]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/input/touchscreen/ads7846.c
Merge branch 'next' into for-linus
[mirror_ubuntu-bionic-kernel.git] / drivers / input / touchscreen / ads7846.c
1 /*
2 * ADS7846 based touchscreen and sensor driver
3 *
4 * Copyright (c) 2005 David Brownell
5 * Copyright (c) 2006 Nokia Corporation
6 * Various changes: Imre Deak <imre.deak@nokia.com>
7 *
8 * Using code from:
9 * - corgi_ts.c
10 * Copyright (C) 2004-2005 Richard Purdie
11 * - omap_ts.[hc], ads7846.h, ts_osk.c
12 * Copyright (C) 2002 MontaVista Software
13 * Copyright (C) 2004 Texas Instruments
14 * Copyright (C) 2005 Dirk Behme
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2 as
18 * published by the Free Software Foundation.
19 */
20 #include <linux/types.h>
21 #include <linux/hwmon.h>
22 #include <linux/init.h>
23 #include <linux/err.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/input.h>
27 #include <linux/interrupt.h>
28 #include <linux/slab.h>
29 #include <linux/pm.h>
30 #include <linux/gpio.h>
31 #include <linux/spi/spi.h>
32 #include <linux/spi/ads7846.h>
33 #include <linux/regulator/consumer.h>
34 #include <asm/irq.h>
35
36 /*
37 * This code has been heavily tested on a Nokia 770, and lightly
38 * tested on other ads7846 devices (OSK/Mistral, Lubbock, Spitz).
39 * TSC2046 is just newer ads7846 silicon.
40 * Support for ads7843 tested on Atmel at91sam926x-EK.
41 * Support for ads7845 has only been stubbed in.
42 * Support for Analog Devices AD7873 and AD7843 tested.
43 *
44 * IRQ handling needs a workaround because of a shortcoming in handling
45 * edge triggered IRQs on some platforms like the OMAP1/2. These
46 * platforms don't handle the ARM lazy IRQ disabling properly, thus we
47 * have to maintain our own SW IRQ disabled status. This should be
48 * removed as soon as the affected platform's IRQ handling is fixed.
49 *
50 * App note sbaa036 talks in more detail about accurate sampling...
51 * that ought to help in situations like LCDs inducing noise (which
52 * can also be helped by using synch signals) and more generally.
53 * This driver tries to utilize the measures described in the app
54 * note. The strength of filtering can be set in the board-* specific
55 * files.
56 */
57
58 #define TS_POLL_DELAY 1 /* ms delay before the first sample */
59 #define TS_POLL_PERIOD 5 /* ms delay between samples */
60
61 /* this driver doesn't aim at the peak continuous sample rate */
62 #define SAMPLE_BITS (8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */)
63
64 struct ts_event {
65 /*
66 * For portability, we can't read 12 bit values using SPI (which
67 * would make the controller deliver them as native byte order u16
68 * with msbs zeroed). Instead, we read them as two 8-bit values,
69 * *** WHICH NEED BYTESWAPPING *** and range adjustment.
70 */
71 u16 x;
72 u16 y;
73 u16 z1, z2;
74 bool ignore;
75 u8 x_buf[3];
76 u8 y_buf[3];
77 };
78
79 /*
80 * We allocate this separately to avoid cache line sharing issues when
81 * driver is used with DMA-based SPI controllers (like atmel_spi) on
82 * systems where main memory is not DMA-coherent (most non-x86 boards).
83 */
84 struct ads7846_packet {
85 u8 read_x, read_y, read_z1, read_z2, pwrdown;
86 u16 dummy; /* for the pwrdown read */
87 struct ts_event tc;
88 /* for ads7845 with mpc5121 psc spi we use 3-byte buffers */
89 u8 read_x_cmd[3], read_y_cmd[3], pwrdown_cmd[3];
90 };
91
92 struct ads7846 {
93 struct input_dev *input;
94 char phys[32];
95 char name[32];
96
97 struct spi_device *spi;
98 struct regulator *reg;
99
100 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
101 struct attribute_group *attr_group;
102 struct device *hwmon;
103 #endif
104
105 u16 model;
106 u16 vref_mv;
107 u16 vref_delay_usecs;
108 u16 x_plate_ohms;
109 u16 pressure_max;
110
111 bool swap_xy;
112
113 struct ads7846_packet *packet;
114
115 struct spi_transfer xfer[18];
116 struct spi_message msg[5];
117 int msg_count;
118 wait_queue_head_t wait;
119
120 bool pendown;
121
122 int read_cnt;
123 int read_rep;
124 int last_read;
125
126 u16 debounce_max;
127 u16 debounce_tol;
128 u16 debounce_rep;
129
130 u16 penirq_recheck_delay_usecs;
131
132 struct mutex lock;
133 bool stopped; /* P: lock */
134 bool disabled; /* P: lock */
135 bool suspended; /* P: lock */
136
137 int (*filter)(void *data, int data_idx, int *val);
138 void *filter_data;
139 void (*filter_cleanup)(void *data);
140 int (*get_pendown_state)(void);
141 int gpio_pendown;
142
143 void (*wait_for_sync)(void);
144 };
145
146 /* leave chip selected when we're done, for quicker re-select? */
147 #if 0
148 #define CS_CHANGE(xfer) ((xfer).cs_change = 1)
149 #else
150 #define CS_CHANGE(xfer) ((xfer).cs_change = 0)
151 #endif
152
153 /*--------------------------------------------------------------------------*/
154
155 /* The ADS7846 has touchscreen and other sensors.
156 * Earlier ads784x chips are somewhat compatible.
