]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/input/rmi4/rmi_driver.c
2aa3cd0fe222b832a9656c0d71a5641eef5fa4af
[mirror_ubuntu-bionic-kernel.git] / drivers / input / rmi4 / rmi_driver.c
1 /*
2 * Copyright (c) 2011-2016 Synaptics Incorporated
3 * Copyright (c) 2011 Unixphere
4 *
5 * This driver provides the core support for a single RMI4-based device.
6 *
7 * The RMI4 specification can be found here (URL split for line length):
8 *
9 * http://www.synaptics.com/sites/default/files/
10 * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License version 2 as published by
14 * the Free Software Foundation.
15 */
16
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <uapi/linux/input.h>
25 #include <linux/rmi.h>
26 #include "rmi_bus.h"
27 #include "rmi_driver.h"
28
29 #define HAS_NONSTANDARD_PDT_MASK 0x40
30 #define RMI4_MAX_PAGE 0xff
31 #define RMI4_PAGE_SIZE 0x100
32 #define RMI4_PAGE_MASK 0xFF00
33
34 #define RMI_DEVICE_RESET_CMD 0x01
35 #define DEFAULT_RESET_DELAY_MS 100
36
37 void rmi_free_function_list(struct rmi_device *rmi_dev)
38 {
39 struct rmi_function *fn, *tmp;
40 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
41
42 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
43
44 devm_kfree(&rmi_dev->dev, data->irq_memory);
45 data->irq_memory = NULL;
46 data->irq_status = NULL;
47 data->fn_irq_bits = NULL;
48 data->current_irq_mask = NULL;
49 data->new_irq_mask = NULL;
50
51 data->f01_container = NULL;
52 data->f34_container = NULL;
53
54 /* Doing it in the reverse order so F01 will be removed last */
55 list_for_each_entry_safe_reverse(fn, tmp,
56 &data->function_list, node) {
57 list_del(&fn->node);
58 rmi_unregister_function(fn);
59 }
60 }
61
62 static int reset_one_function(struct rmi_function *fn)
63 {
64 struct rmi_function_handler *fh;
65 int retval = 0;
66
67 if (!fn || !fn->dev.driver)
68 return 0;
69
70 fh = to_rmi_function_handler(fn->dev.driver);
71 if (fh->reset) {
72 retval = fh->reset(fn);
73 if (retval < 0)
74 dev_err(&fn->dev, "Reset failed with code %d.\n",
75 retval);
76 }
77
78 return retval;
79 }
80
81 static int configure_one_function(struct rmi_function *fn)
82 {
83 struct rmi_function_handler *fh;
84 int retval = 0;
85
86 if (!fn || !fn->dev.driver)
87 return 0;
88
89 fh = to_rmi_function_handler(fn->dev.driver);
90 if (fh->config) {
91 retval = fh->config(fn);
92 if (retval < 0)
93 dev_err(&fn->dev, "Config failed with code %d.\n",
94 retval);
95 }
96
97 return retval;
98 }
99
100 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
101 {
102 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
103 struct rmi_function *entry;
104 int retval;
105
106 list_for_each_entry(entry, &data->function_list, node) {
107 retval = reset_one_function(entry);
108 if (retval < 0)
109 return retval;
110 }
111
112 return 0;
113 }
114
115 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
116 {
117 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
118 struct rmi_function *entry;
119 int retval;
120
121 list_for_each_entry(entry, &data->function_list, node) {
122 retval = configure_one_function(entry);
123 if (retval < 0)
124 return retval;
125 }
126
127 return 0;
128 }
129
130 static void process_one_interrupt(struct rmi_driver_data *data,
131 struct rmi_function *fn)
132 {
133 struct rmi_function_handler *fh;
134
135 if (!fn || !fn->dev.driver)
136 return;
137
138 fh = to_rmi_function_handler(fn->dev.driver);
139 if (fh->attention) {
140 bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
141 data->irq_count);
142 if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
143 fh->attention(fn, data->fn_irq_bits);
144 }
145 }
146
147 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
148 {
149 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
150 struct device *dev = &rmi_dev->dev;
151 struct rmi_function *entry;
152 int error;
153
154 if (!data)
155 return 0;
156
157 if (!data->attn_data.data) {
158 error = rmi_read_block(rmi_dev,
159 data->f01_container->fd.data_base_addr + 1,
160 data->irq_status, data->num_of_irq_regs);
161 if (error < 0) {
162 dev_err(dev, "Failed to read irqs, code=%d\n", error);
163 return error;
164 }
165 }
166
167 mutex_lock(&data->irq_mutex);
168 bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
169 data->irq_count);
170 /*
171 * At this point, irq_status has all bits that are set in the
172 * interrupt status register and are enabled.
