]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/iommu/amd/iommu.c
Merge tag 'tty-5.9-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[mirror_ubuntu-jammy-kernel.git] / drivers / iommu / amd / iommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
10
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-direct.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/iommu-helper.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/dma-contiguous.h>
32 #include <linux/irqdomain.h>
33 #include <linux/percpu.h>
34 #include <linux/iova.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/io_apic.h>
37 #include <asm/apic.h>
38 #include <asm/hw_irq.h>
39 #include <asm/msidef.h>
40 #include <asm/proto.h>
41 #include <asm/iommu.h>
42 #include <asm/gart.h>
43 #include <asm/dma.h>
44
45 #include "amd_iommu.h"
46 #include "../irq_remapping.h"
47
48 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
49
50 #define LOOP_TIMEOUT 100000
51
52 /* IO virtual address start page frame number */
53 #define IOVA_START_PFN (1)
54 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
55
56 /* Reserved IOVA ranges */
57 #define MSI_RANGE_START (0xfee00000)
58 #define MSI_RANGE_END (0xfeefffff)
59 #define HT_RANGE_START (0xfd00000000ULL)
60 #define HT_RANGE_END (0xffffffffffULL)
61
62 /*
63 * This bitmap is used to advertise the page sizes our hardware support
64 * to the IOMMU core, which will then use this information to split
65 * physically contiguous memory regions it is mapping into page sizes
66 * that we support.
67 *
68 * 512GB Pages are not supported due to a hardware bug
69 */
70 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
71
72 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL
73
74 static DEFINE_SPINLOCK(pd_bitmap_lock);
75
76 /* List of all available dev_data structures */
77 static LLIST_HEAD(dev_data_list);
78
79 LIST_HEAD(ioapic_map);
80 LIST_HEAD(hpet_map);
81 LIST_HEAD(acpihid_map);
82
83 /*
84 * Domain for untranslated devices - only allocated
85 * if iommu=pt passed on kernel cmd line.
86 */
87 const struct iommu_ops amd_iommu_ops;
88
89 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
90 int amd_iommu_max_glx_val = -1;
91
92 /*
93 * general struct to manage commands send to an IOMMU
94 */
95 struct iommu_cmd {
96 u32 data[4];
97 };
98
99 struct kmem_cache *amd_iommu_irq_cache;
100
101 static void update_domain(struct protection_domain *domain);
102 static void detach_device(struct device *dev);
103 static void update_and_flush_device_table(struct protection_domain *domain,
104 struct domain_pgtable *pgtable);
105
106 /****************************************************************************
107 *
108 * Helper functions
109 *
110 ****************************************************************************/
111
112 static inline u16 get_pci_device_id(struct device *dev)
113 {
114 struct pci_dev *pdev = to_pci_dev(dev);
115
116 return pci_dev_id(pdev);
117 }
118
119 static inline int get_acpihid_device_id(struct device *dev,
120 struct acpihid_map_entry **entry)
121 {
122 struct acpi_device *adev = ACPI_COMPANION(dev);
123 struct acpihid_map_entry *p;
124
125 if (!adev)
126 return -ENODEV;
127
128 list_for_each_entry(p, &acpihid_map, list) {
129 if (acpi_dev_hid_uid_match(adev, p->hid,
130 p->uid[0] ? p->uid : NULL)) {
131 if (entry)
132 *entry = p;
133 return p->devid;
134 }
135 }
136 return -EINVAL;
137 }
138
139 static inline int get_device_id(struct device *dev)
140 {
141 int devid;
142
143 if (dev_is_pci(dev))
144 devid = get_pci_device_id(dev);
145 else
146 devid = get_acpihid_device_id(dev, NULL);
147
148 return devid;
149 }
150
151 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
152 {
153 return container_of(dom, struct protection_domain, domain);
154 }
155
156 static void amd_iommu_domain_get_pgtable(struct protection_domain *domain,
157 struct domain_pgtable *pgtable)
158 {
159 u64 pt_root = atomic64_read(&domain->pt_root);
160
161 pgtable->root = (u64 *)(pt_root & PAGE_MASK);
162 pgtable->mode = pt_root & 7; /* lowest 3 bits encode pgtable mode */
163 }
164
165 static void amd_iommu_domain_set_pt_root(struct protection_domain *domain, u64 root)
166 {
167 atomic64_set(&domain->pt_root, root);
168 }
169
170 static void amd_iommu_domain_clr_pt_root(struct protection_domain *domain)
171 {
172 amd_iommu_domain_set_pt_root(domain, 0);
173 }
174
175 static void amd_iommu_domain_set_pgtable(struct protection_domain *domain,
176 u64 *root, int mode)
177 {
178 u64 pt_root;
179
180 /* lowest 3 bits encode pgtable mode */
181 pt_root = mode & 7;
182 pt_root |= (u64)root;
183
184 amd_iommu_domain_set_pt_root(domain, pt_root);
185 }
186
187 static struct iommu_dev_data *alloc_dev_data(u16 devid)
188 {
189 struct iommu_dev_data *dev_data;
190
191 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
192 if (!dev_data)
193 return NULL;
194
195 spin_lock_init(&dev_data->lock);
196 dev_data->devid = devid;
197 ratelimit_default_init(&dev_data->rs);
198
199 llist_add(&dev_data->dev_data_list, &dev_data_list);
200 return dev_data;
201 }
202
203 static struct iommu_dev_data *search_dev_data(u16 devid)
204 {
205 struct iommu_dev_data *dev_data;
206 struct llist_node *node;
207
208 if (llist_empty(&dev_data_list))
209 return NULL;
210
211 node = dev_data_list.first;
212 llist_for_each_entry(dev_data, node, dev_data_list) {
213 if (dev_data->devid == devid)
214 return dev_data;
215 }
216
217 return NULL;
218 }
219
220 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
221 {
222 u16 devid = pci_dev_id(pdev);
223
224 if (devid == alias)
225 return 0;
226
227 amd_iommu_rlookup_table[alias] =
228 amd_iommu_rlookup_table[devid];
229 memcpy(amd_iommu_dev_table[alias].data,
230 amd_iommu_dev_table[devid].data,
231 sizeof(amd_iommu_dev_table[alias].data));
232
233 return 0;
234 }
235
236 static void clone_aliases(struct pci_dev *pdev)
237 {
238 if (!pdev)
239 return;
240
241 /*
242 * The IVRS alias stored in the alias table may not be
243 * part of the PCI DMA aliases if it's bus differs
244 * from the original device.
245 */
246 clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL);
247
248 pci_for_each_dma_alias(pdev, clone_alias, NULL);
249 }
250
251 static struct pci_dev *setup_aliases(struct device *dev)
252 {
253 struct pci_dev *pdev = to_pci_dev(dev);
254 u16 ivrs_alias;
255
256 /* For ACPI HID devices, there are no aliases */
257 if (!dev_is_pci(dev))
258 return NULL;
259
260 /*
261 * Add the IVRS alias to the pci aliases if it is on the same
262 * bus. The IVRS table may know about a quirk that we don't.
263 */
264 ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)];
265 if (ivrs_alias != pci_dev_id(pdev) &&
266 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
267 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
268
269 clone_aliases(pdev);
270
271 return pdev;
272 }
273
274 static struct iommu_dev_data *find_dev_data(u16 devid)
275 {
276 struct iommu_dev_data *dev_data;
277 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
278
279 dev_data = search_dev_data(devid);
280
281 if (dev_data == NULL) {
282 dev_data = alloc_dev_data(devid);
283 if (!dev_data)
284 return NULL;
285
286 if (translation_pre_enabled(iommu))
287 dev_data->defer_attach = true;
288 }
289
290 return dev_data;
291 }
292
293 /*
294 * Find or create an IOMMU group for a acpihid device.
295 */
296 static struct iommu_group *acpihid_device_group(struct device *dev)
297 {
298 struct acpihid_map_entry *p, *entry = NULL;
299 int devid;
300
301 devid = get_acpihid_device_id(dev, &entry);
302 if (devid < 0)
303 return ERR_PTR(devid);
304
305 list_for_each_entry(p, &acpihid_map, list) {
306 if ((devid == p->devid) && p->group)
307 entry->group = p->group;
308 }
309
310 if (!entry->group)
311 entry->group = generic_device_group(dev);
312 else
313 iommu_group_ref_get(entry->group);
314
315 return entry->group;
316 }
317
318 static bool pci_iommuv2_capable(struct pci_dev *pdev)
319 {
320 static const int caps[] = {
321 PCI_EXT_CAP_ID_PRI,
322 PCI_EXT_CAP_ID_PASID,
323 };
324 int i, pos;
325
326 if (!pci_ats_supported(pdev))
327 return false;
328
329 for (i = 0; i < 2; ++i) {
330 pos = pci_find_ext_capability(pdev, caps[i]);
331 if (pos == 0)
332 return false;
333 }
334
335 return true;
336 }
337
338 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
339 {
340 struct iommu_dev_data *dev_data;
341
342 dev_data = dev_iommu_priv_get(&pdev->dev);
343
344 return dev_data->errata & (1 << erratum) ? true : false;
345 }
346
347 /*
348 * This function checks if the driver got a valid device from the caller to
349 * avoid dereferencing invalid pointers.
350 */
351 static bool check_device(struct device *dev)
352 {
353 int devid;
354
355 if (!dev)
356 return false;
357
358 devid = get_device_id(dev);
359 if (devid < 0)
360 return false;
361
362 /* Out of our scope? */
363 if (devid > amd_iommu_last_bdf)
364 return false;
365
366 if (amd_iommu_rlookup_table[devid] == NULL)
367 return false;
368
369 return true;
370 }
371
372 static int iommu_init_device(struct device *dev)
373 {
374 struct iommu_dev_data *dev_data;
375 int devid;
376
377 if (dev_iommu_priv_get(dev))
378 return 0;
379
380 devid = get_device_id(dev);
381 if (devid < 0)
382 return devid;
383
384 dev_data = find_dev_data(devid);
385 if (!dev_data)
386 return -ENOMEM;
387
388 dev_data->pdev = setup_aliases(dev);
389
390 /*
391 * By default we use passthrough mode for IOMMUv2 capable device.
392 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
393 * invalid address), we ignore the capability for the device so
394 * it'll be forced to go into translation mode.
395 */
396 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
397 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
398 struct amd_iommu *iommu;
399
400 iommu = amd_iommu_rlookup_table[dev_data->devid];
401 dev_data->iommu_v2 = iommu->is_iommu_v2;
402 }
403
404 dev_iommu_priv_set(dev, dev_data);
405
406 return 0;
407 }
408
409 static void iommu_ignore_device(struct device *dev)
410 {
411 int devid;
412
413 devid = get_device_id(dev);
414 if (devid < 0)
415 return;
416
417 amd_iommu_rlookup_table[devid] = NULL;
418 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
419
420 setup_aliases(dev);
421 }
422
423 static void amd_iommu_uninit_device(struct device *dev)
424 {
425 struct iommu_dev_data *dev_data;
426
427 dev_data = dev_iommu_priv_get(dev);
428 if (!dev_data)
429 return;
430
431 if (dev_data->domain)
432 detach_device(dev);
433
434 dev_iommu_priv_set(dev, NULL);
435
436 /*
437 * We keep dev_data around for unplugged devices and reuse it when the
438 * device is re-plugged - not doing so would introduce a ton of races.
