]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/input/rmi4/rmi_driver.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-zesty-kernel.git] / drivers / input / rmi4 / rmi_driver.c
1 /*
2 * Copyright (c) 2011-2016 Synaptics Incorporated
3 * Copyright (c) 2011 Unixphere
4 *
5 * This driver provides the core support for a single RMI4-based device.
6 *
7 * The RMI4 specification can be found here (URL split for line length):
8 *
9 * http://www.synaptics.com/sites/default/files/
10 * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License version 2 as published by
14 * the Free Software Foundation.
15 */
16
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <uapi/linux/input.h>
25 #include <linux/rmi.h>
26 #include "rmi_bus.h"
27 #include "rmi_driver.h"
28
29 #define HAS_NONSTANDARD_PDT_MASK 0x40
30 #define RMI4_MAX_PAGE 0xff
31 #define RMI4_PAGE_SIZE 0x100
32 #define RMI4_PAGE_MASK 0xFF00
33
34 #define RMI_DEVICE_RESET_CMD 0x01
35 #define DEFAULT_RESET_DELAY_MS 100
36
37 void rmi_free_function_list(struct rmi_device *rmi_dev)
38 {
39 struct rmi_function *fn, *tmp;
40 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
41
42 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
43
44 devm_kfree(&rmi_dev->dev, data->irq_memory);
45 data->irq_memory = NULL;
46 data->irq_status = NULL;
47 data->fn_irq_bits = NULL;
48 data->current_irq_mask = NULL;
49 data->new_irq_mask = NULL;
50
51 data->f01_container = NULL;
52 data->f34_container = NULL;
53
54 /* Doing it in the reverse order so F01 will be removed last */
55 list_for_each_entry_safe_reverse(fn, tmp,
56 &data->function_list, node) {
57 list_del(&fn->node);
58 rmi_unregister_function(fn);
59 }
60 }
61
62 static int reset_one_function(struct rmi_function *fn)
63 {
64 struct rmi_function_handler *fh;
65 int retval = 0;
66
67 if (!fn || !fn->dev.driver)
68 return 0;
69
70 fh = to_rmi_function_handler(fn->dev.driver);
71 if (fh->reset) {
72 retval = fh->reset(fn);
73 if (retval < 0)
74 dev_err(&fn->dev, "Reset failed with code %d.\n",
75 retval);
76 }
77
78 return retval;
79 }
80
81 static int configure_one_function(struct rmi_function *fn)
82 {
83 struct rmi_function_handler *fh;
84 int retval = 0;
85
86 if (!fn || !fn->dev.driver)
87 return 0;
88
89 fh = to_rmi_function_handler(fn->dev.driver);
90 if (fh->config) {
91 retval = fh->config(fn);
92 if (retval < 0)
93 dev_err(&fn->dev, "Config failed with code %d.\n",
94 retval);
95 }
96
97 return retval;
98 }
99
100 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
101 {
102 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
103 struct rmi_function *entry;
104 int retval;
105
106 list_for_each_entry(entry, &data->function_list, node) {
107 retval = reset_one_function(entry);
108 if (retval < 0)
109 return retval;
110 }
111
112 return 0;
113 }
114
115 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
116 {
117 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
118 struct rmi_function *entry;
119 int retval;
120
121 list_for_each_entry(entry, &data->function_list, node) {
122 retval = configure_one_function(entry);
123 if (retval < 0)
124 return retval;
125 }
126
127 return 0;
128 }
129
130 static void process_one_interrupt(struct rmi_driver_data *data,
131 struct rmi_function *fn)
132 {
133 struct rmi_function_handler *fh;
134
135 if (!fn || !fn->dev.driver)
136 return;
137
138 fh = to_rmi_function_handler(fn->dev.driver);
139 if (fh->attention) {
140 bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
141 data->irq_count);
142 if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
143 fh->attention(fn, data->fn_irq_bits);
144 }
145 }
146
147 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
148 {
149 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
150 struct device *dev = &rmi_dev->dev;
151 struct rmi_function *entry;
152 int error;
153
154 if (!data)
155 return 0;
156
157 if (!data->attn_data.data) {
158 error = rmi_read_block(rmi_dev,
159 data->f01_container->fd.data_base_addr + 1,
160 data->irq_status, data->num_of_irq_regs);
161 if (error < 0) {
162 dev_err(dev, "Failed to read irqs, code=%d\n", error);
163 return error;
164 }
165 }
166
167 mutex_lock(&data->irq_mutex);
168 bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
169 data->irq_count);
170 /*
171 * At this point, irq_status has all bits that are set in the
172 * interrupt status register and are enabled.