173 */
174 mutex_unlock(&data->irq_mutex);
175
176 /*
177 * It would be nice to be able to use irq_chip to handle these
178 * nested IRQs. Unfortunately, most of the current customers for
179 * this driver are using older kernels (3.0.x) that don't support
180 * the features required for that. Once they've shifted to more
181 * recent kernels (say, 3.3 and higher), this should be switched to
182 * use irq_chip.
183 */
184 list_for_each_entry(entry, &data->function_list, node)
185 process_one_interrupt(data, entry);
186
187 if (data->input)
188 input_sync(data->input);
189
190 return 0;
191 }
192
193 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
194 void *data, size_t size)
195 {
196 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
197 struct rmi4_attn_data attn_data;
198 void *fifo_data;
199
200 if (!drvdata->enabled)
201 return;
202
203 fifo_data = kmemdup(data, size, GFP_ATOMIC);
204 if (!fifo_data)
205 return;
206
207 attn_data.irq_status = irq_status;
208 attn_data.size = size;
209 attn_data.data = fifo_data;
210
211 kfifo_put(&drvdata->attn_fifo, attn_data);
212 }
213 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
214
215 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
216 {
217 struct rmi_device *rmi_dev = dev_id;
218 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
219 struct rmi4_attn_data attn_data = {0};
220 int ret, count;
221
222 count = kfifo_get(&drvdata->attn_fifo, &attn_data);
223 if (count) {
224 *(drvdata->irq_status) = attn_data.irq_status;
225 drvdata->attn_data = attn_data;
226 }
227
228 ret = rmi_process_interrupt_requests(rmi_dev);
229 if (ret)
230 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
231 "Failed to process interrupt request: %d\n", ret);
232
233 if (count)
234 kfree(attn_data.data);
235
236 if (!kfifo_is_empty(&drvdata->attn_fifo))
237 return rmi_irq_fn(irq, dev_id);
238
239 return IRQ_HANDLED;
240 }
241
242 static int rmi_irq_init(struct rmi_device *rmi_dev)
243 {
244 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
245 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
246 int irq_flags = irq_get_trigger_type(pdata->irq);
247 int ret;
248
249 if (!irq_flags)
250 irq_flags = IRQF_TRIGGER_LOW;
251
252 ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
253 rmi_irq_fn, irq_flags | IRQF_ONESHOT,
254 dev_name(rmi_dev->xport->dev),
255 rmi_dev);
256 if (ret < 0) {
257 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
258 pdata->irq);
259
260 return ret;
261 }
262
263 data->enabled = true;
264
265 return 0;
266 }
267
268 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
269 {
270 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
271 struct rmi_function *entry;
272
273 list_for_each_entry(entry, &data->function_list, node) {
274 if (entry->fd.function_number == number)
275 return entry;
276 }
277
278 return NULL;
279 }
280
281 static int suspend_one_function(struct rmi_function *fn)
282 {
283 struct rmi_function_handler *fh;
284 int retval = 0;
285
286 if (!fn || !fn->dev.driver)
287 return 0;
288
289 fh = to_rmi_function_handler(fn->dev.driver);
290 if (fh->suspend) {
291 retval = fh->suspend(fn);
292 if (retval < 0)
293 dev_err(&fn->dev, "Suspend failed with code %d.\n",
294 retval);
295 }
296
297 return retval;
298 }
299
300 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
301 {
302 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
303 struct rmi_function *entry;
304 int retval;
305
306 list_for_each_entry(entry, &data->function_list, node) {
307 retval = suspend_one_function(entry);
308 if (retval < 0)
309 return retval;
310 }
311
312 return 0;
313 }
314
315 static int resume_one_function(struct rmi_function *fn)
316 {
317 struct rmi_function_handler *fh;
318 int retval = 0;
319
320 if (!fn || !fn->dev.driver)
321 return 0;
322
323 fh = to_rmi_function_handler(fn->dev.driver);
324 if (fh->resume) {
325 retval = fh->resume(fn);
326 if (retval < 0)
327 dev_err(&fn->dev, "Resume failed with code %d.\n",
328 retval);
329 }
330
331 return retval;
332 }
333
334 static int rmi_resume_functions(struct rmi_device *rmi_dev)
335 {
336 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
337 struct rmi_function *entry;
338 int retval;
339
340 list_for_each_entry(entry, &data->function_list, node) {
341 retval = resume_one_function(entry);
342 if (retval < 0)
343 return retval;
344 }
345
346 return 0;
347 }
348
349 int rmi_enable_sensor(struct rmi_device *rmi_dev)
350 {
351 int retval = 0;
352
353 retval = rmi_driver_process_config_requests(rmi_dev);
354 if (retval < 0)
355 return retval;
356
357 return rmi_process_interrupt_requests(rmi_dev);
358 }
359
360 /**
361 * rmi_driver_set_input_params - set input device id and other data.
