608 */
609 static void input_disconnect_device(struct input_dev *dev)
610 {
611 struct input_handle *handle;
612
613 /*
614 * Mark device as going away. Note that we take dev->mutex here
615 * not to protect access to dev->going_away but rather to ensure
616 * that there are no threads in the middle of input_open_device()
617 */
618 mutex_lock(&dev->mutex);
619 dev->going_away = true;
620 mutex_unlock(&dev->mutex);
621
622 spin_lock_irq(&dev->event_lock);
623
624 /*
625 * Simulate keyup events for all pressed keys so that handlers
626 * are not left with "stuck" keys. The driver may continue
627 * generate events even after we done here but they will not
628 * reach any handlers.
629 */
630 input_dev_release_keys(dev);
631
632 list_for_each_entry(handle, &dev->h_list, d_node)
633 handle->open = 0;
634
635 spin_unlock_irq(&dev->event_lock);
636 }
637
638 /**
639 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
640 * @ke: keymap entry containing scancode to be converted.
641 * @scancode: pointer to the location where converted scancode should
642 * be stored.
643 *
644 * This function is used to convert scancode stored in &struct keymap_entry
645 * into scalar form understood by legacy keymap handling methods. These
646 * methods expect scancodes to be represented as 'unsigned int'.
647 */
648 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
649 unsigned int *scancode)
650 {
651 switch (ke->len) {
652 case 1:
653 *scancode = *((u8 *)ke->scancode);
654 break;
655
656 case 2:
657 *scancode = *((u16 *)ke->scancode);
658 break;
659
660 case 4:
661 *scancode = *((u32 *)ke->scancode);
662 break;
663
664 default:
665 return -EINVAL;
666 }
667
668 return 0;
669 }
670 EXPORT_SYMBOL(input_scancode_to_scalar);
671
672 /*
673 * Those routines handle the default case where no [gs]etkeycode() is
674 * defined. In this case, an array indexed by the scancode is used.
675 */
676
677 static unsigned int input_fetch_keycode(struct input_dev *dev,
678 unsigned int index)
679 {
680 switch (dev->keycodesize) {
681 case 1:
682 return ((u8 *)dev->keycode)[index];
683
684 case 2:
685 return ((u16 *)dev->keycode)[index];
686
687 default:
688 return ((u32 *)dev->keycode)[index];
689 }
690 }
691
692 static int input_default_getkeycode(struct input_dev *dev,
693 struct input_keymap_entry *ke)
694 {
695 unsigned int index;
696 int error;
697
698 if (!dev->keycodesize)
699 return -EINVAL;
700
701 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
702 index = ke->index;
703 else {
704 error = input_scancode_to_scalar(ke, &index);
705 if (error)
706 return error;
707 }
708
709 if (index >= dev->keycodemax)
710 return -EINVAL;
711
712 ke->keycode = input_fetch_keycode(dev, index);
713 ke->index = index;
714 ke->len = sizeof(index);
715 memcpy(ke->scancode, &index, sizeof(index));
716
717 return 0;
718 }
719
720 static int input_default_setkeycode(struct input_dev *dev,
721 const struct input_keymap_entry *ke,
722 unsigned int *old_keycode)
723 {
724 unsigned int index;
725 int error;
726 int i;
727
728 if (!dev->keycodesize)
729 return -EINVAL;
730
731 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
732 index = ke->index;
733 } else {
734 error = input_scancode_to_scalar(ke, &index);
735 if (error)
736 return error;
737 }
738
739 if (index >= dev->keycodemax)
740 return -EINVAL;
741
742 if (dev->keycodesize < sizeof(ke->keycode) &&
743 (ke->keycode >> (dev->keycodesize * 8)))
744 return -EINVAL;
745
746 switch (dev->keycodesize) {
747 case 1: {
748 u8 *k = (u8 *)dev->keycode;
749 *old_keycode = k[index];
750 k[index] = ke->keycode;
751 break;
752 }
753 case 2: {
754 u16 *k = (u16 *)dev->keycode;
755 *old_keycode = k[index];
756 k[index] = ke->keycode;
757 break;
758 }
759 default: {
760 u32 *k = (u32 *)dev->keycode;
761 *old_keycode = k[index];
762 k[index] = ke->keycode;
763 break;
764 }
765 }
766
767 __clear_bit(*old_keycode, dev->keybit);
768 __set_bit(ke->keycode, dev->keybit);
769
770 for (i = 0; i < dev->keycodemax; i++) {
771 if (input_fetch_keycode(dev, i) == *old_keycode) {
772 __set_bit(*old_keycode, dev->keybit);
773 break; /* Setting the bit twice is useless, so break */
774 }
775 }
776
777 return 0;
778 }
779
780 /**
781 * input_get_keycode - retrieve keycode currently mapped to a given scancode
782 * @dev: input device which keymap is being queried
783 * @ke: keymap entry
784 *
785 * This function should be called by anyone interested in retrieving current
786 * keymap. Presently evdev handlers use it.
787 */
788 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
789 {
790 unsigned long flags;
791 int retval;
792
793 spin_lock_irqsave(&dev->event_lock, flags);
794 retval = dev->getkeycode(dev, ke);
795 spin_unlock_irqrestore(&dev->event_lock, flags);
796
797 return retval;
798 }
799 EXPORT_SYMBOL(input_get_keycode);
800
801 /**
802 * input_set_keycode - attribute a keycode to a given scancode
803 * @dev: input device which keymap is being updated
804 * @ke: new keymap entry
805 *
806 * This function should be called by anyone needing to update current
807 * keymap. Presently keyboard and evdev handlers use it.
