]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/input/input.c
proc: convert everything to "struct proc_ops"
[mirror_ubuntu-jammy-kernel.git] / drivers / input / input.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
8
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
28
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32
33 #define INPUT_MAX_CHAR_DEVICES 1024
34 #define INPUT_FIRST_DYNAMIC_DEV 256
35 static DEFINE_IDA(input_ida);
36
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39
40 /*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46 static DEFINE_MUTEX(input_mutex);
47
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49
50 static inline int is_event_supported(unsigned int code,
51 unsigned long *bm, unsigned int max)
52 {
53 return code <= max && test_bit(code, bm);
54 }
55
56 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57 {
58 if (fuzz) {
59 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 return old_val;
61
62 if (value > old_val - fuzz && value < old_val + fuzz)
63 return (old_val * 3 + value) / 4;
64
65 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 return (old_val + value) / 2;
67 }
68
69 return value;
70 }
71
72 static void input_start_autorepeat(struct input_dev *dev, int code)
73 {
74 if (test_bit(EV_REP, dev->evbit) &&
75 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
76 dev->timer.function) {
77 dev->repeat_key = code;
78 mod_timer(&dev->timer,
79 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
80 }
81 }
82
83 static void input_stop_autorepeat(struct input_dev *dev)
84 {
85 del_timer(&dev->timer);
86 }
87
88 /*
89 * Pass event first through all filters and then, if event has not been
90 * filtered out, through all open handles. This function is called with
91 * dev->event_lock held and interrupts disabled.
92 */
93 static unsigned int input_to_handler(struct input_handle *handle,
94 struct input_value *vals, unsigned int count)
95 {
96 struct input_handler *handler = handle->handler;
97 struct input_value *end = vals;
98 struct input_value *v;
99
100 if (handler->filter) {
101 for (v = vals; v != vals + count; v++) {
102 if (handler->filter(handle, v->type, v->code, v->value))
103 continue;
104 if (end != v)
105 *end = *v;
106 end++;
107 }
108 count = end - vals;
109 }
110
111 if (!count)
112 return 0;
113
114 if (handler->events)
115 handler->events(handle, vals, count);
116 else if (handler->event)
117 for (v = vals; v != vals + count; v++)
118 handler->event(handle, v->type, v->code, v->value);
119
120 return count;
121 }
122
123 /*
124 * Pass values first through all filters and then, if event has not been
125 * filtered out, through all open handles. This function is called with
126 * dev->event_lock held and interrupts disabled.
127 */
128 static void input_pass_values(struct input_dev *dev,
129 struct input_value *vals, unsigned int count)
130 {
131 struct input_handle *handle;
132 struct input_value *v;
133
134 if (!count)
135 return;
136
137 rcu_read_lock();
138
139 handle = rcu_dereference(dev->grab);
140 if (handle) {
141 count = input_to_handler(handle, vals, count);
142 } else {
143 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
144 if (handle->open) {
145 count = input_to_handler(handle, vals, count);
146 if (!count)
147 break;
148 }
149 }
150
151 rcu_read_unlock();
152
153 /* trigger auto repeat for key events */
154 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
155 for (v = vals; v != vals + count; v++) {
156 if (v->type == EV_KEY && v->value != 2) {
157 if (v->value)
158 input_start_autorepeat(dev, v->code);
159 else
160 input_stop_autorepeat(dev);
161 }
162 }
163 }
164 }
165
166 static void input_pass_event(struct input_dev *dev,
167 unsigned int type, unsigned int code, int value)
168 {
169 struct input_value vals[] = { { type, code, value } };
170
171 input_pass_values(dev, vals, ARRAY_SIZE(vals));
172 }
173
174 /*
175 * Generate software autorepeat event. Note that we take
176 * dev->event_lock here to avoid racing with input_event
177 * which may cause keys get "stuck".
178 */
179 static void input_repeat_key(struct timer_list *t)
180 {
181 struct input_dev *dev = from_timer(dev, t, timer);
182 unsigned long flags;
183
184 spin_lock_irqsave(&dev->event_lock, flags);
185
186 if (test_bit(dev->repeat_key, dev->key) &&
187 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
188 struct input_value vals[] = {
189 { EV_KEY, dev->repeat_key, 2 },
190 input_value_sync
191 };
192
193 input_pass_values(dev, vals, ARRAY_SIZE(vals));
194
195 if (dev->rep[REP_PERIOD])
196 mod_timer(&dev->timer, jiffies +
197 msecs_to_jiffies(dev->rep[REP_PERIOD]));
198 }
199
200 spin_unlock_irqrestore(&dev->event_lock, flags);
201 }
202
203 #define INPUT_IGNORE_EVENT 0
204 #define INPUT_PASS_TO_HANDLERS 1
205 #define INPUT_PASS_TO_DEVICE 2
206 #define INPUT_SLOT 4
207 #define INPUT_FLUSH 8
208 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
209
210 static int input_handle_abs_event(struct input_dev *dev,
211 unsigned int code, int *pval)
212 {
213 struct input_mt *mt = dev->mt;
214 bool is_mt_event;
215 int *pold;
216
217 if (code == ABS_MT_SLOT) {
218 /*
219 * "Stage" the event; we'll flush it later, when we
220 * get actual touch data.
221 */
222 if (mt && *pval >= 0 && *pval < mt->num_slots)
223 mt->slot = *pval;
224
225 return INPUT_IGNORE_EVENT;
226 }
227
228 is_mt_event = input_is_mt_value(code);
229
230 if (!is_mt_event) {
231 pold = &dev->absinfo[code].value;
232 } else if (mt) {
233 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
234 } else {
235 /*
236 * Bypass filtering for multi-touch events when
237 * not employing slots.
238 */
239 pold = NULL;
240 }
241
242 if (pold) {
243 *pval = input_defuzz_abs_event(*pval, *pold,
244 dev->absinfo[code].fuzz);
245 if (*pold == *pval)
246 return INPUT_IGNORE_EVENT;
247
248 *pold = *pval;
249 }
250
251 /* Flush pending "slot" event */
252 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
253 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
254 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
255 }
256
257 return INPUT_PASS_TO_HANDLERS;
258 }
259
260 static int input_get_disposition(struct input_dev *dev,
261 unsigned int type, unsigned int code, int *pval)
262 {
263 int disposition = INPUT_IGNORE_EVENT;
264 int value = *pval;
265
266 switch (type) {
267
268 case EV_SYN:
269 switch (code) {
270 case SYN_CONFIG:
271 disposition = INPUT_PASS_TO_ALL;
272 break;
273
274 case SYN_REPORT:
275 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
276 break;
277 case SYN_MT_REPORT:
278 disposition = INPUT_PASS_TO_HANDLERS;
279 break;
280 }
281 break;
282
283 case EV_KEY:
284 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
285
286 /* auto-repeat bypasses state updates */
287 if (value == 2) {
288 disposition = INPUT_PASS_TO_HANDLERS;
289 break;
290 }
291
292 if (!!test_bit(code, dev->key) != !!value) {
293
294 __change_bit(code, dev->key);
295 disposition = INPUT_PASS_TO_HANDLERS;
296 }
297 }
298 break;
299
300 case EV_SW:
301 if (is_event_supported(code, dev->swbit, SW_MAX) &&
302 !!test_bit(code, dev->sw) != !!value) {
303
304 __change_bit(code, dev->sw);
305 disposition = INPUT_PASS_TO_HANDLERS;
306 }
307 break;
308
309 case EV_ABS:
310 if (is_event_supported(code, dev->absbit, ABS_MAX))
311 disposition = input_handle_abs_event(dev, code, &value);
312
313 break;
314
315 case EV_REL:
316 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
317 disposition = INPUT_PASS_TO_HANDLERS;
318
319 break;
320
321 case EV_MSC:
322 if (is_event_supported(code, dev->mscbit, MSC_MAX))
323 disposition = INPUT_PASS_TO_ALL;
324
325 break;
326
327 case EV_LED:
328 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
329 !!test_bit(code, dev->led) != !!value) {
330
331 __change_bit(code, dev->led);
332 disposition = INPUT_PASS_TO_ALL;
333 }
334 break;
335
336 case EV_SND:
337 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
338
339 if (!!test_bit(code, dev->snd) != !!value)
340 __change_bit(code, dev->snd);
341 disposition = INPUT_PASS_TO_ALL;
342 }
343 break;
344
345 case EV_REP:
346 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
347 dev->rep[code] = value;
348 disposition = INPUT_PASS_TO_ALL;
349 }
350 break;
351
352 case EV_FF:
353 if (value >= 0)
354 disposition = INPUT_PASS_TO_ALL;
355 break;
356
357 case EV_PWR:
358 disposition = INPUT_PASS_TO_ALL;
359 break;
360 }
361
362 *pval = value;
363 return disposition;
364 }
365
366 static void input_handle_event(struct input_dev *dev,
367 unsigned int type, unsigned int code, int value)
368 {
369 int disposition = input_get_disposition(dev, type, code, &value);
370
371 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
372 add_input_randomness(type, code, value);
373
374 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
375 dev->event(dev, type, code, value);
376
377 if (!dev->vals)
378 return;
379
380 if (disposition & INPUT_PASS_TO_HANDLERS) {
381 struct input_value *v;
382
383 if (disposition & INPUT_SLOT) {
384 v = &dev->vals[dev->num_vals++];
385 v->type = EV_ABS;
386 v->code = ABS_MT_SLOT;
387 v->value = dev->mt->slot;
388 }
389
390 v = &dev->vals[dev->num_vals++];
391 v->type = type;
392 v->code = code;
393 v->value = value;
394 }
395
396 if (disposition & INPUT_FLUSH) {
397 if (dev->num_vals >= 2)
398 input_pass_values(dev, dev->vals, dev->num_vals);
399 dev->num_vals = 0;
400 /*
401 * Reset the timestamp on flush so we won't end up
402 * with a stale one. Note we only need to reset the
403 * monolithic one as we use its presence when deciding
404 * whether to generate a synthetic timestamp.