157 */
158 #define ADS_START (1 << 7)
159 #define ADS_A2A1A0_d_y (1 << 4) /* differential */
160 #define ADS_A2A1A0_d_z1 (3 << 4) /* differential */
161 #define ADS_A2A1A0_d_z2 (4 << 4) /* differential */
162 #define ADS_A2A1A0_d_x (5 << 4) /* differential */
163 #define ADS_A2A1A0_temp0 (0 << 4) /* non-differential */
164 #define ADS_A2A1A0_vbatt (2 << 4) /* non-differential */
165 #define ADS_A2A1A0_vaux (6 << 4) /* non-differential */
166 #define ADS_A2A1A0_temp1 (7 << 4) /* non-differential */
167 #define ADS_8_BIT (1 << 3)
168 #define ADS_12_BIT (0 << 3)
169 #define ADS_SER (1 << 2) /* non-differential */
170 #define ADS_DFR (0 << 2) /* differential */
171 #define ADS_PD10_PDOWN (0 << 0) /* low power mode + penirq */
172 #define ADS_PD10_ADC_ON (1 << 0) /* ADC on */
173 #define ADS_PD10_REF_ON (2 << 0) /* vREF on + penirq */
174 #define ADS_PD10_ALL_ON (3 << 0) /* ADC + vREF on */
175
176 #define MAX_12BIT ((1<<12)-1)
177
178 /* leave ADC powered up (disables penirq) between differential samples */
179 #define READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \
180 | ADS_12_BIT | ADS_DFR | \
181 (adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0))
182
183 #define READ_Y(vref) (READ_12BIT_DFR(y, 1, vref))
184 #define READ_Z1(vref) (READ_12BIT_DFR(z1, 1, vref))
185 #define READ_Z2(vref) (READ_12BIT_DFR(z2, 1, vref))
186
187 #define READ_X(vref) (READ_12BIT_DFR(x, 1, vref))
188 #define PWRDOWN (READ_12BIT_DFR(y, 0, 0)) /* LAST */
189
190 /* single-ended samples need to first power up reference voltage;
191 * we leave both ADC and VREF powered
192 */
193 #define READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \
194 | ADS_12_BIT | ADS_SER)
195
196 #define REF_ON (READ_12BIT_DFR(x, 1, 1))
197 #define REF_OFF (READ_12BIT_DFR(y, 0, 0))
198
199 /* Must be called with ts->lock held */
200 static void ads7846_stop(struct ads7846 *ts)
201 {
202 if (!ts->disabled && !ts->suspended) {
203 /* Signal IRQ thread to stop polling and disable the handler. */
204 ts->stopped = true;
205 mb();
206 wake_up(&ts->wait);
207 disable_irq(ts->spi->irq);
208 }
209 }
210
211 /* Must be called with ts->lock held */
212 static void ads7846_restart(struct ads7846 *ts)
213 {
214 if (!ts->disabled && !ts->suspended) {
215 /* Tell IRQ thread that it may poll the device. */
216 ts->stopped = false;
217 mb();
218 enable_irq(ts->spi->irq);
219 }
220 }
221
222 /* Must be called with ts->lock held */
223 static void __ads7846_disable(struct ads7846 *ts)
224 {
225 ads7846_stop(ts);
226 regulator_disable(ts->reg);
227
228 /*
229 * We know the chip's in low power mode since we always
230 * leave it that way after every request
231 */
232 }
233
234 /* Must be called with ts->lock held */
235 static void __ads7846_enable(struct ads7846 *ts)
236 {
237 regulator_enable(ts->reg);
238 ads7846_restart(ts);
239 }
240
241 static void ads7846_disable(struct ads7846 *ts)
242 {
243 mutex_lock(&ts->lock);
244
245 if (!ts->disabled) {
246
247 if (!ts->suspended)
248 __ads7846_disable(ts);
249
250 ts->disabled = true;
251 }
252
253 mutex_unlock(&ts->lock);
254 }
255
256 static void ads7846_enable(struct ads7846 *ts)
257 {
258 mutex_lock(&ts->lock);
259
260 if (ts->disabled) {
261
262 ts->disabled = false;
263
264 if (!ts->suspended)
265 __ads7846_enable(ts);
266 }
267
268 mutex_unlock(&ts->lock);
269 }
270
271 /*--------------------------------------------------------------------------*/
272
273 /*
274 * Non-touchscreen sensors only use single-ended conversions.
275 * The range is GND..vREF. The ads7843 and ads7835 must use external vREF;
276 * ads7846 lets that pin be unconnected, to use internal vREF.