808 */
809 int input_set_keycode(struct input_dev *dev,
810 const struct input_keymap_entry *ke)
811 {
812 unsigned long flags;
813 unsigned int old_keycode;
814 int retval;
815
816 if (ke->keycode > KEY_MAX)
817 return -EINVAL;
818
819 spin_lock_irqsave(&dev->event_lock, flags);
820
821 retval = dev->setkeycode(dev, ke, &old_keycode);
822 if (retval)
823 goto out;
824
825 /* Make sure KEY_RESERVED did not get enabled. */
826 __clear_bit(KEY_RESERVED, dev->keybit);
827
828 /*
829 * Simulate keyup event if keycode is not present
830 * in the keymap anymore
831 */
832 if (test_bit(EV_KEY, dev->evbit) &&
833 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
834 __test_and_clear_bit(old_keycode, dev->key)) {
835
836 input_pass_event(dev, EV_KEY, old_keycode, 0);
837 if (dev->sync)
838 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
839 }
840
841 out:
842 spin_unlock_irqrestore(&dev->event_lock, flags);
843
844 return retval;
845 }
846 EXPORT_SYMBOL(input_set_keycode);
847
848 #define MATCH_BIT(bit, max) \
849 for (i = 0; i < BITS_TO_LONGS(max); i++) \
850 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
851 break; \
852 if (i != BITS_TO_LONGS(max)) \
853 continue;
854
855 static const struct input_device_id *input_match_device(struct input_handler *handler,
856 struct input_dev *dev)
857 {
858 const struct input_device_id *id;
859 int i;
860
861 for (id = handler->id_table; id->flags || id->driver_info; id++) {
862
863 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
864 if (id->bustype != dev->id.bustype)
865 continue;
866
867 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
868 if (id->vendor != dev->id.vendor)
869 continue;
870
871 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
872 if (id->product != dev->id.product)
873 continue;
874
875 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
876 if (id->version != dev->id.version)
877 continue;
878
879 MATCH_BIT(evbit, EV_MAX);
880 MATCH_BIT(keybit, KEY_MAX);
881 MATCH_BIT(relbit, REL_MAX);
882 MATCH_BIT(absbit, ABS_MAX);
883 MATCH_BIT(mscbit, MSC_MAX);
884 MATCH_BIT(ledbit, LED_MAX);
885 MATCH_BIT(sndbit, SND_MAX);
886 MATCH_BIT(ffbit, FF_MAX);
887 MATCH_BIT(swbit, SW_MAX);
888
889 if (!handler->match || handler->match(handler, dev))
890 return id;
891 }
892
893 return NULL;
894 }
895
896 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
897 {
898 const struct input_device_id *id;
899 int error;
900
901 id = input_match_device(handler, dev);
902 if (!id)
903 return -ENODEV;
904
905 error = handler->connect(handler, dev, id);
906 if (error && error != -ENODEV)
907 pr_err("failed to attach handler %s to device %s, error: %d\n",
908 handler->name, kobject_name(&dev->dev.kobj), error);
909
910 return error;
911 }
912
913 #ifdef CONFIG_COMPAT
914
915 static int input_bits_to_string(char *buf, int buf_size,
916 unsigned long bits, bool skip_empty)
917 {
918 int len = 0;
919
920 if (INPUT_COMPAT_TEST) {
921 u32 dword = bits >> 32;
922 if (dword || !skip_empty)
923 len += snprintf(buf, buf_size, "%x ", dword);
924
925 dword = bits & 0xffffffffUL;
926 if (dword || !skip_empty || len)
927 len += snprintf(buf + len, max(buf_size - len, 0),
928 "%x", dword);
929 } else {
930 if (bits || !skip_empty)
931 len += snprintf(buf, buf_size, "%lx", bits);
932 }
933
934 return len;
935 }
936
937 #else /* !CONFIG_COMPAT */
938
939 static int input_bits_to_string(char *buf, int buf_size,
940 unsigned long bits, bool skip_empty)
941 {
942 return bits || !skip_empty ?
943 snprintf(buf, buf_size, "%lx", bits) : 0;
944 }
945
946 #endif
947
948 #ifdef CONFIG_PROC_FS
949
950 static struct proc_dir_entry *proc_bus_input_dir;
951 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
952 static int input_devices_state;
953
954 static inline void input_wakeup_procfs_readers(void)
955 {
956 input_devices_state++;
957 wake_up(&input_devices_poll_wait);
958 }
959
960 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
961 {
962 poll_wait(file, &input_devices_poll_wait, wait);
963 if (file->f_version != input_devices_state) {
964 file->f_version = input_devices_state;
965 return POLLIN | POLLRDNORM;
966 }
967
968 return 0;
969 }
970
971 union input_seq_state {
972 struct {
973 unsigned short pos;
974 bool mutex_acquired;
975 };
976 void *p;
977 };
978
979 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
980 {
981 union input_seq_state *state = (union input_seq_state *)&seq->private;
982 int error;
983
984 /* We need to fit into seq->private pointer */
985 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
986
987 error = mutex_lock_interruptible(&input_mutex);
988 if (error) {
989 state->mutex_acquired = false;
990 return ERR_PTR(error);
991 }
992
993 state->mutex_acquired = true;
994
995 return seq_list_start(&input_dev_list, *pos);
996 }
997
998 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
999 {
1000 return seq_list_next(v, &input_dev_list, pos);
1001 }
1002
1003 static void input_seq_stop(struct seq_file *seq, void *v)
1004 {
1005 union input_seq_state *state = (union input_seq_state *)&seq->private;
1006
1007 if (state->mutex_acquired)
1008 mutex_unlock(&input_mutex);
1009 }
1010
1011 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1012 unsigned long *bitmap, int max)
1013 {
1014 int i;
1015 bool skip_empty = true;
1016 char buf[18];
1017
1018 seq_printf(seq, "B: %s=", name);
1019
1020 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1021 if (input_bits_to_string(buf, sizeof(buf),
1022 bitmap[i], skip_empty)) {
1023 skip_empty = false;
1024 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1025 }
1026 }
1027
1028 /*
1029 * If no output was produced print a single 0.