405 */
406 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
407 } else if (dev->num_vals >= dev->max_vals - 2) {
408 dev->vals[dev->num_vals++] = input_value_sync;
409 input_pass_values(dev, dev->vals, dev->num_vals);
410 dev->num_vals = 0;
411 }
412
413 }
414
415 /**
416 * input_event() - report new input event
417 * @dev: device that generated the event
418 * @type: type of the event
419 * @code: event code
420 * @value: value of the event
421 *
422 * This function should be used by drivers implementing various input
423 * devices to report input events. See also input_inject_event().
424 *
425 * NOTE: input_event() may be safely used right after input device was
426 * allocated with input_allocate_device(), even before it is registered
427 * with input_register_device(), but the event will not reach any of the
428 * input handlers. Such early invocation of input_event() may be used
429 * to 'seed' initial state of a switch or initial position of absolute
430 * axis, etc.
431 */
432 void input_event(struct input_dev *dev,
433 unsigned int type, unsigned int code, int value)
434 {
435 unsigned long flags;
436
437 if (is_event_supported(type, dev->evbit, EV_MAX)) {
438
439 spin_lock_irqsave(&dev->event_lock, flags);
440 input_handle_event(dev, type, code, value);
441 spin_unlock_irqrestore(&dev->event_lock, flags);
442 }
443 }
444 EXPORT_SYMBOL(input_event);
445
446 /**
447 * input_inject_event() - send input event from input handler
448 * @handle: input handle to send event through
449 * @type: type of the event
450 * @code: event code
451 * @value: value of the event
452 *
453 * Similar to input_event() but will ignore event if device is
454 * "grabbed" and handle injecting event is not the one that owns
455 * the device.
456 */
457 void input_inject_event(struct input_handle *handle,
458 unsigned int type, unsigned int code, int value)
459 {
460 struct input_dev *dev = handle->dev;
461 struct input_handle *grab;
462 unsigned long flags;
463
464 if (is_event_supported(type, dev->evbit, EV_MAX)) {
465 spin_lock_irqsave(&dev->event_lock, flags);
466
467 rcu_read_lock();
468 grab = rcu_dereference(dev->grab);
469 if (!grab || grab == handle)
470 input_handle_event(dev, type, code, value);
471 rcu_read_unlock();
472
473 spin_unlock_irqrestore(&dev->event_lock, flags);
474 }
475 }
476 EXPORT_SYMBOL(input_inject_event);
477
478 /**
479 * input_alloc_absinfo - allocates array of input_absinfo structs
480 * @dev: the input device emitting absolute events
481 *
482 * If the absinfo struct the caller asked for is already allocated, this
483 * functions will not do anything.
484 */
485 void input_alloc_absinfo(struct input_dev *dev)
486 {
487 if (dev->absinfo)
488 return;
489
490 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
491 if (!dev->absinfo) {
492 dev_err(dev->dev.parent ?: &dev->dev,
493 "%s: unable to allocate memory\n", __func__);
494 /*
495 * We will handle this allocation failure in
496 * input_register_device() when we refuse to register input
497 * device with ABS bits but without absinfo.
498 */
499 }
500 }
501 EXPORT_SYMBOL(input_alloc_absinfo);
502
503 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
504 int min, int max, int fuzz, int flat)
505 {
506 struct input_absinfo *absinfo;
507
508 input_alloc_absinfo(dev);
509 if (!dev->absinfo)
510 return;
511
512 absinfo = &dev->absinfo[axis];
513 absinfo->minimum = min;
514 absinfo->maximum = max;
515 absinfo->fuzz = fuzz;
516 absinfo->flat = flat;
517
518 __set_bit(EV_ABS, dev->evbit);
519 __set_bit(axis, dev->absbit);
520 }
521 EXPORT_SYMBOL(input_set_abs_params);
522
523
524 /**
525 * input_grab_device - grabs device for exclusive use
526 * @handle: input handle that wants to own the device
527 *
528 * When a device is grabbed by an input handle all events generated by
529 * the device are delivered only to this handle. Also events injected
530 * by other input handles are ignored while device is grabbed.
531 */
532 int input_grab_device(struct input_handle *handle)
533 {
534 struct input_dev *dev = handle->dev;
535 int retval;
536
537 retval = mutex_lock_interruptible(&dev->mutex);
538 if (retval)
539 return retval;
540
541 if (dev->grab) {
542 retval = -EBUSY;
543 goto out;
544 }
545
546 rcu_assign_pointer(dev->grab, handle);
547
548 out:
549 mutex_unlock(&dev->mutex);
550 return retval;
551 }
552 EXPORT_SYMBOL(input_grab_device);
553
554 static void __input_release_device(struct input_handle *handle)
555 {
556 struct input_dev *dev = handle->dev;
557 struct input_handle *grabber;
558
559 grabber = rcu_dereference_protected(dev->grab,
560 lockdep_is_held(&dev->mutex));
561 if (grabber == handle) {
562 rcu_assign_pointer(dev->grab, NULL);
563 /* Make sure input_pass_event() notices that grab is gone */
564 synchronize_rcu();
565
566 list_for_each_entry(handle, &dev->h_list, d_node)
567 if (handle->open && handle->handler->start)
568 handle->handler->start(handle);
569 }
570 }
571
572 /**
573 * input_release_device - release previously grabbed device
574 * @handle: input handle that owns the device
575 *
576 * Releases previously grabbed device so that other input handles can
577 * start receiving input events. Upon release all handlers attached
578 * to the device have their start() method called so they have a change
579 * to synchronize device state with the rest of the system.
580 */
581 void input_release_device(struct input_handle *handle)
582 {
583 struct input_dev *dev = handle->dev;
584
585 mutex_lock(&dev->mutex);
586 __input_release_device(handle);
587 mutex_unlock(&dev->mutex);
588 }
589 EXPORT_SYMBOL(input_release_device);
590
591 /**
592 * input_open_device - open input device
593 * @handle: handle through which device is being accessed
594 *
595 * This function should be called by input handlers when they
596 * want to start receive events from given input device.
597 */
598 int input_open_device(struct input_handle *handle)
599 {
600 struct input_dev *dev = handle->dev;
601 int retval;
602
603 retval = mutex_lock_interruptible(&dev->mutex);
604 if (retval)
605 return retval;
606
607 if (dev->going_away) {
608 retval = -ENODEV;
609 goto out;
610 }
611
612 handle->open++;
613
614 if (dev->users++) {
615 /*
616 * Device is already opened, so we can exit immediately and
617 * report success.
618 */
619 goto out;
620 }
621
622 if (dev->open) {
623 retval = dev->open(dev);
624 if (retval) {
625 dev->users--;
626 handle->open--;
627 /*
628 * Make sure we are not delivering any more events
629 * through this handle
630 */
631 synchronize_rcu();
632 goto out;
633 }
634 }
635
636 if (dev->poller)
637 input_dev_poller_start(dev->poller);
638
639 out:
640 mutex_unlock(&dev->mutex);
641 return retval;
642 }
643 EXPORT_SYMBOL(input_open_device);
644
645 int input_flush_device(struct input_handle *handle, struct file *file)
646 {
647 struct input_dev *dev = handle->dev;
648 int retval;
649
650 retval = mutex_lock_interruptible(&dev->mutex);
651 if (retval)
652 return retval;
653
654 if (dev->flush)
655 retval = dev->flush(dev, file);
656
657 mutex_unlock(&dev->mutex);
658 return retval;
659 }
660 EXPORT_SYMBOL(input_flush_device);
661
662 /**
663 * input_close_device - close input device
664 * @handle: handle through which device is being accessed
665 *
666 * This function should be called by input handlers when they
667 * want to stop receive events from given input device.
668 */
669 void input_close_device(struct input_handle *handle)
670 {
671 struct input_dev *dev = handle->dev;
672
673 mutex_lock(&dev->mutex);
674
675 __input_release_device(handle);
676
677 if (!--dev->users) {
678 if (dev->poller)
679 input_dev_poller_stop(dev->poller);
680
681 if (dev->close)
682 dev->close(dev);
683 }
684
685 if (!--handle->open) {
686 /*
687 * synchronize_rcu() makes sure that input_pass_event()
688 * completed and that no more input events are delivered
689 * through this handle
690 */
691 synchronize_rcu();
692 }
693
694 mutex_unlock(&dev->mutex);
695 }
696 EXPORT_SYMBOL(input_close_device);
697
698 /*
699 * Simulate keyup events for all keys that are marked as pressed.
