]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/input/touchscreen/ads7846.c
Input: ads7846 - remove unused variable from struct ads7845_ser_req
[mirror_ubuntu-bionic-kernel.git] / drivers / input / touchscreen / ads7846.c
1 /*
2 * ADS7846 based touchscreen and sensor driver
3 *
4 * Copyright (c) 2005 David Brownell
5 * Copyright (c) 2006 Nokia Corporation
6 * Various changes: Imre Deak <imre.deak@nokia.com>
7 *
8 * Using code from:
9 * - corgi_ts.c
10 * Copyright (C) 2004-2005 Richard Purdie
11 * - omap_ts.[hc], ads7846.h, ts_osk.c
12 * Copyright (C) 2002 MontaVista Software
13 * Copyright (C) 2004 Texas Instruments
14 * Copyright (C) 2005 Dirk Behme
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2 as
18 * published by the Free Software Foundation.
19 */
20 #include <linux/types.h>
21 #include <linux/hwmon.h>
22 #include <linux/init.h>
23 #include <linux/err.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/input.h>
27 #include <linux/interrupt.h>
28 #include <linux/slab.h>
29 #include <linux/pm.h>
30 #include <linux/gpio.h>
31 #include <linux/spi/spi.h>
32 #include <linux/spi/ads7846.h>
33 #include <linux/regulator/consumer.h>
34 #include <asm/irq.h>
35
36 /*
37 * This code has been heavily tested on a Nokia 770, and lightly
38 * tested on other ads7846 devices (OSK/Mistral, Lubbock, Spitz).
39 * TSC2046 is just newer ads7846 silicon.
40 * Support for ads7843 tested on Atmel at91sam926x-EK.
41 * Support for ads7845 has only been stubbed in.
42 * Support for Analog Devices AD7873 and AD7843 tested.
43 *
44 * IRQ handling needs a workaround because of a shortcoming in handling
45 * edge triggered IRQs on some platforms like the OMAP1/2. These
46 * platforms don't handle the ARM lazy IRQ disabling properly, thus we
47 * have to maintain our own SW IRQ disabled status. This should be
48 * removed as soon as the affected platform's IRQ handling is fixed.
49 *
50 * App note sbaa036 talks in more detail about accurate sampling...
51 * that ought to help in situations like LCDs inducing noise (which
52 * can also be helped by using synch signals) and more generally.
53 * This driver tries to utilize the measures described in the app
54 * note. The strength of filtering can be set in the board-* specific
55 * files.
56 */
57
58 #define TS_POLL_DELAY 1 /* ms delay before the first sample */
59 #define TS_POLL_PERIOD 5 /* ms delay between samples */
60
61 /* this driver doesn't aim at the peak continuous sample rate */
62 #define SAMPLE_BITS (8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */)
63
64 struct ts_event {
65 /*
66 * For portability, we can't read 12 bit values using SPI (which
67 * would make the controller deliver them as native byte order u16
68 * with msbs zeroed). Instead, we read them as two 8-bit values,
69 * *** WHICH NEED BYTESWAPPING *** and range adjustment.
70 */
71 u16 x;
72 u16 y;
73 u16 z1, z2;
74 bool ignore;
75 u8 x_buf[3];
76 u8 y_buf[3];
77 };
78
79 /*
80 * We allocate this separately to avoid cache line sharing issues when
81 * driver is used with DMA-based SPI controllers (like atmel_spi) on
82 * systems where main memory is not DMA-coherent (most non-x86 boards).
83 */
84 struct ads7846_packet {
85 u8 read_x, read_y, read_z1, read_z2, pwrdown;
86 u16 dummy; /* for the pwrdown read */
87 struct ts_event tc;
88 /* for ads7845 with mpc5121 psc spi we use 3-byte buffers */
89 u8 read_x_cmd[3], read_y_cmd[3], pwrdown_cmd[3];
90 };
91
92 struct ads7846 {
93 struct input_dev *input;
94 char phys[32];
95 char name[32];
96
97 struct spi_device *spi;
98 struct regulator *reg;
99
100 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
101 struct attribute_group *attr_group;
102 struct device *hwmon;
103 #endif
104
105 u16 model;
106 u16 vref_mv;
107 u16 vref_delay_usecs;
108 u16 x_plate_ohms;
109 u16 pressure_max;
110
111 bool swap_xy;
112
113 struct ads7846_packet *packet;
114
115 struct spi_transfer xfer[18];
116 struct spi_message msg[5];
117 int msg_count;
118 wait_queue_head_t wait;
119
120 bool pendown;
121
122 int read_cnt;
123 int read_rep;
124 int last_read;
125
126 u16 debounce_max;
127 u16 debounce_tol;
128 u16 debounce_rep;
129
130 u16 penirq_recheck_delay_usecs;
131
132 struct mutex lock;
133 bool stopped; /* P: lock */
134 bool disabled; /* P: lock */
135 bool suspended; /* P: lock */
136
137 int (*filter)(void *data, int data_idx, int *val);
138 void *filter_data;
139 void (*filter_cleanup)(void *data);
140 int (*get_pendown_state)(void);
141 int gpio_pendown;
142
143 void (*wait_for_sync)(void);
144 };
145
146 /* leave chip selected when we're done, for quicker re-select? */
147 #if 0
148 #define CS_CHANGE(xfer) ((xfer).cs_change = 1)
149 #else
150 #define CS_CHANGE(xfer) ((xfer).cs_change = 0)
151 #endif
152
153 /*--------------------------------------------------------------------------*/
154
155 /* The ADS7846 has touchscreen and other sensors.
156 * Earlier ads784x chips are somewhat compatible.