1030 */
1031 if (skip_empty)
1032 seq_puts(seq, "0");
1033
1034 seq_putc(seq, '\n');
1035 }
1036
1037 static int input_devices_seq_show(struct seq_file *seq, void *v)
1038 {
1039 struct input_dev *dev = container_of(v, struct input_dev, node);
1040 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1041 struct input_handle *handle;
1042
1043 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1044 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1045
1046 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1047 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1048 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1049 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1050 seq_printf(seq, "H: Handlers=");
1051
1052 list_for_each_entry(handle, &dev->h_list, d_node)
1053 seq_printf(seq, "%s ", handle->name);
1054 seq_putc(seq, '\n');
1055
1056 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1057
1058 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1059 if (test_bit(EV_KEY, dev->evbit))
1060 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1061 if (test_bit(EV_REL, dev->evbit))
1062 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1063 if (test_bit(EV_ABS, dev->evbit))
1064 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1065 if (test_bit(EV_MSC, dev->evbit))
1066 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1067 if (test_bit(EV_LED, dev->evbit))
1068 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1069 if (test_bit(EV_SND, dev->evbit))
1070 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1071 if (test_bit(EV_FF, dev->evbit))
1072 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1073 if (test_bit(EV_SW, dev->evbit))
1074 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1075
1076 seq_putc(seq, '\n');
1077
1078 kfree(path);
1079 return 0;
1080 }
1081
1082 static const struct seq_operations input_devices_seq_ops = {
1083 .start = input_devices_seq_start,
1084 .next = input_devices_seq_next,
1085 .stop = input_seq_stop,
1086 .show = input_devices_seq_show,
1087 };
1088
1089 static int input_proc_devices_open(struct inode *inode, struct file *file)
1090 {
1091 return seq_open(file, &input_devices_seq_ops);
1092 }
1093
1094 static const struct file_operations input_devices_fileops = {
1095 .owner = THIS_MODULE,
1096 .open = input_proc_devices_open,
1097 .poll = input_proc_devices_poll,
1098 .read = seq_read,
1099 .llseek = seq_lseek,
1100 .release = seq_release,
1101 };
1102
1103 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1104 {
1105 union input_seq_state *state = (union input_seq_state *)&seq->private;
1106 int error;
1107
1108 /* We need to fit into seq->private pointer */
1109 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1110
1111 error = mutex_lock_interruptible(&input_mutex);
1112 if (error) {
1113 state->mutex_acquired = false;
1114 return ERR_PTR(error);
1115 }
1116
1117 state->mutex_acquired = true;
1118 state->pos = *pos;
1119
1120 return seq_list_start(&input_handler_list, *pos);
1121 }
1122
1123 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1124 {
1125 union input_seq_state *state = (union input_seq_state *)&seq->private;
1126
1127 state->pos = *pos + 1;
1128 return seq_list_next(v, &input_handler_list, pos);
1129 }
1130
1131 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1132 {
1133 struct input_handler *handler = container_of(v, struct input_handler, node);
1134 union input_seq_state *state = (union input_seq_state *)&seq->private;
1135
1136 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1137 if (handler->filter)
1138 seq_puts(seq, " (filter)");
1139 if (handler->fops)
1140 seq_printf(seq, " Minor=%d", handler->minor);
1141 seq_putc(seq, '\n');
1142
1143 return 0;
1144 }
1145
1146 static const struct seq_operations input_handlers_seq_ops = {
1147 .start = input_handlers_seq_start,
1148 .next = input_handlers_seq_next,
1149 .stop = input_seq_stop,
1150 .show = input_handlers_seq_show,
1151 };
1152
1153 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1154 {
1155 return seq_open(file, &input_handlers_seq_ops);
1156 }
1157
1158 static const struct file_operations input_handlers_fileops = {
1159 .owner = THIS_MODULE,
1160 .open = input_proc_handlers_open,
1161 .read = seq_read,
1162 .llseek = seq_lseek,
1163 .release = seq_release,
1164 };
1165
1166 static int __init input_proc_init(void)
1167 {
1168 struct proc_dir_entry *entry;
1169
1170 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1171 if (!proc_bus_input_dir)
1172 return -ENOMEM;
1173
1174 entry = proc_create("devices", 0, proc_bus_input_dir,
1175 &input_devices_fileops);
1176 if (!entry)
1177 goto fail1;
1178
1179 entry = proc_create("handlers", 0, proc_bus_input_dir,
1180 &input_handlers_fileops);
1181 if (!entry)
1182 goto fail2;
1183
1184 return 0;
1185
1186 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1187 fail1: remove_proc_entry("bus/input", NULL);
1188 return -ENOMEM;
1189 }
1190
1191 static void input_proc_exit(void)
1192 {
1193 remove_proc_entry("devices", proc_bus_input_dir);