700 * The function must be called with dev->event_lock held.
701 */
702 static void input_dev_release_keys(struct input_dev *dev)
703 {
704 bool need_sync = false;
705 int code;
706
707 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
708 for_each_set_bit(code, dev->key, KEY_CNT) {
709 input_pass_event(dev, EV_KEY, code, 0);
710 need_sync = true;
711 }
712
713 if (need_sync)
714 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
715
716 memset(dev->key, 0, sizeof(dev->key));
717 }
718 }
719
720 /*
721 * Prepare device for unregistering
722 */
723 static void input_disconnect_device(struct input_dev *dev)
724 {
725 struct input_handle *handle;
726
727 /*
728 * Mark device as going away. Note that we take dev->mutex here
729 * not to protect access to dev->going_away but rather to ensure
730 * that there are no threads in the middle of input_open_device()
731 */
732 mutex_lock(&dev->mutex);
733 dev->going_away = true;
734 mutex_unlock(&dev->mutex);
735
736 spin_lock_irq(&dev->event_lock);
737
738 /*
739 * Simulate keyup events for all pressed keys so that handlers
740 * are not left with "stuck" keys. The driver may continue
741 * generate events even after we done here but they will not
742 * reach any handlers.
743 */
744 input_dev_release_keys(dev);
745
746 list_for_each_entry(handle, &dev->h_list, d_node)
747 handle->open = 0;
748
749 spin_unlock_irq(&dev->event_lock);
750 }
751
752 /**
753 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
754 * @ke: keymap entry containing scancode to be converted.
755 * @scancode: pointer to the location where converted scancode should
756 * be stored.
757 *
758 * This function is used to convert scancode stored in &struct keymap_entry
759 * into scalar form understood by legacy keymap handling methods. These
760 * methods expect scancodes to be represented as 'unsigned int'.
761 */
762 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
763 unsigned int *scancode)
764 {
765 switch (ke->len) {
766 case 1:
767 *scancode = *((u8 *)ke->scancode);
768 break;
769
770 case 2:
771 *scancode = *((u16 *)ke->scancode);
772 break;
773
774 case 4:
775 *scancode = *((u32 *)ke->scancode);
776 break;
777
778 default:
779 return -EINVAL;
780 }
781
782 return 0;
783 }
784 EXPORT_SYMBOL(input_scancode_to_scalar);
785
786 /*
787 * Those routines handle the default case where no [gs]etkeycode() is
788 * defined. In this case, an array indexed by the scancode is used.
789 */
790
791 static unsigned int input_fetch_keycode(struct input_dev *dev,
792 unsigned int index)
793 {
794 switch (dev->keycodesize) {
795 case 1:
796 return ((u8 *)dev->keycode)[index];
797
798 case 2:
799 return ((u16 *)dev->keycode)[index];
800
801 default:
802 return ((u32 *)dev->keycode)[index];
803 }
804 }
805
806 static int input_default_getkeycode(struct input_dev *dev,
807 struct input_keymap_entry *ke)
808 {
809 unsigned int index;
810 int error;
811
812 if (!dev->keycodesize)
813 return -EINVAL;
814
815 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
816 index = ke->index;
817 else {
818 error = input_scancode_to_scalar(ke, &index);
819 if (error)
820 return error;
821 }
822
823 if (index >= dev->keycodemax)
824 return -EINVAL;
825
826 ke->keycode = input_fetch_keycode(dev, index);
827 ke->index = index;
828 ke->len = sizeof(index);
829 memcpy(ke->scancode, &index, sizeof(index));
830
831 return 0;
832 }
833
834 static int input_default_setkeycode(struct input_dev *dev,
835 const struct input_keymap_entry *ke,
836 unsigned int *old_keycode)
837 {
838 unsigned int index;
839 int error;
840 int i;
841
842 if (!dev->keycodesize)
843 return -EINVAL;
844
845 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
846 index = ke->index;
847 } else {
848 error = input_scancode_to_scalar(ke, &index);
849 if (error)
850 return error;
851 }
852
853 if (index >= dev->keycodemax)
854 return -EINVAL;
855
856 if (dev->keycodesize < sizeof(ke->keycode) &&
857 (ke->keycode >> (dev->keycodesize * 8)))
858 return -EINVAL;
859
860 switch (dev->keycodesize) {
861 case 1: {
862 u8 *k = (u8 *)dev->keycode;
863 *old_keycode = k[index];
864 k[index] = ke->keycode;
865 break;
866 }
867 case 2: {
868 u16 *k = (u16 *)dev->keycode;
869 *old_keycode = k[index];
870 k[index] = ke->keycode;
871 break;
872 }
873 default: {
874 u32 *k = (u32 *)dev->keycode;
875 *old_keycode = k[index];
876 k[index] = ke->keycode;
877 break;
878 }
879 }
880
881 if (*old_keycode <= KEY_MAX) {
882 __clear_bit(*old_keycode, dev->keybit);
883 for (i = 0; i < dev->keycodemax; i++) {
884 if (input_fetch_keycode(dev, i) == *old_keycode) {
885 __set_bit(*old_keycode, dev->keybit);
886 /* Setting the bit twice is useless, so break */
887 break;
888 }
889 }
890 }
891
892 __set_bit(ke->keycode, dev->keybit);
893 return 0;
894 }
895
896 /**
897 * input_get_keycode - retrieve keycode currently mapped to a given scancode
898 * @dev: input device which keymap is being queried
899 * @ke: keymap entry
900 *
901 * This function should be called by anyone interested in retrieving current
902 * keymap. Presently evdev handlers use it.
903 */
904 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
905 {
906 unsigned long flags;
907 int retval;
908
909 spin_lock_irqsave(&dev->event_lock, flags);
910 retval = dev->getkeycode(dev, ke);
911 spin_unlock_irqrestore(&dev->event_lock, flags);
912
913 return retval;
914 }
915 EXPORT_SYMBOL(input_get_keycode);
916
917 /**
918 * input_set_keycode - attribute a keycode to a given scancode
919 * @dev: input device which keymap is being updated
920 * @ke: new keymap entry
921 *
922 * This function should be called by anyone needing to update current
923 * keymap. Presently keyboard and evdev handlers use it.
924 */
925 int input_set_keycode(struct input_dev *dev,
926 const struct input_keymap_entry *ke)
927 {
928 unsigned long flags;
929 unsigned int old_keycode;
930 int retval;
931
932 if (ke->keycode > KEY_MAX)
933 return -EINVAL;
934
935 spin_lock_irqsave(&dev->event_lock, flags);
936
937 retval = dev->setkeycode(dev, ke, &old_keycode);
938 if (retval)
939 goto out;
940
941 /* Make sure KEY_RESERVED did not get enabled. */
942 __clear_bit(KEY_RESERVED, dev->keybit);
943
944 /*
945 * Simulate keyup event if keycode is not present
946 * in the keymap anymore
947 */
948 if (old_keycode > KEY_MAX) {
949 dev_warn(dev->dev.parent ?: &dev->dev,
950 "%s: got too big old keycode %#x\n",
951 __func__, old_keycode);
952 } else if (test_bit(EV_KEY, dev->evbit) &&
953 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
954 __test_and_clear_bit(old_keycode, dev->key)) {
955 struct input_value vals[] = {
956 { EV_KEY, old_keycode, 0 },
957 input_value_sync
958 };
959
960 input_pass_values(dev, vals, ARRAY_SIZE(vals));
961 }
962
963 out:
964 spin_unlock_irqrestore(&dev->event_lock, flags);
965
966 return retval;
967 }
968 EXPORT_SYMBOL(input_set_keycode);
969
970 bool input_match_device_id(const struct input_dev *dev,
971 const struct input_device_id *id)
972 {
973 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
974 if (id->bustype != dev->id.bustype)
975 return false;
976
977 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
978 if (id->vendor != dev->id.vendor)
979 return false;
980
981 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
982 if (id->product != dev->id.product)
983 return false;
984
985 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
986 if (id->version != dev->id.version)
987 return false;
988
989 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
990 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
991 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
992 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
993 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
994 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
995 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
996 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
997 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
998 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
999 return false;
1000 }
1001
1002 return true;
1003 }
1004 EXPORT_SYMBOL(input_match_device_id);
1005
1006 static const struct input_device_id *input_match_device(struct input_handler *handler,
1007 struct input_dev *dev)
1008 {
1009 const struct input_device_id *id;
1010
1011 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1012 if (input_match_device_id(dev, id) &&
1013 (!handler->match || handler->match(handler, dev))) {
1014 return id;
1015 }
1016 }
1017
1018 return NULL;
1019 }
1020
1021 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1022 {
1023 const struct input_device_id *id;
1024 int error;
1025
1026 id = input_match_device(handler, dev);
1027 if (!id)
1028 return -ENODEV;
1029
1030 error = handler->connect(handler, dev, id);
1031 if (error && error != -ENODEV)
1032 pr_err("failed to attach handler %s to device %s, error: %d\n",
1033 handler->name, kobject_name(&dev->dev.kobj), error);
1034
1035 return error;
1036 }
1037
1038 #ifdef CONFIG_COMPAT
1039
1040 static int input_bits_to_string(char *buf, int buf_size,
1041 unsigned long bits, bool skip_empty)
1042 {
1043 int len = 0;
1044
1045 if (in_compat_syscall()) {
1046 u32 dword = bits >> 32;
1047 if (dword || !skip_empty)
1048 len += snprintf(buf, buf_size, "%x ", dword);
1049
1050 dword = bits & 0xffffffffUL;
1051 if (dword || !skip_empty || len)
1052 len += snprintf(buf + len, max(buf_size - len, 0),
1053 "%x", dword);
1054 } else {
1055 if (bits || !skip_empty)
1056 len += snprintf(buf, buf_size, "%lx", bits);
1057 }
1058
1059 return len;
1060 }
1061
1062 #else /* !CONFIG_COMPAT */
1063
1064 static int input_bits_to_string(char *buf, int buf_size,
1065 unsigned long bits, bool skip_empty)
1066 {
1067 return bits || !skip_empty ?