157 */
158 #define ADS_START (1 << 7)
159 #define ADS_A2A1A0_d_y (1 << 4) /* differential */
160 #define ADS_A2A1A0_d_z1 (3 << 4) /* differential */
161 #define ADS_A2A1A0_d_z2 (4 << 4) /* differential */
162 #define ADS_A2A1A0_d_x (5 << 4) /* differential */
163 #define ADS_A2A1A0_temp0 (0 << 4) /* non-differential */
164 #define ADS_A2A1A0_vbatt (2 << 4) /* non-differential */
165 #define ADS_A2A1A0_vaux (6 << 4) /* non-differential */
166 #define ADS_A2A1A0_temp1 (7 << 4) /* non-differential */
167 #define ADS_8_BIT (1 << 3)
168 #define ADS_12_BIT (0 << 3)
169 #define ADS_SER (1 << 2) /* non-differential */
170 #define ADS_DFR (0 << 2) /* differential */
171 #define ADS_PD10_PDOWN (0 << 0) /* low power mode + penirq */
172 #define ADS_PD10_ADC_ON (1 << 0) /* ADC on */
173 #define ADS_PD10_REF_ON (2 << 0) /* vREF on + penirq */
174 #define ADS_PD10_ALL_ON (3 << 0) /* ADC + vREF on */
175
176 #define MAX_12BIT ((1<<12)-1)
177
178 /* leave ADC powered up (disables penirq) between differential samples */
179 #define READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \
180 | ADS_12_BIT | ADS_DFR | \
181 (adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0))
182
183 #define READ_Y(vref) (READ_12BIT_DFR(y, 1, vref))
184 #define READ_Z1(vref) (READ_12BIT_DFR(z1, 1, vref))
185 #define READ_Z2(vref) (READ_12BIT_DFR(z2, 1, vref))
186
187 #define READ_X(vref) (READ_12BIT_DFR(x, 1, vref))
188 #define PWRDOWN (READ_12BIT_DFR(y, 0, 0)) /* LAST */
189
190 /* single-ended samples need to first power up reference voltage;
191 * we leave both ADC and VREF powered
192 */
193 #define READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \
194 | ADS_12_BIT | ADS_SER)
195
196 #define REF_ON (READ_12BIT_DFR(x, 1, 1))
197 #define REF_OFF (READ_12BIT_DFR(y, 0, 0))
198
199 /* Must be called with ts->lock held */
200 static void ads7846_stop(struct ads7846 *ts)
201 {
202 if (!ts->disabled && !ts->suspended) {
203 /* Signal IRQ thread to stop polling and disable the handler. */
204 ts->stopped = true;
205 mb();
206 wake_up(&ts->wait);
207 disable_irq(ts->spi->irq);
208 }
209 }
210
211 /* Must be called with ts->lock held */
212 static void ads7846_restart(struct ads7846 *ts)
213 {
214 if (!ts->disabled && !ts->suspended) {
215 /* Tell IRQ thread that it may poll the device. */
216 ts->stopped = false;
217 mb();
218 enable_irq(ts->spi->irq);
219 }
220 }
221
222 /* Must be called with ts->lock held */
223 static void __ads7846_disable(struct ads7846 *ts)
224 {
225 ads7846_stop(ts);
226 regulator_disable(ts->reg);
227
228 /*
229 * We know the chip's in low power mode since we always
230 * leave it that way after every request
231 */
232 }
233
234 /* Must be called with ts->lock held */
235 static void __ads7846_enable(struct ads7846 *ts)
236 {
237 regulator_enable(ts->reg);
238 ads7846_restart(ts);
239 }
240
241 static void ads7846_disable(struct ads7846 *ts)
242 {
243 mutex_lock(&ts->lock);
244
245 if (!ts->disabled) {
246
247 if (!ts->suspended)
248 __ads7846_disable(ts);
249
250 ts->disabled = true;
251 }
252
253 mutex_unlock(&ts->lock);
254 }
255
256 static void ads7846_enable(struct ads7846 *ts)
257 {
258 mutex_lock(&ts->lock);
259
260 if (ts->disabled) {
261
262 ts->disabled = false;
263
264 if (!ts->suspended)
265 __ads7846_enable(ts);
266 }
267
268 mutex_unlock(&ts->lock);
269 }
270
271 /*--------------------------------------------------------------------------*/
272
273 /*
274 * Non-touchscreen sensors only use single-ended conversions.
275 * The range is GND..vREF. The ads7843 and ads7835 must use external vREF;
276 * ads7846 lets that pin be unconnected, to use internal vREF.
277 */
278
279 struct ser_req {
280 u8 ref_on;
281 u8 command;
282 u8 ref_off;
283 u16 scratch;
284 struct spi_message msg;
285 struct spi_transfer xfer[6];
286 /*
287 * DMA (thus cache coherency maintenance) requires the
288 * transfer buffers to live in their own cache lines.
289 */
290 __be16 sample ____cacheline_aligned;
291 };
292
293 struct ads7845_ser_req {
294 u8 command[3];
295 struct spi_message msg;
296 struct spi_transfer xfer[2];
297 /*
298 * DMA (thus cache coherency maintenance) requires the
299 * transfer buffers to live in their own cache lines.