1194 remove_proc_entry("handlers", proc_bus_input_dir);
1195 remove_proc_entry("bus/input", NULL);
1196 }
1197
1198 #else /* !CONFIG_PROC_FS */
1199 static inline void input_wakeup_procfs_readers(void) { }
1200 static inline int input_proc_init(void) { return 0; }
1201 static inline void input_proc_exit(void) { }
1202 #endif
1203
1204 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1205 static ssize_t input_dev_show_##name(struct device *dev, \
1206 struct device_attribute *attr, \
1207 char *buf) \
1208 { \
1209 struct input_dev *input_dev = to_input_dev(dev); \
1210 \
1211 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1212 input_dev->name ? input_dev->name : ""); \
1213 } \
1214 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1215
1216 INPUT_DEV_STRING_ATTR_SHOW(name);
1217 INPUT_DEV_STRING_ATTR_SHOW(phys);
1218 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1219
1220 static int input_print_modalias_bits(char *buf, int size,
1221 char name, unsigned long *bm,
1222 unsigned int min_bit, unsigned int max_bit)
1223 {
1224 int len = 0, i;
1225
1226 len += snprintf(buf, max(size, 0), "%c", name);
1227 for (i = min_bit; i < max_bit; i++)
1228 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1229 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1230 return len;
1231 }
1232
1233 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1234 int add_cr)
1235 {
1236 int len;
1237
1238 len = snprintf(buf, max(size, 0),
1239 "input:b%04Xv%04Xp%04Xe%04X-",
1240 id->id.bustype, id->id.vendor,
1241 id->id.product, id->id.version);
1242
1243 len += input_print_modalias_bits(buf + len, size - len,
1244 'e', id->evbit, 0, EV_MAX);
1245 len += input_print_modalias_bits(buf + len, size - len,
1246 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1247 len += input_print_modalias_bits(buf + len, size - len,
1248 'r', id->relbit, 0, REL_MAX);
1249 len += input_print_modalias_bits(buf + len, size - len,
1250 'a', id->absbit, 0, ABS_MAX);
1251 len += input_print_modalias_bits(buf + len, size - len,
1252 'm', id->mscbit, 0, MSC_MAX);
1253 len += input_print_modalias_bits(buf + len, size - len,
1254 'l', id->ledbit, 0, LED_MAX);
1255 len += input_print_modalias_bits(buf + len, size - len,
1256 's', id->sndbit, 0, SND_MAX);
1257 len += input_print_modalias_bits(buf + len, size - len,
1258 'f', id->ffbit, 0, FF_MAX);
1259 len += input_print_modalias_bits(buf + len, size - len,
1260 'w', id->swbit, 0, SW_MAX);
1261
1262 if (add_cr)
1263 len += snprintf(buf + len, max(size - len, 0), "\n");
1264
1265 return len;
1266 }
1267
1268 static ssize_t input_dev_show_modalias(struct device *dev,
1269 struct device_attribute *attr,
1270 char *buf)
1271 {
1272 struct input_dev *id = to_input_dev(dev);
1273 ssize_t len;
1274
1275 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1276
1277 return min_t(int, len, PAGE_SIZE);
1278 }
1279 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1280
1281 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1282 int max, int add_cr);
1283
1284 static ssize_t input_dev_show_properties(struct device *dev,
1285 struct device_attribute *attr,
1286 char *buf)
1287 {
1288 struct input_dev *input_dev = to_input_dev(dev);
1289 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1290 INPUT_PROP_MAX, true);
1291 return min_t(int, len, PAGE_SIZE);
1292 }
1293 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1294
1295 static struct attribute *input_dev_attrs[] = {
1296 &dev_attr_name.attr,
1297 &dev_attr_phys.attr,
1298 &dev_attr_uniq.attr,
1299 &dev_attr_modalias.attr,
1300 &dev_attr_properties.attr,
1301 NULL
1302 };
1303
1304 static struct attribute_group input_dev_attr_group = {
1305 .attrs = input_dev_attrs,
1306 };
1307
1308 #define INPUT_DEV_ID_ATTR(name) \
1309 static ssize_t input_dev_show_id_##name(struct device *dev, \
1310 struct device_attribute *attr, \
1311 char *buf) \
1312 { \
1313 struct input_dev *input_dev = to_input_dev(dev); \
1314 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1315 } \
1316 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1317
1318 INPUT_DEV_ID_ATTR(bustype);
1319 INPUT_DEV_ID_ATTR(vendor);
1320 INPUT_DEV_ID_ATTR(product);
1321 INPUT_DEV_ID_ATTR(version);
1322
1323 static struct attribute *input_dev_id_attrs[] = {
1324 &dev_attr_bustype.attr,
1325 &dev_attr_vendor.attr,
1326 &dev_attr_product.attr,
1327 &dev_attr_version.attr,
1328 NULL
1329 };
1330
1331 static struct attribute_group input_dev_id_attr_group = {
1332 .name = "id",
1333 .attrs = input_dev_id_attrs,
1334 };
1335
1336 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1337 int max, int add_cr)
1338 {
1339 int i;
1340 int len = 0;
1341 bool skip_empty = true;
1342
1343 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1344 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1345 bitmap[i], skip_empty);
1346 if (len) {
1347 skip_empty = false;
1348 if (i > 0)
1349 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1350 }
1351 }
1352
1353 /*
1354 * If no output was produced print a single 0.