173 */
174 mutex_unlock(&data->irq_mutex);
175
176 /*
177 * It would be nice to be able to use irq_chip to handle these
178 * nested IRQs. Unfortunately, most of the current customers for
179 * this driver are using older kernels (3.0.x) that don't support
180 * the features required for that. Once they've shifted to more
181 * recent kernels (say, 3.3 and higher), this should be switched to
182 * use irq_chip.
183 */
184 list_for_each_entry(entry, &data->function_list, node)
185 process_one_interrupt(data, entry);
186
187 if (data->input)
188 input_sync(data->input);
189
190 return 0;
191 }
192
193 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
194 void *data, size_t size)
195 {
196 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
197 struct rmi4_attn_data attn_data;
198 void *fifo_data;
199
200 if (!drvdata->enabled)
201 return;
202
203 fifo_data = kmemdup(data, size, GFP_ATOMIC);
204 if (!fifo_data)
205 return;
206
207 attn_data.irq_status = irq_status;
208 attn_data.size = size;
209 attn_data.data = fifo_data;
210
211 kfifo_put(&drvdata->attn_fifo, attn_data);
212 }
213 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
214
215 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
216 {
217 struct rmi_device *rmi_dev = dev_id;
218 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
219 struct rmi4_attn_data attn_data = {0};
220 int ret, count;
221
222 count = kfifo_get(&drvdata->attn_fifo, &attn_data);
223 if (count) {
224 *(drvdata->irq_status) = attn_data.irq_status;
225 drvdata->attn_data = attn_data;
226 }
227
228 ret = rmi_process_interrupt_requests(rmi_dev);
229 if (ret)
230 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
231 "Failed to process interrupt request: %d\n", ret);
232
233 if (count)
234 kfree(attn_data.data);
235
236 if (!kfifo_is_empty(&drvdata->attn_fifo))
237 return rmi_irq_fn(irq, dev_id);
238
239 return IRQ_HANDLED;
240 }
241
242 static int rmi_irq_init(struct rmi_device *rmi_dev)
243 {
244 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
245 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
246 int irq_flags = irq_get_trigger_type(pdata->irq);
247 int ret;
248
249 if (!irq_flags)
250 irq_flags = IRQF_TRIGGER_LOW;
251
252 ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
253 rmi_irq_fn, irq_flags | IRQF_ONESHOT,
254 dev_name(rmi_dev->xport->dev),
255 rmi_dev);
256 if (ret < 0) {
257 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
258 pdata->irq);
259
260 return ret;
261 }
262
263 data->enabled = true;
264
265 return 0;
266 }
267
268 static int suspend_one_function(struct rmi_function *fn)
269 {
270 struct rmi_function_handler *fh;
271 int retval = 0;
272
273 if (!fn || !fn->dev.driver)
274 return 0;
275
276 fh = to_rmi_function_handler(fn->dev.driver);
277 if (fh->suspend) {
278 retval = fh->suspend(fn);
279 if (retval < 0)
280 dev_err(&fn->dev, "Suspend failed with code %d.\n",
281 retval);
282 }
283
284 return retval;
285 }
286
287 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
288 {
289 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
290 struct rmi_function *entry;
291 int retval;
292
293 list_for_each_entry(entry, &data->function_list, node) {
294 retval = suspend_one_function(entry);
295 if (retval < 0)
296 return retval;
297 }
298
299 return 0;
300 }
301
302 static int resume_one_function(struct rmi_function *fn)
303 {
304 struct rmi_function_handler *fh;
305 int retval = 0;
306
307 if (!fn || !fn->dev.driver)
308 return 0;
309
310 fh = to_rmi_function_handler(fn->dev.driver);
311 if (fh->resume) {
312 retval = fh->resume(fn);
313 if (retval < 0)
314 dev_err(&fn->dev, "Resume failed with code %d.\n",
315 retval);
316 }
317
318 return retval;
319 }
320
321 static int rmi_resume_functions(struct rmi_device *rmi_dev)
322 {
323 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
324 struct rmi_function *entry;
325 int retval;
326
327 list_for_each_entry(entry, &data->function_list, node) {
328 retval = resume_one_function(entry);
329 if (retval < 0)
330 return retval;
331 }
332
333 return 0;
334 }
335
336 int rmi_enable_sensor(struct rmi_device *rmi_dev)
337 {
338 int retval = 0;
339
340 retval = rmi_driver_process_config_requests(rmi_dev);
341 if (retval < 0)
342 return retval;
343
344 return rmi_process_interrupt_requests(rmi_dev);
345 }
346
347 /**
348 * rmi_driver_set_input_params - set input device id and other data.