1068 snprintf(buf, buf_size, "%lx", bits) : 0;
1069 }
1070
1071 #endif
1072
1073 #ifdef CONFIG_PROC_FS
1074
1075 static struct proc_dir_entry *proc_bus_input_dir;
1076 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1077 static int input_devices_state;
1078
1079 static inline void input_wakeup_procfs_readers(void)
1080 {
1081 input_devices_state++;
1082 wake_up(&input_devices_poll_wait);
1083 }
1084
1085 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1086 {
1087 poll_wait(file, &input_devices_poll_wait, wait);
1088 if (file->f_version != input_devices_state) {
1089 file->f_version = input_devices_state;
1090 return EPOLLIN | EPOLLRDNORM;
1091 }
1092
1093 return 0;
1094 }
1095
1096 union input_seq_state {
1097 struct {
1098 unsigned short pos;
1099 bool mutex_acquired;
1100 };
1101 void *p;
1102 };
1103
1104 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1105 {
1106 union input_seq_state *state = (union input_seq_state *)&seq->private;
1107 int error;
1108
1109 /* We need to fit into seq->private pointer */
1110 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1111
1112 error = mutex_lock_interruptible(&input_mutex);
1113 if (error) {
1114 state->mutex_acquired = false;
1115 return ERR_PTR(error);
1116 }
1117
1118 state->mutex_acquired = true;
1119
1120 return seq_list_start(&input_dev_list, *pos);
1121 }
1122
1123 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1124 {
1125 return seq_list_next(v, &input_dev_list, pos);
1126 }
1127
1128 static void input_seq_stop(struct seq_file *seq, void *v)
1129 {
1130 union input_seq_state *state = (union input_seq_state *)&seq->private;
1131
1132 if (state->mutex_acquired)
1133 mutex_unlock(&input_mutex);
1134 }
1135
1136 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1137 unsigned long *bitmap, int max)
1138 {
1139 int i;
1140 bool skip_empty = true;
1141 char buf[18];
1142
1143 seq_printf(seq, "B: %s=", name);
1144
1145 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1146 if (input_bits_to_string(buf, sizeof(buf),
1147 bitmap[i], skip_empty)) {
1148 skip_empty = false;
1149 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1150 }
1151 }
1152
1153 /*
1154 * If no output was produced print a single 0.
1155 */
1156 if (skip_empty)
1157 seq_putc(seq, '0');
1158
1159 seq_putc(seq, '\n');
1160 }
1161
1162 static int input_devices_seq_show(struct seq_file *seq, void *v)
1163 {
1164 struct input_dev *dev = container_of(v, struct input_dev, node);
1165 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1166 struct input_handle *handle;
1167
1168 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1169 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1170
1171 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1172 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1173 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1174 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1175 seq_puts(seq, "H: Handlers=");
1176
1177 list_for_each_entry(handle, &dev->h_list, d_node)
1178 seq_printf(seq, "%s ", handle->name);
1179 seq_putc(seq, '\n');
1180
1181 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1182
1183 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1184 if (test_bit(EV_KEY, dev->evbit))
1185 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1186 if (test_bit(EV_REL, dev->evbit))
1187 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1188 if (test_bit(EV_ABS, dev->evbit))
1189 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1190 if (test_bit(EV_MSC, dev->evbit))
1191 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1192 if (test_bit(EV_LED, dev->evbit))
1193 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1194 if (test_bit(EV_SND, dev->evbit))
1195 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1196 if (test_bit(EV_FF, dev->evbit))
1197 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1198 if (test_bit(EV_SW, dev->evbit))
1199 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1200
1201 seq_putc(seq, '\n');
1202
1203 kfree(path);
1204 return 0;
1205 }
1206
1207 static const struct seq_operations input_devices_seq_ops = {
1208 .start = input_devices_seq_start,
1209 .next = input_devices_seq_next,
1210 .stop = input_seq_stop,
1211 .show = input_devices_seq_show,
1212 };
1213
1214 static int input_proc_devices_open(struct inode *inode, struct file *file)
1215 {
1216 return seq_open(file, &input_devices_seq_ops);
1217 }
1218
1219 static const struct proc_ops input_devices_proc_ops = {
1220 .proc_open = input_proc_devices_open,
1221 .proc_poll = input_proc_devices_poll,
1222 .proc_read = seq_read,
1223 .proc_lseek = seq_lseek,
1224 .proc_release = seq_release,
1225 };
1226
1227 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1228 {
1229 union input_seq_state *state = (union input_seq_state *)&seq->private;
1230 int error;
1231
1232 /* We need to fit into seq->private pointer */
1233 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1234
1235 error = mutex_lock_interruptible(&input_mutex);
1236 if (error) {
1237 state->mutex_acquired = false;
1238 return ERR_PTR(error);
1239 }
1240
1241 state->mutex_acquired = true;
1242 state->pos = *pos;
1243
1244 return seq_list_start(&input_handler_list, *pos);
1245 }
1246
1247 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1248 {
1249 union input_seq_state *state = (union input_seq_state *)&seq->private;
1250
1251 state->pos = *pos + 1;
1252 return seq_list_next(v, &input_handler_list, pos);
1253 }
1254
1255 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1256 {
1257 struct input_handler *handler = container_of(v, struct input_handler, node);
1258 union input_seq_state *state = (union input_seq_state *)&seq->private;
1259
1260 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1261 if (handler->filter)
1262 seq_puts(seq, " (filter)");
1263 if (handler->legacy_minors)
1264 seq_printf(seq, " Minor=%d", handler->minor);
1265 seq_putc(seq, '\n');
1266
1267 return 0;
1268 }
1269
1270 static const struct seq_operations input_handlers_seq_ops = {
1271 .start = input_handlers_seq_start,
1272 .next = input_handlers_seq_next,
1273 .stop = input_seq_stop,
1274 .show = input_handlers_seq_show,
1275 };
1276
1277 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1278 {
1279 return seq_open(file, &input_handlers_seq_ops);
1280 }
1281
1282 static const struct proc_ops input_handlers_proc_ops = {
1283 .proc_open = input_proc_handlers_open,
1284 .proc_read = seq_read,
1285 .proc_lseek = seq_lseek,
1286 .proc_release = seq_release,
1287 };
1288
1289 static int __init input_proc_init(void)
1290 {
1291 struct proc_dir_entry *entry;
1292
1293 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1294 if (!proc_bus_input_dir)
1295 return -ENOMEM;
1296
1297 entry = proc_create("devices", 0, proc_bus_input_dir,
1298 &input_devices_proc_ops);
1299 if (!entry)
1300 goto fail1;
1301
1302 entry = proc_create("handlers", 0, proc_bus_input_dir,
1303 &input_handlers_proc_ops);
1304 if (!entry)
1305 goto fail2;
1306
1307 return 0;
1308
1309 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1310 fail1: remove_proc_entry("bus/input", NULL);
1311 return -ENOMEM;
1312 }
1313
1314 static void input_proc_exit(void)
1315 {
1316 remove_proc_entry("devices", proc_bus_input_dir);
1317 remove_proc_entry("handlers", proc_bus_input_dir);
1318 remove_proc_entry("bus/input", NULL);
1319 }
1320
1321 #else /* !CONFIG_PROC_FS */
1322 static inline void input_wakeup_procfs_readers(void) { }
1323 static inline int input_proc_init(void) { return 0; }
1324 static inline void input_proc_exit(void) { }
1325 #endif
1326
1327 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1328 static ssize_t input_dev_show_##name(struct device *dev, \
1329 struct device_attribute *attr, \
1330 char *buf) \
1331 { \
1332 struct input_dev *input_dev = to_input_dev(dev); \
1333 \
1334 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1335 input_dev->name ? input_dev->name : ""); \
1336 } \
1337 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1338
1339 INPUT_DEV_STRING_ATTR_SHOW(name);
1340 INPUT_DEV_STRING_ATTR_SHOW(phys);
1341 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1342
1343 static int input_print_modalias_bits(char *buf, int size,
1344 char name, unsigned long *bm,
1345 unsigned int min_bit, unsigned int max_bit)
1346 {
1347 int len = 0, i;
1348
1349 len += snprintf(buf, max(size, 0), "%c", name);
1350 for (i = min_bit; i < max_bit; i++)
1351 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1352 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1353 return len;
1354 }
1355
1356 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1357 int add_cr)
1358 {
1359 int len;
1360
1361 len = snprintf(buf, max(size, 0),
1362 "input:b%04Xv%04Xp%04Xe%04X-",
1363 id->id.bustype, id->id.vendor,
1364 id->id.product, id->id.version);
1365
1366 len += input_print_modalias_bits(buf + len, size - len,
1367 'e', id->evbit, 0, EV_MAX);
1368 len += input_print_modalias_bits(buf + len, size - len,
1369 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1370 len += input_print_modalias_bits(buf + len, size - len,
1371 'r', id->relbit, 0, REL_MAX);
1372 len += input_print_modalias_bits(buf + len, size - len,