300 */
301 u8 sample[3] ____cacheline_aligned;
302 };
303
304 static int ads7846_read12_ser(struct device *dev, unsigned command)
305 {
306 struct spi_device *spi = to_spi_device(dev);
307 struct ads7846 *ts = dev_get_drvdata(dev);
308 struct ser_req *req;
309 int status;
310 int use_internal;
311
312 req = kzalloc(sizeof *req, GFP_KERNEL);
313 if (!req)
314 return -ENOMEM;
315
316 spi_message_init(&req->msg);
317
318 /* FIXME boards with ads7846 might use external vref instead ... */
319 use_internal = (ts->model == 7846);
320
321 /* maybe turn on internal vREF, and let it settle */
322 if (use_internal) {
323 req->ref_on = REF_ON;
324 req->xfer[0].tx_buf = &req->ref_on;
325 req->xfer[0].len = 1;
326 spi_message_add_tail(&req->xfer[0], &req->msg);
327
328 req->xfer[1].rx_buf = &req->scratch;
329 req->xfer[1].len = 2;
330
331 /* for 1uF, settle for 800 usec; no cap, 100 usec. */
332 req->xfer[1].delay_usecs = ts->vref_delay_usecs;
333 spi_message_add_tail(&req->xfer[1], &req->msg);
334 }
335
336 /* take sample */
337 req->command = (u8) command;
338 req->xfer[2].tx_buf = &req->command;
339 req->xfer[2].len = 1;
340 spi_message_add_tail(&req->xfer[2], &req->msg);
341
342 req->xfer[3].rx_buf = &req->sample;
343 req->xfer[3].len = 2;
344 spi_message_add_tail(&req->xfer[3], &req->msg);
345
346 /* REVISIT: take a few more samples, and compare ... */
347
348 /* converter in low power mode & enable PENIRQ */
349 req->ref_off = PWRDOWN;
350 req->xfer[4].tx_buf = &req->ref_off;
351 req->xfer[4].len = 1;
352 spi_message_add_tail(&req->xfer[4], &req->msg);
353
354 req->xfer[5].rx_buf = &req->scratch;
355 req->xfer[5].len = 2;
356 CS_CHANGE(req->xfer[5]);
357 spi_message_add_tail(&req->xfer[5], &req->msg);
358
359 mutex_lock(&ts->lock);
360 ads7846_stop(ts);
361 status = spi_sync(spi, &req->msg);
362 ads7846_restart(ts);
363 mutex_unlock(&ts->lock);
364
365 if (status == 0) {
366 /* on-wire is a must-ignore bit, a BE12 value, then padding */
367 status = be16_to_cpu(req->sample);
368 status = status >> 3;
369 status &= 0x0fff;
370 }
371
372 kfree(req);
373 return status;
374 }
375
376 static int ads7845_read12_ser(struct device *dev, unsigned command)
377 {
378 struct spi_device *spi = to_spi_device(dev);
379 struct ads7846 *ts = dev_get_drvdata(dev);
380 struct ads7845_ser_req *req;
381 int status;
382
383 req = kzalloc(sizeof *req, GFP_KERNEL);
384 if (!req)
385 return -ENOMEM;
386
387 spi_message_init(&req->msg);
388
389 req->command[0] = (u8) command;
390 req->xfer[0].tx_buf = req->command;
391 req->xfer[0].rx_buf = req->sample;
392 req->xfer[0].len = 3;
393 spi_message_add_tail(&req->xfer[0], &req->msg);
394
395 mutex_lock(&ts->lock);
396 ads7846_stop(ts);
397 status = spi_sync(spi, &req->msg);
398 ads7846_restart(ts);
399 mutex_unlock(&ts->lock);
400
401 if (status == 0) {
402 /* BE12 value, then padding */
403 status = be16_to_cpu(*((u16 *)&req->sample[1]));
404 status = status >> 3;
405 status &= 0x0fff;
406 }
407
408 kfree(req);
409 return status;
410 }
411
412 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
413
414 #define SHOW(name, var, adjust) static ssize_t \
415 name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \
416 { \
417 struct ads7846 *ts = dev_get_drvdata(dev); \
418 ssize_t v = ads7846_read12_ser(dev, \
419 READ_12BIT_SER(var) | ADS_PD10_ALL_ON); \
420 if (v < 0) \
421 return v; \
422 return sprintf(buf, "%u\n", adjust(ts, v)); \
423 } \
424 static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL);
425
426
427 /* Sysfs conventions report temperatures in millidegrees Celsius.
428 * ADS7846 could use the low-accuracy two-sample scheme, but can't do the high
429 * accuracy scheme without calibration data. For now we won't try either;
430 * userspace sees raw sensor values, and must scale/calibrate appropriately.
431 */
432 static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v)
433 {
434 return v;
435 }
436
437 SHOW(temp0, temp0, null_adjust) /* temp1_input */
438 SHOW(temp1, temp1, null_adjust) /* temp2_input */
439
440
441 /* sysfs conventions report voltages in millivolts. We can convert voltages
442 * if we know vREF. userspace may need to scale vAUX to match the board's
443 * external resistors; we assume that vBATT only uses the internal ones.
444 */
445 static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v)
446 {
447 unsigned retval = v;
448
449 /* external resistors may scale vAUX into 0..vREF */
450 retval *= ts->vref_mv;
451 retval = retval >> 12;
452
453 return retval;
454 }
455
456 static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v)
457 {
458 unsigned retval = vaux_adjust(ts, v);
459
460 /* ads7846 has a resistor ladder to scale this signal down */
461 if (ts->model == 7846)
462 retval *= 4;
463
464 return retval;
465 }
466
467 SHOW(in0_input, vaux, vaux_adjust)
468 SHOW(in1_input, vbatt, vbatt_adjust)
469
470 static struct attribute *ads7846_attributes[] = {
471 &dev_attr_temp0.attr,
472 &dev_attr_temp1.attr,
473 &dev_attr_in0_input.attr,
474 &dev_attr_in1_input.attr,
475 NULL,
476 };
477
478 static struct attribute_group ads7846_attr_group = {
479 .attrs = ads7846_attributes,
480 };
481
482 static struct attribute *ads7843_attributes[] = {
483 &dev_attr_in0_input.attr,
484 &dev_attr_in1_input.attr,
485 NULL,
486 };
487
488 static struct attribute_group ads7843_attr_group = {
489 .attrs = ads7843_attributes,
490 };
491
492 static struct attribute *ads7845_attributes[] = {
493 &dev_attr_in0_input.attr,
494 NULL,
495 };
496
497 static struct attribute_group ads7845_attr_group = {
498 .attrs = ads7845_attributes,
499 };
500
501 static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts)