277 */
278
279 struct ser_req {
280 u8 ref_on;
281 u8 command;
282 u8 ref_off;
283 u16 scratch;
284 __be16 sample;
285 struct spi_message msg;
286 struct spi_transfer xfer[6];
287 };
288
289 struct ads7845_ser_req {
290 u8 command[3];
291 u8 pwrdown[3];
292 u8 sample[3];
293 struct spi_message msg;
294 struct spi_transfer xfer[2];
295 };
296
297 static int ads7846_read12_ser(struct device *dev, unsigned command)
298 {
299 struct spi_device *spi = to_spi_device(dev);
300 struct ads7846 *ts = dev_get_drvdata(dev);
301 struct ser_req *req;
302 int status;
303 int use_internal;
304
305 req = kzalloc(sizeof *req, GFP_KERNEL);
306 if (!req)
307 return -ENOMEM;
308
309 spi_message_init(&req->msg);
310
311 /* FIXME boards with ads7846 might use external vref instead ... */
312 use_internal = (ts->model == 7846);
313
314 /* maybe turn on internal vREF, and let it settle */
315 if (use_internal) {
316 req->ref_on = REF_ON;
317 req->xfer[0].tx_buf = &req->ref_on;
318 req->xfer[0].len = 1;
319 spi_message_add_tail(&req->xfer[0], &req->msg);
320
321 req->xfer[1].rx_buf = &req->scratch;
322 req->xfer[1].len = 2;
323
324 /* for 1uF, settle for 800 usec; no cap, 100 usec. */
325 req->xfer[1].delay_usecs = ts->vref_delay_usecs;
326 spi_message_add_tail(&req->xfer[1], &req->msg);
327 }
328
329 /* take sample */
330 req->command = (u8) command;
331 req->xfer[2].tx_buf = &req->command;
332 req->xfer[2].len = 1;
333 spi_message_add_tail(&req->xfer[2], &req->msg);
334
335 req->xfer[3].rx_buf = &req->sample;
336 req->xfer[3].len = 2;
337 spi_message_add_tail(&req->xfer[3], &req->msg);
338
339 /* REVISIT: take a few more samples, and compare ... */
340
341 /* converter in low power mode & enable PENIRQ */
342 req->ref_off = PWRDOWN;
343 req->xfer[4].tx_buf = &req->ref_off;
344 req->xfer[4].len = 1;
345 spi_message_add_tail(&req->xfer[4], &req->msg);
346
347 req->xfer[5].rx_buf = &req->scratch;
348 req->xfer[5].len = 2;
349 CS_CHANGE(req->xfer[5]);
350 spi_message_add_tail(&req->xfer[5], &req->msg);
351
352 mutex_lock(&ts->lock);
353 ads7846_stop(ts);
354 status = spi_sync(spi, &req->msg);
355 ads7846_restart(ts);
356 mutex_unlock(&ts->lock);
357
358 if (status == 0) {
359 /* on-wire is a must-ignore bit, a BE12 value, then padding */
360 status = be16_to_cpu(req->sample);
361 status = status >> 3;
362 status &= 0x0fff;
363 }
364
365 kfree(req);
366 return status;
367 }
368
369 static int ads7845_read12_ser(struct device *dev, unsigned command)
370 {
371 struct spi_device *spi = to_spi_device(dev);
372 struct ads7846 *ts = dev_get_drvdata(dev);
373 struct ads7845_ser_req *req;
374 int status;
375
376 req = kzalloc(sizeof *req, GFP_KERNEL);
377 if (!req)
378 return -ENOMEM;
379
380 spi_message_init(&req->msg);
381
382 req->command[0] = (u8) command;
383 req->xfer[0].tx_buf = req->command;
384 req->xfer[0].rx_buf = req->sample;
385 req->xfer[0].len = 3;
386 spi_message_add_tail(&req->xfer[0], &req->msg);
387
388 mutex_lock(&ts->lock);
389 ads7846_stop(ts);
390 status = spi_sync(spi, &req->msg);
391 ads7846_restart(ts);
392 mutex_unlock(&ts->lock);
393
394 if (status == 0) {
395 /* BE12 value, then padding */
396 status = be16_to_cpu(*((u16 *)&req->sample[1]));
397 status = status >> 3;
398 status &= 0x0fff;
399 }
400
401 kfree(req);
402 return status;
403 }
404
405 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
406
407 #define SHOW(name, var, adjust) static ssize_t \
408 name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \
409 { \
410 struct ads7846 *ts = dev_get_drvdata(dev); \
411 ssize_t v = ads7846_read12_ser(dev, \
412 READ_12BIT_SER(var) | ADS_PD10_ALL_ON); \
413 if (v < 0) \
414 return v; \
415 return sprintf(buf, "%u\n", adjust(ts, v)); \
416 } \
417 static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL);
418
419
420 /* Sysfs conventions report temperatures in millidegrees Celsius.
421 * ADS7846 could use the low-accuracy two-sample scheme, but can't do the high
422 * accuracy scheme without calibration data. For now we won't try either;
423 * userspace sees raw sensor values, and must scale/calibrate appropriately.
424 */
425 static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v)
426 {
427 return v;
428 }
429
430 SHOW(temp0, temp0, null_adjust) /* temp1_input */
431 SHOW(temp1, temp1, null_adjust) /* temp2_input */
432
433
434 /* sysfs conventions report voltages in millivolts. We can convert voltages
435 * if we know vREF. userspace may need to scale vAUX to match the board's
436 * external resistors; we assume that vBATT only uses the internal ones.
437 */
438 static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v)
439 {
440 unsigned retval = v;
441
442 /* external resistors may scale vAUX into 0..vREF */
443 retval *= ts->vref_mv;
444 retval = retval >> 12;
445
446 return retval;
447 }
448
449 static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v)
450 {
451 unsigned retval = vaux_adjust(ts, v);
452
453 /* ads7846 has a resistor ladder to scale this signal down */
454 if (ts->model == 7846)
455 retval *= 4;
456
457 return retval;
458 }
459
460 SHOW(in0_input, vaux, vaux_adjust)
461 SHOW(in1_input, vbatt, vbatt_adjust)
462
463 static struct attribute *ads7846_attributes[] = {
464 &dev_attr_temp0.attr,
465 &dev_attr_temp1.attr,
466 &dev_attr_in0_input.attr,
467 &dev_attr_in1_input.attr,
468 NULL,
469 };
470
471 static struct attribute_group ads7846_attr_group = {
472 .attrs = ads7846_attributes,
473 };
474
475 static struct attribute *ads7843_attributes[] = {
476 &dev_attr_in0_input.attr,
477 &dev_attr_in1_input.attr,
478 NULL,
479 };
480
481 static struct attribute_group ads7843_attr_group = {
482 .attrs = ads7843_attributes,
483 };
484
485 static struct attribute *ads7845_attributes[] = {
486 &dev_attr_in0_input.attr,
487 NULL,
488 };