349 *
350 * @rmi_dev: Pointer to an RMI device
351 * @input: Pointer to input device
352 *
353 */
354 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
355 struct input_dev *input)
356 {
357 input->name = SYNAPTICS_INPUT_DEVICE_NAME;
358 input->id.vendor = SYNAPTICS_VENDOR_ID;
359 input->id.bustype = BUS_RMI;
360 return 0;
361 }
362
363 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
364 struct input_dev *input)
365 {
366 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
367 char *device_name = rmi_f01_get_product_ID(data->f01_container);
368 char *name;
369
370 name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
371 "Synaptics %s", device_name);
372 if (!name)
373 return;
374
375 input->name = name;
376 }
377
378 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
379 unsigned long *mask)
380 {
381 int error = 0;
382 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
383 struct device *dev = &rmi_dev->dev;
384
385 mutex_lock(&data->irq_mutex);
386 bitmap_or(data->new_irq_mask,
387 data->current_irq_mask, mask, data->irq_count);
388
389 error = rmi_write_block(rmi_dev,
390 data->f01_container->fd.control_base_addr + 1,
391 data->new_irq_mask, data->num_of_irq_regs);
392 if (error < 0) {
393 dev_err(dev, "%s: Failed to change enabled interrupts!",
394 __func__);
395 goto error_unlock;
396 }
397 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
398 data->num_of_irq_regs);
399
400 error_unlock:
401 mutex_unlock(&data->irq_mutex);
402 return error;
403 }
404
405 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
406 unsigned long *mask)
407 {
408 int error = 0;
409 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
410 struct device *dev = &rmi_dev->dev;
411
412 mutex_lock(&data->irq_mutex);
413 bitmap_andnot(data->new_irq_mask,
414 data->current_irq_mask, mask, data->irq_count);
415
416 error = rmi_write_block(rmi_dev,
417 data->f01_container->fd.control_base_addr + 1,
418 data->new_irq_mask, data->num_of_irq_regs);
419 if (error < 0) {
420 dev_err(dev, "%s: Failed to change enabled interrupts!",
421 __func__);
422 goto error_unlock;
423 }
424 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
425 data->num_of_irq_regs);
426
427 error_unlock:
428 mutex_unlock(&data->irq_mutex);
429 return error;
430 }
431
432 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
433 {
434 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
435 int error;
436
437 /*
438 * Can get called before the driver is fully ready to deal with
439 * this situation.
440 */
441 if (!data || !data->f01_container) {
442 dev_warn(&rmi_dev->dev,
443 "Not ready to handle reset yet!\n");
444 return 0;
445 }
446
447 error = rmi_read_block(rmi_dev,
448 data->f01_container->fd.control_base_addr + 1,
449 data->current_irq_mask, data->num_of_irq_regs);
450 if (error < 0) {
451 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
452 __func__);
453 return error;
454 }
455
456 error = rmi_driver_process_reset_requests(rmi_dev);
457 if (error < 0)
458 return error;
459
460 error = rmi_driver_process_config_requests(rmi_dev);
461 if (error < 0)
462 return error;
463
464 return 0;
465 }
466
467 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
468 struct pdt_entry *entry, u16 pdt_address)
469 {
470 u8 buf[RMI_PDT_ENTRY_SIZE];
471 int error;
472
473 error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
474 if (error) {
475 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
476 pdt_address, error);
477 return error;
478 }
479
480 entry->page_start = pdt_address & RMI4_PAGE_MASK;
481 entry->query_base_addr = buf[0];
482 entry->command_base_addr = buf[1];
483 entry->control_base_addr = buf[2];
484 entry->data_base_addr = buf[3];
485 entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
486 entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
487 entry->function_number = buf[5];
488
489 return 0;
490 }
491
492 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
493 struct rmi_function_descriptor *fd)
494 {
495 fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
496 fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
497 fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
498 fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
499 fd->function_number = pdt->function_number;
500 fd->interrupt_source_count = pdt->interrupt_source_count;
501 fd->function_version = pdt->function_version;
502 }
503
504 #define RMI_SCAN_CONTINUE 0
505 #define RMI_SCAN_DONE 1
506
507 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
508 int page,
509 int *empty_pages,
510 void *ctx,
511 int (*callback)(struct rmi_device *rmi_dev,
512 void *ctx,
513 const struct pdt_entry *entry))
514 {
515 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
516 struct pdt_entry pdt_entry;
517 u16 page_start = RMI4_PAGE_SIZE * page;
518 u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
519 u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
520 u16 addr;
521 int error;
522 int retval;
523
524 for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
525 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
526 if (error)
527 return error;
528
529 if (RMI4_END_OF_PDT(pdt_entry.function_number))
530 break;
531
532 retval = callback(rmi_dev, ctx, &pdt_entry);
533 if (retval != RMI_SCAN_CONTINUE)
534 return retval;
535 }
536
537 /*
538 * Count number of empty PDT pages. If a gap of two pages
539 * or more is found, stop scanning.