439 */
440 }
441
442 /*
443 * Helper function to get the first pte of a large mapping
444 */
445 static u64 *first_pte_l7(u64 *pte, unsigned long *page_size,
446 unsigned long *count)
447 {
448 unsigned long pte_mask, pg_size, cnt;
449 u64 *fpte;
450
451 pg_size = PTE_PAGE_SIZE(*pte);
452 cnt = PAGE_SIZE_PTE_COUNT(pg_size);
453 pte_mask = ~((cnt << 3) - 1);
454 fpte = (u64 *)(((unsigned long)pte) & pte_mask);
455
456 if (page_size)
457 *page_size = pg_size;
458
459 if (count)
460 *count = cnt;
461
462 return fpte;
463 }
464
465 /****************************************************************************
466 *
467 * Interrupt handling functions
468 *
469 ****************************************************************************/
470
471 static void dump_dte_entry(u16 devid)
472 {
473 int i;
474
475 for (i = 0; i < 4; ++i)
476 pr_err("DTE[%d]: %016llx\n", i,
477 amd_iommu_dev_table[devid].data[i]);
478 }
479
480 static void dump_command(unsigned long phys_addr)
481 {
482 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
483 int i;
484
485 for (i = 0; i < 4; ++i)
486 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
487 }
488
489 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
490 u64 address, int flags)
491 {
492 struct iommu_dev_data *dev_data = NULL;
493 struct pci_dev *pdev;
494
495 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
496 devid & 0xff);
497 if (pdev)
498 dev_data = dev_iommu_priv_get(&pdev->dev);
499
500 if (dev_data && __ratelimit(&dev_data->rs)) {
501 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
502 domain_id, address, flags);
503 } else if (printk_ratelimit()) {
504 pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
505 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
506 domain_id, address, flags);
507 }
508
509 if (pdev)
510 pci_dev_put(pdev);
511 }
512
513 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
514 {
515 struct device *dev = iommu->iommu.dev;
516 int type, devid, pasid, flags, tag;
517 volatile u32 *event = __evt;
518 int count = 0;
519 u64 address;
520
521 retry:
522 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
523 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
524 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
525 (event[1] & EVENT_DOMID_MASK_LO);
526 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
527 address = (u64)(((u64)event[3]) << 32) | event[2];
528
529 if (type == 0) {
530 /* Did we hit the erratum? */
531 if (++count == LOOP_TIMEOUT) {
532 pr_err("No event written to event log\n");
533 return;
534 }
535 udelay(1);
536 goto retry;
537 }
538
539 if (type == EVENT_TYPE_IO_FAULT) {
540 amd_iommu_report_page_fault(devid, pasid, address, flags);
541 return;
542 }
543
544 switch (type) {
545 case EVENT_TYPE_ILL_DEV:
546 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
547 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
548 pasid, address, flags);
549 dump_dte_entry(devid);
550 break;
551 case EVENT_TYPE_DEV_TAB_ERR:
552 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
553 "address=0x%llx flags=0x%04x]\n",
554 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
555 address, flags);
556 break;
557 case EVENT_TYPE_PAGE_TAB_ERR:
558 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
559 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
560 pasid, address, flags);
561 break;
562 case EVENT_TYPE_ILL_CMD:
563 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
564 dump_command(address);
565 break;
566 case EVENT_TYPE_CMD_HARD_ERR:
567 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
568 address, flags);
569 break;
570 case EVENT_TYPE_IOTLB_INV_TO:
571 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
572 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
573 address);
574 break;
575 case EVENT_TYPE_INV_DEV_REQ:
576 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
577 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
578 pasid, address, flags);
579 break;
580 case EVENT_TYPE_INV_PPR_REQ:
581 pasid = PPR_PASID(*((u64 *)__evt));
582 tag = event[1] & 0x03FF;
583 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
584 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
585 pasid, address, flags, tag);
586 break;
587 default:
588 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
589 event[0], event[1], event[2], event[3]);
590 }
591
592 memset(__evt, 0, 4 * sizeof(u32));
593 }
594
595 static void iommu_poll_events(struct amd_iommu *iommu)
596 {
597 u32 head, tail;
598
599 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
600 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
601
602 while (head != tail) {
603 iommu_print_event(iommu, iommu->evt_buf + head);
604 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
605 }
606
607 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
608 }
609
610 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
611 {
612 struct amd_iommu_fault fault;
613
614 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
615 pr_err_ratelimited("Unknown PPR request received\n");
616 return;
617 }
618
619 fault.address = raw[1];
620 fault.pasid = PPR_PASID(raw[0]);
621 fault.device_id = PPR_DEVID(raw[0]);
622 fault.tag = PPR_TAG(raw[0]);
623 fault.flags = PPR_FLAGS(raw[0]);
624
625 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
626 }
627
628 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
629 {
630 u32 head, tail;
631
632 if (iommu->ppr_log == NULL)
633 return;
634
635 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
636 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
637
638 while (head != tail) {
639 volatile u64 *raw;
640 u64 entry[2];
641 int i;
642
643 raw = (u64 *)(iommu->ppr_log + head);
644
645 /*
646 * Hardware bug: Interrupt may arrive before the entry is
647 * written to memory. If this happens we need to wait for the
648 * entry to arrive.
649 */
650 for (i = 0; i < LOOP_TIMEOUT; ++i) {
651 if (PPR_REQ_TYPE(raw[0]) != 0)
652 break;
653 udelay(1);
654 }
655
656 /* Avoid memcpy function-call overhead */
657 entry[0] = raw[0];
658 entry[1] = raw[1];
659
660 /*
661 * To detect the hardware bug we need to clear the entry
662 * back to zero.
663 */
664 raw[0] = raw[1] = 0UL;
665
666 /* Update head pointer of hardware ring-buffer */
667 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
668 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
669
670 /* Handle PPR entry */
671 iommu_handle_ppr_entry(iommu, entry);
672
673 /* Refresh ring-buffer information */
674 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
675 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
676 }
677 }
678
679 #ifdef CONFIG_IRQ_REMAP
680 static int (*iommu_ga_log_notifier)(u32);
681
682 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
683 {
684 iommu_ga_log_notifier = notifier;
685
686 return 0;
687 }
688 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
689
690 static void iommu_poll_ga_log(struct amd_iommu *iommu)
691 {
692 u32 head, tail, cnt = 0;
693
694 if (iommu->ga_log == NULL)
695 return;
696
697 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
698 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
699
700 while (head != tail) {
701 volatile u64 *raw;
702 u64 log_entry;
703
704 raw = (u64 *)(iommu->ga_log + head);
705 cnt++;
706
707 /* Avoid memcpy function-call overhead */
708 log_entry = *raw;
709
710 /* Update head pointer of hardware ring-buffer */
711 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
712 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
713
714 /* Handle GA entry */
715 switch (GA_REQ_TYPE(log_entry)) {
716 case GA_GUEST_NR:
717 if (!iommu_ga_log_notifier)
718 break;
719
720 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
721 __func__, GA_DEVID(log_entry),
722 GA_TAG(log_entry));
723
724 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
725 pr_err("GA log notifier failed.\n");
726 break;
727 default:
728 break;
729 }
730 }
731 }
732 #endif /* CONFIG_IRQ_REMAP */
733
734 #define AMD_IOMMU_INT_MASK \
735 (MMIO_STATUS_EVT_INT_MASK | \
736 MMIO_STATUS_PPR_INT_MASK | \
737 MMIO_STATUS_GALOG_INT_MASK)
738
739 irqreturn_t amd_iommu_int_thread(int irq, void *data)
740 {
741 struct amd_iommu *iommu = (struct amd_iommu *) data;
742 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
743
744 while (status & AMD_IOMMU_INT_MASK) {
745 /* Enable EVT and PPR and GA interrupts again */
746 writel(AMD_IOMMU_INT_MASK,
747 iommu->mmio_base + MMIO_STATUS_OFFSET);
748
749 if (status & MMIO_STATUS_EVT_INT_MASK) {
750 pr_devel("Processing IOMMU Event Log\n");
751 iommu_poll_events(iommu);
752 }
753
754 if (status & MMIO_STATUS_PPR_INT_MASK) {
755 pr_devel("Processing IOMMU PPR Log\n");
756 iommu_poll_ppr_log(iommu);
757 }
758
759 #ifdef CONFIG_IRQ_REMAP
760 if (status & MMIO_STATUS_GALOG_INT_MASK) {
761 pr_devel("Processing IOMMU GA Log\n");
762 iommu_poll_ga_log(iommu);
763 }
764 #endif
765
766 /*
767 * Hardware bug: ERBT1312
768 * When re-enabling interrupt (by writing 1
769 * to clear the bit), the hardware might also try to set
770 * the interrupt bit in the event status register.
771 * In this scenario, the bit will be set, and disable
772 * subsequent interrupts.
773 *
774 * Workaround: The IOMMU driver should read back the
775 * status register and check if the interrupt bits are cleared.
776 * If not, driver will need to go through the interrupt handler
777 * again and re-clear the bits
778 */
779 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
780 }
781 return IRQ_HANDLED;
782 }
783
784 irqreturn_t amd_iommu_int_handler(int irq, void *data)
785 {
786 return IRQ_WAKE_THREAD;
787 }
788
789 /****************************************************************************
790 *
791 * IOMMU command queuing functions
792 *
793 ****************************************************************************/
794
795 static int wait_on_sem(volatile u64 *sem)
796 {
797 int i = 0;
798
799 while (*sem == 0 && i < LOOP_TIMEOUT) {
800 udelay(1);
801 i += 1;
802 }
803
804 if (i == LOOP_TIMEOUT) {
805 pr_alert("Completion-Wait loop timed out\n");
806 return -EIO;
807 }
808
809 return 0;
810 }
811
812 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
813 struct iommu_cmd *cmd)
814 {
815 u8 *target;
816 u32 tail;
817
818 /* Copy command to buffer */
819 tail = iommu->cmd_buf_tail;
820 target = iommu->cmd_buf + tail;
821 memcpy(target, cmd, sizeof(*cmd));
822
823 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
824 iommu->cmd_buf_tail = tail;
825
826 /* Tell the IOMMU about it */
827 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
828 }
829
830 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
831 {
832 u64 paddr = iommu_virt_to_phys((void *)address);
833
834 WARN_ON(address & 0x7ULL);
835
836 memset(cmd, 0, sizeof(*cmd));
837 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
838 cmd->data[1] = upper_32_bits(paddr);
839 cmd->data[2] = 1;
840 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
841 }
842
843 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
844 {
845 memset(cmd, 0, sizeof(*cmd));
846 cmd->data[0] = devid;
847 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
848 }
849
850 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
851 size_t size, u16 domid, int pde)
852 {
853 u64 pages;
854 bool s;
855
856 pages = iommu_num_pages(address, size, PAGE_SIZE);
857 s = false;
858
859 if (pages > 1) {
860 /*
861 * If we have to flush more than one page, flush all
862 * TLB entries for this domain
863 */
864 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
865 s = true;
866 }
867
868 address &= PAGE_MASK;
869
870 memset(cmd, 0, sizeof(*cmd));
871 cmd->data[1] |= domid;
872 cmd->data[2] = lower_32_bits(address);
873 cmd->data[3] = upper_32_bits(address);
874 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
875 if (s) /* size bit - we flush more than one 4kb page */
876 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
877 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
878 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
879 }
880
881 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
882 u64 address, size_t size)
883 {
884 u64 pages;
885 bool s;
886
887 pages = iommu_num_pages(address, size, PAGE_SIZE);
888 s = false;
889
890 if (pages > 1) {
891 /*
892 * If we have to flush more than one page, flush all
893 * TLB entries for this domain
894 */
895 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
896 s = true;
897 }
898
899 address &= PAGE_MASK;
900
901 memset(cmd, 0, sizeof(*cmd));
902 cmd->data[0] = devid;
903 cmd->data[0] |= (qdep & 0xff) << 24;
904 cmd->data[1] = devid;
905 cmd->data[2] = lower_32_bits(address);
906 cmd->data[3] = upper_32_bits(address);
907 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
908 if (s)
909 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
910 }
911
912 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
913 u64 address, bool size)
914 {
915 memset(cmd, 0, sizeof(*cmd));
916
917 address &= ~(0xfffULL);
918
919 cmd->data[0] = pasid;
920 cmd->data[1] = domid;
921 cmd->data[2] = lower_32_bits(address);
922 cmd->data[3] = upper_32_bits(address);
923 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
924 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
925 if (size)
926 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
927 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
928 }
929
930 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
931 int qdep, u64 address, bool size)
932 {
933 memset(cmd, 0, sizeof(*cmd));
934
935 address &= ~(0xfffULL);
936
937 cmd->data[0] = devid;
938 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
939 cmd->data[0] |= (qdep & 0xff) << 24;
940 cmd->data[1] = devid;
941 cmd->data[1] |= (pasid & 0xff) << 16;
942 cmd->data[2] = lower_32_bits(address);
943 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
944 cmd->data[3] = upper_32_bits(address);
945 if (size)
946 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
947 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
948 }
949
950 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
951 int status, int tag, bool gn)
952 {
953 memset(cmd, 0, sizeof(*cmd));
954
955 cmd->data[0] = devid;
956 if (gn) {
957 cmd->data[1] = pasid;
958 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
959 }
960 cmd->data[3] = tag & 0x1ff;
961 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
962
963 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
964 }
965
966 static void build_inv_all(struct iommu_cmd *cmd)
967 {
968 memset(cmd, 0, sizeof(*cmd));
969 CMD_SET_TYPE(cmd, CMD_INV_ALL);
970 }
971
972 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
973 {
974 memset(cmd, 0, sizeof(*cmd));
975 cmd->data[0] = devid;
976 CMD_SET_TYPE(cmd, CMD_INV_IRT);
977 }
978
979 /*
980 * Writes the command to the IOMMUs command buffer and informs the
981 * hardware about the new command.