502 {
503 struct device *hwmon;
504 int err;
505
506 /* hwmon sensors need a reference voltage */
507 switch (ts->model) {
508 case 7846:
509 if (!ts->vref_mv) {
510 dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n");
511 ts->vref_mv = 2500;
512 }
513 break;
514 case 7845:
515 case 7843:
516 if (!ts->vref_mv) {
517 dev_warn(&spi->dev,
518 "external vREF for ADS%d not specified\n",
519 ts->model);
520 return 0;
521 }
522 break;
523 }
524
525 /* different chips have different sensor groups */
526 switch (ts->model) {
527 case 7846:
528 ts->attr_group = &ads7846_attr_group;
529 break;
530 case 7845:
531 ts->attr_group = &ads7845_attr_group;
532 break;
533 case 7843:
534 ts->attr_group = &ads7843_attr_group;
535 break;
536 default:
537 dev_dbg(&spi->dev, "ADS%d not recognized\n", ts->model);
538 return 0;
539 }
540
541 err = sysfs_create_group(&spi->dev.kobj, ts->attr_group);
542 if (err)
543 return err;
544
545 hwmon = hwmon_device_register(&spi->dev);
546 if (IS_ERR(hwmon)) {
547 sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
548 return PTR_ERR(hwmon);
549 }
550
551 ts->hwmon = hwmon;
552 return 0;
553 }
554
555 static void ads784x_hwmon_unregister(struct spi_device *spi,
556 struct ads7846 *ts)
557 {
558 if (ts->hwmon) {
559 sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
560 hwmon_device_unregister(ts->hwmon);
561 }
562 }
563
564 #else
565 static inline int ads784x_hwmon_register(struct spi_device *spi,
566 struct ads7846 *ts)
567 {
568 return 0;
569 }
570
571 static inline void ads784x_hwmon_unregister(struct spi_device *spi,
572 struct ads7846 *ts)
573 {
574 }
575 #endif
576
577 static ssize_t ads7846_pen_down_show(struct device *dev,
578 struct device_attribute *attr, char *buf)
579 {
580 struct ads7846 *ts = dev_get_drvdata(dev);
581
582 return sprintf(buf, "%u\n", ts->pendown);
583 }
584
585 static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL);
586
587 static ssize_t ads7846_disable_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
589 {
590 struct ads7846 *ts = dev_get_drvdata(dev);
591
592 return sprintf(buf, "%u\n", ts->disabled);
593 }
594
595 static ssize_t ads7846_disable_store(struct device *dev,
596 struct device_attribute *attr,
597 const char *buf, size_t count)
598 {
599 struct ads7846 *ts = dev_get_drvdata(dev);
600 unsigned long i;
601
602 if (strict_strtoul(buf, 10, &i))
603 return -EINVAL;
604
605 if (i)
606 ads7846_disable(ts);
607 else
608 ads7846_enable(ts);
609
610 return count;
611 }
612
613 static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store);
614
615 static struct attribute *ads784x_attributes[] = {
616 &dev_attr_pen_down.attr,
617 &dev_attr_disable.attr,
618 NULL,
619 };
620
621 static struct attribute_group ads784x_attr_group = {
622 .attrs = ads784x_attributes,
623 };
624
625 /*--------------------------------------------------------------------------*/
626
627 static int get_pendown_state(struct ads7846 *ts)
628 {
629 if (ts->get_pendown_state)
630 return ts->get_pendown_state();
631
632 return !gpio_get_value(ts->gpio_pendown);
633 }
634
635 static void null_wait_for_sync(void)
636 {
637 }
638
639 static int ads7846_debounce_filter(void *ads, int data_idx, int *val)
640 {
641 struct ads7846 *ts = ads;
642
643 if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) {
644 /* Start over collecting consistent readings. */
645 ts->read_rep = 0;
646 /*
647 * Repeat it, if this was the first read or the read
648 * wasn't consistent enough.
649 */
650 if (ts->read_cnt < ts->debounce_max) {
651 ts->last_read = *val;
652 ts->read_cnt++;
653 return ADS7846_FILTER_REPEAT;
654 } else {
655 /*
656 * Maximum number of debouncing reached and still
657 * not enough number of consistent readings. Abort
658 * the whole sample, repeat it in the next sampling
659 * period.
660 */
661 ts->read_cnt = 0;
662 return ADS7846_FILTER_IGNORE;
663 }
664 } else {
665 if (++ts->read_rep > ts->debounce_rep) {
666 /*
667 * Got a good reading for this coordinate,
668 * go for the next one.
669 */
670 ts->read_cnt = 0;
671 ts->read_rep = 0;
672 return ADS7846_FILTER_OK;
673 } else {
674 /* Read more values that are consistent. */
675 ts->read_cnt++;
676 return ADS7846_FILTER_REPEAT;
677 }
678 }
679 }
680
681 static int ads7846_no_filter(void *ads, int data_idx, int *val)
682 {
683 return ADS7846_FILTER_OK;
684 }
685
686 static int ads7846_get_value(struct ads7846 *ts, struct spi_message *m)
687 {
688 struct spi_transfer *t =
689 list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
690
691 if (ts->model == 7845) {
692 return be16_to_cpup((__be16 *)&(((char*)t->rx_buf)[1])) >> 3;
693 } else {
694 /*
695 * adjust: on-wire is a must-ignore bit, a BE12 value, then
696 * padding; built from two 8 bit values written msb-first.
697 */
698 return be16_to_cpup((__be16 *)t->rx_buf) >> 3;
699 }
700 }
701
702 static void ads7846_update_value(struct spi_message *m, int val)
703 {
704 struct spi_transfer *t =
705 list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
706
707 *(u16 *)t->rx_buf = val;
708 }
709
710 static void ads7846_read_state(struct ads7846 *ts)
711 {
712 struct ads7846_packet *packet = ts->packet;
713 struct spi_message *m;
714 int msg_idx = 0;
715 int val;
716 int action;
717 int error;
718
719 while (msg_idx < ts->msg_count) {
720
721 ts->wait_for_sync();
722
723 m = &ts->msg[msg_idx];
724 error = spi_sync(ts->spi, m);
725 if (error) {
726 dev_err(&ts->spi->dev, "spi_async --> %d\n", error);
727 packet->tc.ignore = true;
728 return;
729 }
730
731 /*
732 * Last message is power down request, no need to convert
733 * or filter the value.