362 *
363 * @rmi_dev: Pointer to an RMI device
364 * @input: Pointer to input device
365 *
366 */
367 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
368 struct input_dev *input)
369 {
370 input->name = SYNAPTICS_INPUT_DEVICE_NAME;
371 input->id.vendor = SYNAPTICS_VENDOR_ID;
372 input->id.bustype = BUS_RMI;
373 return 0;
374 }
375
376 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
377 struct input_dev *input)
378 {
379 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
380 const char *device_name = rmi_f01_get_product_ID(data->f01_container);
381 char *name;
382
383 name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
384 "Synaptics %s", device_name);
385 if (!name)
386 return;
387
388 input->name = name;
389 }
390
391 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
392 unsigned long *mask)
393 {
394 int error = 0;
395 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
396 struct device *dev = &rmi_dev->dev;
397
398 mutex_lock(&data->irq_mutex);
399 bitmap_or(data->new_irq_mask,
400 data->current_irq_mask, mask, data->irq_count);
401
402 error = rmi_write_block(rmi_dev,
403 data->f01_container->fd.control_base_addr + 1,
404 data->new_irq_mask, data->num_of_irq_regs);
405 if (error < 0) {
406 dev_err(dev, "%s: Failed to change enabled interrupts!",
407 __func__);
408 goto error_unlock;
409 }
410 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
411 data->num_of_irq_regs);
412
413 error_unlock:
414 mutex_unlock(&data->irq_mutex);
415 return error;
416 }
417
418 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
419 unsigned long *mask)
420 {
421 int error = 0;
422 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
423 struct device *dev = &rmi_dev->dev;
424
425 mutex_lock(&data->irq_mutex);
426 bitmap_andnot(data->new_irq_mask,
427 data->current_irq_mask, mask, data->irq_count);
428
429 error = rmi_write_block(rmi_dev,
430 data->f01_container->fd.control_base_addr + 1,
431 data->new_irq_mask, data->num_of_irq_regs);
432 if (error < 0) {
433 dev_err(dev, "%s: Failed to change enabled interrupts!",
434 __func__);
435 goto error_unlock;
436 }
437 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
438 data->num_of_irq_regs);
439
440 error_unlock:
441 mutex_unlock(&data->irq_mutex);
442 return error;
443 }
444
445 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
446 {
447 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
448 int error;
449
450 /*
451 * Can get called before the driver is fully ready to deal with
452 * this situation.
453 */
454 if (!data || !data->f01_container) {
455 dev_warn(&rmi_dev->dev,
456 "Not ready to handle reset yet!\n");
457 return 0;
458 }
459
460 error = rmi_read_block(rmi_dev,
461 data->f01_container->fd.control_base_addr + 1,
462 data->current_irq_mask, data->num_of_irq_regs);
463 if (error < 0) {
464 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
465 __func__);
466 return error;
467 }
468
469 error = rmi_driver_process_reset_requests(rmi_dev);
470 if (error < 0)
471 return error;
472
473 error = rmi_driver_process_config_requests(rmi_dev);
474 if (error < 0)
475 return error;
476
477 return 0;
478 }
479
480 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
481 struct pdt_entry *entry, u16 pdt_address)
482 {
483 u8 buf[RMI_PDT_ENTRY_SIZE];
484 int error;
485
486 error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
487 if (error) {
488 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
489 pdt_address, error);
490 return error;
491 }
492
493 entry->page_start = pdt_address & RMI4_PAGE_MASK;
494 entry->query_base_addr = buf[0];
495 entry->command_base_addr = buf[1];
496 entry->control_base_addr = buf[2];
497 entry->data_base_addr = buf[3];
498 entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
499 entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
500 entry->function_number = buf[5];
501
502 return 0;
503 }
504
505 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
506 struct rmi_function_descriptor *fd)
507 {
508 fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
509 fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
510 fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
511 fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
512 fd->function_number = pdt->function_number;
513 fd->interrupt_source_count = pdt->interrupt_source_count;
514 fd->function_version = pdt->function_version;
515 }
516
517 #define RMI_SCAN_CONTINUE 0
518 #define RMI_SCAN_DONE 1
519
520 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
521 int page,
522 int *empty_pages,
523 void *ctx,
524 int (*callback)(struct rmi_device *rmi_dev,
525 void *ctx,
526 const struct pdt_entry *entry))
527 {
528 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
529 struct pdt_entry pdt_entry;
530 u16 page_start = RMI4_PAGE_SIZE * page;
531 u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
532 u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
533 u16 addr;
534 int error;
535 int retval;
536
537 for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
538 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
539 if (error)
540 return error;
541
542 if (RMI4_END_OF_PDT(pdt_entry.function_number))
543 break;
544
545 retval = callback(rmi_dev, ctx, &pdt_entry);
546 if (retval != RMI_SCAN_CONTINUE)
547 return retval;
548 }
549
550 /*
551 * Count number of empty PDT pages. If a gap of two pages
552 * or more is found, stop scanning.