982 */
983 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
984 struct iommu_cmd *cmd,
985 bool sync)
986 {
987 unsigned int count = 0;
988 u32 left, next_tail;
989
990 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
991 again:
992 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
993
994 if (left <= 0x20) {
995 /* Skip udelay() the first time around */
996 if (count++) {
997 if (count == LOOP_TIMEOUT) {
998 pr_err("Command buffer timeout\n");
999 return -EIO;
1000 }
1001
1002 udelay(1);
1003 }
1004
1005 /* Update head and recheck remaining space */
1006 iommu->cmd_buf_head = readl(iommu->mmio_base +
1007 MMIO_CMD_HEAD_OFFSET);
1008
1009 goto again;
1010 }
1011
1012 copy_cmd_to_buffer(iommu, cmd);
1013
1014 /* Do we need to make sure all commands are processed? */
1015 iommu->need_sync = sync;
1016
1017 return 0;
1018 }
1019
1020 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1021 struct iommu_cmd *cmd,
1022 bool sync)
1023 {
1024 unsigned long flags;
1025 int ret;
1026
1027 raw_spin_lock_irqsave(&iommu->lock, flags);
1028 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1029 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1030
1031 return ret;
1032 }
1033
1034 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1035 {
1036 return iommu_queue_command_sync(iommu, cmd, true);
1037 }
1038
1039 /*
1040 * This function queues a completion wait command into the command
1041 * buffer of an IOMMU
1042 */
1043 static int iommu_completion_wait(struct amd_iommu *iommu)
1044 {
1045 struct iommu_cmd cmd;
1046 unsigned long flags;
1047 int ret;
1048
1049 if (!iommu->need_sync)
1050 return 0;
1051
1052
1053 build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1054
1055 raw_spin_lock_irqsave(&iommu->lock, flags);
1056
1057 iommu->cmd_sem = 0;
1058
1059 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1060 if (ret)
1061 goto out_unlock;
1062
1063 ret = wait_on_sem(&iommu->cmd_sem);
1064
1065 out_unlock:
1066 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1067
1068 return ret;
1069 }
1070
1071 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1072 {
1073 struct iommu_cmd cmd;
1074
1075 build_inv_dte(&cmd, devid);
1076
1077 return iommu_queue_command(iommu, &cmd);
1078 }
1079
1080 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1081 {
1082 u32 devid;
1083
1084 for (devid = 0; devid <= 0xffff; ++devid)
1085 iommu_flush_dte(iommu, devid);
1086
1087 iommu_completion_wait(iommu);
1088 }
1089
1090 /*
1091 * This function uses heavy locking and may disable irqs for some time. But
1092 * this is no issue because it is only called during resume.
1093 */
1094 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1095 {
1096 u32 dom_id;
1097
1098 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1099 struct iommu_cmd cmd;
1100 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1101 dom_id, 1);
1102 iommu_queue_command(iommu, &cmd);
1103 }
1104
1105 iommu_completion_wait(iommu);
1106 }
1107
1108 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1109 {
1110 struct iommu_cmd cmd;
1111
1112 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1113 dom_id, 1);
1114 iommu_queue_command(iommu, &cmd);
1115
1116 iommu_completion_wait(iommu);
1117 }
1118
1119 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1120 {
1121 struct iommu_cmd cmd;
1122
1123 build_inv_all(&cmd);
1124
1125 iommu_queue_command(iommu, &cmd);
1126 iommu_completion_wait(iommu);
1127 }
1128
1129 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1130 {
1131 struct iommu_cmd cmd;
1132
1133 build_inv_irt(&cmd, devid);
1134
1135 iommu_queue_command(iommu, &cmd);
1136 }
1137
1138 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1139 {
1140 u32 devid;
1141
1142 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1143 iommu_flush_irt(iommu, devid);
1144
1145 iommu_completion_wait(iommu);
1146 }
1147
1148 void iommu_flush_all_caches(struct amd_iommu *iommu)
1149 {
1150 if (iommu_feature(iommu, FEATURE_IA)) {
1151 amd_iommu_flush_all(iommu);
1152 } else {
1153 amd_iommu_flush_dte_all(iommu);
1154 amd_iommu_flush_irt_all(iommu);
1155 amd_iommu_flush_tlb_all(iommu);
1156 }
1157 }
1158
1159 /*
1160 * Command send function for flushing on-device TLB
1161 */
1162 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1163 u64 address, size_t size)
1164 {
1165 struct amd_iommu *iommu;
1166 struct iommu_cmd cmd;
1167 int qdep;
1168
1169 qdep = dev_data->ats.qdep;
1170 iommu = amd_iommu_rlookup_table[dev_data->devid];
1171
1172 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1173
1174 return iommu_queue_command(iommu, &cmd);
1175 }
1176
1177 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1178 {
1179 struct amd_iommu *iommu = data;
1180
1181 return iommu_flush_dte(iommu, alias);
1182 }
1183
1184 /*
1185 * Command send function for invalidating a device table entry
1186 */
1187 static int device_flush_dte(struct iommu_dev_data *dev_data)
1188 {
1189 struct amd_iommu *iommu;
1190 u16 alias;
1191 int ret;
1192
1193 iommu = amd_iommu_rlookup_table[dev_data->devid];
1194
1195 if (dev_data->pdev)
1196 ret = pci_for_each_dma_alias(dev_data->pdev,
1197 device_flush_dte_alias, iommu);
1198 else
1199 ret = iommu_flush_dte(iommu, dev_data->devid);
1200 if (ret)
1201 return ret;
1202
1203 alias = amd_iommu_alias_table[dev_data->devid];
1204 if (alias != dev_data->devid) {
1205 ret = iommu_flush_dte(iommu, alias);
1206 if (ret)
1207 return ret;
1208 }
1209
1210 if (dev_data->ats.enabled)
1211 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1212
1213 return ret;
1214 }
1215
1216 /*
1217 * TLB invalidation function which is called from the mapping functions.
1218 * It invalidates a single PTE if the range to flush is within a single
1219 * page. Otherwise it flushes the whole TLB of the IOMMU.
1220 */
1221 static void __domain_flush_pages(struct protection_domain *domain,
1222 u64 address, size_t size, int pde)
1223 {
1224 struct iommu_dev_data *dev_data;
1225 struct iommu_cmd cmd;
1226 int ret = 0, i;
1227
1228 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1229
1230 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1231 if (!domain->dev_iommu[i])
1232 continue;
1233
1234 /*
1235 * Devices of this domain are behind this IOMMU
1236 * We need a TLB flush
1237 */
1238 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1239 }
1240
1241 list_for_each_entry(dev_data, &domain->dev_list, list) {
1242
1243 if (!dev_data->ats.enabled)
1244 continue;
1245
1246 ret |= device_flush_iotlb(dev_data, address, size);
1247 }
1248
1249 WARN_ON(ret);
1250 }
1251
1252 static void domain_flush_pages(struct protection_domain *domain,
1253 u64 address, size_t size)
1254 {
1255 __domain_flush_pages(domain, address, size, 0);
1256 }
1257
1258 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1259 static void domain_flush_tlb_pde(struct protection_domain *domain)
1260 {
1261 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1262 }
1263
1264 static void domain_flush_complete(struct protection_domain *domain)
1265 {
1266 int i;
1267
1268 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1269 if (domain && !domain->dev_iommu[i])
1270 continue;
1271
1272 /*
1273 * Devices of this domain are behind this IOMMU
1274 * We need to wait for completion of all commands.
1275 */
1276 iommu_completion_wait(amd_iommus[i]);
1277 }
1278 }
1279
1280 /* Flush the not present cache if it exists */
1281 static void domain_flush_np_cache(struct protection_domain *domain,
1282 dma_addr_t iova, size_t size)
1283 {
1284 if (unlikely(amd_iommu_np_cache)) {
1285 unsigned long flags;
1286
1287 spin_lock_irqsave(&domain->lock, flags);
1288 domain_flush_pages(domain, iova, size);
1289 domain_flush_complete(domain);
1290 spin_unlock_irqrestore(&domain->lock, flags);
1291 }
1292 }
1293
1294
1295 /*
1296 * This function flushes the DTEs for all devices in domain
1297 */
1298 static void domain_flush_devices(struct protection_domain *domain)
1299 {
1300 struct iommu_dev_data *dev_data;
1301
1302 list_for_each_entry(dev_data, &domain->dev_list, list)
1303 device_flush_dte(dev_data);
1304 }
1305
1306 /****************************************************************************
1307 *
1308 * The functions below are used the create the page table mappings for
1309 * unity mapped regions.
1310 *
1311 ****************************************************************************/
1312
1313 static void free_page_list(struct page *freelist)
1314 {
1315 while (freelist != NULL) {
1316 unsigned long p = (unsigned long)page_address(freelist);
1317 freelist = freelist->freelist;
1318 free_page(p);
1319 }
1320 }
1321
1322 static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1323 {
1324 struct page *p = virt_to_page((void *)pt);
1325
1326 p->freelist = freelist;
1327
1328 return p;
1329 }
1330
1331 #define DEFINE_FREE_PT_FN(LVL, FN) \
1332 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist) \
1333 { \
1334 unsigned long p; \
1335 u64 *pt; \
1336 int i; \
1337 \
1338 pt = (u64 *)__pt; \
1339 \
1340 for (i = 0; i < 512; ++i) { \
1341 /* PTE present? */ \
1342 if (!IOMMU_PTE_PRESENT(pt[i])) \
1343 continue; \
1344 \
1345 /* Large PTE? */ \
1346 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1347 PM_PTE_LEVEL(pt[i]) == 7) \
1348 continue; \
1349 \
1350 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1351 freelist = FN(p, freelist); \
1352 } \
1353 \
1354 return free_pt_page((unsigned long)pt, freelist); \
1355 }
1356
1357 DEFINE_FREE_PT_FN(l2, free_pt_page)
1358 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1359 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1360 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1361 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1362
1363 static struct page *free_sub_pt(unsigned long root, int mode,
1364 struct page *freelist)
1365 {
1366 switch (mode) {
1367 case PAGE_MODE_NONE:
1368 case PAGE_MODE_7_LEVEL:
1369 break;
1370 case PAGE_MODE_1_LEVEL:
1371 freelist = free_pt_page(root, freelist);
1372 break;
1373 case PAGE_MODE_2_LEVEL:
1374 freelist = free_pt_l2(root, freelist);
1375 break;
1376 case PAGE_MODE_3_LEVEL:
1377 freelist = free_pt_l3(root, freelist);
1378 break;
1379 case PAGE_MODE_4_LEVEL:
1380 freelist = free_pt_l4(root, freelist);
1381 break;
1382 case PAGE_MODE_5_LEVEL:
1383 freelist = free_pt_l5(root, freelist);
1384 break;
1385 case PAGE_MODE_6_LEVEL:
1386 freelist = free_pt_l6(root, freelist);
1387 break;
1388 default:
1389 BUG();
1390 }
1391
1392 return freelist;
1393 }
1394
1395 static void free_pagetable(struct domain_pgtable *pgtable)
1396 {
1397 struct page *freelist = NULL;
1398 unsigned long root;
1399
1400 if (pgtable->mode == PAGE_MODE_NONE)
1401 return;
1402
1403 BUG_ON(pgtable->mode < PAGE_MODE_NONE ||
1404 pgtable->mode > PAGE_MODE_6_LEVEL);
1405
1406 root = (unsigned long)pgtable->root;
1407 freelist = free_sub_pt(root, pgtable->mode, freelist);
1408
1409 free_page_list(freelist);
1410 }
1411
1412 /*
1413 * This function is used to add another level to an IO page table. Adding
1414 * another level increases the size of the address space by 9 bits to a size up
1415 * to 64 bits.
1416 */
1417 static bool increase_address_space(struct protection_domain *domain,
1418 unsigned long address,
1419 gfp_t gfp)
1420 {
1421 struct domain_pgtable pgtable;
1422 unsigned long flags;
1423 bool ret = true;
1424 u64 *pte;
1425
1426 spin_lock_irqsave(&domain->lock, flags);
1427
1428 amd_iommu_domain_get_pgtable(domain, &pgtable);
1429
1430 if (address <= PM_LEVEL_SIZE(pgtable.mode))
1431 goto out;
1432
1433 ret = false;
1434 if (WARN_ON_ONCE(pgtable.mode == PAGE_MODE_6_LEVEL))
1435 goto out;
1436
1437 pte = (void *)get_zeroed_page(gfp);
1438 if (!pte)
1439 goto out;
1440
1441 *pte = PM_LEVEL_PDE(pgtable.mode, iommu_virt_to_phys(pgtable.root));
1442
1443 pgtable.root = pte;
1444 pgtable.mode += 1;
1445 update_and_flush_device_table(domain, &pgtable);
1446 domain_flush_complete(domain);
1447
1448 /*
1449 * Device Table needs to be updated and flushed before the new root can
1450 * be published.
1451 */
1452 amd_iommu_domain_set_pgtable(domain, pte, pgtable.mode);
1453
1454 ret = true;
1455
1456 out:
1457 spin_unlock_irqrestore(&domain->lock, flags);
1458
1459 return ret;
1460 }
1461
1462 static u64 *alloc_pte(struct protection_domain *domain,
1463 unsigned long address,
1464 unsigned long page_size,
1465 u64 **pte_page,
1466 gfp_t gfp,
1467 bool *updated)
1468 {
1469 struct domain_pgtable pgtable;
1470 int level, end_lvl;
1471 u64 *pte, *page;
1472
1473 BUG_ON(!is_power_of_2(page_size));
1474
1475 amd_iommu_domain_get_pgtable(domain, &pgtable);
1476
1477 while (address > PM_LEVEL_SIZE(pgtable.mode)) {
1478 /*
1479 * Return an error if there is no memory to update the
1480 * page-table.
1481 */
1482 if (!increase_address_space(domain, address, gfp))
1483 return NULL;
1484
1485 /* Read new values to check if update was successful */
1486 amd_iommu_domain_get_pgtable(domain, &pgtable);
1487 }
1488
1489
1490 level = pgtable.mode - 1;
1491 pte = &pgtable.root[PM_LEVEL_INDEX(level, address)];
1492 address = PAGE_SIZE_ALIGN(address, page_size);
1493 end_lvl = PAGE_SIZE_LEVEL(page_size);
1494
1495 while (level > end_lvl) {
1496 u64 __pte, __npte;
1497 int pte_level;
1498
1499 __pte = *pte;
1500 pte_level = PM_PTE_LEVEL(__pte);
1501
1502 /*
1503 * If we replace a series of large PTEs, we need
1504 * to tear down all of them.
