]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/input/rmi4/rmi_driver.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-zesty-kernel.git] / drivers / input / rmi4 / rmi_driver.c
1 /*
2 * Copyright (c) 2011-2016 Synaptics Incorporated
3 * Copyright (c) 2011 Unixphere
4 *
5 * This driver provides the core support for a single RMI4-based device.
6 *
7 * The RMI4 specification can be found here (URL split for line length):
8 *
9 * http://www.synaptics.com/sites/default/files/
10 * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License version 2 as published by
14 * the Free Software Foundation.
15 */
16
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/kconfig.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <uapi/linux/input.h>
25 #include <linux/rmi.h>
26 #include "rmi_bus.h"
27 #include "rmi_driver.h"
28
29 #define HAS_NONSTANDARD_PDT_MASK 0x40
30 #define RMI4_MAX_PAGE 0xff
31 #define RMI4_PAGE_SIZE 0x100
32 #define RMI4_PAGE_MASK 0xFF00
33
34 #define RMI_DEVICE_RESET_CMD 0x01
35 #define DEFAULT_RESET_DELAY_MS 100
36
37 static void rmi_free_function_list(struct rmi_device *rmi_dev)
38 {
39 struct rmi_function *fn, *tmp;
40 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
41
42 data->f01_container = NULL;
43
44 /* Doing it in the reverse order so F01 will be removed last */
45 list_for_each_entry_safe_reverse(fn, tmp,
46 &data->function_list, node) {
47 list_del(&fn->node);
48 rmi_unregister_function(fn);
49 }
50 }
51
52 static int reset_one_function(struct rmi_function *fn)
53 {
54 struct rmi_function_handler *fh;
55 int retval = 0;
56
57 if (!fn || !fn->dev.driver)
58 return 0;
59
60 fh = to_rmi_function_handler(fn->dev.driver);
61 if (fh->reset) {
62 retval = fh->reset(fn);
63 if (retval < 0)
64 dev_err(&fn->dev, "Reset failed with code %d.\n",
65 retval);
66 }
67
68 return retval;
69 }
70
71 static int configure_one_function(struct rmi_function *fn)
72 {
73 struct rmi_function_handler *fh;
74 int retval = 0;
75
76 if (!fn || !fn->dev.driver)
77 return 0;
78
79 fh = to_rmi_function_handler(fn->dev.driver);
80 if (fh->config) {
81 retval = fh->config(fn);
82 if (retval < 0)
83 dev_err(&fn->dev, "Config failed with code %d.\n",
84 retval);
85 }
86
87 return retval;
88 }
89
90 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
91 {
92 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
93 struct rmi_function *entry;
94 int retval;
95
96 list_for_each_entry(entry, &data->function_list, node) {
97 retval = reset_one_function(entry);
98 if (retval < 0)
99 return retval;
100 }
101
102 return 0;
103 }
104
105 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
106 {
107 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
108 struct rmi_function *entry;
109 int retval;
110
111 list_for_each_entry(entry, &data->function_list, node) {
112 retval = configure_one_function(entry);
113 if (retval < 0)
114 return retval;
115 }
116
117 return 0;
118 }
119
120 static void process_one_interrupt(struct rmi_driver_data *data,
121 struct rmi_function *fn)
122 {
123 struct rmi_function_handler *fh;
124
125 if (!fn || !fn->dev.driver)
126 return;
127
128 fh = to_rmi_function_handler(fn->dev.driver);
129 if (fh->attention) {
130 bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
131 data->irq_count);
132 if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
133 fh->attention(fn, data->fn_irq_bits);
134 }
135 }
136
137 int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
138 {
139 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
140 struct device *dev = &rmi_dev->dev;
141 struct rmi_function *entry;
142 int error;
143
144 if (!data)
145 return 0;
146
147 if (!rmi_dev->xport->attn_data) {
148 error = rmi_read_block(rmi_dev,
149 data->f01_container->fd.data_base_addr + 1,
150 data->irq_status, data->num_of_irq_regs);
151 if (error < 0) {
152 dev_err(dev, "Failed to read irqs, code=%d\n", error);
153 return error;
154 }
155 }
156
157 mutex_lock(&data->irq_mutex);
158 bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
159 data->irq_count);
160 /*
161 * At this point, irq_status has all bits that are set in the
162 * interrupt status register and are enabled.