553 */
554 if (addr == pdt_start)
555 ++*empty_pages;
556 else
557 *empty_pages = 0;
558
559 return (data->bootloader_mode || *empty_pages >= 2) ?
560 RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
561 }
562
563 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
564 int (*callback)(struct rmi_device *rmi_dev,
565 void *ctx, const struct pdt_entry *entry))
566 {
567 int page;
568 int empty_pages = 0;
569 int retval = RMI_SCAN_DONE;
570
571 for (page = 0; page <= RMI4_MAX_PAGE; page++) {
572 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
573 ctx, callback);
574 if (retval != RMI_SCAN_CONTINUE)
575 break;
576 }
577
578 return retval < 0 ? retval : 0;
579 }
580
581 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
582 struct rmi_register_descriptor *rdesc)
583 {
584 int ret;
585 u8 size_presence_reg;
586 u8 buf[35];
587 int presense_offset = 1;
588 u8 *struct_buf;
589 int reg;
590 int offset = 0;
591 int map_offset = 0;
592 int i;
593 int b;
594
595 /*
596 * The first register of the register descriptor is the size of
597 * the register descriptor's presense register.
598 */
599 ret = rmi_read(d, addr, &size_presence_reg);
600 if (ret)
601 return ret;
602 ++addr;
603
604 if (size_presence_reg < 0 || size_presence_reg > 35)
605 return -EIO;
606
607 memset(buf, 0, sizeof(buf));
608
609 /*
610 * The presence register contains the size of the register structure
611 * and a bitmap which identified which packet registers are present
612 * for this particular register type (ie query, control, or data).
613 */
614 ret = rmi_read_block(d, addr, buf, size_presence_reg);
615 if (ret)
616 return ret;
617 ++addr;
618
619 if (buf[0] == 0) {
620 presense_offset = 3;
621 rdesc->struct_size = buf[1] | (buf[2] << 8);
622 } else {
623 rdesc->struct_size = buf[0];
624 }
625
626 for (i = presense_offset; i < size_presence_reg; i++) {
627 for (b = 0; b < 8; b++) {
628 if (buf[i] & (0x1 << b))
629 bitmap_set(rdesc->presense_map, map_offset, 1);
630 ++map_offset;
631 }
632 }
633
634 rdesc->num_registers = bitmap_weight(rdesc->presense_map,
635 RMI_REG_DESC_PRESENSE_BITS);
636
637 rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
638 sizeof(struct rmi_register_desc_item),
639 GFP_KERNEL);
640 if (!rdesc->registers)
641 return -ENOMEM;
642
643 /*
644 * Allocate a temporary buffer to hold the register structure.
645 * I'm not using devm_kzalloc here since it will not be retained
646 * after exiting this function
647 */
648 struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
649 if (!struct_buf)
650 return -ENOMEM;
651
652 /*
653 * The register structure contains information about every packet
654 * register of this type. This includes the size of the packet
655 * register and a bitmap of all subpackets contained in the packet
656 * register.