734 */
735 if (msg_idx < ts->msg_count - 1) {
736
737 val = ads7846_get_value(ts, m);
738
739 action = ts->filter(ts->filter_data, msg_idx, &val);
740 switch (action) {
741 case ADS7846_FILTER_REPEAT:
742 continue;
743
744 case ADS7846_FILTER_IGNORE:
745 packet->tc.ignore = true;
746 msg_idx = ts->msg_count - 1;
747 continue;
748
749 case ADS7846_FILTER_OK:
750 ads7846_update_value(m, val);
751 packet->tc.ignore = false;
752 msg_idx++;
753 break;
754
755 default:
756 BUG();
757 }
758 } else {
759 msg_idx++;
760 }
761 }
762 }
763
764 static void ads7846_report_state(struct ads7846 *ts)
765 {
766 struct ads7846_packet *packet = ts->packet;
767 unsigned int Rt;
768 u16 x, y, z1, z2;
769
770 /*
771 * ads7846_get_value() does in-place conversion (including byte swap)
772 * from on-the-wire format as part of debouncing to get stable
773 * readings.
774 */
775 if (ts->model == 7845) {
776 x = *(u16 *)packet->tc.x_buf;
777 y = *(u16 *)packet->tc.y_buf;
778 z1 = 0;
779 z2 = 0;
780 } else {
781 x = packet->tc.x;
782 y = packet->tc.y;
783 z1 = packet->tc.z1;
784 z2 = packet->tc.z2;
785 }
786
787 /* range filtering */
788 if (x == MAX_12BIT)
789 x = 0;
790
791 if (ts->model == 7843) {
792 Rt = ts->pressure_max / 2;
793 } else if (ts->model == 7845) {
794 if (get_pendown_state(ts))
795 Rt = ts->pressure_max / 2;
796 else
797 Rt = 0;
798 dev_vdbg(&ts->spi->dev, "x/y: %d/%d, PD %d\n", x, y, Rt);
799 } else if (likely(x && z1)) {
800 /* compute touch pressure resistance using equation #2 */
801 Rt = z2;
802 Rt -= z1;
803 Rt *= x;
804 Rt *= ts->x_plate_ohms;
805 Rt /= z1;
806 Rt = (Rt + 2047) >> 12;
807 } else {
808 Rt = 0;
809 }
810
811 /*
812 * Sample found inconsistent by debouncing or pressure is beyond
813 * the maximum. Don't report it to user space, repeat at least
814 * once more the measurement
815 */
816 if (packet->tc.ignore || Rt > ts->pressure_max) {
817 dev_vdbg(&ts->spi->dev, "ignored %d pressure %d\n",
818 packet->tc.ignore, Rt);
819 return;
820 }
821
822 /*
823 * Maybe check the pendown state before reporting. This discards
824 * false readings when the pen is lifted.
825 */
826 if (ts->penirq_recheck_delay_usecs) {
827 udelay(ts->penirq_recheck_delay_usecs);
828 if (!get_pendown_state(ts))
829 Rt = 0;
830 }
831
832 /*
833 * NOTE: We can't rely on the pressure to determine the pen down
834 * state, even this controller has a pressure sensor. The pressure
835 * value can fluctuate for quite a while after lifting the pen and
836 * in some cases may not even settle at the expected value.
837 *
838 * The only safe way to check for the pen up condition is in the
839 * timer by reading the pen signal state (it's a GPIO _and_ IRQ).
840 */
841 if (Rt) {
842 struct input_dev *input = ts->input;
843
844 if (ts->swap_xy)
845 swap(x, y);
846
847 if (!ts->pendown) {
848 input_report_key(input, BTN_TOUCH, 1);
849 ts->pendown = true;
850 dev_vdbg(&ts->spi->dev, "DOWN\n");
851 }
852
853 input_report_abs(input, ABS_X, x);
854 input_report_abs(input, ABS_Y, y);
855 input_report_abs(input, ABS_PRESSURE, ts->pressure_max - Rt);
856
857 input_sync(input);
858 dev_vdbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt);
859 }
860 }
861
862 static irqreturn_t ads7846_hard_irq(int irq, void *handle)
863 {
864 struct ads7846 *ts = handle;
865
866 return get_pendown_state(ts) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
867 }
868
869
870 static irqreturn_t ads7846_irq(int irq, void *handle)
871 {
872 struct ads7846 *ts = handle;
873
874 /* Start with a small delay before checking pendown state */
875 msleep(TS_POLL_DELAY);
876
877 while (!ts->stopped && get_pendown_state(ts)) {
878
879 /* pen is down, continue with the measurement */
880 ads7846_read_state(ts);
881
882 if (!ts->stopped)
883 ads7846_report_state(ts);
884
885 wait_event_timeout(ts->wait, ts->stopped,
886 msecs_to_jiffies(TS_POLL_PERIOD));
887 }
888
889 if (ts->pendown) {
890 struct input_dev *input = ts->input;
891
892 input_report_key(input, BTN_TOUCH, 0);
893 input_report_abs(input, ABS_PRESSURE, 0);
894 input_sync(input);
895
896 ts->pendown = false;
897 dev_vdbg(&ts->spi->dev, "UP\n");
898 }
899
900 return IRQ_HANDLED;
901 }
902
903 #ifdef CONFIG_PM_SLEEP
904 static int ads7846_suspend(struct device *dev)
905 {
906 struct ads7846 *ts = dev_get_drvdata(dev);
907
908 mutex_lock(&ts->lock);
909
910 if (!ts->suspended) {
911
912 if (!ts->disabled)
913 __ads7846_disable(ts);
914
915 if (device_may_wakeup(&ts->spi->dev))
916 enable_irq_wake(ts->spi->irq);
917
918 ts->suspended = true;
919 }
920
921 mutex_unlock(&ts->lock);
922
923 return 0;
924 }
925
926 static int ads7846_resume(struct device *dev)
927 {
928 struct ads7846 *ts = dev_get_drvdata(dev);
929
930 mutex_lock(&ts->lock);
931
932 if (ts->suspended) {
933
934 ts->suspended = false;
935
936 if (device_may_wakeup(&ts->spi->dev))
937 disable_irq_wake(ts->spi->irq);
938
939 if (!ts->disabled)
940 __ads7846_enable(ts);
941 }
942
943 mutex_unlock(&ts->lock);
944
945 return 0;
946 }
947 #endif
948
949 static SIMPLE_DEV_PM_OPS(ads7846_pm, ads7846_suspend, ads7846_resume);
950
951 static int __devinit ads7846_setup_pendown(struct spi_device *spi, struct ads7846 *ts)
952 {
953 struct ads7846_platform_data *pdata = spi->dev.platform_data;
954 int err;
955
956 /*
957 * REVISIT when the irq can be triggered active-low, or if for some
958 * reason the touchscreen isn't hooked up, we don't need to access
959 * the pendown state.