1505 */
1506 if (IOMMU_PTE_PRESENT(__pte) &&
1507 pte_level == PAGE_MODE_7_LEVEL) {
1508 unsigned long count, i;
1509 u64 *lpte;
1510
1511 lpte = first_pte_l7(pte, NULL, &count);
1512
1513 /*
1514 * Unmap the replicated PTEs that still match the
1515 * original large mapping
1516 */
1517 for (i = 0; i < count; ++i)
1518 cmpxchg64(&lpte[i], __pte, 0ULL);
1519
1520 *updated = true;
1521 continue;
1522 }
1523
1524 if (!IOMMU_PTE_PRESENT(__pte) ||
1525 pte_level == PAGE_MODE_NONE) {
1526 page = (u64 *)get_zeroed_page(gfp);
1527
1528 if (!page)
1529 return NULL;
1530
1531 __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1532
1533 /* pte could have been changed somewhere. */
1534 if (cmpxchg64(pte, __pte, __npte) != __pte)
1535 free_page((unsigned long)page);
1536 else if (IOMMU_PTE_PRESENT(__pte))
1537 *updated = true;
1538
1539 continue;
1540 }
1541
1542 /* No level skipping support yet */
1543 if (pte_level != level)
1544 return NULL;
1545
1546 level -= 1;
1547
1548 pte = IOMMU_PTE_PAGE(__pte);
1549
1550 if (pte_page && level == end_lvl)
1551 *pte_page = pte;
1552
1553 pte = &pte[PM_LEVEL_INDEX(level, address)];
1554 }
1555
1556 return pte;
1557 }
1558
1559 /*
1560 * This function checks if there is a PTE for a given dma address. If
1561 * there is one, it returns the pointer to it.
1562 */
1563 static u64 *fetch_pte(struct protection_domain *domain,
1564 unsigned long address,
1565 unsigned long *page_size)
1566 {
1567 struct domain_pgtable pgtable;
1568 int level;
1569 u64 *pte;
1570
1571 *page_size = 0;
1572
1573 amd_iommu_domain_get_pgtable(domain, &pgtable);
1574
1575 if (address > PM_LEVEL_SIZE(pgtable.mode))
1576 return NULL;
1577
1578 level = pgtable.mode - 1;
1579 pte = &pgtable.root[PM_LEVEL_INDEX(level, address)];
1580 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1581
1582 while (level > 0) {
1583
1584 /* Not Present */
1585 if (!IOMMU_PTE_PRESENT(*pte))
1586 return NULL;
1587
1588 /* Large PTE */
1589 if (PM_PTE_LEVEL(*pte) == 7 ||
1590 PM_PTE_LEVEL(*pte) == 0)
1591 break;
1592
1593 /* No level skipping support yet */
1594 if (PM_PTE_LEVEL(*pte) != level)
1595 return NULL;
1596
1597 level -= 1;
1598
1599 /* Walk to the next level */
1600 pte = IOMMU_PTE_PAGE(*pte);
1601 pte = &pte[PM_LEVEL_INDEX(level, address)];
1602 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1603 }
1604
1605 /*
1606 * If we have a series of large PTEs, make
1607 * sure to return a pointer to the first one.
1608 */
1609 if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL)
1610 pte = first_pte_l7(pte, page_size, NULL);
1611
1612 return pte;
1613 }
1614
1615 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1616 {
1617 unsigned long pt;
1618 int mode;
1619
1620 while (cmpxchg64(pte, pteval, 0) != pteval) {
1621 pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1622 pteval = *pte;
1623 }
1624
1625 if (!IOMMU_PTE_PRESENT(pteval))
1626 return freelist;
1627
1628 pt = (unsigned long)IOMMU_PTE_PAGE(pteval);
1629 mode = IOMMU_PTE_MODE(pteval);
1630
1631 return free_sub_pt(pt, mode, freelist);
1632 }
1633
1634 /*
1635 * Generic mapping functions. It maps a physical address into a DMA
1636 * address space. It allocates the page table pages if necessary.
1637 * In the future it can be extended to a generic mapping function
1638 * supporting all features of AMD IOMMU page tables like level skipping
1639 * and full 64 bit address spaces.
1640 */
1641 static int iommu_map_page(struct protection_domain *dom,
1642 unsigned long bus_addr,
1643 unsigned long phys_addr,
1644 unsigned long page_size,
1645 int prot,
1646 gfp_t gfp)
1647 {
1648 struct page *freelist = NULL;
1649 bool updated = false;
1650 u64 __pte, *pte;
1651 int ret, i, count;
1652
1653 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1654 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1655
1656 ret = -EINVAL;
1657 if (!(prot & IOMMU_PROT_MASK))
1658 goto out;
1659
1660 count = PAGE_SIZE_PTE_COUNT(page_size);
1661 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp, &updated);
1662
1663 ret = -ENOMEM;
1664 if (!pte)
1665 goto out;
1666
1667 for (i = 0; i < count; ++i)
1668 freelist = free_clear_pte(&pte[i], pte[i], freelist);
1669
1670 if (freelist != NULL)
1671 updated = true;
1672
1673 if (count > 1) {
1674 __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1675 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1676 } else
1677 __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1678
1679 if (prot & IOMMU_PROT_IR)
1680 __pte |= IOMMU_PTE_IR;
1681 if (prot & IOMMU_PROT_IW)
1682 __pte |= IOMMU_PTE_IW;
1683
1684 for (i = 0; i < count; ++i)
1685 pte[i] = __pte;
1686
1687 ret = 0;
1688
1689 out:
1690 if (updated) {
1691 unsigned long flags;
1692
1693 spin_lock_irqsave(&dom->lock, flags);
1694 /*
1695 * Flush domain TLB(s) and wait for completion. Any Device-Table
1696 * Updates and flushing already happened in
1697 * increase_address_space().
1698 */
1699 domain_flush_tlb_pde(dom);
1700 domain_flush_complete(dom);
1701 spin_unlock_irqrestore(&dom->lock, flags);
1702 }
1703
1704 /* Everything flushed out, free pages now */
1705 free_page_list(freelist);
1706
1707 return ret;
1708 }
1709
1710 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1711 unsigned long bus_addr,
1712 unsigned long page_size)
1713 {
1714 unsigned long long unmapped;
1715 unsigned long unmap_size;
1716 u64 *pte;
1717
1718 BUG_ON(!is_power_of_2(page_size));
1719
1720 unmapped = 0;
1721
1722 while (unmapped < page_size) {
1723
1724 pte = fetch_pte(dom, bus_addr, &unmap_size);
1725
1726 if (pte) {
1727 int i, count;
1728
1729 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1730 for (i = 0; i < count; i++)
1731 pte[i] = 0ULL;
1732 }
1733
1734 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1735 unmapped += unmap_size;
1736 }
1737
1738 BUG_ON(unmapped && !is_power_of_2(unmapped));
1739
1740 return unmapped;
1741 }
1742
1743 /****************************************************************************
1744 *
1745 * The next functions belong to the domain allocation. A domain is
1746 * allocated for every IOMMU as the default domain. If device isolation
1747 * is enabled, every device get its own domain. The most important thing
1748 * about domains is the page table mapping the DMA address space they
1749 * contain.
1750 *
1751 ****************************************************************************/
1752
1753 static u16 domain_id_alloc(void)
1754 {
1755 int id;
1756
1757 spin_lock(&pd_bitmap_lock);
1758 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1759 BUG_ON(id == 0);
1760 if (id > 0 && id < MAX_DOMAIN_ID)
1761 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1762 else
1763 id = 0;
1764 spin_unlock(&pd_bitmap_lock);
1765
1766 return id;
1767 }
1768
1769 static void domain_id_free(int id)
1770 {
1771 spin_lock(&pd_bitmap_lock);
1772 if (id > 0 && id < MAX_DOMAIN_ID)
1773 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1774 spin_unlock(&pd_bitmap_lock);
1775 }
1776
1777 static void free_gcr3_tbl_level1(u64 *tbl)
1778 {
1779 u64 *ptr;
1780 int i;
1781
1782 for (i = 0; i < 512; ++i) {
1783 if (!(tbl[i] & GCR3_VALID))
1784 continue;
1785
1786 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1787
1788 free_page((unsigned long)ptr);
1789 }
1790 }
1791
1792 static void free_gcr3_tbl_level2(u64 *tbl)
1793 {
1794 u64 *ptr;
1795 int i;
1796
1797 for (i = 0; i < 512; ++i) {
1798 if (!(tbl[i] & GCR3_VALID))
1799 continue;
1800
1801 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1802
1803 free_gcr3_tbl_level1(ptr);
1804 }
1805 }
1806
1807 static void free_gcr3_table(struct protection_domain *domain)
1808 {
1809 if (domain->glx == 2)
1810 free_gcr3_tbl_level2(domain->gcr3_tbl);
1811 else if (domain->glx == 1)
1812 free_gcr3_tbl_level1(domain->gcr3_tbl);
1813 else
1814 BUG_ON(domain->glx != 0);
1815
1816 free_page((unsigned long)domain->gcr3_tbl);
1817 }
1818
1819 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1820 struct domain_pgtable *pgtable,
1821 bool ats, bool ppr)
1822 {
1823 u64 pte_root = 0;
1824 u64 flags = 0;
1825 u32 old_domid;
1826
1827 if (pgtable->mode != PAGE_MODE_NONE)
1828 pte_root = iommu_virt_to_phys(pgtable->root);
1829
1830 pte_root |= (pgtable->mode & DEV_ENTRY_MODE_MASK)
1831 << DEV_ENTRY_MODE_SHIFT;
1832 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1833
1834 flags = amd_iommu_dev_table[devid].data[1];
1835
1836 if (ats)
1837 flags |= DTE_FLAG_IOTLB;
1838
1839 if (ppr) {
1840 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1841
1842 if (iommu_feature(iommu, FEATURE_EPHSUP))
1843 pte_root |= 1ULL << DEV_ENTRY_PPR;
1844 }
1845
1846 if (domain->flags & PD_IOMMUV2_MASK) {
1847 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1848 u64 glx = domain->glx;
1849 u64 tmp;
1850
1851 pte_root |= DTE_FLAG_GV;
1852 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1853
1854 /* First mask out possible old values for GCR3 table */
1855 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1856 flags &= ~tmp;
1857
1858 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1859 flags &= ~tmp;
1860
1861 /* Encode GCR3 table into DTE */
1862 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1863 pte_root |= tmp;
1864
1865 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1866 flags |= tmp;
1867
1868 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1869 flags |= tmp;
1870 }
1871
1872 flags &= ~DEV_DOMID_MASK;
1873 flags |= domain->id;
1874
1875 old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
1876 amd_iommu_dev_table[devid].data[1] = flags;
1877 amd_iommu_dev_table[devid].data[0] = pte_root;
1878
1879 /*
1880 * A kdump kernel might be replacing a domain ID that was copied from
1881 * the previous kernel--if so, it needs to flush the translation cache
1882 * entries for the old domain ID that is being overwritten
1883 */
1884 if (old_domid) {
1885 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1886
1887 amd_iommu_flush_tlb_domid(iommu, old_domid);
1888 }
1889 }
1890
1891 static void clear_dte_entry(u16 devid)
1892 {
1893 /* remove entry from the device table seen by the hardware */
1894 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV;
1895 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1896
1897 amd_iommu_apply_erratum_63(devid);
1898 }
1899
1900 static void do_attach(struct iommu_dev_data *dev_data,
1901 struct protection_domain *domain)
1902 {
1903 struct domain_pgtable pgtable;
1904 struct amd_iommu *iommu;
1905 bool ats;
1906
1907 iommu = amd_iommu_rlookup_table[dev_data->devid];
1908 ats = dev_data->ats.enabled;
1909
1910 /* Update data structures */
1911 dev_data->domain = domain;
1912 list_add(&dev_data->list, &domain->dev_list);
1913
1914 /* Do reference counting */
1915 domain->dev_iommu[iommu->index] += 1;
1916 domain->dev_cnt += 1;
1917
1918 /* Update device table */
1919 amd_iommu_domain_get_pgtable(domain, &pgtable);
1920 set_dte_entry(dev_data->devid, domain, &pgtable,
1921 ats, dev_data->iommu_v2);
1922 clone_aliases(dev_data->pdev);
1923
1924 device_flush_dte(dev_data);
1925 }
1926
1927 static void do_detach(struct iommu_dev_data *dev_data)
1928 {
1929 struct protection_domain *domain = dev_data->domain;
1930 struct amd_iommu *iommu;
1931
1932 iommu = amd_iommu_rlookup_table[dev_data->devid];
1933
1934 /* Update data structures */
1935 dev_data->domain = NULL;
1936 list_del(&dev_data->list);
1937 clear_dte_entry(dev_data->devid);
1938 clone_aliases(dev_data->pdev);
1939
1940 /* Flush the DTE entry */
1941 device_flush_dte(dev_data);
1942
1943 /* Flush IOTLB */
1944 domain_flush_tlb_pde(domain);
1945
1946 /* Wait for the flushes to finish */
1947 domain_flush_complete(domain);
1948
1949 /* decrease reference counters - needs to happen after the flushes */
1950 domain->dev_iommu[iommu->index] -= 1;
1951 domain->dev_cnt -= 1;
1952 }
1953
1954 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1955 {
1956 pci_disable_ats(pdev);
1957 pci_disable_pri(pdev);
1958 pci_disable_pasid(pdev);
1959 }
1960
1961 /* FIXME: Change generic reset-function to do the same */
1962 static int pri_reset_while_enabled(struct pci_dev *pdev)
1963 {
1964 u16 control;
1965 int pos;
1966
1967 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1968 if (!pos)
1969 return -EINVAL;
1970
1971 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
1972 control |= PCI_PRI_CTRL_RESET;
1973 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1974
1975 return 0;
1976 }
1977
1978 static int pdev_iommuv2_enable(struct pci_dev *pdev)
1979 {
1980 bool reset_enable;
1981 int reqs, ret;
1982
1983 /* FIXME: Hardcode number of outstanding requests for now */
1984 reqs = 32;
1985 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
1986 reqs = 1;
1987 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
1988
1989 /* Only allow access to user-accessible pages */
1990 ret = pci_enable_pasid(pdev, 0);
1991 if (ret)
1992 goto out_err;
1993
1994 /* First reset the PRI state of the device */
1995 ret = pci_reset_pri(pdev);
1996 if (ret)
1997 goto out_err;
1998
1999 /* Enable PRI */
2000 ret = pci_enable_pri(pdev, reqs);
2001 if (ret)
2002 goto out_err;
2003
2004 if (reset_enable) {
2005 ret = pri_reset_while_enabled(pdev);
2006 if (ret)
2007 goto out_err;
2008 }
2009
2010 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2011 if (ret)
2012 goto out_err;
2013
2014 return 0;
2015
2016 out_err:
2017 pci_disable_pri(pdev);
2018 pci_disable_pasid(pdev);
2019
2020 return ret;
2021 }
2022
2023 /*
2024 * If a device is not yet associated with a domain, this function makes the
2025 * device visible in the domain
2026 */
2027 static int attach_device(struct device *dev,
2028 struct protection_domain *domain)
2029 {
2030 struct iommu_dev_data *dev_data;
2031 struct pci_dev *pdev;
2032 unsigned long flags;
2033 int ret;
2034
2035 spin_lock_irqsave(&domain->lock, flags);
2036
2037 dev_data = dev_iommu_priv_get(dev);
2038
2039 spin_lock(&dev_data->lock);
2040
2041 ret = -EBUSY;
2042 if (dev_data->domain != NULL)
2043 goto out;
2044
2045 if (!dev_is_pci(dev))
2046 goto skip_ats_check;
2047
2048 pdev = to_pci_dev(dev);
2049 if (domain->flags & PD_IOMMUV2_MASK) {
2050 struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
2051
2052 ret = -EINVAL;
2053 if (def_domain->type != IOMMU_DOMAIN_IDENTITY)
2054 goto out;
2055
2056 if (dev_data->iommu_v2) {
2057 if (pdev_iommuv2_enable(pdev) != 0)
2058 goto out;
2059
2060 dev_data->ats.enabled = true;
2061 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2062 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
2063 }
2064 } else if (amd_iommu_iotlb_sup &&
2065 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2066 dev_data->ats.enabled = true;
2067 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2068 }
2069
2070 skip_ats_check:
2071 ret = 0;
2072
2073 do_attach(dev_data, domain);
2074
2075 /*
2076 * We might boot into a crash-kernel here. The crashed kernel
2077 * left the caches in the IOMMU dirty. So we have to flush
2078 * here to evict all dirty stuff.