163 */
164 mutex_unlock(&data->irq_mutex);
165
166 /*
167 * It would be nice to be able to use irq_chip to handle these
168 * nested IRQs. Unfortunately, most of the current customers for
169 * this driver are using older kernels (3.0.x) that don't support
170 * the features required for that. Once they've shifted to more
171 * recent kernels (say, 3.3 and higher), this should be switched to
172 * use irq_chip.
173 */
174 list_for_each_entry(entry, &data->function_list, node)
175 process_one_interrupt(data, entry);
176
177 if (data->input)
178 input_sync(data->input);
179
180 return 0;
181 }
182 EXPORT_SYMBOL_GPL(rmi_process_interrupt_requests);
183
184 static int suspend_one_function(struct rmi_function *fn)
185 {
186 struct rmi_function_handler *fh;
187 int retval = 0;
188
189 if (!fn || !fn->dev.driver)
190 return 0;
191
192 fh = to_rmi_function_handler(fn->dev.driver);
193 if (fh->suspend) {
194 retval = fh->suspend(fn);
195 if (retval < 0)
196 dev_err(&fn->dev, "Suspend failed with code %d.\n",
197 retval);
198 }
199
200 return retval;
201 }
202
203 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
204 {
205 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
206 struct rmi_function *entry;
207 int retval;
208
209 list_for_each_entry(entry, &data->function_list, node) {
210 retval = suspend_one_function(entry);
211 if (retval < 0)
212 return retval;
213 }
214
215 return 0;
216 }
217
218 static int resume_one_function(struct rmi_function *fn)
219 {
220 struct rmi_function_handler *fh;
221 int retval = 0;
222
223 if (!fn || !fn->dev.driver)
224 return 0;
225
226 fh = to_rmi_function_handler(fn->dev.driver);
227 if (fh->resume) {
228 retval = fh->resume(fn);
229 if (retval < 0)
230 dev_err(&fn->dev, "Resume failed with code %d.\n",
231 retval);
232 }
233
234 return retval;
235 }
236
237 static int rmi_resume_functions(struct rmi_device *rmi_dev)
238 {
239 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
240 struct rmi_function *entry;
241 int retval;
242
243 list_for_each_entry(entry, &data->function_list, node) {
244 retval = resume_one_function(entry);
245 if (retval < 0)
246 return retval;
247 }
248
249 return 0;
250 }
251
252 static int enable_sensor(struct rmi_device *rmi_dev)
253 {
254 int retval = 0;
255
256 retval = rmi_driver_process_config_requests(rmi_dev);
257 if (retval < 0)
258 return retval;
259
260 return rmi_process_interrupt_requests(rmi_dev);
261 }
262
263 /**
264 * rmi_driver_set_input_params - set input device id and other data.
265 *
266 * @rmi_dev: Pointer to an RMI device
267 * @input: Pointer to input device
268 *
269 */
270 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
271 struct input_dev *input)
272 {
273 input->name = SYNAPTICS_INPUT_DEVICE_NAME;
274 input->id.vendor = SYNAPTICS_VENDOR_ID;
275 input->id.bustype = BUS_RMI;
276 return 0;
277 }
278
279 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
280 struct input_dev *input)
281 {
282 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
283 char *device_name = rmi_f01_get_product_ID(data->f01_container);
284 char *name;
285
286 name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
287 "Synaptics %s", device_name);
288 if (!name)
289 return;
290
291 input->name = name;
292 }
293
294 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
295 unsigned long *mask)
296 {
297 int error = 0;
298 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
299 struct device *dev = &rmi_dev->dev;
300
301 mutex_lock(&data->irq_mutex);
302 bitmap_or(data->new_irq_mask,
303 data->current_irq_mask, mask, data->irq_count);
304
305 error = rmi_write_block(rmi_dev,
306 data->f01_container->fd.control_base_addr + 1,
307 data->new_irq_mask, data->num_of_irq_regs);
308 if (error < 0) {
309 dev_err(dev, "%s: Failed to change enabled interrupts!",
310 __func__);
311 goto error_unlock;
312 }
313 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
314 data->num_of_irq_regs);
315
316 error_unlock:
317 mutex_unlock(&data->irq_mutex);
318 return error;
319 }
320
321 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
322 unsigned long *mask)
323 {
324 int error = 0;
325 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
326 struct device *dev = &rmi_dev->dev;
327
328 mutex_lock(&data->irq_mutex);
329 bitmap_andnot(data->new_irq_mask,
330 data->current_irq_mask, mask, data->irq_count);
331
332 error = rmi_write_block(rmi_dev,
333 data->f01_container->fd.control_base_addr + 1,
334 data->new_irq_mask, data->num_of_irq_regs);
335 if (error < 0) {
336 dev_err(dev, "%s: Failed to change enabled interrupts!",
337 __func__);
338 goto error_unlock;
339 }
340 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
341 data->num_of_irq_regs);
342
343 error_unlock:
344 mutex_unlock(&data->irq_mutex);
345 return error;
346 }
347
348 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
349 {
350 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
351 int error;
352
353 /*
354 * Can get called before the driver is fully ready to deal with
355 * this situation.