960 */
961
962 if (pdata->get_pendown_state) {
963 ts->get_pendown_state = pdata->get_pendown_state;
964 } else if (gpio_is_valid(pdata->gpio_pendown)) {
965
966 err = gpio_request(pdata->gpio_pendown, "ads7846_pendown");
967 if (err) {
968 dev_err(&spi->dev, "failed to request pendown GPIO%d\n",
969 pdata->gpio_pendown);
970 return err;
971 }
972
973 ts->gpio_pendown = pdata->gpio_pendown;
974
975 } else {
976 dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n");
977 return -EINVAL;
978 }
979
980 return 0;
981 }
982
983 /*
984 * Set up the transfers to read touchscreen state; this assumes we
985 * use formula #2 for pressure, not #3.
986 */
987 static void __devinit ads7846_setup_spi_msg(struct ads7846 *ts,
988 const struct ads7846_platform_data *pdata)
989 {
990 struct spi_message *m = &ts->msg[0];
991 struct spi_transfer *x = ts->xfer;
992 struct ads7846_packet *packet = ts->packet;
993 int vref = pdata->keep_vref_on;
994
995 if (ts->model == 7873) {
996 /*
997 * The AD7873 is almost identical to the ADS7846
998 * keep VREF off during differential/ratiometric
999 * conversion modes.
1000 */
1001 ts->model = 7846;
1002 vref = 0;
1003 }
1004
1005 ts->msg_count = 1;
1006 spi_message_init(m);
1007 m->context = ts;
1008
1009 if (ts->model == 7845) {
1010 packet->read_y_cmd[0] = READ_Y(vref);
1011 packet->read_y_cmd[1] = 0;
1012 packet->read_y_cmd[2] = 0;
1013 x->tx_buf = &packet->read_y_cmd[0];
1014 x->rx_buf = &packet->tc.y_buf[0];
1015 x->len = 3;
1016 spi_message_add_tail(x, m);
1017 } else {
1018 /* y- still on; turn on only y+ (and ADC) */
1019 packet->read_y = READ_Y(vref);
1020 x->tx_buf = &packet->read_y;
1021 x->len = 1;
1022 spi_message_add_tail(x, m);
1023
1024 x++;
1025 x->rx_buf = &packet->tc.y;
1026 x->len = 2;
1027 spi_message_add_tail(x, m);
1028 }
1029
1030 /*
1031 * The first sample after switching drivers can be low quality;
1032 * optionally discard it, using a second one after the signals
1033 * have had enough time to stabilize.
1034 */
1035 if (pdata->settle_delay_usecs) {
1036 x->delay_usecs = pdata->settle_delay_usecs;
1037
1038 x++;
1039 x->tx_buf = &packet->read_y;
1040 x->len = 1;
1041 spi_message_add_tail(x, m);
1042
1043 x++;
1044 x->rx_buf = &packet->tc.y;
1045 x->len = 2;
1046 spi_message_add_tail(x, m);
1047 }
1048
1049 ts->msg_count++;
1050 m++;
1051 spi_message_init(m);
1052 m->context = ts;
1053
1054 if (ts->model == 7845) {
1055 x++;
1056 packet->read_x_cmd[0] = READ_X(vref);
1057 packet->read_x_cmd[1] = 0;
1058 packet->read_x_cmd[2] = 0;
1059 x->tx_buf = &packet->read_x_cmd[0];
1060 x->rx_buf = &packet->tc.x_buf[0];
1061 x->len = 3;
1062 spi_message_add_tail(x, m);
1063 } else {
1064 /* turn y- off, x+ on, then leave in lowpower */
1065 x++;
1066 packet->read_x = READ_X(vref);
1067 x->tx_buf = &packet->read_x;
1068 x->len = 1;
1069 spi_message_add_tail(x, m);
1070
1071 x++;
1072 x->rx_buf = &packet->tc.x;
1073 x->len = 2;
1074 spi_message_add_tail(x, m);
1075 }
1076
1077 /* ... maybe discard first sample ... */
1078 if (pdata->settle_delay_usecs) {
1079 x->delay_usecs = pdata->settle_delay_usecs;
1080
1081 x++;
1082 x->tx_buf = &packet->read_x;
1083 x->len = 1;
1084 spi_message_add_tail(x, m);
1085
1086 x++;
1087 x->rx_buf = &packet->tc.x;
1088 x->len = 2;
1089 spi_message_add_tail(x, m);
1090 }
1091
1092 /* turn y+ off, x- on; we'll use formula #2 */
1093 if (ts->model == 7846) {
1094 ts->msg_count++;
1095 m++;
1096 spi_message_init(m);
1097 m->context = ts;
1098
1099 x++;
1100 packet->read_z1 = READ_Z1(vref);
1101 x->tx_buf = &packet->read_z1;
1102 x->len = 1;
1103 spi_message_add_tail(x, m);
1104
1105 x++;
1106 x->rx_buf = &packet->tc.z1;
1107 x->len = 2;
1108 spi_message_add_tail(x, m);
1109
1110 /* ... maybe discard first sample ... */
1111 if (pdata->settle_delay_usecs) {
1112 x->delay_usecs = pdata->settle_delay_usecs;
1113
1114 x++;
1115 x->tx_buf = &packet->read_z1;
1116 x->len = 1;
1117 spi_message_add_tail(x, m);
1118
1119 x++;
1120 x->rx_buf = &packet->tc.z1;
1121 x->len = 2;
1122 spi_message_add_tail(x, m);
1123 }
1124
1125 ts->msg_count++;
1126 m++;
1127 spi_message_init(m);
1128 m->context = ts;
1129
1130 x++;
1131 packet->read_z2 = READ_Z2(vref);
1132 x->tx_buf = &packet->read_z2;
1133 x->len = 1;