2079 */
2080 domain_flush_tlb_pde(domain);
2081
2082 domain_flush_complete(domain);
2083
2084 out:
2085 spin_unlock(&dev_data->lock);
2086
2087 spin_unlock_irqrestore(&domain->lock, flags);
2088
2089 return ret;
2090 }
2091
2092 /*
2093 * Removes a device from a protection domain (with devtable_lock held)
2094 */
2095 static void detach_device(struct device *dev)
2096 {
2097 struct protection_domain *domain;
2098 struct iommu_dev_data *dev_data;
2099 unsigned long flags;
2100
2101 dev_data = dev_iommu_priv_get(dev);
2102 domain = dev_data->domain;
2103
2104 spin_lock_irqsave(&domain->lock, flags);
2105
2106 spin_lock(&dev_data->lock);
2107
2108 /*
2109 * First check if the device is still attached. It might already
2110 * be detached from its domain because the generic
2111 * iommu_detach_group code detached it and we try again here in
2112 * our alias handling.
2113 */
2114 if (WARN_ON(!dev_data->domain))
2115 goto out;
2116
2117 do_detach(dev_data);
2118
2119 if (!dev_is_pci(dev))
2120 goto out;
2121
2122 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2123 pdev_iommuv2_disable(to_pci_dev(dev));
2124 else if (dev_data->ats.enabled)
2125 pci_disable_ats(to_pci_dev(dev));
2126
2127 dev_data->ats.enabled = false;
2128
2129 out:
2130 spin_unlock(&dev_data->lock);
2131
2132 spin_unlock_irqrestore(&domain->lock, flags);
2133 }
2134
2135 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2136 {
2137 struct iommu_device *iommu_dev;
2138 struct amd_iommu *iommu;
2139 int ret, devid;
2140
2141 if (!check_device(dev))
2142 return ERR_PTR(-ENODEV);
2143
2144 devid = get_device_id(dev);
2145 if (devid < 0)
2146 return ERR_PTR(devid);
2147
2148 iommu = amd_iommu_rlookup_table[devid];
2149
2150 if (dev_iommu_priv_get(dev))
2151 return &iommu->iommu;
2152
2153 ret = iommu_init_device(dev);
2154 if (ret) {
2155 if (ret != -ENOTSUPP)
2156 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2157 iommu_dev = ERR_PTR(ret);
2158 iommu_ignore_device(dev);
2159 } else {
2160 iommu_dev = &iommu->iommu;
2161 }
2162
2163 iommu_completion_wait(iommu);
2164
2165 return iommu_dev;
2166 }
2167
2168 static void amd_iommu_probe_finalize(struct device *dev)
2169 {
2170 struct iommu_domain *domain;
2171
2172 /* Domains are initialized for this device - have a look what we ended up with */
2173 domain = iommu_get_domain_for_dev(dev);
2174 if (domain->type == IOMMU_DOMAIN_DMA)
2175 iommu_setup_dma_ops(dev, IOVA_START_PFN << PAGE_SHIFT, 0);
2176 }
2177
2178 static void amd_iommu_release_device(struct device *dev)
2179 {
2180 int devid = get_device_id(dev);
2181 struct amd_iommu *iommu;
2182
2183 if (!check_device(dev))
2184 return;
2185
2186 iommu = amd_iommu_rlookup_table[devid];
2187
2188 amd_iommu_uninit_device(dev);
2189 iommu_completion_wait(iommu);
2190 }
2191
2192 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2193 {
2194 if (dev_is_pci(dev))
2195 return pci_device_group(dev);
2196
2197 return acpihid_device_group(dev);
2198 }
2199
2200 static int amd_iommu_domain_get_attr(struct iommu_domain *domain,
2201 enum iommu_attr attr, void *data)
2202 {
2203 switch (domain->type) {
2204 case IOMMU_DOMAIN_UNMANAGED:
2205 return -ENODEV;
2206 case IOMMU_DOMAIN_DMA:
2207 switch (attr) {
2208 case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
2209 *(int *)data = !amd_iommu_unmap_flush;
2210 return 0;
2211 default:
2212 return -ENODEV;
2213 }
2214 break;
2215 default:
2216 return -EINVAL;
2217 }
2218 }
2219
2220 /*****************************************************************************
2221 *
2222 * The next functions belong to the dma_ops mapping/unmapping code.
2223 *
2224 *****************************************************************************/
2225
2226 static void update_device_table(struct protection_domain *domain,
2227 struct domain_pgtable *pgtable)
2228 {
2229 struct iommu_dev_data *dev_data;
2230
2231 list_for_each_entry(dev_data, &domain->dev_list, list) {
2232 set_dte_entry(dev_data->devid, domain, pgtable,
2233 dev_data->ats.enabled, dev_data->iommu_v2);
2234 clone_aliases(dev_data->pdev);
2235 }
2236 }
2237
2238 static void update_and_flush_device_table(struct protection_domain *domain,
2239 struct domain_pgtable *pgtable)
2240 {
2241 update_device_table(domain, pgtable);
2242 domain_flush_devices(domain);
2243 }
2244
2245 static void update_domain(struct protection_domain *domain)
2246 {
2247 struct domain_pgtable pgtable;
2248
2249 /* Update device table */
2250 amd_iommu_domain_get_pgtable(domain, &pgtable);
2251 update_and_flush_device_table(domain, &pgtable);
2252
2253 /* Flush domain TLB(s) and wait for completion */
2254 domain_flush_tlb_pde(domain);
2255 domain_flush_complete(domain);
2256 }
2257
2258 int __init amd_iommu_init_api(void)
2259 {
2260 int ret, err = 0;
2261
2262 ret = iova_cache_get();
2263 if (ret)
2264 return ret;
2265
2266 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2267 if (err)
2268 return err;
2269 #ifdef CONFIG_ARM_AMBA
2270 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2271 if (err)
2272 return err;
2273 #endif
2274 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2275 if (err)
2276 return err;
2277
2278 return 0;
2279 }
2280
2281 int __init amd_iommu_init_dma_ops(void)
2282 {
2283 swiotlb = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0;
2284
2285 if (amd_iommu_unmap_flush)
2286 pr_info("IO/TLB flush on unmap enabled\n");
2287 else
2288 pr_info("Lazy IO/TLB flushing enabled\n");
2289
2290 return 0;
2291
2292 }
2293
2294 /*****************************************************************************
2295 *
2296 * The following functions belong to the exported interface of AMD IOMMU
2297 *
2298 * This interface allows access to lower level functions of the IOMMU
2299 * like protection domain handling and assignement of devices to domains
2300 * which is not possible with the dma_ops interface.