657 */
658 ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
659 if (ret)
660 goto free_struct_buff;
661
662 reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
663 for (i = 0; i < rdesc->num_registers; i++) {
664 struct rmi_register_desc_item *item = &rdesc->registers[i];
665 int reg_size = struct_buf[offset];
666
667 ++offset;
668 if (reg_size == 0) {
669 reg_size = struct_buf[offset] |
670 (struct_buf[offset + 1] << 8);
671 offset += 2;
672 }
673
674 if (reg_size == 0) {
675 reg_size = struct_buf[offset] |
676 (struct_buf[offset + 1] << 8) |
677 (struct_buf[offset + 2] << 16) |
678 (struct_buf[offset + 3] << 24);
679 offset += 4;
680 }
681
682 item->reg = reg;
683 item->reg_size = reg_size;
684
685 map_offset = 0;
686
687 do {
688 for (b = 0; b < 7; b++) {
689 if (struct_buf[offset] & (0x1 << b))
690 bitmap_set(item->subpacket_map,
691 map_offset, 1);
692 ++map_offset;
693 }
694 } while (struct_buf[offset++] & 0x80);
695
696 item->num_subpackets = bitmap_weight(item->subpacket_map,
697 RMI_REG_DESC_SUBPACKET_BITS);
698
699 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
700 "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
701 item->reg, item->reg_size, item->num_subpackets);
702
703 reg = find_next_bit(rdesc->presense_map,
704 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
705 }
706
707 free_struct_buff:
708 kfree(struct_buf);
709 return ret;
710 }
711
712 const struct rmi_register_desc_item *rmi_get_register_desc_item(
713 struct rmi_register_descriptor *rdesc, u16 reg)
714 {
715 const struct rmi_register_desc_item *item;
716 int i;
717
718 for (i = 0; i < rdesc->num_registers; i++) {
719 item = &rdesc->registers[i];
720 if (item->reg == reg)
721 return item;
722 }
723
724 return NULL;
725 }
726
727 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
728 {
729 const struct rmi_register_desc_item *item;
730 int i;
731 size_t size = 0;
732
733 for (i = 0; i < rdesc->num_registers; i++) {
734 item = &rdesc->registers[i];
735 size += item->reg_size;
736 }
737 return size;
738 }
739
740 /* Compute the register offset relative to the base address */
741 int rmi_register_desc_calc_reg_offset(
742 struct rmi_register_descriptor *rdesc, u16 reg)
743 {
744 const struct rmi_register_desc_item *item;
745 int offset = 0;
746 int i;
747
748 for (i = 0; i < rdesc->num_registers; i++) {
749 item = &rdesc->registers[i];
750 if (item->reg == reg)
751 return offset;
752 ++offset;
753 }
754 return -1;
755 }
756
757 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
758 u8 subpacket)
759 {
760 return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
761 subpacket) == subpacket;
762 }
763
764 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
765 const struct pdt_entry *pdt)
766 {
767 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
768 int ret;
769 u8 status;
770
771 if (pdt->function_number == 0x34 && pdt->function_version > 1) {
772 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
773 if (ret) {
774 dev_err(&rmi_dev->dev,
775 "Failed to read F34 status: %d.\n", ret);
776 return ret;
777 }
778
779 if (status & BIT(7))
780 data->bootloader_mode = true;
781 } else if (pdt->function_number == 0x01) {
782 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
783 if (ret) {
784 dev_err(&rmi_dev->dev,
785 "Failed to read F01 status: %d.\n", ret);
786 return ret;
787 }
788
789 if (status & BIT(6))
790 data->bootloader_mode = true;
791 }
792
793 return 0;
794 }
795
796 static int rmi_count_irqs(struct rmi_device *rmi_dev,
797 void *ctx, const struct pdt_entry *pdt)
798 {
799 int *irq_count = ctx;
800 int ret;
801
802 *irq_count += pdt->interrupt_source_count;
803
804 ret = rmi_check_bootloader_mode(rmi_dev, pdt);
805 if (ret < 0)
806 return ret;
807
808 return RMI_SCAN_CONTINUE;
809 }
810
811 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
812 const struct pdt_entry *pdt)
813 {
814 int error;
815
816 if (pdt->function_number == 0x01) {
817 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
818 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
819 const struct rmi_device_platform_data *pdata =
820 rmi_get_platform_data(rmi_dev);
821
822 if (rmi_dev->xport->ops->reset) {
823 error = rmi_dev->xport->ops->reset(rmi_dev->xport,
824 cmd_addr);
825 if (error)
826 return error;
827
828 return RMI_SCAN_DONE;
829 }
830
831 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
832 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
833 if (error) {
834 dev_err(&rmi_dev->dev,
835 "Initial reset failed. Code = %d.\n", error);
836 return error;
837 }
838
839 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
840
841 return RMI_SCAN_DONE;
842 }
843
844 /* F01 should always be on page 0. If we don't find it there, fail. */
845 return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
846 }
847
848 static int rmi_create_function(struct rmi_device *rmi_dev,
849 void *ctx, const struct pdt_entry *pdt)
850 {