356 */
357 if (!data || !data->f01_container) {
358 dev_warn(&rmi_dev->dev,
359 "Not ready to handle reset yet!\n");
360 return 0;
361 }
362
363 error = rmi_read_block(rmi_dev,
364 data->f01_container->fd.control_base_addr + 1,
365 data->current_irq_mask, data->num_of_irq_regs);
366 if (error < 0) {
367 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
368 __func__);
369 return error;
370 }
371
372 error = rmi_driver_process_reset_requests(rmi_dev);
373 if (error < 0)
374 return error;
375
376 error = rmi_driver_process_config_requests(rmi_dev);
377 if (error < 0)
378 return error;
379
380 return 0;
381 }
382
383 int rmi_read_pdt_entry(struct rmi_device *rmi_dev, struct pdt_entry *entry,
384 u16 pdt_address)
385 {
386 u8 buf[RMI_PDT_ENTRY_SIZE];
387 int error;
388
389 error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
390 if (error) {
391 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
392 pdt_address, error);
393 return error;
394 }
395
396 entry->page_start = pdt_address & RMI4_PAGE_MASK;
397 entry->query_base_addr = buf[0];
398 entry->command_base_addr = buf[1];
399 entry->control_base_addr = buf[2];
400 entry->data_base_addr = buf[3];
401 entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
402 entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
403 entry->function_number = buf[5];
404
405 return 0;
406 }
407 EXPORT_SYMBOL_GPL(rmi_read_pdt_entry);
408
409 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
410 struct rmi_function_descriptor *fd)
411 {
412 fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
413 fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
414 fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
415 fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
416 fd->function_number = pdt->function_number;
417 fd->interrupt_source_count = pdt->interrupt_source_count;
418 fd->function_version = pdt->function_version;
419 }
420
421 #define RMI_SCAN_CONTINUE 0
422 #define RMI_SCAN_DONE 1
423
424 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
425 int page,
426 void *ctx,
427 int (*callback)(struct rmi_device *rmi_dev,
428 void *ctx,
429 const struct pdt_entry *entry))
430 {
431 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
432 struct pdt_entry pdt_entry;
433 u16 page_start = RMI4_PAGE_SIZE * page;
434 u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
435 u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
436 u16 addr;
437 int error;
438 int retval;
439
440 for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
441 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
442 if (error)
443 return error;
444
445 if (RMI4_END_OF_PDT(pdt_entry.function_number))
446 break;
447
448 retval = callback(rmi_dev, ctx, &pdt_entry);
449 if (retval != RMI_SCAN_CONTINUE)
450 return retval;
451 }
452
453 return (data->f01_bootloader_mode || addr == pdt_start) ?
454 RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
455 }
456
457 static int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
458 int (*callback)(struct rmi_device *rmi_dev,
459 void *ctx,
460 const struct pdt_entry *entry))
461 {
462 int page;
463 int retval = RMI_SCAN_DONE;
464
465 for (page = 0; page <= RMI4_MAX_PAGE; page++) {
466 retval = rmi_scan_pdt_page(rmi_dev, page, ctx, callback);
467 if (retval != RMI_SCAN_CONTINUE)
468 break;
469 }
470
471 return retval < 0 ? retval : 0;
472 }
473
474 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
475 struct rmi_register_descriptor *rdesc)
476 {
477 int ret;
478 u8 size_presence_reg;
479 u8 buf[35];
480 int presense_offset = 1;
481 u8 *struct_buf;
482 int reg;
483 int offset = 0;
484 int map_offset = 0;
485 int i;
486 int b;
487
488 /*
489 * The first register of the register descriptor is the size of
490 * the register descriptor's presense register.