1373 'a', id->absbit, 0, ABS_MAX);
1374 len += input_print_modalias_bits(buf + len, size - len,
1375 'm', id->mscbit, 0, MSC_MAX);
1376 len += input_print_modalias_bits(buf + len, size - len,
1377 'l', id->ledbit, 0, LED_MAX);
1378 len += input_print_modalias_bits(buf + len, size - len,
1379 's', id->sndbit, 0, SND_MAX);
1380 len += input_print_modalias_bits(buf + len, size - len,
1381 'f', id->ffbit, 0, FF_MAX);
1382 len += input_print_modalias_bits(buf + len, size - len,
1383 'w', id->swbit, 0, SW_MAX);
1384
1385 if (add_cr)
1386 len += snprintf(buf + len, max(size - len, 0), "\n");
1387
1388 return len;
1389 }
1390
1391 static ssize_t input_dev_show_modalias(struct device *dev,
1392 struct device_attribute *attr,
1393 char *buf)
1394 {
1395 struct input_dev *id = to_input_dev(dev);
1396 ssize_t len;
1397
1398 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1399
1400 return min_t(int, len, PAGE_SIZE);
1401 }
1402 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1403
1404 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1405 int max, int add_cr);
1406
1407 static ssize_t input_dev_show_properties(struct device *dev,
1408 struct device_attribute *attr,
1409 char *buf)
1410 {
1411 struct input_dev *input_dev = to_input_dev(dev);
1412 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1413 INPUT_PROP_MAX, true);
1414 return min_t(int, len, PAGE_SIZE);
1415 }
1416 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1417
1418 static struct attribute *input_dev_attrs[] = {
1419 &dev_attr_name.attr,
1420 &dev_attr_phys.attr,
1421 &dev_attr_uniq.attr,
1422 &dev_attr_modalias.attr,
1423 &dev_attr_properties.attr,
1424 NULL
1425 };
1426
1427 static const struct attribute_group input_dev_attr_group = {
1428 .attrs = input_dev_attrs,
1429 };
1430
1431 #define INPUT_DEV_ID_ATTR(name) \
1432 static ssize_t input_dev_show_id_##name(struct device *dev, \
1433 struct device_attribute *attr, \
1434 char *buf) \
1435 { \
1436 struct input_dev *input_dev = to_input_dev(dev); \
1437 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1438 } \
1439 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1440
1441 INPUT_DEV_ID_ATTR(bustype);
1442 INPUT_DEV_ID_ATTR(vendor);
1443 INPUT_DEV_ID_ATTR(product);
1444 INPUT_DEV_ID_ATTR(version);
1445
1446 static struct attribute *input_dev_id_attrs[] = {
1447 &dev_attr_bustype.attr,
1448 &dev_attr_vendor.attr,
1449 &dev_attr_product.attr,
1450 &dev_attr_version.attr,
1451 NULL
1452 };
1453
1454 static const struct attribute_group input_dev_id_attr_group = {
1455 .name = "id",
1456 .attrs = input_dev_id_attrs,
1457 };
1458
1459 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1460 int max, int add_cr)
1461 {
1462 int i;
1463 int len = 0;
1464 bool skip_empty = true;
1465
1466 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1467 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1468 bitmap[i], skip_empty);
1469 if (len) {
1470 skip_empty = false;
1471 if (i > 0)
1472 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1473 }
1474 }
1475
1476 /*
1477 * If no output was produced print a single 0.
1478 */
1479 if (len == 0)
1480 len = snprintf(buf, buf_size, "%d", 0);
1481
1482 if (add_cr)
1483 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1484
1485 return len;
1486 }
1487
1488 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1489 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1490 struct device_attribute *attr, \
1491 char *buf) \
1492 { \
1493 struct input_dev *input_dev = to_input_dev(dev); \
1494 int len = input_print_bitmap(buf, PAGE_SIZE, \
1495 input_dev->bm##bit, ev##_MAX, \
1496 true); \
1497 return min_t(int, len, PAGE_SIZE); \
1498 } \
1499 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1500
1501 INPUT_DEV_CAP_ATTR(EV, ev);
1502 INPUT_DEV_CAP_ATTR(KEY, key);
1503 INPUT_DEV_CAP_ATTR(REL, rel);
1504 INPUT_DEV_CAP_ATTR(ABS, abs);
1505 INPUT_DEV_CAP_ATTR(MSC, msc);
1506 INPUT_DEV_CAP_ATTR(LED, led);
1507 INPUT_DEV_CAP_ATTR(SND, snd);
1508 INPUT_DEV_CAP_ATTR(FF, ff);
1509 INPUT_DEV_CAP_ATTR(SW, sw);
1510
1511 static struct attribute *input_dev_caps_attrs[] = {
1512 &dev_attr_ev.attr,
1513 &dev_attr_key.attr,
1514 &dev_attr_rel.attr,
1515 &dev_attr_abs.attr,
1516 &dev_attr_msc.attr,
1517 &dev_attr_led.attr,
1518 &dev_attr_snd.attr,
1519 &dev_attr_ff.attr,
1520 &dev_attr_sw.attr,
1521 NULL
1522 };
1523
1524 static const struct attribute_group input_dev_caps_attr_group = {
1525 .name = "capabilities",
1526 .attrs = input_dev_caps_attrs,
1527 };
1528
1529 static const struct attribute_group *input_dev_attr_groups[] = {
1530 &input_dev_attr_group,
1531 &input_dev_id_attr_group,
1532 &input_dev_caps_attr_group,
1533 &input_poller_attribute_group,
1534 NULL
1535 };
1536
1537 static void input_dev_release(struct device *device)
1538 {
1539 struct input_dev *dev = to_input_dev(device);
1540
1541 input_ff_destroy(dev);
1542 input_mt_destroy_slots(dev);
1543 kfree(dev->poller);
1544 kfree(dev->absinfo);
1545 kfree(dev->vals);
1546 kfree(dev);
1547
1548 module_put(THIS_MODULE);
1549 }
1550
1551 /*
1552 * Input uevent interface - loading event handlers based on
1553 * device bitfields.
1554 */
1555 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1556 const char *name, unsigned long *bitmap, int max)
1557 {
1558 int len;
1559
1560 if (add_uevent_var(env, "%s", name))
1561 return -ENOMEM;
1562
1563 len = input_print_bitmap(&env->buf[env->buflen - 1],
1564 sizeof(env->buf) - env->buflen,
1565 bitmap, max, false);
1566 if (len >= (sizeof(env->buf) - env->buflen))
1567 return -ENOMEM;
1568
1569 env->buflen += len;
1570 return 0;
1571 }
1572
1573 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1574 struct input_dev *dev)
1575 {
1576 int len;
1577
1578 if (add_uevent_var(env, "MODALIAS="))
1579 return -ENOMEM;
1580
1581 len = input_print_modalias(&env->buf[env->buflen - 1],
1582 sizeof(env->buf) - env->buflen,
1583 dev, 0);
1584 if (len >= (sizeof(env->buf) - env->buflen))
1585 return -ENOMEM;
1586
1587 env->buflen += len;
1588 return 0;
1589 }
1590
1591 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1592 do { \
1593 int err = add_uevent_var(env, fmt, val); \
1594 if (err) \
1595 return err; \
1596 } while (0)
1597
1598 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1599 do { \
1600 int err = input_add_uevent_bm_var(env, name, bm, max); \
1601 if (err) \
1602 return err; \
1603 } while (0)
1604
1605 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1606 do { \
1607 int err = input_add_uevent_modalias_var(env, dev); \
1608 if (err) \
1609 return err; \
1610 } while (0)
1611
1612 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1613 {
1614 struct input_dev *dev = to_input_dev(device);
1615
1616 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1617 dev->id.bustype, dev->id.vendor,
1618 dev->id.product, dev->id.version);
1619 if (dev->name)
1620 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1621 if (dev->phys)
1622 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1623 if (dev->uniq)
1624 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1625
1626 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1627
1628 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1629 if (test_bit(EV_KEY, dev->evbit))
1630 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1631 if (test_bit(EV_REL, dev->evbit))
1632 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1633 if (test_bit(EV_ABS, dev->evbit))
1634 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1635 if (test_bit(EV_MSC, dev->evbit))
1636 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1637 if (test_bit(EV_LED, dev->evbit))
1638 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1639 if (test_bit(EV_SND, dev->evbit))
1640 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1641 if (test_bit(EV_FF, dev->evbit))
1642 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1643 if (test_bit(EV_SW, dev->evbit))
1644 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1645
1646 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1647
1648 return 0;
1649 }
1650
1651 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1652 do { \
1653 int i; \
1654 bool active; \
1655 \
1656 if (!test_bit(EV_##type, dev->evbit)) \
1657 break; \
1658 \
1659 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1660 active = test_bit(i, dev->bits); \
1661 if (!active && !on) \
1662 continue; \
1663 \
1664 dev->event(dev, EV_##type, i, on ? active : 0); \
1665 } \
1666 } while (0)
1667
1668 static void input_dev_toggle(struct input_dev *dev, bool activate)
1669 {
1670 if (!dev->event)
1671 return;
1672
1673 INPUT_DO_TOGGLE(dev, LED, led, activate);
1674 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1675
1676 if (activate && test_bit(EV_REP, dev->evbit)) {
1677 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1678 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1679 }
1680 }
1681
1682 /**
1683 * input_reset_device() - reset/restore the state of input device
1684 * @dev: input device whose state needs to be reset
1685 *
1686 * This function tries to reset the state of an opened input device and
1687 * bring internal state and state if the hardware in sync with each other.