489
490 static struct attribute_group ads7845_attr_group = {
491 .attrs = ads7845_attributes,
492 };
493
494 static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts)
495 {
496 struct device *hwmon;
497 int err;
498
499 /* hwmon sensors need a reference voltage */
500 switch (ts->model) {
501 case 7846:
502 if (!ts->vref_mv) {
503 dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n");
504 ts->vref_mv = 2500;
505 }
506 break;
507 case 7845:
508 case 7843:
509 if (!ts->vref_mv) {
510 dev_warn(&spi->dev,
511 "external vREF for ADS%d not specified\n",
512 ts->model);
513 return 0;
514 }
515 break;
516 }
517
518 /* different chips have different sensor groups */
519 switch (ts->model) {
520 case 7846:
521 ts->attr_group = &ads7846_attr_group;
522 break;
523 case 7845:
524 ts->attr_group = &ads7845_attr_group;
525 break;
526 case 7843:
527 ts->attr_group = &ads7843_attr_group;
528 break;
529 default:
530 dev_dbg(&spi->dev, "ADS%d not recognized\n", ts->model);
531 return 0;
532 }
533
534 err = sysfs_create_group(&spi->dev.kobj, ts->attr_group);
535 if (err)
536 return err;
537
538 hwmon = hwmon_device_register(&spi->dev);
539 if (IS_ERR(hwmon)) {
540 sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
541 return PTR_ERR(hwmon);
542 }
543
544 ts->hwmon = hwmon;
545 return 0;
546 }
547
548 static void ads784x_hwmon_unregister(struct spi_device *spi,
549 struct ads7846 *ts)
550 {
551 if (ts->hwmon) {
552 sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
553 hwmon_device_unregister(ts->hwmon);
554 }
555 }
556
557 #else
558 static inline int ads784x_hwmon_register(struct spi_device *spi,
559 struct ads7846 *ts)
560 {
561 return 0;
562 }
563
564 static inline void ads784x_hwmon_unregister(struct spi_device *spi,
565 struct ads7846 *ts)
566 {
567 }
568 #endif
569
570 static ssize_t ads7846_pen_down_show(struct device *dev,
571 struct device_attribute *attr, char *buf)
572 {
573 struct ads7846 *ts = dev_get_drvdata(dev);
574
575 return sprintf(buf, "%u\n", ts->pendown);
576 }
577
578 static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL);
579
580 static ssize_t ads7846_disable_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582 {
583 struct ads7846 *ts = dev_get_drvdata(dev);
584
585 return sprintf(buf, "%u\n", ts->disabled);
586 }
587
588 static ssize_t ads7846_disable_store(struct device *dev,
589 struct device_attribute *attr,
590 const char *buf, size_t count)
591 {
592 struct ads7846 *ts = dev_get_drvdata(dev);
593 unsigned long i;
594
595 if (strict_strtoul(buf, 10, &i))
596 return -EINVAL;
597
598 if (i)
599 ads7846_disable(ts);
600 else
601 ads7846_enable(ts);
602
603 return count;
604 }
605
606 static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store);
607
608 static struct attribute *ads784x_attributes[] = {
609 &dev_attr_pen_down.attr,
610 &dev_attr_disable.attr,
611 NULL,
612 };
613
614 static struct attribute_group ads784x_attr_group = {
615 .attrs = ads784x_attributes,
616 };
617
618 /*--------------------------------------------------------------------------*/
619
620 static int get_pendown_state(struct ads7846 *ts)
621 {
622 if (ts->get_pendown_state)
623 return ts->get_pendown_state();
624
625 return !gpio_get_value(ts->gpio_pendown);
626 }
627
628 static void null_wait_for_sync(void)
629 {
630 }
631
632 static int ads7846_debounce_filter(void *ads, int data_idx, int *val)
633 {
634 struct ads7846 *ts = ads;
635
636 if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) {
637 /* Start over collecting consistent readings. */
638 ts->read_rep = 0;
639 /*
640 * Repeat it, if this was the first read or the read
641 * wasn't consistent enough.
642 */
643 if (ts->read_cnt < ts->debounce_max) {
644 ts->last_read = *val;
645 ts->read_cnt++;
646 return ADS7846_FILTER_REPEAT;
647 } else {
648 /*
649 * Maximum number of debouncing reached and still
650 * not enough number of consistent readings. Abort
651 * the whole sample, repeat it in the next sampling
652 * period.
653 */
654 ts->read_cnt = 0;
655 return ADS7846_FILTER_IGNORE;
656 }
657 } else {
658 if (++ts->read_rep > ts->debounce_rep) {
659 /*
660 * Got a good reading for this coordinate,
661 * go for the next one.
662 */
663 ts->read_cnt = 0;
664 ts->read_rep = 0;
665 return ADS7846_FILTER_OK;
666 } else {
667 /* Read more values that are consistent. */
668 ts->read_cnt++;
669 return ADS7846_FILTER_REPEAT;
670 }
671 }
672 }
673
674 static int ads7846_no_filter(void *ads, int data_idx, int *val)
675 {
676 return ADS7846_FILTER_OK;
677 }
678
679 static int ads7846_get_value(struct ads7846 *ts, struct spi_message *m)
680 {
681 struct spi_transfer *t =
682 list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
683
684 if (ts->model == 7845) {
685 return be16_to_cpup((__be16 *)&(((char*)t->rx_buf)[1])) >> 3;
686 } else {
687 /*
688 * adjust: on-wire is a must-ignore bit, a BE12 value, then
689 * padding; built from two 8 bit values written msb-first.
690 */
691 return be16_to_cpup((__be16 *)t->rx_buf) >> 3;
692 }
693 }
694
695 static void ads7846_update_value(struct spi_message *m, int val)
696 {
697 struct spi_transfer *t =
698 list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
699
700 *(u16 *)t->rx_buf = val;
701 }
702
703 static void ads7846_read_state(struct ads7846 *ts)
704 {
705 struct ads7846_packet *packet = ts->packet;
706 struct spi_message *m;
707 int msg_idx = 0;
708 int val;
709 int action;
710 int error;
711
712 while (msg_idx < ts->msg_count) {
713
714 ts->wait_for_sync();
715
716 m = &ts->msg[msg_idx];
717 error = spi_sync(ts->spi, m);
718 if (error) {
719 dev_err(&ts->spi->dev, "spi_async --> %d\n", error);
720 packet->tc.ignore = true;
721 return;
722 }
723
724 /*
725 * Last message is power down request, no need to convert
726 * or filter the value.