540 */
541 if (addr == pdt_start)
542 ++*empty_pages;
543 else
544 *empty_pages = 0;
545
546 return (data->bootloader_mode || *empty_pages >= 2) ?
547 RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
548 }
549
550 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
551 int (*callback)(struct rmi_device *rmi_dev,
552 void *ctx, const struct pdt_entry *entry))
553 {
554 int page;
555 int empty_pages = 0;
556 int retval = RMI_SCAN_DONE;
557
558 for (page = 0; page <= RMI4_MAX_PAGE; page++) {
559 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
560 ctx, callback);
561 if (retval != RMI_SCAN_CONTINUE)
562 break;
563 }
564
565 return retval < 0 ? retval : 0;
566 }
567
568 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
569 struct rmi_register_descriptor *rdesc)
570 {
571 int ret;
572 u8 size_presence_reg;
573 u8 buf[35];
574 int presense_offset = 1;
575 u8 *struct_buf;
576 int reg;
577 int offset = 0;
578 int map_offset = 0;
579 int i;
580 int b;
581
582 /*
583 * The first register of the register descriptor is the size of
584 * the register descriptor's presense register.
585 */
586 ret = rmi_read(d, addr, &size_presence_reg);
587 if (ret)
588 return ret;
589 ++addr;
590
591 if (size_presence_reg < 0 || size_presence_reg > 35)
592 return -EIO;
593
594 memset(buf, 0, sizeof(buf));
595
596 /*
597 * The presence register contains the size of the register structure
598 * and a bitmap which identified which packet registers are present
599 * for this particular register type (ie query, control, or data).
600 */
601 ret = rmi_read_block(d, addr, buf, size_presence_reg);
602 if (ret)
603 return ret;
604 ++addr;
605
606 if (buf[0] == 0) {
607 presense_offset = 3;
608 rdesc->struct_size = buf[1] | (buf[2] << 8);
609 } else {
610 rdesc->struct_size = buf[0];
611 }
612
613 for (i = presense_offset; i < size_presence_reg; i++) {
614 for (b = 0; b < 8; b++) {
615 if (buf[i] & (0x1 << b))
616 bitmap_set(rdesc->presense_map, map_offset, 1);
617 ++map_offset;
618 }
619 }
620
621 rdesc->num_registers = bitmap_weight(rdesc->presense_map,
622 RMI_REG_DESC_PRESENSE_BITS);
623
624 rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
625 sizeof(struct rmi_register_desc_item),
626 GFP_KERNEL);
627 if (!rdesc->registers)
628 return -ENOMEM;
629
630 /*
631 * Allocate a temporary buffer to hold the register structure.
632 * I'm not using devm_kzalloc here since it will not be retained
633 * after exiting this function
634 */
635 struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
636 if (!struct_buf)
637 return -ENOMEM;
638
639 /*
640 * The register structure contains information about every packet
641 * register of this type. This includes the size of the packet
642 * register and a bitmap of all subpackets contained in the packet
643 * register.