851 struct device *dev = &rmi_dev->dev;
852 struct rmi_driver_data *data = dev_get_drvdata(dev);
853 int *current_irq_count = ctx;
854 struct rmi_function *fn;
855 int i;
856 int error;
857
858 rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
859 pdt->function_number);
860
861 fn = kzalloc(sizeof(struct rmi_function) +
862 BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
863 GFP_KERNEL);
864 if (!fn) {
865 dev_err(dev, "Failed to allocate memory for F%02X\n",
866 pdt->function_number);
867 return -ENOMEM;
868 }
869
870 INIT_LIST_HEAD(&fn->node);
871 rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
872
873 fn->rmi_dev = rmi_dev;
874
875 fn->num_of_irqs = pdt->interrupt_source_count;
876 fn->irq_pos = *current_irq_count;
877 *current_irq_count += fn->num_of_irqs;
878
879 for (i = 0; i < fn->num_of_irqs; i++)
880 set_bit(fn->irq_pos + i, fn->irq_mask);
881
882 error = rmi_register_function(fn);
883 if (error)
884 goto err_put_fn;
885
886 if (pdt->function_number == 0x01)
887 data->f01_container = fn;
888 else if (pdt->function_number == 0x34)
889 data->f34_container = fn;
890
891 list_add_tail(&fn->node, &data->function_list);
892
893 return RMI_SCAN_CONTINUE;
894
895 err_put_fn:
896 put_device(&fn->dev);
897 return error;
898 }
899
900 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
901 {
902 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
903 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
904 int irq = pdata->irq;
905 int irq_flags;
906 int retval;
907
908 mutex_lock(&data->enabled_mutex);
909
910 if (data->enabled)
911 goto out;
912
913 enable_irq(irq);
914 data->enabled = true;
915 if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
916 retval = disable_irq_wake(irq);
917 if (!retval)
918 dev_warn(&rmi_dev->dev,
919 "Failed to disable irq for wake: %d\n",
920 retval);
921 }
922
923 /*
924 * Call rmi_process_interrupt_requests() after enabling irq,
925 * otherwise we may lose interrupt on edge-triggered systems.
926 */
927 irq_flags = irq_get_trigger_type(pdata->irq);
928 if (irq_flags & IRQ_TYPE_EDGE_BOTH)
929 rmi_process_interrupt_requests(rmi_dev);
930
931 out:
932 mutex_unlock(&data->enabled_mutex);
933 }
934
935 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
936 {
937 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
938 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
939 struct rmi4_attn_data attn_data = {0};
940 int irq = pdata->irq;
941 int retval, count;
942
943 mutex_lock(&data->enabled_mutex);
944
945 if (!data->enabled)
946 goto out;
947
948 data->enabled = false;
949 disable_irq(irq);
950 if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
951 retval = enable_irq_wake(irq);
952 if (!retval)
953 dev_warn(&rmi_dev->dev,
954 "Failed to enable irq for wake: %d\n",
955 retval);
956 }
957
958 /* make sure the fifo is clean */
959 while (!kfifo_is_empty(&data->attn_fifo)) {
960 count = kfifo_get(&data->attn_fifo, &attn_data);
961 if (count)
962 kfree(attn_data.data);
963 }
964
965 out:
966 mutex_unlock(&data->enabled_mutex);
967 }
968
969 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
970 {
971 int retval;
972
973 retval = rmi_suspend_functions(rmi_dev);
974 if (retval)
975 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
976 retval);
977
978 rmi_disable_irq(rmi_dev, enable_wake);
979 return retval;
980 }
981 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
982
983 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
984 {
985 int retval;
986
987 rmi_enable_irq(rmi_dev, clear_wake);
988
989 retval = rmi_resume_functions(rmi_dev);
990 if (retval)
991 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
992 retval);
993
994 return retval;
995 }
996 EXPORT_SYMBOL_GPL(rmi_driver_resume);
997
998 static int rmi_driver_remove(struct device *dev)
999 {
1000 struct rmi_device *rmi_dev = to_rmi_device(dev);
1001
1002 rmi_disable_irq(rmi_dev, false);
1003
1004 rmi_f34_remove_sysfs(rmi_dev);
1005 rmi_free_function_list(rmi_dev);
1006
1007 return 0;
1008 }
1009
1010 #ifdef CONFIG_OF
1011 static int rmi_driver_of_probe(struct device *dev,
1012 struct rmi_device_platform_data *pdata)
1013 {
1014 int retval;
1015
1016 retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1017 "syna,reset-delay-ms", 1);
1018 if (retval)
1019 return retval;
1020
1021 return 0;
1022 }
1023 #else
1024 static inline int rmi_driver_of_probe(struct device *dev,
1025 struct rmi_device_platform_data *pdata)
1026 {
1027 return -ENODEV;
1028 }
1029 #endif
1030
1031 int rmi_probe_interrupts(struct rmi_driver_data *data)
1032 {
1033 struct rmi_device *rmi_dev = data->rmi_dev;
1034 struct device *dev = &rmi_dev->dev;
1035 int irq_count;
1036 size_t size;
1037 int retval;
1038
1039 /*
1040 * We need to count the IRQs and allocate their storage before scanning
1041 * the PDT and creating the function entries, because adding a new
1042 * function can trigger events that result in the IRQ related storage
1043 * being accessed.