727 */
728 if (msg_idx < ts->msg_count - 1) {
729
730 val = ads7846_get_value(ts, m);
731
732 action = ts->filter(ts->filter_data, msg_idx, &val);
733 switch (action) {
734 case ADS7846_FILTER_REPEAT:
735 continue;
736
737 case ADS7846_FILTER_IGNORE:
738 packet->tc.ignore = true;
739 msg_idx = ts->msg_count - 1;
740 continue;
741
742 case ADS7846_FILTER_OK:
743 ads7846_update_value(m, val);
744 packet->tc.ignore = false;
745 msg_idx++;
746 break;
747
748 default:
749 BUG();
750 }
751 } else {
752 msg_idx++;
753 }
754 }
755 }
756
757 static void ads7846_report_state(struct ads7846 *ts)
758 {
759 struct ads7846_packet *packet = ts->packet;
760 unsigned int Rt;
761 u16 x, y, z1, z2;
762
763 /*
764 * ads7846_get_value() does in-place conversion (including byte swap)
765 * from on-the-wire format as part of debouncing to get stable
766 * readings.
767 */
768 if (ts->model == 7845) {
769 x = *(u16 *)packet->tc.x_buf;
770 y = *(u16 *)packet->tc.y_buf;
771 z1 = 0;
772 z2 = 0;
773 } else {
774 x = packet->tc.x;
775 y = packet->tc.y;
776 z1 = packet->tc.z1;
777 z2 = packet->tc.z2;
778 }
779
780 /* range filtering */
781 if (x == MAX_12BIT)
782 x = 0;
783
784 if (ts->model == 7843) {
785 Rt = ts->pressure_max / 2;
786 } else if (ts->model == 7845) {
787 if (get_pendown_state(ts))
788 Rt = ts->pressure_max / 2;
789 else
790 Rt = 0;
791 dev_vdbg(&ts->spi->dev, "x/y: %d/%d, PD %d\n", x, y, Rt);
792 } else if (likely(x && z1)) {
793 /* compute touch pressure resistance using equation #2 */
794 Rt = z2;
795 Rt -= z1;
796 Rt *= x;
797 Rt *= ts->x_plate_ohms;
798 Rt /= z1;
799 Rt = (Rt + 2047) >> 12;
800 } else {
801 Rt = 0;
802 }
803
804 /*
805 * Sample found inconsistent by debouncing or pressure is beyond
806 * the maximum. Don't report it to user space, repeat at least
807 * once more the measurement
808 */
809 if (packet->tc.ignore || Rt > ts->pressure_max) {
810 dev_vdbg(&ts->spi->dev, "ignored %d pressure %d\n",
811 packet->tc.ignore, Rt);
812 return;
813 }
814
815 /*
816 * Maybe check the pendown state before reporting. This discards
817 * false readings when the pen is lifted.
818 */
819 if (ts->penirq_recheck_delay_usecs) {
820 udelay(ts->penirq_recheck_delay_usecs);
821 if (!get_pendown_state(ts))
822 Rt = 0;
823 }
824
825 /*
826 * NOTE: We can't rely on the pressure to determine the pen down
827 * state, even this controller has a pressure sensor. The pressure
828 * value can fluctuate for quite a while after lifting the pen and
829 * in some cases may not even settle at the expected value.
830 *
831 * The only safe way to check for the pen up condition is in the
832 * timer by reading the pen signal state (it's a GPIO _and_ IRQ).
833 */
834 if (Rt) {
835 struct input_dev *input = ts->input;
836
837 if (ts->swap_xy)
838 swap(x, y);
839
840 if (!ts->pendown) {
841 input_report_key(input, BTN_TOUCH, 1);
842 ts->pendown = true;
843 dev_vdbg(&ts->spi->dev, "DOWN\n");
844 }
845
846 input_report_abs(input, ABS_X, x);
847 input_report_abs(input, ABS_Y, y);
848 input_report_abs(input, ABS_PRESSURE, ts->pressure_max - Rt);
849
850 input_sync(input);
851 dev_vdbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt);
852 }
853 }
854
855 static irqreturn_t ads7846_hard_irq(int irq, void *handle)
856 {
857 struct ads7846 *ts = handle;
858
859 return get_pendown_state(ts) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
860 }
861
862
863 static irqreturn_t ads7846_irq(int irq, void *handle)
864 {
865 struct ads7846 *ts = handle;
866
867 /* Start with a small delay before checking pendown state */
868 msleep(TS_POLL_DELAY);
869
870 while (!ts->stopped && get_pendown_state(ts)) {
871
872 /* pen is down, continue with the measurement */
873 ads7846_read_state(ts);
874
875 if (!ts->stopped)
876 ads7846_report_state(ts);
877
878 wait_event_timeout(ts->wait, ts->stopped,
879 msecs_to_jiffies(TS_POLL_PERIOD));
880 }
881
882 if (ts->pendown) {
883 struct input_dev *input = ts->input;
884
885 input_report_key(input, BTN_TOUCH, 0);
886 input_report_abs(input, ABS_PRESSURE, 0);
887 input_sync(input);
888
889 ts->pendown = false;
890 dev_vdbg(&ts->spi->dev, "UP\n");
891 }
892
893 return IRQ_HANDLED;
894 }
895
896 #ifdef CONFIG_PM_SLEEP
897 static int ads7846_suspend(struct device *dev)
898 {
899 struct ads7846 *ts = dev_get_drvdata(dev);
900
901 mutex_lock(&ts->lock);
902
903 if (!ts->suspended) {
904
905 if (!ts->disabled)
906 __ads7846_disable(ts);
907
908 if (device_may_wakeup(&ts->spi->dev))
909 enable_irq_wake(ts->spi->irq);
910
911 ts->suspended = true;
912 }
913
914 mutex_unlock(&ts->lock);
915
916 return 0;
917 }
918
919 static int ads7846_resume(struct device *dev)
920 {
921 struct ads7846 *ts = dev_get_drvdata(dev);
922
923 mutex_lock(&ts->lock);
924
925 if (ts->suspended) {
926
927 ts->suspended = false;
928
929 if (device_may_wakeup(&ts->spi->dev))
930 disable_irq_wake(ts->spi->irq);
931
932 if (!ts->disabled)
933 __ads7846_enable(ts);
934 }
935
936 mutex_unlock(&ts->lock);
937
938 return 0;
939 }
940 #endif
941
942 static SIMPLE_DEV_PM_OPS(ads7846_pm, ads7846_suspend, ads7846_resume);
943
944 static int __devinit ads7846_setup_pendown(struct spi_device *spi, struct ads7846 *ts)
945 {
946 struct ads7846_platform_data *pdata = spi->dev.platform_data;
947 int err;
948
949 /*
950 * REVISIT when the irq can be triggered active-low, or if for some
951 * reason the touchscreen isn't hooked up, we don't need to access
952 * the pendown state.