1134 spi_message_add_tail(x, m);
1135
1136 x++;
1137 x->rx_buf = &packet->tc.z2;
1138 x->len = 2;
1139 spi_message_add_tail(x, m);
1140
1141 /* ... maybe discard first sample ... */
1142 if (pdata->settle_delay_usecs) {
1143 x->delay_usecs = pdata->settle_delay_usecs;
1144
1145 x++;
1146 x->tx_buf = &packet->read_z2;
1147 x->len = 1;
1148 spi_message_add_tail(x, m);
1149
1150 x++;
1151 x->rx_buf = &packet->tc.z2;
1152 x->len = 2;
1153 spi_message_add_tail(x, m);
1154 }
1155 }
1156
1157 /* power down */
1158 ts->msg_count++;
1159 m++;
1160 spi_message_init(m);
1161 m->context = ts;
1162
1163 if (ts->model == 7845) {
1164 x++;
1165 packet->pwrdown_cmd[0] = PWRDOWN;
1166 packet->pwrdown_cmd[1] = 0;
1167 packet->pwrdown_cmd[2] = 0;
1168 x->tx_buf = &packet->pwrdown_cmd[0];
1169 x->len = 3;
1170 } else {
1171 x++;
1172 packet->pwrdown = PWRDOWN;
1173 x->tx_buf = &packet->pwrdown;
1174 x->len = 1;
1175 spi_message_add_tail(x, m);
1176
1177 x++;
1178 x->rx_buf = &packet->dummy;
1179 x->len = 2;
1180 }
1181
1182 CS_CHANGE(*x);
1183 spi_message_add_tail(x, m);
1184 }
1185
1186 static int __devinit ads7846_probe(struct spi_device *spi)
1187 {
1188 struct ads7846 *ts;
1189 struct ads7846_packet *packet;
1190 struct input_dev *input_dev;
1191 struct ads7846_platform_data *pdata = spi->dev.platform_data;
1192 unsigned long irq_flags;
1193 int err;
1194
1195 if (!spi->irq) {
1196 dev_dbg(&spi->dev, "no IRQ?\n");
1197 return -ENODEV;
1198 }
1199
1200 if (!pdata) {
1201 dev_dbg(&spi->dev, "no platform data?\n");
1202 return -ENODEV;
1203 }
1204
1205 /* don't exceed max specified sample rate */
1206 if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) {
1207 dev_dbg(&spi->dev, "f(sample) %d KHz?\n",
1208 (spi->max_speed_hz/SAMPLE_BITS)/1000);
1209 return -EINVAL;
1210 }
1211
1212 /* We'd set TX word size 8 bits and RX word size to 13 bits ... except
1213 * that even if the hardware can do that, the SPI controller driver
1214 * may not. So we stick to very-portable 8 bit words, both RX and TX.
1215 */
1216 spi->bits_per_word = 8;
1217 spi->mode = SPI_MODE_0;
1218 err = spi_setup(spi);
1219 if (err < 0)
1220 return err;
1221
1222 ts = kzalloc(sizeof(struct ads7846), GFP_KERNEL);
1223 packet = kzalloc(sizeof(struct ads7846_packet), GFP_KERNEL);
1224 input_dev = input_allocate_device();
1225 if (!ts || !packet || !input_dev) {
1226 err = -ENOMEM;
1227 goto err_free_mem;
1228 }
1229
1230 dev_set_drvdata(&spi->dev, ts);
1231
1232 ts->packet = packet;
1233 ts->spi = spi;
1234 ts->input = input_dev;
1235 ts->vref_mv = pdata->vref_mv;
1236 ts->swap_xy = pdata->swap_xy;
1237
1238 mutex_init(&ts->lock);
1239 init_waitqueue_head(&ts->wait);
1240
1241 ts->model = pdata->model ? : 7846;
1242 ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100;
1243 ts->x_plate_ohms = pdata->x_plate_ohms ? : 400;
1244 ts->pressure_max = pdata->pressure_max ? : ~0;
1245
1246 if (pdata->filter != NULL) {
1247 if (pdata->filter_init != NULL) {
1248 err = pdata->filter_init(pdata, &ts->filter_data);
1249 if (err < 0)
1250 goto err_free_mem;
1251 }
1252 ts->filter = pdata->filter;
1253 ts->filter_cleanup = pdata->filter_cleanup;
1254 } else if (pdata->debounce_max) {
1255 ts->debounce_max = pdata->debounce_max;
1256 if (ts->debounce_max < 2)
1257 ts->debounce_max = 2;
1258 ts->debounce_tol = pdata->debounce_tol;
1259 ts->debounce_rep = pdata->debounce_rep;
1260 ts->filter = ads7846_debounce_filter;
1261 ts->filter_data = ts;
1262 } else {
1263 ts->filter = ads7846_no_filter;
1264 }
1265
1266 err = ads7846_setup_pendown(spi, ts);
1267 if (err)
1268 goto err_cleanup_filter;
1269
1270 if (pdata->penirq_recheck_delay_usecs)
1271 ts->penirq_recheck_delay_usecs =
1272 pdata->penirq_recheck_delay_usecs;
1273
1274 ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync;
1275
1276 snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(&spi->dev));
1277 snprintf(ts->name, sizeof(ts->name), "ADS%d Touchscreen", ts->model);
1278
1279 input_dev->name = ts->name;
1280 input_dev->phys = ts->phys;
1281 input_dev->dev.parent = &spi->dev;
1282
1283 input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
1284 input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
1285 input_set_abs_params(input_dev, ABS_X,