1688 * We mark all keys as released, restore LED state, repeat rate, etc.
1689 */
1690 void input_reset_device(struct input_dev *dev)
1691 {
1692 unsigned long flags;
1693
1694 mutex_lock(&dev->mutex);
1695 spin_lock_irqsave(&dev->event_lock, flags);
1696
1697 input_dev_toggle(dev, true);
1698 input_dev_release_keys(dev);
1699
1700 spin_unlock_irqrestore(&dev->event_lock, flags);
1701 mutex_unlock(&dev->mutex);
1702 }
1703 EXPORT_SYMBOL(input_reset_device);
1704
1705 #ifdef CONFIG_PM_SLEEP
1706 static int input_dev_suspend(struct device *dev)
1707 {
1708 struct input_dev *input_dev = to_input_dev(dev);
1709
1710 spin_lock_irq(&input_dev->event_lock);
1711
1712 /*
1713 * Keys that are pressed now are unlikely to be
1714 * still pressed when we resume.
1715 */
1716 input_dev_release_keys(input_dev);
1717
1718 /* Turn off LEDs and sounds, if any are active. */
1719 input_dev_toggle(input_dev, false);
1720
1721 spin_unlock_irq(&input_dev->event_lock);
1722
1723 return 0;
1724 }
1725
1726 static int input_dev_resume(struct device *dev)
1727 {
1728 struct input_dev *input_dev = to_input_dev(dev);
1729
1730 spin_lock_irq(&input_dev->event_lock);
1731
1732 /* Restore state of LEDs and sounds, if any were active. */
1733 input_dev_toggle(input_dev, true);
1734
1735 spin_unlock_irq(&input_dev->event_lock);
1736
1737 return 0;
1738 }
1739
1740 static int input_dev_freeze(struct device *dev)
1741 {
1742 struct input_dev *input_dev = to_input_dev(dev);
1743
1744 spin_lock_irq(&input_dev->event_lock);
1745
1746 /*
1747 * Keys that are pressed now are unlikely to be
1748 * still pressed when we resume.
1749 */
1750 input_dev_release_keys(input_dev);
1751
1752 spin_unlock_irq(&input_dev->event_lock);
1753
1754 return 0;
1755 }
1756
1757 static int input_dev_poweroff(struct device *dev)
1758 {
1759 struct input_dev *input_dev = to_input_dev(dev);
1760
1761 spin_lock_irq(&input_dev->event_lock);
1762
1763 /* Turn off LEDs and sounds, if any are active. */
1764 input_dev_toggle(input_dev, false);
1765
1766 spin_unlock_irq(&input_dev->event_lock);
1767
1768 return 0;
1769 }
1770
1771 static const struct dev_pm_ops input_dev_pm_ops = {
1772 .suspend = input_dev_suspend,
1773 .resume = input_dev_resume,
1774 .freeze = input_dev_freeze,
1775 .poweroff = input_dev_poweroff,
1776 .restore = input_dev_resume,
1777 };
1778 #endif /* CONFIG_PM */
1779
1780 static const struct device_type input_dev_type = {
1781 .groups = input_dev_attr_groups,
1782 .release = input_dev_release,
1783 .uevent = input_dev_uevent,
1784 #ifdef CONFIG_PM_SLEEP
1785 .pm = &input_dev_pm_ops,
1786 #endif
1787 };
1788
1789 static char *input_devnode(struct device *dev, umode_t *mode)
1790 {
1791 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1792 }
1793
1794 struct class input_class = {
1795 .name = "input",
1796 .devnode = input_devnode,
1797 };
1798 EXPORT_SYMBOL_GPL(input_class);
1799
1800 /**
1801 * input_allocate_device - allocate memory for new input device
1802 *
1803 * Returns prepared struct input_dev or %NULL.
1804 *
1805 * NOTE: Use input_free_device() to free devices that have not been
1806 * registered; input_unregister_device() should be used for already
1807 * registered devices.
1808 */
1809 struct input_dev *input_allocate_device(void)
1810 {
1811 static atomic_t input_no = ATOMIC_INIT(-1);
1812 struct input_dev *dev;
1813
1814 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1815 if (dev) {
1816 dev->dev.type = &input_dev_type;
1817 dev->dev.class = &input_class;
1818 device_initialize(&dev->dev);
1819 mutex_init(&dev->mutex);
1820 spin_lock_init(&dev->event_lock);
1821 timer_setup(&dev->timer, NULL, 0);
1822 INIT_LIST_HEAD(&dev->h_list);
1823 INIT_LIST_HEAD(&dev->node);
1824
1825 dev_set_name(&dev->dev, "input%lu",
1826 (unsigned long)atomic_inc_return(&input_no));
1827
1828 __module_get(THIS_MODULE);
1829 }
1830
1831 return dev;
1832 }
1833 EXPORT_SYMBOL(input_allocate_device);
1834
1835 struct input_devres {
1836 struct input_dev *input;
1837 };
1838
1839 static int devm_input_device_match(struct device *dev, void *res, void *data)
1840 {
1841 struct input_devres *devres = res;
1842
1843 return devres->input == data;
1844 }
1845
1846 static void devm_input_device_release(struct device *dev, void *res)
1847 {
1848 struct input_devres *devres = res;
1849 struct input_dev *input = devres->input;
1850
1851 dev_dbg(dev, "%s: dropping reference to %s\n",
1852 __func__, dev_name(&input->dev));
1853 input_put_device(input);
1854 }
1855
1856 /**
1857 * devm_input_allocate_device - allocate managed input device
1858 * @dev: device owning the input device being created
1859 *
1860 * Returns prepared struct input_dev or %NULL.
1861 *
1862 * Managed input devices do not need to be explicitly unregistered or
1863 * freed as it will be done automatically when owner device unbinds from
1864 * its driver (or binding fails). Once managed input device is allocated,
1865 * it is ready to be set up and registered in the same fashion as regular
1866 * input device. There are no special devm_input_device_[un]register()
1867 * variants, regular ones work with both managed and unmanaged devices,
1868 * should you need them. In most cases however, managed input device need
1869 * not be explicitly unregistered or freed.
1870 *
1871 * NOTE: the owner device is set up as parent of input device and users
1872 * should not override it.
1873 */
1874 struct input_dev *devm_input_allocate_device(struct device *dev)
1875 {
1876 struct input_dev *input;
1877 struct input_devres *devres;
1878
1879 devres = devres_alloc(devm_input_device_release,
1880 sizeof(*devres), GFP_KERNEL);
1881 if (!devres)
1882 return NULL;
1883
1884 input = input_allocate_device();
1885 if (!input) {
1886 devres_free(devres);
1887 return NULL;
1888 }
1889
1890 input->dev.parent = dev;
1891 input->devres_managed = true;
1892
1893 devres->input = input;
1894 devres_add(dev, devres);
1895
1896 return input;
1897 }
1898 EXPORT_SYMBOL(devm_input_allocate_device);
1899
1900 /**
1901 * input_free_device - free memory occupied by input_dev structure
1902 * @dev: input device to free
1903 *
1904 * This function should only be used if input_register_device()
1905 * was not called yet or if it failed. Once device was registered
1906 * use input_unregister_device() and memory will be freed once last
1907 * reference to the device is dropped.
1908 *
1909 * Device should be allocated by input_allocate_device().
1910 *
1911 * NOTE: If there are references to the input device then memory
1912 * will not be freed until last reference is dropped.