1355 */
1356 if (len == 0)
1357 len = snprintf(buf, buf_size, "%d", 0);
1358
1359 if (add_cr)
1360 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1361
1362 return len;
1363 }
1364
1365 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1366 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1367 struct device_attribute *attr, \
1368 char *buf) \
1369 { \
1370 struct input_dev *input_dev = to_input_dev(dev); \
1371 int len = input_print_bitmap(buf, PAGE_SIZE, \
1372 input_dev->bm##bit, ev##_MAX, \
1373 true); \
1374 return min_t(int, len, PAGE_SIZE); \
1375 } \
1376 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1377
1378 INPUT_DEV_CAP_ATTR(EV, ev);
1379 INPUT_DEV_CAP_ATTR(KEY, key);
1380 INPUT_DEV_CAP_ATTR(REL, rel);
1381 INPUT_DEV_CAP_ATTR(ABS, abs);
1382 INPUT_DEV_CAP_ATTR(MSC, msc);
1383 INPUT_DEV_CAP_ATTR(LED, led);
1384 INPUT_DEV_CAP_ATTR(SND, snd);
1385 INPUT_DEV_CAP_ATTR(FF, ff);
1386 INPUT_DEV_CAP_ATTR(SW, sw);
1387
1388 static struct attribute *input_dev_caps_attrs[] = {
1389 &dev_attr_ev.attr,
1390 &dev_attr_key.attr,
1391 &dev_attr_rel.attr,
1392 &dev_attr_abs.attr,
1393 &dev_attr_msc.attr,
1394 &dev_attr_led.attr,
1395 &dev_attr_snd.attr,
1396 &dev_attr_ff.attr,
1397 &dev_attr_sw.attr,
1398 NULL
1399 };
1400
1401 static struct attribute_group input_dev_caps_attr_group = {
1402 .name = "capabilities",
1403 .attrs = input_dev_caps_attrs,
1404 };
1405
1406 static const struct attribute_group *input_dev_attr_groups[] = {
1407 &input_dev_attr_group,
1408 &input_dev_id_attr_group,
1409 &input_dev_caps_attr_group,
1410 NULL
1411 };
1412
1413 static void input_dev_release(struct device *device)
1414 {
1415 struct input_dev *dev = to_input_dev(device);
1416
1417 input_ff_destroy(dev);
1418 input_mt_destroy_slots(dev);
1419 kfree(dev->absinfo);
1420 kfree(dev);
1421
1422 module_put(THIS_MODULE);
1423 }
1424
1425 /*
1426 * Input uevent interface - loading event handlers based on
1427 * device bitfields.
1428 */
1429 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1430 const char *name, unsigned long *bitmap, int max)
1431 {
1432 int len;
1433
1434 if (add_uevent_var(env, "%s", name))
1435 return -ENOMEM;
1436
1437 len = input_print_bitmap(&env->buf[env->buflen - 1],
1438 sizeof(env->buf) - env->buflen,
1439 bitmap, max, false);
1440 if (len >= (sizeof(env->buf) - env->buflen))
1441 return -ENOMEM;
1442
1443 env->buflen += len;
1444 return 0;
1445 }
1446
1447 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1448 struct input_dev *dev)
1449 {
1450 int len;
1451
1452 if (add_uevent_var(env, "MODALIAS="))
1453 return -ENOMEM;
1454
1455 len = input_print_modalias(&env->buf[env->buflen - 1],
1456 sizeof(env->buf) - env->buflen,
1457 dev, 0);
1458 if (len >= (sizeof(env->buf) - env->buflen))
1459 return -ENOMEM;
1460
1461 env->buflen += len;
1462 return 0;
1463 }
1464
1465 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1466 do { \
1467 int err = add_uevent_var(env, fmt, val); \
1468 if (err) \
1469 return err; \
1470 } while (0)
1471
1472 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1473 do { \
1474 int err = input_add_uevent_bm_var(env, name, bm, max); \
1475 if (err) \
1476 return err; \
1477 } while (0)
1478
1479 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1480 do { \
1481 int err = input_add_uevent_modalias_var(env, dev); \
1482 if (err) \
1483 return err; \
1484 } while (0)
1485
1486 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1487 {
1488 struct input_dev *dev = to_input_dev(device);
1489
1490 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1491 dev->id.bustype, dev->id.vendor,
1492 dev->id.product, dev->id.version);
1493 if (dev->name)
1494 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1495 if (dev->phys)
1496 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1497 if (dev->uniq)
1498 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1499
1500 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1501
1502 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1503 if (test_bit(EV_KEY, dev->evbit))
1504 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1505 if (test_bit(EV_REL, dev->evbit))
1506 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1507 if (test_bit(EV_ABS, dev->evbit))
1508 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1509 if (test_bit(EV_MSC, dev->evbit))
1510 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1511 if (test_bit(EV_LED, dev->evbit))
1512 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1513 if (test_bit(EV_SND, dev->evbit))
1514 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1515 if (test_bit(EV_FF, dev->evbit))
1516 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1517 if (test_bit(EV_SW, dev->evbit))
1518 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1519
1520 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1521
1522 return 0;
1523 }
1524
1525 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1526 do { \
1527 int i; \
1528 bool active; \
1529 \
1530 if (!test_bit(EV_##type, dev->evbit)) \
1531 break; \
1532 \
1533 for (i = 0; i < type##_MAX; i++) { \
1534 if (!test_bit(i, dev->bits##bit)) \
1535 continue; \
1536 \
1537 active = test_bit(i, dev->bits); \
1538 if (!active && !on) \
1539 continue; \
1540 \
1541 dev->event(dev, EV_##type, i, on ? active : 0); \
1542 } \
1543 } while (0)
1544
1545 static void input_dev_toggle(struct input_dev *dev, bool activate)
1546 {
1547 if (!dev->event)
1548 return;
1549
1550 INPUT_DO_TOGGLE(dev, LED, led, activate);
1551 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1552
1553 if (activate && test_bit(EV_REP, dev->evbit)) {
1554 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1555 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1556 }
1557 }
1558
1559 /**
1560 * input_reset_device() - reset/restore the state of input device
1561 * @dev: input device whose state needs to be reset
1562 *
1563 * This function tries to reset the state of an opened input device and
1564 * bring internal state and state if the hardware in sync with each other.
1565 * We mark all keys as released, restore LED state, repeat rate, etc.
1566 */
1567 void input_reset_device(struct input_dev *dev)
1568 {
1569 mutex_lock(&dev->mutex);
1570
1571 if (dev->users) {
1572 input_dev_toggle(dev, true);
1573
1574 /*
1575 * Keys that have been pressed at suspend time are unlikely
1576 * to be still pressed when we resume.