1044 */
1045 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1046 irq_count = 0;
1047 data->bootloader_mode = false;
1048
1049 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1050 if (retval < 0) {
1051 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1052 return retval;
1053 }
1054
1055 if (data->bootloader_mode)
1056 dev_warn(dev, "Device in bootloader mode.\n");
1057
1058 data->irq_count = irq_count;
1059 data->num_of_irq_regs = (data->irq_count + 7) / 8;
1060
1061 size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1062 data->irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
1063 if (!data->irq_memory) {
1064 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1065 return retval;
1066 }
1067
1068 data->irq_status = data->irq_memory + size * 0;
1069 data->fn_irq_bits = data->irq_memory + size * 1;
1070 data->current_irq_mask = data->irq_memory + size * 2;
1071 data->new_irq_mask = data->irq_memory + size * 3;
1072
1073 return retval;
1074 }
1075
1076 int rmi_init_functions(struct rmi_driver_data *data)
1077 {
1078 struct rmi_device *rmi_dev = data->rmi_dev;
1079 struct device *dev = &rmi_dev->dev;
1080 int irq_count;
1081 int retval;
1082
1083 irq_count = 0;
1084 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1085 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1086 if (retval < 0) {
1087 dev_err(dev, "Function creation failed with code %d.\n",
1088 retval);
1089 goto err_destroy_functions;
1090 }
1091
1092 if (!data->f01_container) {
1093 dev_err(dev, "Missing F01 container!\n");
1094 retval = -EINVAL;
1095 goto err_destroy_functions;
1096 }
1097
1098 retval = rmi_read_block(rmi_dev,
1099 data->f01_container->fd.control_base_addr + 1,
1100 data->current_irq_mask, data->num_of_irq_regs);
1101 if (retval < 0) {
1102 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1103 __func__);
1104 goto err_destroy_functions;
1105 }
1106
1107 return 0;
1108
1109 err_destroy_functions:
1110 rmi_free_function_list(rmi_dev);
1111 return retval;
1112 }
1113
1114 static int rmi_driver_probe(struct device *dev)
1115 {
1116 struct rmi_driver *rmi_driver;
1117 struct rmi_driver_data *data;
1118 struct rmi_device_platform_data *pdata;
1119 struct rmi_device *rmi_dev;
1120 int retval;
1121
1122 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1123 __func__);
1124
1125 if (!rmi_is_physical_device(dev)) {
1126 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1127 return -ENODEV;
1128 }
1129
1130 rmi_dev = to_rmi_device(dev);
1131 rmi_driver = to_rmi_driver(dev->driver);
1132 rmi_dev->driver = rmi_driver;
1133
1134 pdata = rmi_get_platform_data(rmi_dev);
1135
1136 if (rmi_dev->xport->dev->of_node) {
1137 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1138 if (retval)
1139 return retval;
1140 }
1141
1142 data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1143 if (!data)
1144 return -ENOMEM;
1145
1146 INIT_LIST_HEAD(&data->function_list);
1147 data->rmi_dev = rmi_dev;
1148 dev_set_drvdata(&rmi_dev->dev, data);
1149
1150 /*
1151 * Right before a warm boot, the sensor might be in some unusual state,
1152 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1153 * or configuration update. In order to clear the sensor to a known
1154 * state and/or apply any updates, we issue a initial reset to clear any
1155 * previous settings and force it into normal operation.