1913 */
1914 void input_free_device(struct input_dev *dev)
1915 {
1916 if (dev) {
1917 if (dev->devres_managed)
1918 WARN_ON(devres_destroy(dev->dev.parent,
1919 devm_input_device_release,
1920 devm_input_device_match,
1921 dev));
1922 input_put_device(dev);
1923 }
1924 }
1925 EXPORT_SYMBOL(input_free_device);
1926
1927 /**
1928 * input_set_timestamp - set timestamp for input events
1929 * @dev: input device to set timestamp for
1930 * @timestamp: the time at which the event has occurred
1931 * in CLOCK_MONOTONIC
1932 *
1933 * This function is intended to provide to the input system a more
1934 * accurate time of when an event actually occurred. The driver should
1935 * call this function as soon as a timestamp is acquired ensuring
1936 * clock conversions in input_set_timestamp are done correctly.
1937 *
1938 * The system entering suspend state between timestamp acquisition and
1939 * calling input_set_timestamp can result in inaccurate conversions.
1940 */
1941 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1942 {
1943 dev->timestamp[INPUT_CLK_MONO] = timestamp;
1944 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1945 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1946 TK_OFFS_BOOT);
1947 }
1948 EXPORT_SYMBOL(input_set_timestamp);
1949
1950 /**
1951 * input_get_timestamp - get timestamp for input events
1952 * @dev: input device to get timestamp from
1953 *
1954 * A valid timestamp is a timestamp of non-zero value.
1955 */
1956 ktime_t *input_get_timestamp(struct input_dev *dev)
1957 {
1958 const ktime_t invalid_timestamp = ktime_set(0, 0);
1959
1960 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1961 input_set_timestamp(dev, ktime_get());
1962
1963 return dev->timestamp;
1964 }
1965 EXPORT_SYMBOL(input_get_timestamp);
1966
1967 /**
1968 * input_set_capability - mark device as capable of a certain event
1969 * @dev: device that is capable of emitting or accepting event
1970 * @type: type of the event (EV_KEY, EV_REL, etc...)
1971 * @code: event code
1972 *
1973 * In addition to setting up corresponding bit in appropriate capability
1974 * bitmap the function also adjusts dev->evbit.
1975 */
1976 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1977 {
1978 switch (type) {
1979 case EV_KEY:
1980 __set_bit(code, dev->keybit);
1981 break;
1982
1983 case EV_REL:
1984 __set_bit(code, dev->relbit);
1985 break;
1986
1987 case EV_ABS:
1988 input_alloc_absinfo(dev);
1989 if (!dev->absinfo)
1990 return;
1991
1992 __set_bit(code, dev->absbit);
1993 break;
1994
1995 case EV_MSC:
1996 __set_bit(code, dev->mscbit);
1997 break;
1998
1999 case EV_SW:
2000 __set_bit(code, dev->swbit);
2001 break;
2002
2003 case EV_LED:
2004 __set_bit(code, dev->ledbit);
2005 break;
2006
2007 case EV_SND:
2008 __set_bit(code, dev->sndbit);
2009 break;
2010
2011 case EV_FF:
2012 __set_bit(code, dev->ffbit);
2013 break;
2014
2015 case EV_PWR:
2016 /* do nothing */
2017 break;
2018
2019 default:
2020 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2021 dump_stack();
2022 return;
2023 }
2024
2025 __set_bit(type, dev->evbit);
2026 }
2027 EXPORT_SYMBOL(input_set_capability);
2028
2029 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2030 {
2031 int mt_slots;
2032 int i;
2033 unsigned int events;
2034
2035 if (dev->mt) {
2036 mt_slots = dev->mt->num_slots;
2037 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2038 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2039 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2040 mt_slots = clamp(mt_slots, 2, 32);
2041 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2042 mt_slots = 2;
2043 } else {
2044 mt_slots = 0;
2045 }
2046
2047 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2048
2049 if (test_bit(EV_ABS, dev->evbit))
2050 for_each_set_bit(i, dev->absbit, ABS_CNT)
2051 events += input_is_mt_axis(i) ? mt_slots : 1;
2052
2053 if (test_bit(EV_REL, dev->evbit))
2054 events += bitmap_weight(dev->relbit, REL_CNT);
2055
2056 /* Make room for KEY and MSC events */
2057 events += 7;
2058
2059 return events;
2060 }
2061
2062 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2063 do { \
2064 if (!test_bit(EV_##type, dev->evbit)) \
2065 memset(dev->bits##bit, 0, \
2066 sizeof(dev->bits##bit)); \
2067 } while (0)
2068
2069 static void input_cleanse_bitmasks(struct input_dev *dev)
2070 {
2071 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2072 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2073 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2074 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2075 INPUT_CLEANSE_BITMASK(dev, LED, led);
2076 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2077 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2078 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2079 }
2080
2081 static void __input_unregister_device(struct input_dev *dev)
2082 {
2083 struct input_handle *handle, *next;
2084
2085 input_disconnect_device(dev);
2086
2087 mutex_lock(&input_mutex);
2088
2089 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2090 handle->handler->disconnect(handle);
2091 WARN_ON(!list_empty(&dev->h_list));
2092
2093 del_timer_sync(&dev->timer);
2094 list_del_init(&dev->node);
2095
2096 input_wakeup_procfs_readers();
2097
2098 mutex_unlock(&input_mutex);
2099
2100 device_del(&dev->dev);
2101 }
2102
2103 static void devm_input_device_unregister(struct device *dev, void *res)
2104 {
2105 struct input_devres *devres = res;
2106 struct input_dev *input = devres->input;
2107
2108 dev_dbg(dev, "%s: unregistering device %s\n",
2109 __func__, dev_name(&input->dev));
2110 __input_unregister_device(input);
2111 }
2112
2113 /**
2114 * input_enable_softrepeat - enable software autorepeat
2115 * @dev: input device
2116 * @delay: repeat delay
2117 * @period: repeat period
2118 *
2119 * Enable software autorepeat on the input device.
2120 */
2121 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2122 {
2123 dev->timer.function = input_repeat_key;
2124 dev->rep[REP_DELAY] = delay;
2125 dev->rep[REP_PERIOD] = period;
2126 }
2127 EXPORT_SYMBOL(input_enable_softrepeat);
2128
2129 /**
2130 * input_register_device - register device with input core
2131 * @dev: device to be registered
2132 *
2133 * This function registers device with input core. The device must be
2134 * allocated with input_allocate_device() and all it's capabilities
2135 * set up before registering.
2136 * If function fails the device must be freed with input_free_device().
2137 * Once device has been successfully registered it can be unregistered
2138 * with input_unregister_device(); input_free_device() should not be
2139 * called in this case.
2140 *
2141 * Note that this function is also used to register managed input devices
2142 * (ones allocated with devm_input_allocate_device()). Such managed input
2143 * devices need not be explicitly unregistered or freed, their tear down
2144 * is controlled by the devres infrastructure. It is also worth noting
2145 * that tear down of managed input devices is internally a 2-step process:
2146 * registered managed input device is first unregistered, but stays in
2147 * memory and can still handle input_event() calls (although events will
2148 * not be delivered anywhere). The freeing of managed input device will
2149 * happen later, when devres stack is unwound to the point where device
2150 * allocation was made.
2151 */
2152 int input_register_device(struct input_dev *dev)
2153 {
2154 struct input_devres *devres = NULL;
2155 struct input_handler *handler;
2156 unsigned int packet_size;
2157 const char *path;
2158 int error;
2159
2160 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2161 dev_err(&dev->dev,
2162 "Absolute device without dev->absinfo, refusing to register\n");
2163 return -EINVAL;
2164 }
2165
2166 if (dev->devres_managed) {
2167 devres = devres_alloc(devm_input_device_unregister,
2168 sizeof(*devres), GFP_KERNEL);
2169 if (!devres)
2170 return -ENOMEM;
2171
2172 devres->input = dev;
2173 }
2174
2175 /* Every input device generates EV_SYN/SYN_REPORT events. */
2176 __set_bit(EV_SYN, dev->evbit);
2177
2178 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2179 __clear_bit(KEY_RESERVED, dev->keybit);
2180
2181 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2182 input_cleanse_bitmasks(dev);
2183
2184 packet_size = input_estimate_events_per_packet(dev);
2185 if (dev->hint_events_per_packet < packet_size)
2186 dev->hint_events_per_packet = packet_size;
2187
2188 dev->max_vals = dev->hint_events_per_packet + 2;
2189 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2190 if (!dev->vals) {
2191 error = -ENOMEM;
2192 goto err_devres_free;
2193 }
2194
2195 /*
2196 * If delay and period are pre-set by the driver, then autorepeating
2197 * is handled by the driver itself and we don't do it in input.c.