2301 *
2302 *****************************************************************************/
2303
2304 static void cleanup_domain(struct protection_domain *domain)
2305 {
2306 struct iommu_dev_data *entry;
2307 unsigned long flags;
2308
2309 spin_lock_irqsave(&domain->lock, flags);
2310
2311 while (!list_empty(&domain->dev_list)) {
2312 entry = list_first_entry(&domain->dev_list,
2313 struct iommu_dev_data, list);
2314 BUG_ON(!entry->domain);
2315 do_detach(entry);
2316 }
2317
2318 spin_unlock_irqrestore(&domain->lock, flags);
2319 }
2320
2321 static void protection_domain_free(struct protection_domain *domain)
2322 {
2323 struct domain_pgtable pgtable;
2324
2325 if (!domain)
2326 return;
2327
2328 if (domain->id)
2329 domain_id_free(domain->id);
2330
2331 amd_iommu_domain_get_pgtable(domain, &pgtable);
2332 amd_iommu_domain_clr_pt_root(domain);
2333 free_pagetable(&pgtable);
2334
2335 kfree(domain);
2336 }
2337
2338 static int protection_domain_init(struct protection_domain *domain, int mode)
2339 {
2340 u64 *pt_root = NULL;
2341
2342 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2343
2344 spin_lock_init(&domain->lock);
2345 domain->id = domain_id_alloc();
2346 if (!domain->id)
2347 return -ENOMEM;
2348 INIT_LIST_HEAD(&domain->dev_list);
2349
2350 if (mode != PAGE_MODE_NONE) {
2351 pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2352 if (!pt_root)
2353 return -ENOMEM;
2354 }
2355
2356 amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2357
2358 return 0;
2359 }
2360
2361 static struct protection_domain *protection_domain_alloc(int mode)
2362 {
2363 struct protection_domain *domain;
2364
2365 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2366 if (!domain)
2367 return NULL;
2368
2369 if (protection_domain_init(domain, mode))
2370 goto out_err;
2371
2372 return domain;
2373
2374 out_err:
2375 kfree(domain);
2376
2377 return NULL;
2378 }
2379
2380 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2381 {
2382 struct protection_domain *domain;
2383 int mode = DEFAULT_PGTABLE_LEVEL;
2384
2385 if (type == IOMMU_DOMAIN_IDENTITY)
2386 mode = PAGE_MODE_NONE;
2387
2388 domain = protection_domain_alloc(mode);
2389 if (!domain)
2390 return NULL;
2391
2392 domain->domain.geometry.aperture_start = 0;
2393 domain->domain.geometry.aperture_end = ~0ULL;
2394 domain->domain.geometry.force_aperture = true;
2395
2396 if (type == IOMMU_DOMAIN_DMA &&
2397 iommu_get_dma_cookie(&domain->domain) == -ENOMEM)
2398 goto free_domain;
2399
2400 return &domain->domain;
2401
2402 free_domain:
2403 protection_domain_free(domain);
2404
2405 return NULL;
2406 }
2407
2408 static void amd_iommu_domain_free(struct iommu_domain *dom)
2409 {
2410 struct protection_domain *domain;
2411
2412 domain = to_pdomain(dom);
2413
2414 if (domain->dev_cnt > 0)
2415 cleanup_domain(domain);
2416
2417 BUG_ON(domain->dev_cnt != 0);
2418
2419 if (!dom)
2420 return;
2421
2422 if (dom->type == IOMMU_DOMAIN_DMA)
2423 iommu_put_dma_cookie(&domain->domain);
2424
2425 if (domain->flags & PD_IOMMUV2_MASK)
2426 free_gcr3_table(domain);
2427
2428 protection_domain_free(domain);
2429 }
2430
2431 static void amd_iommu_detach_device(struct iommu_domain *dom,
2432 struct device *dev)
2433 {
2434 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2435 struct amd_iommu *iommu;
2436 int devid;
2437
2438 if (!check_device(dev))
2439 return;
2440
2441 devid = get_device_id(dev);
2442 if (devid < 0)
2443 return;
2444
2445 if (dev_data->domain != NULL)
2446 detach_device(dev);
2447
2448 iommu = amd_iommu_rlookup_table[devid];
2449 if (!iommu)
2450 return;
2451
2452 #ifdef CONFIG_IRQ_REMAP
2453 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2454 (dom->type == IOMMU_DOMAIN_UNMANAGED))
2455 dev_data->use_vapic = 0;
2456 #endif
2457
2458 iommu_completion_wait(iommu);
2459 }
2460
2461 static int amd_iommu_attach_device(struct iommu_domain *dom,
2462 struct device *dev)
2463 {
2464 struct protection_domain *domain = to_pdomain(dom);
2465 struct iommu_dev_data *dev_data;
2466 struct amd_iommu *iommu;
2467 int ret;
2468
2469 if (!check_device(dev))
2470 return -EINVAL;
2471
2472 dev_data = dev_iommu_priv_get(dev);
2473 dev_data->defer_attach = false;
2474
2475 iommu = amd_iommu_rlookup_table[dev_data->devid];
2476 if (!iommu)
2477 return -EINVAL;
2478
2479 if (dev_data->domain)
2480 detach_device(dev);
2481
2482 ret = attach_device(dev, domain);
2483
2484 #ifdef CONFIG_IRQ_REMAP
2485 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2486 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2487 dev_data->use_vapic = 1;
2488 else
2489 dev_data->use_vapic = 0;
2490 }
2491 #endif
2492
2493 iommu_completion_wait(iommu);
2494
2495 return ret;
2496 }
2497
2498 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2499 phys_addr_t paddr, size_t page_size, int iommu_prot,
2500 gfp_t gfp)
2501 {
2502 struct protection_domain *domain = to_pdomain(dom);
2503 struct domain_pgtable pgtable;
2504 int prot = 0;
2505 int ret;
2506
2507 amd_iommu_domain_get_pgtable(domain, &pgtable);
2508 if (pgtable.mode == PAGE_MODE_NONE)
2509 return -EINVAL;
2510
2511 if (iommu_prot & IOMMU_READ)
2512 prot |= IOMMU_PROT_IR;
2513 if (iommu_prot & IOMMU_WRITE)
2514 prot |= IOMMU_PROT_IW;
2515
2516 ret = iommu_map_page(domain, iova, paddr, page_size, prot, gfp);
2517
2518 domain_flush_np_cache(domain, iova, page_size);
2519
2520 return ret;
2521 }
2522
2523 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2524 size_t page_size,
2525 struct iommu_iotlb_gather *gather)
2526 {
2527 struct protection_domain *domain = to_pdomain(dom);
2528 struct domain_pgtable pgtable;
2529
2530 amd_iommu_domain_get_pgtable(domain, &pgtable);
2531 if (pgtable.mode == PAGE_MODE_NONE)
2532 return 0;
2533
2534 return iommu_unmap_page(domain, iova, page_size);
2535 }
2536
2537 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2538 dma_addr_t iova)
2539 {
2540 struct protection_domain *domain = to_pdomain(dom);
2541 unsigned long offset_mask, pte_pgsize;
2542 struct domain_pgtable pgtable;
2543 u64 *pte, __pte;
2544
2545 amd_iommu_domain_get_pgtable(domain, &pgtable);
2546 if (pgtable.mode == PAGE_MODE_NONE)
2547 return iova;
2548
2549 pte = fetch_pte(domain, iova, &pte_pgsize);
2550
2551 if (!pte || !IOMMU_PTE_PRESENT(*pte))
2552 return 0;
2553
2554 offset_mask = pte_pgsize - 1;
2555 __pte = __sme_clr(*pte & PM_ADDR_MASK);
2556
2557 return (__pte & ~offset_mask) | (iova & offset_mask);
2558 }
2559
2560 static bool amd_iommu_capable(enum iommu_cap cap)
2561 {
2562 switch (cap) {
2563 case IOMMU_CAP_CACHE_COHERENCY:
2564 return true;
2565 case IOMMU_CAP_INTR_REMAP:
2566 return (irq_remapping_enabled == 1);
2567 case IOMMU_CAP_NOEXEC:
2568 return false;
2569 default:
2570 break;
2571 }
2572
2573 return false;
2574 }
2575
2576 static void amd_iommu_get_resv_regions(struct device *dev,
2577 struct list_head *head)
2578 {
2579 struct iommu_resv_region *region;
2580 struct unity_map_entry *entry;
2581 int devid;
2582
2583 devid = get_device_id(dev);
2584 if (devid < 0)
2585 return;
2586
2587 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
2588 int type, prot = 0;
2589 size_t length;
2590
2591 if (devid < entry->devid_start || devid > entry->devid_end)
2592 continue;
2593
2594 type = IOMMU_RESV_DIRECT;
2595 length = entry->address_end - entry->address_start;
2596 if (entry->prot & IOMMU_PROT_IR)
2597 prot |= IOMMU_READ;
2598 if (entry->prot & IOMMU_PROT_IW)
2599 prot |= IOMMU_WRITE;
2600 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2601 /* Exclusion range */
2602 type = IOMMU_RESV_RESERVED;
2603
2604 region = iommu_alloc_resv_region(entry->address_start,
2605 length, prot, type);
2606 if (!region) {
2607 dev_err(dev, "Out of memory allocating dm-regions\n");
2608 return;
2609 }
2610 list_add_tail(&region->list, head);
2611 }
2612
2613 region = iommu_alloc_resv_region(MSI_RANGE_START,
2614 MSI_RANGE_END - MSI_RANGE_START + 1,
2615 0, IOMMU_RESV_MSI);
2616 if (!region)
2617 return;
2618 list_add_tail(&region->list, head);
2619
2620 region = iommu_alloc_resv_region(HT_RANGE_START,
2621 HT_RANGE_END - HT_RANGE_START + 1,
2622 0, IOMMU_RESV_RESERVED);
2623 if (!region)
2624 return;
2625 list_add_tail(&region->list, head);
2626 }
2627
2628 bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
2629 struct device *dev)
2630 {
2631 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2632
2633 return dev_data->defer_attach;
2634 }
2635 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2636
2637 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2638 {
2639 struct protection_domain *dom = to_pdomain(domain);
2640 unsigned long flags;
2641
2642 spin_lock_irqsave(&dom->lock, flags);
2643 domain_flush_tlb_pde(dom);
2644 domain_flush_complete(dom);
2645 spin_unlock_irqrestore(&dom->lock, flags);
2646 }
2647
2648 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2649 struct iommu_iotlb_gather *gather)
2650 {
2651 amd_iommu_flush_iotlb_all(domain);
2652 }
2653
2654 static int amd_iommu_def_domain_type(struct device *dev)
2655 {
2656 struct iommu_dev_data *dev_data;
2657
2658 dev_data = dev_iommu_priv_get(dev);
2659 if (!dev_data)
2660 return 0;
2661
2662 /*
2663 * Do not identity map IOMMUv2 capable devices when memory encryption is
2664 * active, because some of those devices (AMD GPUs) don't have the
2665 * encryption bit in their DMA-mask and require remapping.
2666 */
2667 if (!mem_encrypt_active() && dev_data->iommu_v2)
2668 return IOMMU_DOMAIN_IDENTITY;
2669
2670 return 0;
2671 }
2672
2673 const struct iommu_ops amd_iommu_ops = {
2674 .capable = amd_iommu_capable,
2675 .domain_alloc = amd_iommu_domain_alloc,
2676 .domain_free = amd_iommu_domain_free,
2677 .attach_dev = amd_iommu_attach_device,
2678 .detach_dev = amd_iommu_detach_device,
2679 .map = amd_iommu_map,
2680 .unmap = amd_iommu_unmap,
2681 .iova_to_phys = amd_iommu_iova_to_phys,
2682 .probe_device = amd_iommu_probe_device,
2683 .release_device = amd_iommu_release_device,
2684 .probe_finalize = amd_iommu_probe_finalize,
2685 .device_group = amd_iommu_device_group,
2686 .domain_get_attr = amd_iommu_domain_get_attr,
2687 .get_resv_regions = amd_iommu_get_resv_regions,
2688 .put_resv_regions = generic_iommu_put_resv_regions,
2689 .is_attach_deferred = amd_iommu_is_attach_deferred,
2690 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
2691 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
2692 .iotlb_sync = amd_iommu_iotlb_sync,
2693 .def_domain_type = amd_iommu_def_domain_type,
2694 };
2695
2696 /*****************************************************************************
2697 *
2698 * The next functions do a basic initialization of IOMMU for pass through
2699 * mode
2700 *
2701 * In passthrough mode the IOMMU is initialized and enabled but not used for
2702 * DMA-API translation.
2703 *
2704 *****************************************************************************/
2705
2706 /* IOMMUv2 specific functions */
2707 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2708 {
2709 return atomic_notifier_chain_register(&ppr_notifier, nb);
2710 }
2711 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2712
2713 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2714 {
2715 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2716 }
2717 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2718
2719 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2720 {
2721 struct protection_domain *domain = to_pdomain(dom);
2722 struct domain_pgtable pgtable;
2723 unsigned long flags;
2724
2725 spin_lock_irqsave(&domain->lock, flags);
2726
2727 /* First save pgtable configuration*/
2728 amd_iommu_domain_get_pgtable(domain, &pgtable);
2729
2730 /* Remove page-table from domain */
2731 amd_iommu_domain_clr_pt_root(domain);
2732
2733 /* Make changes visible to IOMMUs */
2734 update_domain(domain);
2735
2736 /* Page-table is not visible to IOMMU anymore, so free it */
2737 free_pagetable(&pgtable);
2738
2739 spin_unlock_irqrestore(&domain->lock, flags);
2740 }
2741 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2742
2743 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2744 {
2745 struct protection_domain *domain = to_pdomain(dom);
2746 unsigned long flags;
2747 int levels, ret;
2748
2749 if (pasids <= 0 || pasids > (PASID_MASK + 1))
2750 return -EINVAL;
2751
2752 /* Number of GCR3 table levels required */
2753 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2754 levels += 1;
2755
2756 if (levels > amd_iommu_max_glx_val)
2757 return -EINVAL;
2758
2759 spin_lock_irqsave(&domain->lock, flags);
2760
2761 /*
2762 * Save us all sanity checks whether devices already in the
2763 * domain support IOMMUv2. Just force that the domain has no
2764 * devices attached when it is switched into IOMMUv2 mode.
2765 */
2766 ret = -EBUSY;
2767 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
2768 goto out;
2769
2770 ret = -ENOMEM;
2771 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2772 if (domain->gcr3_tbl == NULL)
2773 goto out;
2774
2775 domain->glx = levels;
2776 domain->flags |= PD_IOMMUV2_MASK;
2777
2778 update_domain(domain);
2779
2780 ret = 0;
2781
2782 out:
2783 spin_unlock_irqrestore(&domain->lock, flags);
2784
2785 return ret;
2786 }
2787 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2788
2789 static int __flush_pasid(struct protection_domain *domain, int pasid,
2790 u64 address, bool size)
2791 {
2792 struct iommu_dev_data *dev_data;
2793 struct iommu_cmd cmd;
2794 int i, ret;
2795
2796 if (!(domain->flags & PD_IOMMUV2_MASK))
2797 return -EINVAL;
2798
2799 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2800
2801 /*
2802 * IOMMU TLB needs to be flushed before Device TLB to
2803 * prevent device TLB refill from IOMMU TLB
2804 */
2805 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2806 if (domain->dev_iommu[i] == 0)
2807 continue;
2808
2809 ret = iommu_queue_command(amd_iommus[i], &cmd);
2810 if (ret != 0)
2811 goto out;
2812 }
2813
2814 /* Wait until IOMMU TLB flushes are complete */
2815 domain_flush_complete(domain);
2816
2817 /* Now flush device TLBs */
2818 list_for_each_entry(dev_data, &domain->dev_list, list) {
2819 struct amd_iommu *iommu;
2820 int qdep;
2821
2822 /*
2823 There might be non-IOMMUv2 capable devices in an IOMMUv2
2824 * domain.