644 */
645 ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
646 if (ret)
647 goto free_struct_buff;
648
649 reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
650 for (i = 0; i < rdesc->num_registers; i++) {
651 struct rmi_register_desc_item *item = &rdesc->registers[i];
652 int reg_size = struct_buf[offset];
653
654 ++offset;
655 if (reg_size == 0) {
656 reg_size = struct_buf[offset] |
657 (struct_buf[offset + 1] << 8);
658 offset += 2;
659 }
660
661 if (reg_size == 0) {
662 reg_size = struct_buf[offset] |
663 (struct_buf[offset + 1] << 8) |
664 (struct_buf[offset + 2] << 16) |
665 (struct_buf[offset + 3] << 24);
666 offset += 4;
667 }
668
669 item->reg = reg;
670 item->reg_size = reg_size;
671
672 map_offset = 0;
673
674 do {
675 for (b = 0; b < 7; b++) {
676 if (struct_buf[offset] & (0x1 << b))
677 bitmap_set(item->subpacket_map,
678 map_offset, 1);
679 ++map_offset;
680 }
681 } while (struct_buf[offset++] & 0x80);
682
683 item->num_subpackets = bitmap_weight(item->subpacket_map,
684 RMI_REG_DESC_SUBPACKET_BITS);
685
686 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
687 "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
688 item->reg, item->reg_size, item->num_subpackets);
689
690 reg = find_next_bit(rdesc->presense_map,
691 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
692 }
693
694 free_struct_buff:
695 kfree(struct_buf);
696 return ret;
697 }
698
699 const struct rmi_register_desc_item *rmi_get_register_desc_item(
700 struct rmi_register_descriptor *rdesc, u16 reg)
701 {
702 const struct rmi_register_desc_item *item;
703 int i;
704
705 for (i = 0; i < rdesc->num_registers; i++) {
706 item = &rdesc->registers[i];
707 if (item->reg == reg)
708 return item;
709 }
710
711 return NULL;
712 }
713
714 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
715 {
716 const struct rmi_register_desc_item *item;
717 int i;
718 size_t size = 0;
719
720 for (i = 0; i < rdesc->num_registers; i++) {
721 item = &rdesc->registers[i];
722 size += item->reg_size;
723 }
724 return size;
725 }
726
727 /* Compute the register offset relative to the base address */
728 int rmi_register_desc_calc_reg_offset(
729 struct rmi_register_descriptor *rdesc, u16 reg)
730 {
731 const struct rmi_register_desc_item *item;
732 int offset = 0;
733 int i;
734
735 for (i = 0; i < rdesc->num_registers; i++) {
736 item = &rdesc->registers[i];
737 if (item->reg == reg)
738 return offset;
739 ++offset;
740 }
741 return -1;
742 }
743
744 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
745 u8 subpacket)
746 {
747 return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
748 subpacket) == subpacket;
749 }
750
751 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
752 const struct pdt_entry *pdt)
753 {
754 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
755 int ret;
756 u8 status;
757
758 if (pdt->function_number == 0x34 && pdt->function_version > 1) {
759 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
760 if (ret) {
761 dev_err(&rmi_dev->dev,
762 "Failed to read F34 status: %d.\n", ret);
763 return ret;
764 }
765
766 if (status & BIT(7))
767 data->bootloader_mode = true;
768 } else if (pdt->function_number == 0x01) {
769 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
770 if (ret) {
771 dev_err(&rmi_dev->dev,
772 "Failed to read F01 status: %d.\n", ret);
773 return ret;
774 }
775
776 if (status & BIT(6))
777 data->bootloader_mode = true;
778 }
779
780 return 0;
781 }
782
783 static int rmi_count_irqs(struct rmi_device *rmi_dev,
784 void *ctx, const struct pdt_entry *pdt)
785 {
786 int *irq_count = ctx;
787 int ret;
788
789 *irq_count += pdt->interrupt_source_count;
790
791 ret = rmi_check_bootloader_mode(rmi_dev, pdt);
792 if (ret < 0)
793 return ret;
794
795 return RMI_SCAN_CONTINUE;
796 }
797
798 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
799 const struct pdt_entry *pdt)
800 {
801 int error;
802
803 if (pdt->function_number == 0x01) {
804 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
805 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
806 const struct rmi_device_platform_data *pdata =
807 rmi_get_platform_data(rmi_dev);
808
809 if (rmi_dev->xport->ops->reset) {
810 error = rmi_dev->xport->ops->reset(rmi_dev->xport,
811 cmd_addr);
812 if (error)
813 return error;
814
815 return RMI_SCAN_DONE;
816 }
817
818 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
819 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
820 if (error) {
821 dev_err(&rmi_dev->dev,
822 "Initial reset failed. Code = %d.\n", error);
823 return error;
824 }
825
826 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
827
828 return RMI_SCAN_DONE;
829 }
830
831 /* F01 should always be on page 0. If we don't find it there, fail. */
832 return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
833 }
834
835 static int rmi_create_function(struct rmi_device *rmi_dev,
836 void *ctx, const struct pdt_entry *pdt)
837 {