491 */
492 ret = rmi_read(d, addr, &size_presence_reg);
493 if (ret)
494 return ret;
495 ++addr;
496
497 if (size_presence_reg < 0 || size_presence_reg > 35)
498 return -EIO;
499
500 memset(buf, 0, sizeof(buf));
501
502 /*
503 * The presence register contains the size of the register structure
504 * and a bitmap which identified which packet registers are present
505 * for this particular register type (ie query, control, or data).
506 */
507 ret = rmi_read_block(d, addr, buf, size_presence_reg);
508 if (ret)
509 return ret;
510 ++addr;
511
512 if (buf[0] == 0) {
513 presense_offset = 3;
514 rdesc->struct_size = buf[1] | (buf[2] << 8);
515 } else {
516 rdesc->struct_size = buf[0];
517 }
518
519 for (i = presense_offset; i < size_presence_reg; i++) {
520 for (b = 0; b < 8; b++) {
521 if (buf[i] & (0x1 << b))
522 bitmap_set(rdesc->presense_map, map_offset, 1);
523 ++map_offset;
524 }
525 }
526
527 rdesc->num_registers = bitmap_weight(rdesc->presense_map,
528 RMI_REG_DESC_PRESENSE_BITS);
529
530 rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
531 sizeof(struct rmi_register_desc_item),
532 GFP_KERNEL);
533 if (!rdesc->registers)
534 return -ENOMEM;
535
536 /*
537 * Allocate a temporary buffer to hold the register structure.
538 * I'm not using devm_kzalloc here since it will not be retained
539 * after exiting this function
540 */
541 struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
542 if (!struct_buf)
543 return -ENOMEM;
544
545 /*
546 * The register structure contains information about every packet
547 * register of this type. This includes the size of the packet
548 * register and a bitmap of all subpackets contained in the packet
549 * register.
550 */
551 ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
552 if (ret)
553 goto free_struct_buff;
554
555 reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
556 for (i = 0; i < rdesc->num_registers; i++) {
557 struct rmi_register_desc_item *item = &rdesc->registers[i];
558 int reg_size = struct_buf[offset];
559
560 ++offset;
561 if (reg_size == 0) {
562 reg_size = struct_buf[offset] |
563 (struct_buf[offset + 1] << 8);
564 offset += 2;
565 }
566
567 if (reg_size == 0) {
568 reg_size = struct_buf[offset] |
569 (struct_buf[offset + 1] << 8) |
570 (struct_buf[offset + 2] << 16) |
571 (struct_buf[offset + 3] << 24);
572 offset += 4;
573 }
574
575 item->reg = reg;
576 item->reg_size = reg_size;
577
578 map_offset = 0;
579
580 do {
581 for (b = 0; b < 7; b++) {
582 if (struct_buf[offset] & (0x1 << b))
583 bitmap_set(item->subpacket_map,
584 map_offset, 1);
585 ++map_offset;
586 }
587 } while (struct_buf[offset++] & 0x80);
588
589 item->num_subpackets = bitmap_weight(item->subpacket_map,
590 RMI_REG_DESC_SUBPACKET_BITS);
591
592 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
593 "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
594 item->reg, item->reg_size, item->num_subpackets);
595
596 reg = find_next_bit(rdesc->presense_map,
597 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
598 }
599
600 free_struct_buff:
601 kfree(struct_buf);
602 return ret;
603 }
604 EXPORT_SYMBOL_GPL(rmi_read_register_desc);
605
606 const struct rmi_register_desc_item *rmi_get_register_desc_item(
607 struct rmi_register_descriptor *rdesc, u16 reg)
608 {
609 const struct rmi_register_desc_item *item;
610 int i;
611
612 for (i = 0; i < rdesc->num_registers; i++) {
613 item = &rdesc->registers[i];
614 if (item->reg == reg)
615 return item;
616 }
617
618 return NULL;
619 }
620 EXPORT_SYMBOL_GPL(rmi_get_register_desc_item);
621
622 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
623 {
624 const struct rmi_register_desc_item *item;
625 int i;
626 size_t size = 0;
627
628 for (i = 0; i < rdesc->num_registers; i++) {
629 item = &rdesc->registers[i];
630 size += item->reg_size;
631 }
632 return size;
633 }
634 EXPORT_SYMBOL_GPL(rmi_register_desc_calc_size);
635
636 /* Compute the register offset relative to the base address */
637 int rmi_register_desc_calc_reg_offset(
638 struct rmi_register_descriptor *rdesc, u16 reg)
639 {
640 const struct rmi_register_desc_item *item;
641 int offset = 0;
642 int i;
643
644 for (i = 0; i < rdesc->num_registers; i++) {
645 item = &rdesc->registers[i];
646 if (item->reg == reg)
647 return offset;
648 ++offset;
649 }
650 return -1;
651 }
652 EXPORT_SYMBOL_GPL(rmi_register_desc_calc_reg_offset);
653
654 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
655 u8 subpacket)
656 {
657 return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
658 subpacket) == subpacket;
659 }
660
661 /* Indicates that flash programming is enabled (bootloader mode). */
662 #define RMI_F01_STATUS_BOOTLOADER(status) (!!((status) & 0x40))
663
664 /*
665 * Given the PDT entry for F01, read the device status register to determine
666 * if we're stuck in bootloader mode or not.