2825 */
2826 if (!dev_data->ats.enabled)
2827 continue;
2828
2829 qdep = dev_data->ats.qdep;
2830 iommu = amd_iommu_rlookup_table[dev_data->devid];
2831
2832 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2833 qdep, address, size);
2834
2835 ret = iommu_queue_command(iommu, &cmd);
2836 if (ret != 0)
2837 goto out;
2838 }
2839
2840 /* Wait until all device TLBs are flushed */
2841 domain_flush_complete(domain);
2842
2843 ret = 0;
2844
2845 out:
2846
2847 return ret;
2848 }
2849
2850 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
2851 u64 address)
2852 {
2853 return __flush_pasid(domain, pasid, address, false);
2854 }
2855
2856 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
2857 u64 address)
2858 {
2859 struct protection_domain *domain = to_pdomain(dom);
2860 unsigned long flags;
2861 int ret;
2862
2863 spin_lock_irqsave(&domain->lock, flags);
2864 ret = __amd_iommu_flush_page(domain, pasid, address);
2865 spin_unlock_irqrestore(&domain->lock, flags);
2866
2867 return ret;
2868 }
2869 EXPORT_SYMBOL(amd_iommu_flush_page);
2870
2871 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
2872 {
2873 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2874 true);
2875 }
2876
2877 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
2878 {
2879 struct protection_domain *domain = to_pdomain(dom);
2880 unsigned long flags;
2881 int ret;
2882
2883 spin_lock_irqsave(&domain->lock, flags);
2884 ret = __amd_iommu_flush_tlb(domain, pasid);
2885 spin_unlock_irqrestore(&domain->lock, flags);
2886
2887 return ret;
2888 }
2889 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2890
2891 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
2892 {
2893 int index;
2894 u64 *pte;
2895
2896 while (true) {
2897
2898 index = (pasid >> (9 * level)) & 0x1ff;
2899 pte = &root[index];
2900
2901 if (level == 0)
2902 break;
2903
2904 if (!(*pte & GCR3_VALID)) {
2905 if (!alloc)
2906 return NULL;
2907
2908 root = (void *)get_zeroed_page(GFP_ATOMIC);
2909 if (root == NULL)
2910 return NULL;
2911
2912 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
2913 }
2914
2915 root = iommu_phys_to_virt(*pte & PAGE_MASK);
2916
2917 level -= 1;
2918 }
2919
2920 return pte;
2921 }
2922
2923 static int __set_gcr3(struct protection_domain *domain, int pasid,
2924 unsigned long cr3)
2925 {
2926 struct domain_pgtable pgtable;
2927 u64 *pte;
2928
2929 amd_iommu_domain_get_pgtable(domain, &pgtable);
2930 if (pgtable.mode != PAGE_MODE_NONE)
2931 return -EINVAL;
2932
2933 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2934 if (pte == NULL)
2935 return -ENOMEM;
2936
2937 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2938
2939 return __amd_iommu_flush_tlb(domain, pasid);
2940 }
2941
2942 static int __clear_gcr3(struct protection_domain *domain, int pasid)
2943 {
2944 struct domain_pgtable pgtable;
2945 u64 *pte;
2946
2947 amd_iommu_domain_get_pgtable(domain, &pgtable);
2948 if (pgtable.mode != PAGE_MODE_NONE)
2949 return -EINVAL;
2950
2951 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2952 if (pte == NULL)
2953 return 0;
2954
2955 *pte = 0;
2956
2957 return __amd_iommu_flush_tlb(domain, pasid);
2958 }
2959
2960 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
2961 unsigned long cr3)
2962 {
2963 struct protection_domain *domain = to_pdomain(dom);
2964 unsigned long flags;
2965 int ret;
2966
2967 spin_lock_irqsave(&domain->lock, flags);
2968 ret = __set_gcr3(domain, pasid, cr3);
2969 spin_unlock_irqrestore(&domain->lock, flags);
2970
2971 return ret;
2972 }
2973 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
2974
2975 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
2976 {
2977 struct protection_domain *domain = to_pdomain(dom);
2978 unsigned long flags;
2979 int ret;
2980
2981 spin_lock_irqsave(&domain->lock, flags);
2982 ret = __clear_gcr3(domain, pasid);
2983 spin_unlock_irqrestore(&domain->lock, flags);
2984
2985 return ret;
2986 }
2987 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
2988
2989 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
2990 int status, int tag)
2991 {
2992 struct iommu_dev_data *dev_data;
2993 struct amd_iommu *iommu;
2994 struct iommu_cmd cmd;
2995
2996 dev_data = dev_iommu_priv_get(&pdev->dev);
2997 iommu = amd_iommu_rlookup_table[dev_data->devid];
2998
2999 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3000 tag, dev_data->pri_tlp);
3001
3002 return iommu_queue_command(iommu, &cmd);
3003 }
3004 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3005
3006 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3007 {
3008 struct protection_domain *pdomain;
3009 struct iommu_dev_data *dev_data;
3010 struct device *dev = &pdev->dev;
3011 struct iommu_domain *io_domain;
3012
3013 if (!check_device(dev))
3014 return NULL;
3015
3016 dev_data = dev_iommu_priv_get(&pdev->dev);
3017 pdomain = dev_data->domain;
3018 io_domain = iommu_get_domain_for_dev(dev);
3019
3020 if (pdomain == NULL && dev_data->defer_attach) {
3021 dev_data->defer_attach = false;
3022 pdomain = to_pdomain(io_domain);
3023 attach_device(dev, pdomain);
3024 }
3025
3026 if (pdomain == NULL)
3027 return NULL;
3028
3029 if (io_domain->type != IOMMU_DOMAIN_DMA)
3030 return NULL;
3031
3032 /* Only return IOMMUv2 domains */
3033 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3034 return NULL;
3035
3036 return &pdomain->domain;
3037 }
3038 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3039
3040 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3041 {
3042 struct iommu_dev_data *dev_data;
3043
3044 if (!amd_iommu_v2_supported())
3045 return;
3046
3047 dev_data = dev_iommu_priv_get(&pdev->dev);
3048 dev_data->errata |= (1 << erratum);
3049 }
3050 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3051
3052 int amd_iommu_device_info(struct pci_dev *pdev,
3053 struct amd_iommu_device_info *info)
3054 {
3055 int max_pasids;
3056 int pos;
3057
3058 if (pdev == NULL || info == NULL)
3059 return -EINVAL;
3060
3061 if (!amd_iommu_v2_supported())
3062 return -EINVAL;
3063
3064 memset(info, 0, sizeof(*info));
3065
3066 if (pci_ats_supported(pdev))
3067 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3068
3069 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3070 if (pos)
3071 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3072
3073 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3074 if (pos) {
3075 int features;
3076
3077 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3078 max_pasids = min(max_pasids, (1 << 20));
3079
3080 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3081 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3082
3083 features = pci_pasid_features(pdev);
3084 if (features & PCI_PASID_CAP_EXEC)
3085 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3086 if (features & PCI_PASID_CAP_PRIV)
3087 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3088 }
3089
3090 return 0;
3091 }
3092 EXPORT_SYMBOL(amd_iommu_device_info);
3093
3094 #ifdef CONFIG_IRQ_REMAP
3095
3096 /*****************************************************************************
3097 *
3098 * Interrupt Remapping Implementation
3099 *
3100 *****************************************************************************/
3101
3102 static struct irq_chip amd_ir_chip;
3103 static DEFINE_SPINLOCK(iommu_table_lock);
3104
3105 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3106 {
3107 u64 dte;
3108
3109 dte = amd_iommu_dev_table[devid].data[2];
3110 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3111 dte |= iommu_virt_to_phys(table->table);
3112 dte |= DTE_IRQ_REMAP_INTCTL;
3113 dte |= DTE_IRQ_TABLE_LEN;
3114 dte |= DTE_IRQ_REMAP_ENABLE;
3115
3116 amd_iommu_dev_table[devid].data[2] = dte;
3117 }
3118
3119 static struct irq_remap_table *get_irq_table(u16 devid)
3120 {
3121 struct irq_remap_table *table;
3122
3123 if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3124 "%s: no iommu for devid %x\n", __func__, devid))
3125 return NULL;
3126
3127 table = irq_lookup_table[devid];
3128 if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3129 return NULL;
3130
3131 return table;
3132 }
3133
3134 static struct irq_remap_table *__alloc_irq_table(void)
3135 {
3136 struct irq_remap_table *table;
3137
3138 table = kzalloc(sizeof(*table), GFP_KERNEL);
3139 if (!table)
3140 return NULL;
3141
3142 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3143 if (!table->table) {
3144 kfree(table);
3145 return NULL;
3146 }
3147 raw_spin_lock_init(&table->lock);
3148
3149 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3150 memset(table->table, 0,
3151 MAX_IRQS_PER_TABLE * sizeof(u32));
3152 else
3153 memset(table->table, 0,
3154 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3155 return table;
3156 }
3157
3158 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3159 struct irq_remap_table *table)
3160 {
3161 irq_lookup_table[devid] = table;
3162 set_dte_irq_entry(devid, table);
3163 iommu_flush_dte(iommu, devid);
3164 }
3165
3166 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3167 void *data)
3168 {
3169 struct irq_remap_table *table = data;
3170
3171 irq_lookup_table[alias] = table;
3172 set_dte_irq_entry(alias, table);
3173
3174 iommu_flush_dte(amd_iommu_rlookup_table[alias], alias);
3175
3176 return 0;
3177 }
3178
3179 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev)
3180 {
3181 struct irq_remap_table *table = NULL;
3182 struct irq_remap_table *new_table = NULL;
3183 struct amd_iommu *iommu;
3184 unsigned long flags;
3185 u16 alias;
3186
3187 spin_lock_irqsave(&iommu_table_lock, flags);
3188
3189 iommu = amd_iommu_rlookup_table[devid];
3190 if (!iommu)
3191 goto out_unlock;
3192
3193 table = irq_lookup_table[devid];
3194 if (table)
3195 goto out_unlock;
3196
3197 alias = amd_iommu_alias_table[devid];
3198 table = irq_lookup_table[alias];
3199 if (table) {
3200 set_remap_table_entry(iommu, devid, table);
3201 goto out_wait;
3202 }
3203 spin_unlock_irqrestore(&iommu_table_lock, flags);
3204
3205 /* Nothing there yet, allocate new irq remapping table */
3206 new_table = __alloc_irq_table();
3207 if (!new_table)
3208 return NULL;
3209
3210 spin_lock_irqsave(&iommu_table_lock, flags);
3211
3212 table = irq_lookup_table[devid];
3213 if (table)
3214 goto out_unlock;
3215
3216 table = irq_lookup_table[alias];
3217 if (table) {
3218 set_remap_table_entry(iommu, devid, table);
3219 goto out_wait;
3220 }
3221
3222 table = new_table;
3223 new_table = NULL;
3224
3225 if (pdev)
3226 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3227 table);
3228 else
3229 set_remap_table_entry(iommu, devid, table);
3230
3231 if (devid != alias)
3232 set_remap_table_entry(iommu, alias, table);
3233
3234 out_wait:
3235 iommu_completion_wait(iommu);
3236
3237 out_unlock:
3238 spin_unlock_irqrestore(&iommu_table_lock, flags);
3239
3240 if (new_table) {
3241 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3242 kfree(new_table);
3243 }
3244 return table;
3245 }
3246
3247 static int alloc_irq_index(u16 devid, int count, bool align,
3248 struct pci_dev *pdev)
3249 {
3250 struct irq_remap_table *table;
3251 int index, c, alignment = 1;
3252 unsigned long flags;
3253 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3254
3255 if (!iommu)
3256 return -ENODEV;
3257
3258 table = alloc_irq_table(devid, pdev);
3259 if (!table)
3260 return -ENODEV;
3261
3262 if (align)
3263 alignment = roundup_pow_of_two(count);
3264
3265 raw_spin_lock_irqsave(&table->lock, flags);
3266
3267 /* Scan table for free entries */
3268 for (index = ALIGN(table->min_index, alignment), c = 0;
3269 index < MAX_IRQS_PER_TABLE;) {
3270 if (!iommu->irte_ops->is_allocated(table, index)) {
3271 c += 1;
3272 } else {
3273 c = 0;
3274 index = ALIGN(index + 1, alignment);
3275 continue;
3276 }
3277
3278 if (c == count) {
3279 for (; c != 0; --c)
3280 iommu->irte_ops->set_allocated(table, index - c + 1);
3281
3282 index -= count - 1;
3283 goto out;
3284 }
3285
3286 index++;
3287 }
3288
3289 index = -ENOSPC;
3290
3291 out:
3292 raw_spin_unlock_irqrestore(&table->lock, flags);
3293
3294 return index;
3295 }
3296
3297 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3298 struct amd_ir_data *data)
3299 {
3300 bool ret;
3301 struct irq_remap_table *table;
3302 struct amd_iommu *iommu;
3303 unsigned long flags;
3304 struct irte_ga *entry;
3305
3306 iommu = amd_iommu_rlookup_table[devid];
3307 if (iommu == NULL)
3308 return -EINVAL;
3309
3310 table = get_irq_table(devid);
3311 if (!table)
3312 return -ENOMEM;
3313
3314 raw_spin_lock_irqsave(&table->lock, flags);
3315
3316 entry = (struct irte_ga *)table->table;
3317 entry = &entry[index];
3318
3319 ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
3320 entry->lo.val, entry->hi.val,
3321 irte->lo.val, irte->hi.val);
3322 /*
3323 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3324 * and it cannot be updated by the hardware or other processors
3325 * behind us, so the return value of cmpxchg16 should be the
3326 * same as the old value.