838 struct device *dev = &rmi_dev->dev;
839 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
840 int *current_irq_count = ctx;
841 struct rmi_function *fn;
842 int i;
843 int error;
844
845 rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
846 pdt->function_number);
847
848 fn = kzalloc(sizeof(struct rmi_function) +
849 BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
850 GFP_KERNEL);
851 if (!fn) {
852 dev_err(dev, "Failed to allocate memory for F%02X\n",
853 pdt->function_number);
854 return -ENOMEM;
855 }
856
857 INIT_LIST_HEAD(&fn->node);
858 rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
859
860 fn->rmi_dev = rmi_dev;
861
862 fn->num_of_irqs = pdt->interrupt_source_count;
863 fn->irq_pos = *current_irq_count;
864 *current_irq_count += fn->num_of_irqs;
865
866 for (i = 0; i < fn->num_of_irqs; i++)
867 set_bit(fn->irq_pos + i, fn->irq_mask);
868
869 error = rmi_register_function(fn);
870 if (error)
871 goto err_put_fn;
872
873 if (pdt->function_number == 0x01)
874 data->f01_container = fn;
875 else if (pdt->function_number == 0x34)
876 data->f34_container = fn;
877
878 list_add_tail(&fn->node, &data->function_list);
879
880 return RMI_SCAN_CONTINUE;
881
882 err_put_fn:
883 put_device(&fn->dev);
884 return error;
885 }
886
887 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
888 {
889 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
890 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
891 int irq = pdata->irq;
892 int irq_flags;
893 int retval;
894
895 mutex_lock(&data->enabled_mutex);
896
897 if (data->enabled)
898 goto out;
899
900 enable_irq(irq);
901 data->enabled = true;
902 if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
903 retval = disable_irq_wake(irq);
904 if (!retval)
905 dev_warn(&rmi_dev->dev,
906 "Failed to disable irq for wake: %d\n",
907 retval);
908 }
909
910 /*
911 * Call rmi_process_interrupt_requests() after enabling irq,
912 * otherwise we may lose interrupt on edge-triggered systems.
913 */
914 irq_flags = irq_get_trigger_type(pdata->irq);
915 if (irq_flags & IRQ_TYPE_EDGE_BOTH)
916 rmi_process_interrupt_requests(rmi_dev);
917
918 out:
919 mutex_unlock(&data->enabled_mutex);
920 }
921
922 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
923 {
924 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
925 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
926 struct rmi4_attn_data attn_data = {0};
927 int irq = pdata->irq;
928 int retval, count;
929
930 mutex_lock(&data->enabled_mutex);
931
932 if (!data->enabled)
933 goto out;
934
935 data->enabled = false;
936 disable_irq(irq);
937 if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
938 retval = enable_irq_wake(irq);
939 if (!retval)
940 dev_warn(&rmi_dev->dev,
941 "Failed to enable irq for wake: %d\n",
942 retval);
943 }
944
945 /* make sure the fifo is clean */
946 while (!kfifo_is_empty(&data->attn_fifo)) {
947 count = kfifo_get(&data->attn_fifo, &attn_data);
948 if (count)
949 kfree(attn_data.data);
950 }
951
952 out:
953 mutex_unlock(&data->enabled_mutex);
954 }
955
956 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
957 {
958 int retval;
959
960 retval = rmi_suspend_functions(rmi_dev);
961 if (retval)
962 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
963 retval);
964
965 rmi_disable_irq(rmi_dev, enable_wake);
966 return retval;
967 }
968 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
969
970 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
971 {
972 int retval;
973
974 rmi_enable_irq(rmi_dev, clear_wake);
975
976 retval = rmi_resume_functions(rmi_dev);
977 if (retval)
978 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
979 retval);
980
981 return retval;
982 }
983 EXPORT_SYMBOL_GPL(rmi_driver_resume);
984
985 static int rmi_driver_remove(struct device *dev)
986 {
987 struct rmi_device *rmi_dev = to_rmi_device(dev);
988
989 rmi_disable_irq(rmi_dev, false);
990
991 rmi_f34_remove_sysfs(rmi_dev);
992 rmi_free_function_list(rmi_dev);
993
994 return 0;
995 }
996
997 #ifdef CONFIG_OF
998 static int rmi_driver_of_probe(struct device *dev,
999 struct rmi_device_platform_data *pdata)
1000 {
1001 int retval;
1002
1003 retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1004 "syna,reset-delay-ms", 1);
1005 if (retval)
1006 return retval;
1007
1008 return 0;
1009 }
1010 #else
1011 static inline int rmi_driver_of_probe(struct device *dev,
1012 struct rmi_device_platform_data *pdata)
1013 {
1014 return -ENODEV;
1015 }
1016 #endif
1017
1018 int rmi_probe_interrupts(struct rmi_driver_data *data)
1019 {
1020 struct rmi_device *rmi_dev = data->rmi_dev;
1021 struct device *dev = &rmi_dev->dev;
1022 int irq_count;
1023 size_t size;
1024 int retval;
1025
1026 /*
1027 * We need to count the IRQs and allocate their storage before scanning
1028 * the PDT and creating the function entries, because adding a new
1029 * function can trigger events that result in the IRQ related storage
1030 * being accessed.