2198 */
2199 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2200 input_enable_softrepeat(dev, 250, 33);
2201
2202 if (!dev->getkeycode)
2203 dev->getkeycode = input_default_getkeycode;
2204
2205 if (!dev->setkeycode)
2206 dev->setkeycode = input_default_setkeycode;
2207
2208 if (dev->poller)
2209 input_dev_poller_finalize(dev->poller);
2210
2211 error = device_add(&dev->dev);
2212 if (error)
2213 goto err_free_vals;
2214
2215 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2216 pr_info("%s as %s\n",
2217 dev->name ? dev->name : "Unspecified device",
2218 path ? path : "N/A");
2219 kfree(path);
2220
2221 error = mutex_lock_interruptible(&input_mutex);
2222 if (error)
2223 goto err_device_del;
2224
2225 list_add_tail(&dev->node, &input_dev_list);
2226
2227 list_for_each_entry(handler, &input_handler_list, node)
2228 input_attach_handler(dev, handler);
2229
2230 input_wakeup_procfs_readers();
2231
2232 mutex_unlock(&input_mutex);
2233
2234 if (dev->devres_managed) {
2235 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2236 __func__, dev_name(&dev->dev));
2237 devres_add(dev->dev.parent, devres);
2238 }
2239 return 0;
2240
2241 err_device_del:
2242 device_del(&dev->dev);
2243 err_free_vals:
2244 kfree(dev->vals);
2245 dev->vals = NULL;
2246 err_devres_free:
2247 devres_free(devres);
2248 return error;
2249 }
2250 EXPORT_SYMBOL(input_register_device);
2251
2252 /**
2253 * input_unregister_device - unregister previously registered device
2254 * @dev: device to be unregistered
2255 *
2256 * This function unregisters an input device. Once device is unregistered
2257 * the caller should not try to access it as it may get freed at any moment.
2258 */
2259 void input_unregister_device(struct input_dev *dev)
2260 {
2261 if (dev->devres_managed) {
2262 WARN_ON(devres_destroy(dev->dev.parent,
2263 devm_input_device_unregister,
2264 devm_input_device_match,
2265 dev));
2266 __input_unregister_device(dev);
2267 /*
2268 * We do not do input_put_device() here because it will be done
2269 * when 2nd devres fires up.
2270 */
2271 } else {
2272 __input_unregister_device(dev);
2273 input_put_device(dev);
2274 }
2275 }
2276 EXPORT_SYMBOL(input_unregister_device);
2277
2278 /**
2279 * input_register_handler - register a new input handler
2280 * @handler: handler to be registered
2281 *
2282 * This function registers a new input handler (interface) for input
2283 * devices in the system and attaches it to all input devices that
2284 * are compatible with the handler.
2285 */
2286 int input_register_handler(struct input_handler *handler)
2287 {
2288 struct input_dev *dev;
2289 int error;
2290
2291 error = mutex_lock_interruptible(&input_mutex);
2292 if (error)
2293 return error;
2294
2295 INIT_LIST_HEAD(&handler->h_list);
2296
2297 list_add_tail(&handler->node, &input_handler_list);
2298
2299 list_for_each_entry(dev, &input_dev_list, node)
2300 input_attach_handler(dev, handler);
2301
2302 input_wakeup_procfs_readers();
2303
2304 mutex_unlock(&input_mutex);
2305 return 0;
2306 }
2307 EXPORT_SYMBOL(input_register_handler);
2308
2309 /**
2310 * input_unregister_handler - unregisters an input handler
2311 * @handler: handler to be unregistered
2312 *
2313 * This function disconnects a handler from its input devices and
2314 * removes it from lists of known handlers.
2315 */
2316 void input_unregister_handler(struct input_handler *handler)
2317 {
2318 struct input_handle *handle, *next;
2319
2320 mutex_lock(&input_mutex);
2321
2322 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2323 handler->disconnect(handle);
2324 WARN_ON(!list_empty(&handler->h_list));
2325
2326 list_del_init(&handler->node);
2327
2328 input_wakeup_procfs_readers();
2329
2330 mutex_unlock(&input_mutex);
2331 }
2332 EXPORT_SYMBOL(input_unregister_handler);
2333
2334 /**
2335 * input_handler_for_each_handle - handle iterator
2336 * @handler: input handler to iterate
2337 * @data: data for the callback
2338 * @fn: function to be called for each handle
2339 *
2340 * Iterate over @bus's list of devices, and call @fn for each, passing
2341 * it @data and stop when @fn returns a non-zero value. The function is
2342 * using RCU to traverse the list and therefore may be using in atomic
2343 * contexts. The @fn callback is invoked from RCU critical section and
2344 * thus must not sleep.
2345 */
2346 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2347 int (*fn)(struct input_handle *, void *))
2348 {
2349 struct input_handle *handle;
2350 int retval = 0;
2351
2352 rcu_read_lock();
2353
2354 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2355 retval = fn(handle, data);
2356 if (retval)
2357 break;
2358 }
2359
2360 rcu_read_unlock();
2361
2362 return retval;
2363 }
2364 EXPORT_SYMBOL(input_handler_for_each_handle);
2365
2366 /**
2367 * input_register_handle - register a new input handle
2368 * @handle: handle to register
2369 *
2370 * This function puts a new input handle onto device's
2371 * and handler's lists so that events can flow through
2372 * it once it is opened using input_open_device().
2373 *
2374 * This function is supposed to be called from handler's
2375 * connect() method.
2376 */
2377 int input_register_handle(struct input_handle *handle)
2378 {
2379 struct input_handler *handler = handle->handler;
2380 struct input_dev *dev = handle->dev;
2381 int error;
2382
2383 /*
2384 * We take dev->mutex here to prevent race with
2385 * input_release_device().
2386 */
2387 error = mutex_lock_interruptible(&dev->mutex);
2388 if (error)
2389 return error;
2390
2391 /*
2392 * Filters go to the head of the list, normal handlers
2393 * to the tail.
2394 */
2395 if (handler->filter)
2396 list_add_rcu(&handle->d_node, &dev->h_list);
2397 else
2398 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2399
2400 mutex_unlock(&dev->mutex);
2401
2402 /*
2403 * Since we are supposed to be called from ->connect()
2404 * which is mutually exclusive with ->disconnect()
2405 * we can't be racing with input_unregister_handle()
2406 * and so separate lock is not needed here.
2407 */
2408 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2409
2410 if (handler->start)
2411 handler->start(handle);
2412
2413 return 0;
2414 }
2415 EXPORT_SYMBOL(input_register_handle);
2416
2417 /**
2418 * input_unregister_handle - unregister an input handle
2419 * @handle: handle to unregister
2420 *
2421 * This function removes input handle from device's
2422 * and handler's lists.
2423 *
2424 * This function is supposed to be called from handler's
2425 * disconnect() method.
2426 */
2427 void input_unregister_handle(struct input_handle *handle)
2428 {
2429 struct input_dev *dev = handle->dev;
2430
2431 list_del_rcu(&handle->h_node);
2432
2433 /*
2434 * Take dev->mutex to prevent race with input_release_device().
2435 */
2436 mutex_lock(&dev->mutex);
2437 list_del_rcu(&handle->d_node);
2438 mutex_unlock(&dev->mutex);
2439
2440 synchronize_rcu();
2441 }
2442 EXPORT_SYMBOL(input_unregister_handle);
2443
2444 /**
2445 * input_get_new_minor - allocates a new input minor number
2446 * @legacy_base: beginning or the legacy range to be searched
2447 * @legacy_num: size of legacy range
2448 * @allow_dynamic: whether we can also take ID from the dynamic range
2449 *
2450 * This function allocates a new device minor for from input major namespace.
2451 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2452 * parameters and whether ID can be allocated from dynamic range if there are
2453 * no free IDs in legacy range.
2454 */
2455 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2456 bool allow_dynamic)
2457 {
2458 /*
2459 * This function should be called from input handler's ->connect()
2460 * methods, which are serialized with input_mutex, so no additional
2461 * locking is needed here.
2462 */
2463 if (legacy_base >= 0) {
2464 int minor = ida_simple_get(&input_ida,
2465 legacy_base,
2466 legacy_base + legacy_num,
2467 GFP_KERNEL);
2468 if (minor >= 0 || !allow_dynamic)
2469 return minor;
2470 }
2471
2472 return ida_simple_get(&input_ida,
2473 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2474 GFP_KERNEL);
2475 }
2476 EXPORT_SYMBOL(input_get_new_minor);
2477
2478 /**
2479 * input_free_minor - release previously allocated minor
2480 * @minor: minor to be released
2481 *
2482 * This function releases previously allocated input minor so that it can be
2483 * reused later.
2484 */
2485 void input_free_minor(unsigned int minor)
2486 {
2487 ida_simple_remove(&input_ida, minor);
2488 }
2489 EXPORT_SYMBOL(input_free_minor);
2490
2491 static int __init input_init(void)
2492 {
2493 int err;
2494
2495 err = class_register(&input_class);
2496 if (err) {
2497 pr_err("unable to register input_dev class\n");
2498 return err;
2499 }
2500
2501 err = input_proc_init();
2502 if (err)
2503 goto fail1;
2504
2505 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2506 INPUT_MAX_CHAR_DEVICES, "input");
2507 if (err) {
2508 pr_err("unable to register char major %d", INPUT_MAJOR);
2509 goto fail2;
2510 }
2511
2512 return 0;
2513
2514 fail2: input_proc_exit();
2515 fail1: class_unregister(&input_class);
2516 return err;
2517 }
2518
2519 static void __exit input_exit(void)
2520 {
2521 input_proc_exit();
2522 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2523 INPUT_MAX_CHAR_DEVICES);
2524 class_unregister(&input_class);
2525 }
2526
2527 subsys_initcall(input_init);
2528 module_exit(input_exit);