1577 */
1578 spin_lock_irq(&dev->event_lock);
1579 input_dev_release_keys(dev);
1580 spin_unlock_irq(&dev->event_lock);
1581 }
1582
1583 mutex_unlock(&dev->mutex);
1584 }
1585 EXPORT_SYMBOL(input_reset_device);
1586
1587 #ifdef CONFIG_PM
1588 static int input_dev_suspend(struct device *dev)
1589 {
1590 struct input_dev *input_dev = to_input_dev(dev);
1591
1592 mutex_lock(&input_dev->mutex);
1593
1594 if (input_dev->users)
1595 input_dev_toggle(input_dev, false);
1596
1597 mutex_unlock(&input_dev->mutex);
1598
1599 return 0;
1600 }
1601
1602 static int input_dev_resume(struct device *dev)
1603 {
1604 struct input_dev *input_dev = to_input_dev(dev);
1605
1606 input_reset_device(input_dev);
1607
1608 return 0;
1609 }
1610
1611 static const struct dev_pm_ops input_dev_pm_ops = {
1612 .suspend = input_dev_suspend,
1613 .resume = input_dev_resume,
1614 .poweroff = input_dev_suspend,
1615 .restore = input_dev_resume,
1616 };
1617 #endif /* CONFIG_PM */
1618
1619 static struct device_type input_dev_type = {
1620 .groups = input_dev_attr_groups,
1621 .release = input_dev_release,
1622 .uevent = input_dev_uevent,
1623 #ifdef CONFIG_PM
1624 .pm = &input_dev_pm_ops,
1625 #endif
1626 };
1627
1628 static char *input_devnode(struct device *dev, mode_t *mode)
1629 {
1630 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1631 }
1632
1633 struct class input_class = {
1634 .name = "input",
1635 .devnode = input_devnode,
1636 };
1637 EXPORT_SYMBOL_GPL(input_class);
1638
1639 /**
1640 * input_allocate_device - allocate memory for new input device
1641 *
1642 * Returns prepared struct input_dev or NULL.
1643 *
1644 * NOTE: Use input_free_device() to free devices that have not been
1645 * registered; input_unregister_device() should be used for already
1646 * registered devices.
1647 */
1648 struct input_dev *input_allocate_device(void)
1649 {
1650 struct input_dev *dev;
1651
1652 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1653 if (dev) {
1654 dev->dev.type = &input_dev_type;
1655 dev->dev.class = &input_class;
1656 device_initialize(&dev->dev);
1657 mutex_init(&dev->mutex);
1658 spin_lock_init(&dev->event_lock);
1659 INIT_LIST_HEAD(&dev->h_list);
1660 INIT_LIST_HEAD(&dev->node);
1661
1662 __module_get(THIS_MODULE);
1663 }
1664
1665 return dev;
1666 }
1667 EXPORT_SYMBOL(input_allocate_device);
1668
1669 /**
1670 * input_free_device - free memory occupied by input_dev structure
1671 * @dev: input device to free
1672 *
1673 * This function should only be used if input_register_device()
1674 * was not called yet or if it failed. Once device was registered
1675 * use input_unregister_device() and memory will be freed once last
1676 * reference to the device is dropped.
1677 *
1678 * Device should be allocated by input_allocate_device().
1679 *
1680 * NOTE: If there are references to the input device then memory
1681 * will not be freed until last reference is dropped.
1682 */
1683 void input_free_device(struct input_dev *dev)
1684 {
1685 if (dev)
1686 input_put_device(dev);
1687 }
1688 EXPORT_SYMBOL(input_free_device);
1689
1690 /**
1691 * input_set_capability - mark device as capable of a certain event
1692 * @dev: device that is capable of emitting or accepting event
1693 * @type: type of the event (EV_KEY, EV_REL, etc...)
1694 * @code: event code
1695 *
1696 * In addition to setting up corresponding bit in appropriate capability
1697 * bitmap the function also adjusts dev->evbit.
1698 */
1699 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1700 {
1701 switch (type) {
1702 case EV_KEY:
1703 __set_bit(code, dev->keybit);
1704 break;
1705
1706 case EV_REL:
1707 __set_bit(code, dev->relbit);
1708 break;
1709
1710 case EV_ABS:
1711 __set_bit(code, dev->absbit);
1712 break;
1713
1714 case EV_MSC:
1715 __set_bit(code, dev->mscbit);
1716 break;
1717
1718 case EV_SW:
1719 __set_bit(code, dev->swbit);
1720 break;
1721
1722 case EV_LED:
1723 __set_bit(code, dev->ledbit);
1724 break;
1725
1726 case EV_SND:
1727 __set_bit(code, dev->sndbit);
1728 break;
1729
1730 case EV_FF:
1731 __set_bit(code, dev->ffbit);
1732 break;
1733
1734 case EV_PWR:
1735 /* do nothing */
1736 break;
1737
1738 default:
1739 pr_err("input_set_capability: unknown type %u (code %u)\n",
1740 type, code);
1741 dump_stack();
1742 return;
1743 }
1744
1745 __set_bit(type, dev->evbit);
1746 }
1747 EXPORT_SYMBOL(input_set_capability);
1748
1749 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1750 do { \
1751 if (!test_bit(EV_##type, dev->evbit)) \
1752 memset(dev->bits##bit, 0, \
1753 sizeof(dev->bits##bit)); \
1754 } while (0)
1755
1756 static void input_cleanse_bitmasks(struct input_dev *dev)
1757 {
1758 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1759 INPUT_CLEANSE_BITMASK(dev, REL, rel);
1760 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1761 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1762 INPUT_CLEANSE_BITMASK(dev, LED, led);
1763 INPUT_CLEANSE_BITMASK(dev, SND, snd);
1764 INPUT_CLEANSE_BITMASK(dev, FF, ff);
1765 INPUT_CLEANSE_BITMASK(dev, SW, sw);
1766 }
1767
1768 /**
1769 * input_register_device - register device with input core
1770 * @dev: device to be registered
1771 *
1772 * This function registers device with input core. The device must be
1773 * allocated with input_allocate_device() and all it's capabilities
1774 * set up before registering.