1031 */
1032 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1033 irq_count = 0;
1034 data->bootloader_mode = false;
1035
1036 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1037 if (retval < 0) {
1038 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1039 return retval;
1040 }
1041
1042 if (data->bootloader_mode)
1043 dev_warn(&rmi_dev->dev, "Device in bootloader mode.\n");
1044
1045 data->irq_count = irq_count;
1046 data->num_of_irq_regs = (data->irq_count + 7) / 8;
1047
1048 size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1049 data->irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
1050 if (!data->irq_memory) {
1051 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1052 return retval;
1053 }
1054
1055 data->irq_status = data->irq_memory + size * 0;
1056 data->fn_irq_bits = data->irq_memory + size * 1;
1057 data->current_irq_mask = data->irq_memory + size * 2;
1058 data->new_irq_mask = data->irq_memory + size * 3;
1059
1060 return retval;
1061 }
1062
1063 int rmi_init_functions(struct rmi_driver_data *data)
1064 {
1065 struct rmi_device *rmi_dev = data->rmi_dev;
1066 struct device *dev = &rmi_dev->dev;
1067 int irq_count;
1068 int retval;
1069
1070 irq_count = 0;
1071 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1072 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1073 if (retval < 0) {
1074 dev_err(dev, "Function creation failed with code %d.\n",
1075 retval);
1076 goto err_destroy_functions;
1077 }
1078
1079 if (!data->f01_container) {
1080 dev_err(dev, "Missing F01 container!\n");
1081 retval = -EINVAL;
1082 goto err_destroy_functions;
1083 }
1084
1085 retval = rmi_read_block(rmi_dev,
1086 data->f01_container->fd.control_base_addr + 1,
1087 data->current_irq_mask, data->num_of_irq_regs);
1088 if (retval < 0) {
1089 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1090 __func__);
1091 goto err_destroy_functions;
1092 }
1093
1094 return 0;
1095
1096 err_destroy_functions:
1097 rmi_free_function_list(rmi_dev);
1098 return retval;
1099 }
1100
1101 static int rmi_driver_probe(struct device *dev)
1102 {
1103 struct rmi_driver *rmi_driver;
1104 struct rmi_driver_data *data;
1105 struct rmi_device_platform_data *pdata;
1106 struct rmi_device *rmi_dev;
1107 int retval;
1108
1109 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1110 __func__);
1111
1112 if (!rmi_is_physical_device(dev)) {
1113 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1114 return -ENODEV;
1115 }
1116
1117 rmi_dev = to_rmi_device(dev);
1118 rmi_driver = to_rmi_driver(dev->driver);
1119 rmi_dev->driver = rmi_driver;
1120
1121 pdata = rmi_get_platform_data(rmi_dev);
1122
1123 if (rmi_dev->xport->dev->of_node) {
1124 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1125 if (retval)
1126 return retval;
1127 }
1128
1129 data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1130 if (!data)
1131 return -ENOMEM;
1132
1133 INIT_LIST_HEAD(&data->function_list);
1134 data->rmi_dev = rmi_dev;
1135 dev_set_drvdata(&rmi_dev->dev, data);
1136
1137 /*
1138 * Right before a warm boot, the sensor might be in some unusual state,
1139 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1140 * or configuration update. In order to clear the sensor to a known
1141 * state and/or apply any updates, we issue a initial reset to clear any
1142 * previous settings and force it into normal operation.