1156 *
1157 * We have to do this before actually building the PDT because
1158 * the reflash updates (if any) might cause various registers to move
1159 * around.
1160 *
1161 * For a number of reasons, this initial reset may fail to return
1162 * within the specified time, but we'll still be able to bring up the
1163 * driver normally after that failure. This occurs most commonly in
1164 * a cold boot situation (where then firmware takes longer to come up
1165 * than from a warm boot) and the reset_delay_ms in the platform data
1166 * has been set too short to accommodate that. Since the sensor will
1167 * eventually come up and be usable, we don't want to just fail here
1168 * and leave the customer's device unusable. So we warn them, and
1169 * continue processing.
1170 */
1171 retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1172 if (retval < 0)
1173 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1174
1175 retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1176 if (retval < 0) {
1177 /*
1178 * we'll print out a warning and continue since
1179 * failure to get the PDT properties is not a cause to fail
1180 */
1181 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1182 PDT_PROPERTIES_LOCATION, retval);
1183 }
1184
1185 mutex_init(&data->irq_mutex);
1186 mutex_init(&data->enabled_mutex);
1187
1188 retval = rmi_probe_interrupts(data);
1189 if (retval)
1190 goto err;
1191
1192 if (rmi_dev->xport->input) {
1193 /*
1194 * The transport driver already has an input device.
1195 * In some cases it is preferable to reuse the transport
1196 * devices input device instead of creating a new one here.
1197 * One example is some HID touchpads report "pass-through"
1198 * button events are not reported by rmi registers.
1199 */
1200 data->input = rmi_dev->xport->input;
1201 } else {
1202 data->input = devm_input_allocate_device(dev);
1203 if (!data->input) {
1204 dev_err(dev, "%s: Failed to allocate input device.\n",
1205 __func__);
1206 retval = -ENOMEM;
1207 goto err;
1208 }
1209 rmi_driver_set_input_params(rmi_dev, data->input);
1210 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1211 "%s/input0", dev_name(dev));
1212 }
1213
1214 retval = rmi_init_functions(data);
1215 if (retval)
1216 goto err;
1217
1218 retval = rmi_f34_create_sysfs(rmi_dev);
1219 if (retval)
1220 goto err;
1221
1222 if (data->input) {
1223 rmi_driver_set_input_name(rmi_dev, data->input);
1224 if (!rmi_dev->xport->input) {
1225 if (input_register_device(data->input)) {
1226 dev_err(dev, "%s: Failed to register input device.\n",
1227 __func__);
1228 goto err_destroy_functions;
1229 }
1230 }
1231 }
1232
1233 retval = rmi_irq_init(rmi_dev);
1234 if (retval < 0)
1235 goto err_destroy_functions;
1236
1237 if (data->f01_container->dev.driver)
1238 /* Driver already bound, so enable ATTN now. */
1239 return rmi_enable_sensor(rmi_dev);
1240
1241 return 0;
1242
1243 err_destroy_functions:
1244 rmi_free_function_list(rmi_dev);
1245 err:
1246 return retval < 0 ? retval : 0;
1247 }
1248
1249 static struct rmi_driver rmi_physical_driver = {
1250 .driver = {
1251 .owner = THIS_MODULE,
1252 .name = "rmi4_physical",
1253 .bus = &rmi_bus_type,
1254 .probe = rmi_driver_probe,
1255 .remove = rmi_driver_remove,
1256 },
1257 .reset_handler = rmi_driver_reset_handler,
1258 .clear_irq_bits = rmi_driver_clear_irq_bits,
1259 .set_irq_bits = rmi_driver_set_irq_bits,
1260 .set_input_params = rmi_driver_set_input_params,
1261 };
1262
1263 bool rmi_is_physical_driver(struct device_driver *drv)
1264 {
1265 return drv == &rmi_physical_driver.driver;
1266 }
1267
1268 int __init rmi_register_physical_driver(void)
1269 {
1270 int error;
1271
1272 error = driver_register(&rmi_physical_driver.driver);
1273 if (error) {
1274 pr_err("%s: driver register failed, code=%d.\n", __func__,
1275 error);
1276 return error;
1277 }
1278
1279 return 0;
1280 }
1281
1282 void __exit rmi_unregister_physical_driver(void)
1283 {
1284 driver_unregister(&rmi_physical_driver.driver);
1285 }