1775 * If function fails the device must be freed with input_free_device().
1776 * Once device has been successfully registered it can be unregistered
1777 * with input_unregister_device(); input_free_device() should not be
1778 * called in this case.
1779 */
1780 int input_register_device(struct input_dev *dev)
1781 {
1782 static atomic_t input_no = ATOMIC_INIT(0);
1783 struct input_handler *handler;
1784 const char *path;
1785 int error;
1786
1787 /* Every input device generates EV_SYN/SYN_REPORT events. */
1788 __set_bit(EV_SYN, dev->evbit);
1789
1790 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1791 __clear_bit(KEY_RESERVED, dev->keybit);
1792
1793 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1794 input_cleanse_bitmasks(dev);
1795
1796 /*
1797 * If delay and period are pre-set by the driver, then autorepeating
1798 * is handled by the driver itself and we don't do it in input.c.
1799 */
1800 init_timer(&dev->timer);
1801 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1802 dev->timer.data = (long) dev;
1803 dev->timer.function = input_repeat_key;
1804 dev->rep[REP_DELAY] = 250;
1805 dev->rep[REP_PERIOD] = 33;
1806 }
1807
1808 if (!dev->getkeycode)
1809 dev->getkeycode = input_default_getkeycode;
1810
1811 if (!dev->setkeycode)
1812 dev->setkeycode = input_default_setkeycode;
1813
1814 dev_set_name(&dev->dev, "input%ld",
1815 (unsigned long) atomic_inc_return(&input_no) - 1);
1816
1817 error = device_add(&dev->dev);
1818 if (error)
1819 return error;
1820
1821 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1822 pr_info("%s as %s\n",
1823 dev->name ? dev->name : "Unspecified device",
1824 path ? path : "N/A");
1825 kfree(path);
1826
1827 error = mutex_lock_interruptible(&input_mutex);
1828 if (error) {
1829 device_del(&dev->dev);
1830 return error;
1831 }
1832
1833 list_add_tail(&dev->node, &input_dev_list);
1834
1835 list_for_each_entry(handler, &input_handler_list, node)
1836 input_attach_handler(dev, handler);
1837
1838 input_wakeup_procfs_readers();
1839
1840 mutex_unlock(&input_mutex);
1841
1842 return 0;
1843 }
1844 EXPORT_SYMBOL(input_register_device);
1845
1846 /**
1847 * input_unregister_device - unregister previously registered device
1848 * @dev: device to be unregistered
1849 *
1850 * This function unregisters an input device. Once device is unregistered
1851 * the caller should not try to access it as it may get freed at any moment.
1852 */
1853 void input_unregister_device(struct input_dev *dev)
1854 {
1855 struct input_handle *handle, *next;
1856
1857 input_disconnect_device(dev);
1858
1859 mutex_lock(&input_mutex);
1860
1861 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1862 handle->handler->disconnect(handle);
1863 WARN_ON(!list_empty(&dev->h_list));
1864
1865 del_timer_sync(&dev->timer);
1866 list_del_init(&dev->node);
1867
1868 input_wakeup_procfs_readers();
1869
1870 mutex_unlock(&input_mutex);
1871
1872 device_unregister(&dev->dev);
1873 }
1874 EXPORT_SYMBOL(input_unregister_device);
1875
1876 /**
1877 * input_register_handler - register a new input handler
1878 * @handler: handler to be registered
1879 *
1880 * This function registers a new input handler (interface) for input
1881 * devices in the system and attaches it to all input devices that
1882 * are compatible with the handler.
1883 */
1884 int input_register_handler(struct input_handler *handler)
1885 {
1886 struct input_dev *dev;
1887 int retval;
1888
1889 retval = mutex_lock_interruptible(&input_mutex);
1890 if (retval)
1891 return retval;
1892
1893 INIT_LIST_HEAD(&handler->h_list);
1894
1895 if (handler->fops != NULL) {
1896 if (input_table[handler->minor >> 5]) {
1897 retval = -EBUSY;
1898 goto out;
1899 }
1900 input_table[handler->minor >> 5] = handler;
1901 }
1902
1903 list_add_tail(&handler->node, &input_handler_list);
1904
1905 list_for_each_entry(dev, &input_dev_list, node)
1906 input_attach_handler(dev, handler);
1907
1908 input_wakeup_procfs_readers();
1909
1910 out:
1911 mutex_unlock(&input_mutex);
1912 return retval;
1913 }
1914 EXPORT_SYMBOL(input_register_handler);
1915
1916 /**
1917 * input_unregister_handler - unregisters an input handler
1918 * @handler: handler to be unregistered
1919 *
1920 * This function disconnects a handler from its input devices and
1921 * removes it from lists of known handlers.