1143 *
1144 * We have to do this before actually building the PDT because
1145 * the reflash updates (if any) might cause various registers to move
1146 * around.
1147 *
1148 * For a number of reasons, this initial reset may fail to return
1149 * within the specified time, but we'll still be able to bring up the
1150 * driver normally after that failure. This occurs most commonly in
1151 * a cold boot situation (where then firmware takes longer to come up
1152 * than from a warm boot) and the reset_delay_ms in the platform data
1153 * has been set too short to accommodate that. Since the sensor will
1154 * eventually come up and be usable, we don't want to just fail here
1155 * and leave the customer's device unusable. So we warn them, and
1156 * continue processing.
1157 */
1158 retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1159 if (retval < 0)
1160 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1161
1162 retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1163 if (retval < 0) {
1164 /*
1165 * we'll print out a warning and continue since
1166 * failure to get the PDT properties is not a cause to fail
1167 */
1168 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1169 PDT_PROPERTIES_LOCATION, retval);
1170 }
1171
1172 mutex_init(&data->irq_mutex);
1173 mutex_init(&data->enabled_mutex);
1174
1175 retval = rmi_probe_interrupts(data);
1176 if (retval)
1177 goto err;
1178
1179 if (rmi_dev->xport->input) {
1180 /*
1181 * The transport driver already has an input device.
1182 * In some cases it is preferable to reuse the transport
1183 * devices input device instead of creating a new one here.
1184 * One example is some HID touchpads report "pass-through"
1185 * button events are not reported by rmi registers.
1186 */
1187 data->input = rmi_dev->xport->input;
1188 } else {
1189 data->input = devm_input_allocate_device(dev);
1190 if (!data->input) {
1191 dev_err(dev, "%s: Failed to allocate input device.\n",
1192 __func__);
1193 retval = -ENOMEM;
1194 goto err;
1195 }
1196 rmi_driver_set_input_params(rmi_dev, data->input);
1197 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1198 "%s/input0", dev_name(dev));
1199 }
1200
1201 retval = rmi_init_functions(data);
1202 if (retval)
1203 goto err;
1204
1205 retval = rmi_f34_create_sysfs(rmi_dev);
1206 if (retval)
1207 goto err;
1208
1209 if (data->input) {
1210 rmi_driver_set_input_name(rmi_dev, data->input);
1211 if (!rmi_dev->xport->input) {
1212 if (input_register_device(data->input)) {
1213 dev_err(dev, "%s: Failed to register input device.\n",
1214 __func__);
1215 goto err_destroy_functions;
1216 }
1217 }
1218 }
1219
1220 retval = rmi_irq_init(rmi_dev);
1221 if (retval < 0)
1222 goto err_destroy_functions;
1223
1224 if (data->f01_container->dev.driver)
1225 /* Driver already bound, so enable ATTN now. */
1226 return rmi_enable_sensor(rmi_dev);
1227
1228 return 0;
1229
1230 err_destroy_functions:
1231 rmi_free_function_list(rmi_dev);
1232 err:
1233 return retval < 0 ? retval : 0;
1234 }
1235
1236 static struct rmi_driver rmi_physical_driver = {
1237 .driver = {
1238 .owner = THIS_MODULE,
1239 .name = "rmi4_physical",
1240 .bus = &rmi_bus_type,
1241 .probe = rmi_driver_probe,
1242 .remove = rmi_driver_remove,
1243 },
1244 .reset_handler = rmi_driver_reset_handler,
1245 .clear_irq_bits = rmi_driver_clear_irq_bits,
1246 .set_irq_bits = rmi_driver_set_irq_bits,
1247 .set_input_params = rmi_driver_set_input_params,
1248 };
1249
1250 bool rmi_is_physical_driver(struct device_driver *drv)
1251 {
1252 return drv == &rmi_physical_driver.driver;
1253 }
1254
1255 int __init rmi_register_physical_driver(void)
1256 {
1257 int error;
1258
1259 error = driver_register(&rmi_physical_driver.driver);
1260 if (error) {
1261 pr_err("%s: driver register failed, code=%d.\n", __func__,
1262 error);
1263 return error;
1264 }
1265
1266 return 0;
1267 }
1268
1269 void __exit rmi_unregister_physical_driver(void)
1270 {
1271 driver_unregister(&rmi_physical_driver.driver);
1272 }