667 *
668 */
669 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
670 const struct pdt_entry *pdt)
671 {
672 int error;
673 u8 device_status;
674
675 error = rmi_read(rmi_dev, pdt->data_base_addr + pdt->page_start,
676 &device_status);
677 if (error) {
678 dev_err(&rmi_dev->dev,
679 "Failed to read device status: %d.\n", error);
680 return error;
681 }
682
683 return RMI_F01_STATUS_BOOTLOADER(device_status);
684 }
685
686 static int rmi_count_irqs(struct rmi_device *rmi_dev,
687 void *ctx, const struct pdt_entry *pdt)
688 {
689 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
690 int *irq_count = ctx;
691
692 *irq_count += pdt->interrupt_source_count;
693 if (pdt->function_number == 0x01) {
694 data->f01_bootloader_mode =
695 rmi_check_bootloader_mode(rmi_dev, pdt);
696 if (data->f01_bootloader_mode)
697 dev_warn(&rmi_dev->dev,
698 "WARNING: RMI4 device is in bootloader mode!\n");
699 }
700
701 return RMI_SCAN_CONTINUE;
702 }
703
704 static int rmi_initial_reset(struct rmi_device *rmi_dev,
705 void *ctx, const struct pdt_entry *pdt)
706 {
707 int error;
708
709 if (pdt->function_number == 0x01) {
710 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
711 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
712 const struct rmi_device_platform_data *pdata =
713 rmi_get_platform_data(rmi_dev);
714
715 if (rmi_dev->xport->ops->reset) {
716 error = rmi_dev->xport->ops->reset(rmi_dev->xport,
717 cmd_addr);
718 if (error)
719 return error;
720
721 return RMI_SCAN_DONE;
722 }
723
724 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
725 if (error) {
726 dev_err(&rmi_dev->dev,
727 "Initial reset failed. Code = %d.\n", error);
728 return error;
729 }
730
731 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
732
733 return RMI_SCAN_DONE;
734 }
735
736 /* F01 should always be on page 0. If we don't find it there, fail. */
737 return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
738 }
739
740 static int rmi_create_function(struct rmi_device *rmi_dev,
741 void *ctx, const struct pdt_entry *pdt)
742 {
743 struct device *dev = &rmi_dev->dev;
744 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
745 int *current_irq_count = ctx;
746 struct rmi_function *fn;
747 int i;
748 int error;
749
750 rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
751 pdt->function_number);
752
753 fn = kzalloc(sizeof(struct rmi_function) +
754 BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
755 GFP_KERNEL);
756 if (!fn) {
757 dev_err(dev, "Failed to allocate memory for F%02X\n",
758 pdt->function_number);
759 return -ENOMEM;
760 }
761
762 INIT_LIST_HEAD(&fn->node);
763 rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
764
765 fn->rmi_dev = rmi_dev;
766
767 fn->num_of_irqs = pdt->interrupt_source_count;
768 fn->irq_pos = *current_irq_count;
769 *current_irq_count += fn->num_of_irqs;
770
771 for (i = 0; i < fn->num_of_irqs; i++)
772 set_bit(fn->irq_pos + i, fn->irq_mask);
773
774 error = rmi_register_function(fn);
775 if (error)
776 goto err_put_fn;
777
778 if (pdt->function_number == 0x01)
779 data->f01_container = fn;
780
781 list_add_tail(&fn->node, &data->function_list);
782
783 return RMI_SCAN_CONTINUE;
784
785 err_put_fn:
786 put_device(&fn->dev);
787 return error;
788 }
789
790 int rmi_driver_suspend(struct rmi_device *rmi_dev)
791 {
792 int retval = 0;
793
794 retval = rmi_suspend_functions(rmi_dev);
795 if (retval)
796 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
797 retval);
798
799 return retval;
800 }
801 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
802
803 int rmi_driver_resume(struct rmi_device *rmi_dev)
804 {
805 int retval;
806
807 retval = rmi_resume_functions(rmi_dev);