1922 */
1923 void input_unregister_handler(struct input_handler *handler)
1924 {
1925 struct input_handle *handle, *next;
1926
1927 mutex_lock(&input_mutex);
1928
1929 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1930 handler->disconnect(handle);
1931 WARN_ON(!list_empty(&handler->h_list));
1932
1933 list_del_init(&handler->node);
1934
1935 if (handler->fops != NULL)
1936 input_table[handler->minor >> 5] = NULL;
1937
1938 input_wakeup_procfs_readers();
1939
1940 mutex_unlock(&input_mutex);
1941 }
1942 EXPORT_SYMBOL(input_unregister_handler);
1943
1944 /**
1945 * input_handler_for_each_handle - handle iterator
1946 * @handler: input handler to iterate
1947 * @data: data for the callback
1948 * @fn: function to be called for each handle
1949 *
1950 * Iterate over @bus's list of devices, and call @fn for each, passing
1951 * it @data and stop when @fn returns a non-zero value. The function is
1952 * using RCU to traverse the list and therefore may be usind in atonic
1953 * contexts. The @fn callback is invoked from RCU critical section and
1954 * thus must not sleep.
1955 */
1956 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1957 int (*fn)(struct input_handle *, void *))
1958 {
1959 struct input_handle *handle;
1960 int retval = 0;
1961
1962 rcu_read_lock();
1963
1964 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1965 retval = fn(handle, data);
1966 if (retval)
1967 break;
1968 }
1969
1970 rcu_read_unlock();
1971
1972 return retval;
1973 }
1974 EXPORT_SYMBOL(input_handler_for_each_handle);
1975
1976 /**
1977 * input_register_handle - register a new input handle
1978 * @handle: handle to register
1979 *
1980 * This function puts a new input handle onto device's
1981 * and handler's lists so that events can flow through
1982 * it once it is opened using input_open_device().
1983 *
1984 * This function is supposed to be called from handler's
1985 * connect() method.
1986 */
1987 int input_register_handle(struct input_handle *handle)
1988 {
1989 struct input_handler *handler = handle->handler;
1990 struct input_dev *dev = handle->dev;
1991 int error;
1992
1993 /*
1994 * We take dev->mutex here to prevent race with
1995 * input_release_device().
1996 */
1997 error = mutex_lock_interruptible(&dev->mutex);
1998 if (error)
1999 return error;
2000
2001 /*
2002 * Filters go to the head of the list, normal handlers
2003 * to the tail.
2004 */
2005 if (handler->filter)
2006 list_add_rcu(&handle->d_node, &dev->h_list);
2007 else
2008 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2009
2010 mutex_unlock(&dev->mutex);
2011
2012 /*
2013 * Since we are supposed to be called from ->connect()
2014 * which is mutually exclusive with ->disconnect()
2015 * we can't be racing with input_unregister_handle()
2016 * and so separate lock is not needed here.
2017 */
2018 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2019
2020 if (handler->start)
2021 handler->start(handle);
2022
2023 return 0;
2024 }
2025 EXPORT_SYMBOL(input_register_handle);
2026
2027 /**
2028 * input_unregister_handle - unregister an input handle
2029 * @handle: handle to unregister
2030 *
2031 * This function removes input handle from device's
2032 * and handler's lists.
2033 *
2034 * This function is supposed to be called from handler's
2035 * disconnect() method.
2036 */
2037 void input_unregister_handle(struct input_handle *handle)
2038 {
2039 struct input_dev *dev = handle->dev;
2040
2041 list_del_rcu(&handle->h_node);
2042
2043 /*
2044 * Take dev->mutex to prevent race with input_release_device().
2045 */
2046 mutex_lock(&dev->mutex);
2047 list_del_rcu(&handle->d_node);
2048 mutex_unlock(&dev->mutex);
2049
2050 synchronize_rcu();
2051 }
2052 EXPORT_SYMBOL(input_unregister_handle);
2053
2054 static int input_open_file(struct inode *inode, struct file *file)
2055 {
2056 struct input_handler *handler;
2057 const struct file_operations *old_fops, *new_fops = NULL;
2058 int err;
2059
2060 err = mutex_lock_interruptible(&input_mutex);
2061 if (err)
2062 return err;
2063
2064 /* No load-on-demand here? */
2065 handler = input_table[iminor(inode) >> 5];
2066 if (handler)
2067 new_fops = fops_get(handler->fops);
2068
2069 mutex_unlock(&input_mutex);
2070
2071 /*
2072 * That's _really_ odd. Usually NULL ->open means "nothing special",
2073 * not "no device". Oh, well...
2074 */
2075 if (!new_fops || !new_fops->open) {
2076 fops_put(new_fops);
2077 err = -ENODEV;
2078 goto out;
2079 }
2080
2081 old_fops = file->f_op;
2082 file->f_op = new_fops;
2083
2084 err = new_fops->open(inode, file);
2085 if (err) {
2086 fops_put(file->f_op);
2087 file->f_op = fops_get(old_fops);
2088 }
2089 fops_put(old_fops);
2090 out:
2091 return err;
2092 }
2093
2094 static const struct file_operations input_fops = {
2095 .owner = THIS_MODULE,
2096 .open = input_open_file,
2097 .llseek = noop_llseek,
2098 };
2099
2100 static int __init input_init(void)
2101 {
2102 int err;
2103
2104 err = class_register(&input_class);
2105 if (err) {
2106 pr_err("unable to register input_dev class\n");
2107 return err;
2108 }
2109
2110 err = input_proc_init();
2111 if (err)
2112 goto fail1;
2113
2114 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2115 if (err) {
2116 pr_err("unable to register char major %d", INPUT_MAJOR);
2117 goto fail2;
2118 }
2119
2120 return 0;
2121
2122 fail2: input_proc_exit();
2123 fail1: class_unregister(&input_class);
2124 return err;
2125 }
2126
2127 static void __exit input_exit(void)
2128 {
2129 input_proc_exit();
2130 unregister_chrdev(INPUT_MAJOR, "input");
2131 class_unregister(&input_class);
2132 }
2133
2134 subsys_initcall(input_init);
2135 module_exit(input_exit);