953 */
954
955 if (pdata->get_pendown_state) {
956 ts->get_pendown_state = pdata->get_pendown_state;
957 } else if (gpio_is_valid(pdata->gpio_pendown)) {
958
959 err = gpio_request(pdata->gpio_pendown, "ads7846_pendown");
960 if (err) {
961 dev_err(&spi->dev, "failed to request pendown GPIO%d\n",
962 pdata->gpio_pendown);
963 return err;
964 }
965
966 ts->gpio_pendown = pdata->gpio_pendown;
967
968 } else {
969 dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n");
970 return -EINVAL;
971 }
972
973 return 0;
974 }
975
976 /*
977 * Set up the transfers to read touchscreen state; this assumes we
978 * use formula #2 for pressure, not #3.
979 */
980 static void __devinit ads7846_setup_spi_msg(struct ads7846 *ts,
981 const struct ads7846_platform_data *pdata)
982 {
983 struct spi_message *m = &ts->msg[0];
984 struct spi_transfer *x = ts->xfer;
985 struct ads7846_packet *packet = ts->packet;
986 int vref = pdata->keep_vref_on;
987
988 if (ts->model == 7873) {
989 /*
990 * The AD7873 is almost identical to the ADS7846
991 * keep VREF off during differential/ratiometric
992 * conversion modes.
993 */
994 ts->model = 7846;
995 vref = 0;
996 }
997
998 ts->msg_count = 1;
999 spi_message_init(m);
1000 m->context = ts;
1001
1002 if (ts->model == 7845) {
1003 packet->read_y_cmd[0] = READ_Y(vref);
1004 packet->read_y_cmd[1] = 0;
1005 packet->read_y_cmd[2] = 0;
1006 x->tx_buf = &packet->read_y_cmd[0];
1007 x->rx_buf = &packet->tc.y_buf[0];
1008 x->len = 3;
1009 spi_message_add_tail(x, m);
1010 } else {
1011 /* y- still on; turn on only y+ (and ADC) */
1012 packet->read_y = READ_Y(vref);
1013 x->tx_buf = &packet->read_y;
1014 x->len = 1;
1015 spi_message_add_tail(x, m);
1016
1017 x++;
1018 x->rx_buf = &packet->tc.y;
1019 x->len = 2;
1020 spi_message_add_tail(x, m);
1021 }
1022
1023 /*
1024 * The first sample after switching drivers can be low quality;
1025 * optionally discard it, using a second one after the signals
1026 * have had enough time to stabilize.
1027 */
1028 if (pdata->settle_delay_usecs) {
1029 x->delay_usecs = pdata->settle_delay_usecs;
1030
1031 x++;
1032 x->tx_buf = &packet->read_y;
1033 x->len = 1;
1034 spi_message_add_tail(x, m);
1035
1036 x++;
1037 x->rx_buf = &packet->tc.y;
1038 x->len = 2;
1039 spi_message_add_tail(x, m);
1040 }
1041
1042 ts->msg_count++;
1043 m++;
1044 spi_message_init(m);
1045 m->context = ts;
1046
1047 if (ts->model == 7845) {
1048 x++;
1049 packet->read_x_cmd[0] = READ_X(vref);
1050 packet->read_x_cmd[1] = 0;
1051 packet->read_x_cmd[2] = 0;
1052 x->tx_buf = &packet->read_x_cmd[0];
1053 x->rx_buf = &packet->tc.x_buf[0];
1054 x->len = 3;
1055 spi_message_add_tail(x, m);
1056 } else {
1057 /* turn y- off, x+ on, then leave in lowpower */
1058 x++;
1059 packet->read_x = READ_X(vref);
1060 x->tx_buf = &packet->read_x;
1061 x->len = 1;
1062 spi_message_add_tail(x, m);
1063
1064 x++;
1065 x->rx_buf = &packet->tc.x;
1066 x->len = 2;
1067 spi_message_add_tail(x, m);
1068 }
1069
1070 /* ... maybe discard first sample ... */
1071 if (pdata->settle_delay_usecs) {
1072 x->delay_usecs = pdata->settle_delay_usecs;
1073
1074 x++;
1075 x->tx_buf = &packet->read_x;
1076 x->len = 1;
1077 spi_message_add_tail(x, m);
1078
1079 x++;
1080 x->rx_buf = &packet->tc.x;
1081 x->len = 2;
1082 spi_message_add_tail(x, m);
1083 }
1084
1085 /* turn y+ off, x- on; we'll use formula #2 */
1086 if (ts->model == 7846) {
1087 ts->msg_count++;
1088 m++;
1089 spi_message_init(m);
1090 m->context = ts;
1091
1092 x++;
1093 packet->read_z1 = READ_Z1(vref);
1094 x->tx_buf = &packet->read_z1;
1095 x->len = 1;
1096 spi_message_add_tail(x, m);
1097
1098 x++;
1099 x->rx_buf = &packet->tc.z1;
1100 x->len = 2;
1101 spi_message_add_tail(x, m);
1102
1103 /* ... maybe discard first sample ... */
1104 if (pdata->settle_delay_usecs) {
1105 x->delay_usecs = pdata->settle_delay_usecs;
1106
1107 x++;
1108 x->tx_buf = &packet->read_z1;
1109 x->len = 1;
1110 spi_message_add_tail(x, m);
1111
1112 x++;
1113 x->rx_buf = &packet->tc.z1;
1114 x->len = 2;
1115 spi_message_add_tail(x, m);
1116 }
1117
1118 ts->msg_count++;
1119 m++;
1120 spi_message_init(m);
1121 m->context = ts;
1122
1123 x++;
1124 packet->read_z2 = READ_Z2(vref);
1125 x->tx_buf = &packet->read_z2;
1126 x->len = 1;