808 if (retval)
809 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
810 retval);
811
812 return retval;
813 }
814 EXPORT_SYMBOL_GPL(rmi_driver_resume);
815
816 static int rmi_driver_remove(struct device *dev)
817 {
818 struct rmi_device *rmi_dev = to_rmi_device(dev);
819
820 rmi_free_function_list(rmi_dev);
821
822 return 0;
823 }
824
825 #ifdef CONFIG_OF
826 static int rmi_driver_of_probe(struct device *dev,
827 struct rmi_device_platform_data *pdata)
828 {
829 int retval;
830
831 retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
832 "syna,reset-delay-ms", 1);
833 if (retval)
834 return retval;
835
836 return 0;
837 }
838 #else
839 static inline int rmi_driver_of_probe(struct device *dev,
840 struct rmi_device_platform_data *pdata)
841 {
842 return -ENODEV;
843 }
844 #endif
845
846 static int rmi_driver_probe(struct device *dev)
847 {
848 struct rmi_driver *rmi_driver;
849 struct rmi_driver_data *data;
850 struct rmi_device_platform_data *pdata;
851 struct rmi_device *rmi_dev;
852 size_t size;
853 void *irq_memory;
854 int irq_count;
855 int retval;
856
857 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
858 __func__);
859
860 if (!rmi_is_physical_device(dev)) {
861 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
862 return -ENODEV;
863 }
864
865 rmi_dev = to_rmi_device(dev);
866 rmi_driver = to_rmi_driver(dev->driver);
867 rmi_dev->driver = rmi_driver;
868
869 pdata = rmi_get_platform_data(rmi_dev);
870
871 if (rmi_dev->xport->dev->of_node) {
872 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
873 if (retval)
874 return retval;
875 }
876
877 data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
878 if (!data)
879 return -ENOMEM;
880
881 INIT_LIST_HEAD(&data->function_list);
882 data->rmi_dev = rmi_dev;
883 dev_set_drvdata(&rmi_dev->dev, data);
884
885 /*
886 * Right before a warm boot, the sensor might be in some unusual state,
887 * such as F54 diagnostics, or F34 bootloader mode after a firmware
888 * or configuration update. In order to clear the sensor to a known
889 * state and/or apply any updates, we issue a initial reset to clear any
890 * previous settings and force it into normal operation.
891 *
892 * We have to do this before actually building the PDT because
893 * the reflash updates (if any) might cause various registers to move
894 * around.
895 *
896 * For a number of reasons, this initial reset may fail to return
897 * within the specified time, but we'll still be able to bring up the
898 * driver normally after that failure. This occurs most commonly in
899 * a cold boot situation (where then firmware takes longer to come up
900 * than from a warm boot) and the reset_delay_ms in the platform data
901 * has been set too short to accommodate that. Since the sensor will
902 * eventually come up and be usable, we don't want to just fail here
903 * and leave the customer's device unusable. So we warn them, and
904 * continue processing.
905 */
906 retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
907 if (retval < 0)
908 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
909
910 retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
911 if (retval < 0) {
912 /*
913 * we'll print out a warning and continue since
914 * failure to get the PDT properties is not a cause to fail
915 */
916 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
917 PDT_PROPERTIES_LOCATION, retval);
918 }
919
920 /*
921 * We need to count the IRQs and allocate their storage before scanning
922 * the PDT and creating the function entries, because adding a new
923 * function can trigger events that result in the IRQ related storage
924 * being accessed.