1286 pdata->x_min ? : 0,
1287 pdata->x_max ? : MAX_12BIT,
1288 0, 0);
1289 input_set_abs_params(input_dev, ABS_Y,
1290 pdata->y_min ? : 0,
1291 pdata->y_max ? : MAX_12BIT,
1292 0, 0);
1293 input_set_abs_params(input_dev, ABS_PRESSURE,
1294 pdata->pressure_min, pdata->pressure_max, 0, 0);
1295
1296 ads7846_setup_spi_msg(ts, pdata);
1297
1298 ts->reg = regulator_get(&spi->dev, "vcc");
1299 if (IS_ERR(ts->reg)) {
1300 err = PTR_ERR(ts->reg);
1301 dev_err(&spi->dev, "unable to get regulator: %d\n", err);
1302 goto err_free_gpio;
1303 }
1304
1305 err = regulator_enable(ts->reg);
1306 if (err) {
1307 dev_err(&spi->dev, "unable to enable regulator: %d\n", err);
1308 goto err_put_regulator;
1309 }
1310
1311 irq_flags = pdata->irq_flags ? : IRQF_TRIGGER_FALLING;
1312 irq_flags |= IRQF_ONESHOT;
1313
1314 err = request_threaded_irq(spi->irq, ads7846_hard_irq, ads7846_irq,
1315 irq_flags, spi->dev.driver->name, ts);
1316 if (err && !pdata->irq_flags) {
1317 dev_info(&spi->dev,
1318 "trying pin change workaround on irq %d\n", spi->irq);
1319 irq_flags |= IRQF_TRIGGER_RISING;
1320 err = request_threaded_irq(spi->irq,
1321 ads7846_hard_irq, ads7846_irq,
1322 irq_flags, spi->dev.driver->name, ts);
1323 }
1324
1325 if (err) {
1326 dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
1327 goto err_disable_regulator;
1328 }
1329
1330 err = ads784x_hwmon_register(spi, ts);
1331 if (err)
1332 goto err_free_irq;
1333
1334 dev_info(&spi->dev, "touchscreen, irq %d\n", spi->irq);
1335
1336 /*
1337 * Take a first sample, leaving nPENIRQ active and vREF off; avoid
1338 * the touchscreen, in case it's not connected.
1339 */
1340 if (ts->model == 7845)
1341 ads7845_read12_ser(&spi->dev, PWRDOWN);
1342 else
1343 (void) ads7846_read12_ser(&spi->dev,
1344 READ_12BIT_SER(vaux) | ADS_PD10_ALL_ON);
1345
1346 err = sysfs_create_group(&spi->dev.kobj, &ads784x_attr_group);
1347 if (err)
1348 goto err_remove_hwmon;
1349
1350 err = input_register_device(input_dev);
1351 if (err)
1352 goto err_remove_attr_group;
1353
1354 device_init_wakeup(&spi->dev, pdata->wakeup);
1355
1356 return 0;
1357
1358 err_remove_attr_group:
1359 sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1360 err_remove_hwmon:
1361 ads784x_hwmon_unregister(spi, ts);
1362 err_free_irq:
1363 free_irq(spi->irq, ts);
1364 err_disable_regulator:
1365 regulator_disable(ts->reg);
1366 err_put_regulator:
1367 regulator_put(ts->reg);
1368 err_free_gpio:
1369 if (!ts->get_pendown_state)
1370 gpio_free(ts->gpio_pendown);
1371 err_cleanup_filter:
1372 if (ts->filter_cleanup)
1373 ts->filter_cleanup(ts->filter_data);
1374 err_free_mem:
1375 input_free_device(input_dev);
1376 kfree(packet);
1377 kfree(ts);
1378 return err;
1379 }
1380
1381 static int __devexit ads7846_remove(struct spi_device *spi)
1382 {
1383 struct ads7846 *ts = dev_get_drvdata(&spi->dev);
1384
1385 device_init_wakeup(&spi->dev, false);
1386
1387 sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1388
1389 ads7846_disable(ts);
1390 free_irq(ts->spi->irq, ts);
1391
1392 input_unregister_device(ts->input);
1393
1394 ads784x_hwmon_unregister(spi, ts);
1395
1396 regulator_disable(ts->reg);
1397 regulator_put(ts->reg);
1398
1399 if (!ts->get_pendown_state) {
1400 /*
1401 * If we are not using specialized pendown method we must
1402 * have been relying on gpio we set up ourselves.
1403 */
1404 gpio_free(ts->gpio_pendown);
1405 }
1406
1407 if (ts->filter_cleanup)
1408 ts->filter_cleanup(ts->filter_data);
1409
1410 kfree(ts->packet);
1411 kfree(ts);
1412
1413 dev_dbg(&spi->dev, "unregistered touchscreen\n");
1414
1415 return 0;
1416 }
1417
1418 static struct spi_driver ads7846_driver = {
1419 .driver = {
1420 .name = "ads7846",
1421 .bus = &spi_bus_type,
1422 .owner = THIS_MODULE,
1423 .pm = &ads7846_pm,
1424 },
1425 .probe = ads7846_probe,
1426 .remove = __devexit_p(ads7846_remove),
1427 };
1428
1429 static int __init ads7846_init(void)
1430 {
1431 return spi_register_driver(&ads7846_driver);
1432 }
1433 module_init(ads7846_init);
1434
1435 static void __exit ads7846_exit(void)
1436 {
1437 spi_unregister_driver(&ads7846_driver);
1438 }
1439 module_exit(ads7846_exit);
1440
1441 MODULE_DESCRIPTION("ADS7846 TouchScreen Driver");
1442 MODULE_LICENSE("GPL");
1443 MODULE_ALIAS("spi:ads7846");