1127 spi_message_add_tail(x, m);
1128
1129 x++;
1130 x->rx_buf = &packet->tc.z2;
1131 x->len = 2;
1132 spi_message_add_tail(x, m);
1133
1134 /* ... maybe discard first sample ... */
1135 if (pdata->settle_delay_usecs) {
1136 x->delay_usecs = pdata->settle_delay_usecs;
1137
1138 x++;
1139 x->tx_buf = &packet->read_z2;
1140 x->len = 1;
1141 spi_message_add_tail(x, m);
1142
1143 x++;
1144 x->rx_buf = &packet->tc.z2;
1145 x->len = 2;
1146 spi_message_add_tail(x, m);
1147 }
1148 }
1149
1150 /* power down */
1151 ts->msg_count++;
1152 m++;
1153 spi_message_init(m);
1154 m->context = ts;
1155
1156 if (ts->model == 7845) {
1157 x++;
1158 packet->pwrdown_cmd[0] = PWRDOWN;
1159 packet->pwrdown_cmd[1] = 0;
1160 packet->pwrdown_cmd[2] = 0;
1161 x->tx_buf = &packet->pwrdown_cmd[0];
1162 x->len = 3;
1163 } else {
1164 x++;
1165 packet->pwrdown = PWRDOWN;
1166 x->tx_buf = &packet->pwrdown;
1167 x->len = 1;
1168 spi_message_add_tail(x, m);
1169
1170 x++;
1171 x->rx_buf = &packet->dummy;
1172 x->len = 2;
1173 }
1174
1175 CS_CHANGE(*x);
1176 spi_message_add_tail(x, m);
1177 }
1178
1179 static int __devinit ads7846_probe(struct spi_device *spi)
1180 {
1181 struct ads7846 *ts;
1182 struct ads7846_packet *packet;
1183 struct input_dev *input_dev;
1184 struct ads7846_platform_data *pdata = spi->dev.platform_data;
1185 unsigned long irq_flags;
1186 int err;
1187
1188 if (!spi->irq) {
1189 dev_dbg(&spi->dev, "no IRQ?\n");
1190 return -ENODEV;
1191 }
1192
1193 if (!pdata) {
1194 dev_dbg(&spi->dev, "no platform data?\n");
1195 return -ENODEV;
1196 }
1197
1198 /* don't exceed max specified sample rate */
1199 if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) {
1200 dev_dbg(&spi->dev, "f(sample) %d KHz?\n",
1201 (spi->max_speed_hz/SAMPLE_BITS)/1000);
1202 return -EINVAL;
1203 }
1204
1205 /* We'd set TX word size 8 bits and RX word size to 13 bits ... except
1206 * that even if the hardware can do that, the SPI controller driver
1207 * may not. So we stick to very-portable 8 bit words, both RX and TX.
1208 */
1209 spi->bits_per_word = 8;
1210 spi->mode = SPI_MODE_0;
1211 err = spi_setup(spi);
1212 if (err < 0)
1213 return err;
1214
1215 ts = kzalloc(sizeof(struct ads7846), GFP_KERNEL);
1216 packet = kzalloc(sizeof(struct ads7846_packet), GFP_KERNEL);
1217 input_dev = input_allocate_device();
1218 if (!ts || !packet || !input_dev) {
1219 err = -ENOMEM;
1220 goto err_free_mem;
1221 }
1222
1223 dev_set_drvdata(&spi->dev, ts);
1224
1225 ts->packet = packet;
1226 ts->spi = spi;
1227 ts->input = input_dev;
1228 ts->vref_mv = pdata->vref_mv;
1229 ts->swap_xy = pdata->swap_xy;
1230
1231 mutex_init(&ts->lock);
1232 init_waitqueue_head(&ts->wait);
1233
1234 ts->model = pdata->model ? : 7846;
1235 ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100;
1236 ts->x_plate_ohms = pdata->x_plate_ohms ? : 400;
1237 ts->pressure_max = pdata->pressure_max ? : ~0;
1238
1239 if (pdata->filter != NULL) {
1240 if (pdata->filter_init != NULL) {
1241 err = pdata->filter_init(pdata, &ts->filter_data);
1242 if (err < 0)
1243 goto err_free_mem;
1244 }
1245 ts->filter = pdata->filter;
1246 ts->filter_cleanup = pdata->filter_cleanup;
1247 } else if (pdata->debounce_max) {
1248 ts->debounce_max = pdata->debounce_max;
1249 if (ts->debounce_max < 2)
1250 ts->debounce_max = 2;
1251 ts->debounce_tol = pdata->debounce_tol;
1252 ts->debounce_rep = pdata->debounce_rep;
1253 ts->filter = ads7846_debounce_filter;
1254 ts->filter_data = ts;
1255 } else {
1256 ts->filter = ads7846_no_filter;
1257 }
1258
1259 err = ads7846_setup_pendown(spi, ts);
1260 if (err)
1261 goto err_cleanup_filter;
1262
1263 if (pdata->penirq_recheck_delay_usecs)
1264 ts->penirq_recheck_delay_usecs =
1265 pdata->penirq_recheck_delay_usecs;
1266
1267 ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync;
1268
1269 snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(&spi->dev));
1270 snprintf(ts->name, sizeof(ts->name), "ADS%d Touchscreen", ts->model);
1271
1272 input_dev->name = ts->name;
1273 input_dev->phys = ts->phys;
1274 input_dev->dev.parent = &spi->dev;
1275
1276 input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
1277 input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
1278 input_set_abs_params(input_dev, ABS_X,
1279 pdata->x_min ? : 0,