925 */
926 rmi_dbg(RMI_DEBUG_CORE, dev, "Counting IRQs.\n");
927 irq_count = 0;
928 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
929 if (retval < 0) {
930 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
931 goto err;
932 }
933 data->irq_count = irq_count;
934 data->num_of_irq_regs = (data->irq_count + 7) / 8;
935
936 mutex_init(&data->irq_mutex);
937
938 size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
939 irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
940 if (!irq_memory) {
941 dev_err(dev, "Failed to allocate memory for irq masks.\n");
942 goto err;
943 }
944
945 data->irq_status = irq_memory + size * 0;
946 data->fn_irq_bits = irq_memory + size * 1;
947 data->current_irq_mask = irq_memory + size * 2;
948 data->new_irq_mask = irq_memory + size * 3;
949
950 if (rmi_dev->xport->input) {
951 /*
952 * The transport driver already has an input device.
953 * In some cases it is preferable to reuse the transport
954 * devices input device instead of creating a new one here.
955 * One example is some HID touchpads report "pass-through"
956 * button events are not reported by rmi registers.
957 */
958 data->input = rmi_dev->xport->input;
959 } else {
960 data->input = devm_input_allocate_device(dev);
961 if (!data->input) {
962 dev_err(dev, "%s: Failed to allocate input device.\n",
963 __func__);
964 retval = -ENOMEM;
965 goto err_destroy_functions;
966 }
967 rmi_driver_set_input_params(rmi_dev, data->input);
968 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
969 "%s/input0", dev_name(dev));
970 }
971
972 irq_count = 0;
973 rmi_dbg(RMI_DEBUG_CORE, dev, "Creating functions.");
974 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
975 if (retval < 0) {
976 dev_err(dev, "Function creation failed with code %d.\n",
977 retval);
978 goto err_destroy_functions;
979 }
980
981 if (!data->f01_container) {
982 dev_err(dev, "Missing F01 container!\n");
983 retval = -EINVAL;
984 goto err_destroy_functions;
985 }
986
987 retval = rmi_read_block(rmi_dev,
988 data->f01_container->fd.control_base_addr + 1,
989 data->current_irq_mask, data->num_of_irq_regs);
990 if (retval < 0) {
991 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
992 __func__);
993 goto err_destroy_functions;
994 }
995
996 if (data->input) {
997 rmi_driver_set_input_name(rmi_dev, data->input);
998 if (!rmi_dev->xport->input) {
999 if (input_register_device(data->input)) {
1000 dev_err(dev, "%s: Failed to register input device.\n",
1001 __func__);
1002 goto err_destroy_functions;
1003 }
1004 }
1005 }
1006
1007 if (data->f01_container->dev.driver)
1008 /* Driver already bound, so enable ATTN now. */
1009 return enable_sensor(rmi_dev);
1010
1011 return 0;
1012
1013 err_destroy_functions:
1014 rmi_free_function_list(rmi_dev);
1015 err:
1016 return retval < 0 ? retval : 0;
1017 }
1018
1019 static struct rmi_driver rmi_physical_driver = {
1020 .driver = {
1021 .owner = THIS_MODULE,
1022 .name = "rmi4_physical",
1023 .bus = &rmi_bus_type,
1024 .probe = rmi_driver_probe,
1025 .remove = rmi_driver_remove,
1026 },
1027 .reset_handler = rmi_driver_reset_handler,
1028 .clear_irq_bits = rmi_driver_clear_irq_bits,
1029 .set_irq_bits = rmi_driver_set_irq_bits,
1030 .set_input_params = rmi_driver_set_input_params,
1031 };
1032
1033 bool rmi_is_physical_driver(struct device_driver *drv)
1034 {
1035 return drv == &rmi_physical_driver.driver;
1036 }
1037
1038 int __init rmi_register_physical_driver(void)
1039 {
1040 int error;
1041
1042 error = driver_register(&rmi_physical_driver.driver);
1043 if (error) {
1044 pr_err("%s: driver register failed, code=%d.\n", __func__,
1045 error);
1046 return error;
1047 }
1048
1049 return 0;
1050 }
1051
1052 void __exit rmi_unregister_physical_driver(void)
1053 {
1054 driver_unregister(&rmi_physical_driver.driver);
1055 }