1280 pdata->x_max ? : MAX_12BIT,
1281 0, 0);
1282 input_set_abs_params(input_dev, ABS_Y,
1283 pdata->y_min ? : 0,
1284 pdata->y_max ? : MAX_12BIT,
1285 0, 0);
1286 input_set_abs_params(input_dev, ABS_PRESSURE,
1287 pdata->pressure_min, pdata->pressure_max, 0, 0);
1288
1289 ads7846_setup_spi_msg(ts, pdata);
1290
1291 ts->reg = regulator_get(&spi->dev, "vcc");
1292 if (IS_ERR(ts->reg)) {
1293 err = PTR_ERR(ts->reg);
1294 dev_err(&spi->dev, "unable to get regulator: %d\n", err);
1295 goto err_free_gpio;
1296 }
1297
1298 err = regulator_enable(ts->reg);
1299 if (err) {
1300 dev_err(&spi->dev, "unable to enable regulator: %d\n", err);
1301 goto err_put_regulator;
1302 }
1303
1304 irq_flags = pdata->irq_flags ? : IRQF_TRIGGER_FALLING;
1305 irq_flags |= IRQF_ONESHOT;
1306
1307 err = request_threaded_irq(spi->irq, ads7846_hard_irq, ads7846_irq,
1308 irq_flags, spi->dev.driver->name, ts);
1309 if (err && !pdata->irq_flags) {
1310 dev_info(&spi->dev,
1311 "trying pin change workaround on irq %d\n", spi->irq);
1312 irq_flags |= IRQF_TRIGGER_RISING;
1313 err = request_threaded_irq(spi->irq,
1314 ads7846_hard_irq, ads7846_irq,
1315 irq_flags, spi->dev.driver->name, ts);
1316 }
1317
1318 if (err) {
1319 dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
1320 goto err_disable_regulator;
1321 }
1322
1323 err = ads784x_hwmon_register(spi, ts);
1324 if (err)
1325 goto err_free_irq;
1326
1327 dev_info(&spi->dev, "touchscreen, irq %d\n", spi->irq);
1328
1329 /*
1330 * Take a first sample, leaving nPENIRQ active and vREF off; avoid
1331 * the touchscreen, in case it's not connected.
1332 */
1333 if (ts->model == 7845)
1334 ads7845_read12_ser(&spi->dev, PWRDOWN);
1335 else
1336 (void) ads7846_read12_ser(&spi->dev,
1337 READ_12BIT_SER(vaux) | ADS_PD10_ALL_ON);
1338
1339 err = sysfs_create_group(&spi->dev.kobj, &ads784x_attr_group);
1340 if (err)
1341 goto err_remove_hwmon;
1342
1343 err = input_register_device(input_dev);
1344 if (err)
1345 goto err_remove_attr_group;
1346
1347 device_init_wakeup(&spi->dev, pdata->wakeup);
1348
1349 return 0;
1350
1351 err_remove_attr_group:
1352 sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1353 err_remove_hwmon:
1354 ads784x_hwmon_unregister(spi, ts);
1355 err_free_irq:
1356 free_irq(spi->irq, ts);
1357 err_disable_regulator:
1358 regulator_disable(ts->reg);
1359 err_put_regulator:
1360 regulator_put(ts->reg);
1361 err_free_gpio:
1362 if (!ts->get_pendown_state)
1363 gpio_free(ts->gpio_pendown);
1364 err_cleanup_filter:
1365 if (ts->filter_cleanup)
1366 ts->filter_cleanup(ts->filter_data);
1367 err_free_mem:
1368 input_free_device(input_dev);
1369 kfree(packet);
1370 kfree(ts);
1371 return err;
1372 }
1373
1374 static int __devexit ads7846_remove(struct spi_device *spi)
1375 {
1376 struct ads7846 *ts = dev_get_drvdata(&spi->dev);
1377
1378 device_init_wakeup(&spi->dev, false);
1379
1380 sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1381
1382 ads7846_disable(ts);
1383 free_irq(ts->spi->irq, ts);
1384
1385 input_unregister_device(ts->input);
1386
1387 ads784x_hwmon_unregister(spi, ts);
1388
1389 regulator_disable(ts->reg);
1390 regulator_put(ts->reg);
1391
1392 if (!ts->get_pendown_state) {
1393 /*
1394 * If we are not using specialized pendown method we must
1395 * have been relying on gpio we set up ourselves.
1396 */
1397 gpio_free(ts->gpio_pendown);
1398 }
1399
1400 if (ts->filter_cleanup)
1401 ts->filter_cleanup(ts->filter_data);
1402
1403 kfree(ts->packet);
1404 kfree(ts);
1405
1406 dev_dbg(&spi->dev, "unregistered touchscreen\n");
1407
1408 return 0;
1409 }
1410
1411 static struct spi_driver ads7846_driver = {
1412 .driver = {
1413 .name = "ads7846",
1414 .bus = &spi_bus_type,
1415 .owner = THIS_MODULE,
1416 .pm = &ads7846_pm,
1417 },
1418 .probe = ads7846_probe,
1419 .remove = __devexit_p(ads7846_remove),
1420 };
1421
1422 static int __init ads7846_init(void)
1423 {
1424 return spi_register_driver(&ads7846_driver);
1425 }
1426 module_init(ads7846_init);
1427
1428 static void __exit ads7846_exit(void)
1429 {
1430 spi_unregister_driver(&ads7846_driver);
1431 }
1432 module_exit(ads7846_exit);
1433
1434 MODULE_DESCRIPTION("ADS7846 TouchScreen Driver");
1435 MODULE_LICENSE("GPL");
1436 MODULE_ALIAS("spi:ads7846");