3327 */
3328 WARN_ON(!ret);
3329
3330 if (data)
3331 data->ref = entry;
3332
3333 raw_spin_unlock_irqrestore(&table->lock, flags);
3334
3335 iommu_flush_irt(iommu, devid);
3336 iommu_completion_wait(iommu);
3337
3338 return 0;
3339 }
3340
3341 static int modify_irte(u16 devid, int index, union irte *irte)
3342 {
3343 struct irq_remap_table *table;
3344 struct amd_iommu *iommu;
3345 unsigned long flags;
3346
3347 iommu = amd_iommu_rlookup_table[devid];
3348 if (iommu == NULL)
3349 return -EINVAL;
3350
3351 table = get_irq_table(devid);
3352 if (!table)
3353 return -ENOMEM;
3354
3355 raw_spin_lock_irqsave(&table->lock, flags);
3356 table->table[index] = irte->val;
3357 raw_spin_unlock_irqrestore(&table->lock, flags);
3358
3359 iommu_flush_irt(iommu, devid);
3360 iommu_completion_wait(iommu);
3361
3362 return 0;
3363 }
3364
3365 static void free_irte(u16 devid, int index)
3366 {
3367 struct irq_remap_table *table;
3368 struct amd_iommu *iommu;
3369 unsigned long flags;
3370
3371 iommu = amd_iommu_rlookup_table[devid];
3372 if (iommu == NULL)
3373 return;
3374
3375 table = get_irq_table(devid);
3376 if (!table)
3377 return;
3378
3379 raw_spin_lock_irqsave(&table->lock, flags);
3380 iommu->irte_ops->clear_allocated(table, index);
3381 raw_spin_unlock_irqrestore(&table->lock, flags);
3382
3383 iommu_flush_irt(iommu, devid);
3384 iommu_completion_wait(iommu);
3385 }
3386
3387 static void irte_prepare(void *entry,
3388 u32 delivery_mode, u32 dest_mode,
3389 u8 vector, u32 dest_apicid, int devid)
3390 {
3391 union irte *irte = (union irte *) entry;
3392
3393 irte->val = 0;
3394 irte->fields.vector = vector;
3395 irte->fields.int_type = delivery_mode;
3396 irte->fields.destination = dest_apicid;
3397 irte->fields.dm = dest_mode;
3398 irte->fields.valid = 1;
3399 }
3400
3401 static void irte_ga_prepare(void *entry,
3402 u32 delivery_mode, u32 dest_mode,
3403 u8 vector, u32 dest_apicid, int devid)
3404 {
3405 struct irte_ga *irte = (struct irte_ga *) entry;
3406
3407 irte->lo.val = 0;
3408 irte->hi.val = 0;
3409 irte->lo.fields_remap.int_type = delivery_mode;
3410 irte->lo.fields_remap.dm = dest_mode;
3411 irte->hi.fields.vector = vector;
3412 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3413 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3414 irte->lo.fields_remap.valid = 1;
3415 }
3416
3417 static void irte_activate(void *entry, u16 devid, u16 index)
3418 {
3419 union irte *irte = (union irte *) entry;
3420
3421 irte->fields.valid = 1;
3422 modify_irte(devid, index, irte);
3423 }
3424
3425 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3426 {
3427 struct irte_ga *irte = (struct irte_ga *) entry;
3428
3429 irte->lo.fields_remap.valid = 1;
3430 modify_irte_ga(devid, index, irte, NULL);
3431 }
3432
3433 static void irte_deactivate(void *entry, u16 devid, u16 index)
3434 {
3435 union irte *irte = (union irte *) entry;
3436
3437 irte->fields.valid = 0;
3438 modify_irte(devid, index, irte);
3439 }
3440
3441 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3442 {
3443 struct irte_ga *irte = (struct irte_ga *) entry;
3444
3445 irte->lo.fields_remap.valid = 0;
3446 modify_irte_ga(devid, index, irte, NULL);
3447 }
3448
3449 static void irte_set_affinity(void *entry, u16 devid, u16 index,
3450 u8 vector, u32 dest_apicid)
3451 {
3452 union irte *irte = (union irte *) entry;
3453
3454 irte->fields.vector = vector;
3455 irte->fields.destination = dest_apicid;
3456 modify_irte(devid, index, irte);
3457 }
3458
3459 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3460 u8 vector, u32 dest_apicid)
3461 {
3462 struct irte_ga *irte = (struct irte_ga *) entry;
3463
3464 if (!irte->lo.fields_remap.guest_mode) {
3465 irte->hi.fields.vector = vector;
3466 irte->lo.fields_remap.destination =
3467 APICID_TO_IRTE_DEST_LO(dest_apicid);
3468 irte->hi.fields.destination =
3469 APICID_TO_IRTE_DEST_HI(dest_apicid);
3470 modify_irte_ga(devid, index, irte, NULL);
3471 }
3472 }
3473
3474 #define IRTE_ALLOCATED (~1U)
3475 static void irte_set_allocated(struct irq_remap_table *table, int index)
3476 {
3477 table->table[index] = IRTE_ALLOCATED;
3478 }
3479
3480 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3481 {
3482 struct irte_ga *ptr = (struct irte_ga *)table->table;
3483 struct irte_ga *irte = &ptr[index];
3484
3485 memset(&irte->lo.val, 0, sizeof(u64));
3486 memset(&irte->hi.val, 0, sizeof(u64));
3487 irte->hi.fields.vector = 0xff;
3488 }
3489
3490 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3491 {
3492 union irte *ptr = (union irte *)table->table;
3493 union irte *irte = &ptr[index];
3494
3495 return irte->val != 0;
3496 }
3497
3498 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3499 {
3500 struct irte_ga *ptr = (struct irte_ga *)table->table;
3501 struct irte_ga *irte = &ptr[index];
3502
3503 return irte->hi.fields.vector != 0;
3504 }
3505
3506 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3507 {
3508 table->table[index] = 0;
3509 }
3510
3511 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3512 {
3513 struct irte_ga *ptr = (struct irte_ga *)table->table;
3514 struct irte_ga *irte = &ptr[index];
3515
3516 memset(&irte->lo.val, 0, sizeof(u64));
3517 memset(&irte->hi.val, 0, sizeof(u64));
3518 }
3519
3520 static int get_devid(struct irq_alloc_info *info)
3521 {
3522 int devid = -1;
3523
3524 switch (info->type) {
3525 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3526 devid = get_ioapic_devid(info->ioapic_id);
3527 break;
3528 case X86_IRQ_ALLOC_TYPE_HPET:
3529 devid = get_hpet_devid(info->hpet_id);
3530 break;
3531 case X86_IRQ_ALLOC_TYPE_MSI:
3532 case X86_IRQ_ALLOC_TYPE_MSIX:
3533 devid = get_device_id(&info->msi_dev->dev);
3534 break;
3535 default:
3536 BUG_ON(1);
3537 break;
3538 }
3539
3540 return devid;
3541 }
3542
3543 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3544 {
3545 struct amd_iommu *iommu;
3546 int devid;
3547
3548 if (!info)
3549 return NULL;
3550
3551 devid = get_devid(info);
3552 if (devid >= 0) {
3553 iommu = amd_iommu_rlookup_table[devid];
3554 if (iommu)
3555 return iommu->ir_domain;
3556 }
3557
3558 return NULL;
3559 }
3560
3561 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3562 {
3563 struct amd_iommu *iommu;
3564 int devid;
3565
3566 if (!info)
3567 return NULL;
3568
3569 switch (info->type) {
3570 case X86_IRQ_ALLOC_TYPE_MSI:
3571 case X86_IRQ_ALLOC_TYPE_MSIX:
3572 devid = get_device_id(&info->msi_dev->dev);
3573 if (devid < 0)
3574 return NULL;
3575
3576 iommu = amd_iommu_rlookup_table[devid];
3577 if (iommu)
3578 return iommu->msi_domain;
3579 break;
3580 default:
3581 break;
3582 }
3583
3584 return NULL;
3585 }
3586
3587 struct irq_remap_ops amd_iommu_irq_ops = {
3588 .prepare = amd_iommu_prepare,
3589 .enable = amd_iommu_enable,
3590 .disable = amd_iommu_disable,
3591 .reenable = amd_iommu_reenable,
3592 .enable_faulting = amd_iommu_enable_faulting,
3593 .get_ir_irq_domain = get_ir_irq_domain,
3594 .get_irq_domain = get_irq_domain,
3595 };
3596
3597 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3598 struct irq_cfg *irq_cfg,
3599 struct irq_alloc_info *info,
3600 int devid, int index, int sub_handle)
3601 {
3602 struct irq_2_irte *irte_info = &data->irq_2_irte;
3603 struct msi_msg *msg = &data->msi_entry;
3604 struct IO_APIC_route_entry *entry;
3605 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3606
3607 if (!iommu)
3608 return;
3609
3610 data->irq_2_irte.devid = devid;
3611 data->irq_2_irte.index = index + sub_handle;
3612 iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
3613 apic->irq_dest_mode, irq_cfg->vector,
3614 irq_cfg->dest_apicid, devid);
3615
3616 switch (info->type) {
3617 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3618 /* Setup IOAPIC entry */
3619 entry = info->ioapic_entry;
3620 info->ioapic_entry = NULL;
3621 memset(entry, 0, sizeof(*entry));
3622 entry->vector = index;
3623 entry->mask = 0;
3624 entry->trigger = info->ioapic_trigger;
3625 entry->polarity = info->ioapic_polarity;
3626 /* Mask level triggered irqs. */
3627 if (info->ioapic_trigger)
3628 entry->mask = 1;
3629 break;
3630
3631 case X86_IRQ_ALLOC_TYPE_HPET:
3632 case X86_IRQ_ALLOC_TYPE_MSI:
3633 case X86_IRQ_ALLOC_TYPE_MSIX:
3634 msg->address_hi = MSI_ADDR_BASE_HI;
3635 msg->address_lo = MSI_ADDR_BASE_LO;
3636 msg->data = irte_info->index;
3637 break;
3638
3639 default:
3640 BUG_ON(1);
3641 break;
3642 }
3643 }
3644
3645 struct amd_irte_ops irte_32_ops = {
3646 .prepare = irte_prepare,
3647 .activate = irte_activate,
3648 .deactivate = irte_deactivate,
3649 .set_affinity = irte_set_affinity,
3650 .set_allocated = irte_set_allocated,
3651 .is_allocated = irte_is_allocated,
3652 .clear_allocated = irte_clear_allocated,
3653 };
3654
3655 struct amd_irte_ops irte_128_ops = {
3656 .prepare = irte_ga_prepare,
3657 .activate = irte_ga_activate,
3658 .deactivate = irte_ga_deactivate,
3659 .set_affinity = irte_ga_set_affinity,
3660 .set_allocated = irte_ga_set_allocated,
3661 .is_allocated = irte_ga_is_allocated,
3662 .clear_allocated = irte_ga_clear_allocated,
3663 };
3664
3665 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3666 unsigned int nr_irqs, void *arg)
3667 {
3668 struct irq_alloc_info *info = arg;
3669 struct irq_data *irq_data;
3670 struct amd_ir_data *data = NULL;
3671 struct irq_cfg *cfg;
3672 int i, ret, devid;
3673 int index;
3674
3675 if (!info)
3676 return -EINVAL;
3677 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
3678 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3679 return -EINVAL;
3680
3681 /*
3682 * With IRQ remapping enabled, don't need contiguous CPU vectors
3683 * to support multiple MSI interrupts.
3684 */
3685 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
3686 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3687
3688 devid = get_devid(info);
3689 if (devid < 0)
3690 return -EINVAL;
3691
3692 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3693 if (ret < 0)
3694 return ret;
3695
3696 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3697 struct irq_remap_table *table;
3698 struct amd_iommu *iommu;
3699
3700 table = alloc_irq_table(devid, NULL);
3701 if (table) {
3702 if (!table->min_index) {
3703 /*
3704 * Keep the first 32 indexes free for IOAPIC
3705 * interrupts.
3706 */
3707 table->min_index = 32;
3708 iommu = amd_iommu_rlookup_table[devid];
3709 for (i = 0; i < 32; ++i)
3710 iommu->irte_ops->set_allocated(table, i);
3711 }
3712 WARN_ON(table->min_index != 32);
3713 index = info->ioapic_pin;
3714 } else {
3715 index = -ENOMEM;
3716 }
3717 } else if (info->type == X86_IRQ_ALLOC_TYPE_MSI ||
3718 info->type == X86_IRQ_ALLOC_TYPE_MSIX) {
3719 bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
3720
3721 index = alloc_irq_index(devid, nr_irqs, align, info->msi_dev);
3722 } else {
3723 index = alloc_irq_index(devid, nr_irqs, false, NULL);
3724 }
3725
3726 if (index < 0) {
3727 pr_warn("Failed to allocate IRTE\n");
3728 ret = index;
3729 goto out_free_parent;
3730 }
3731
3732 for (i = 0; i < nr_irqs; i++) {
3733 irq_data = irq_domain_get_irq_data(domain, virq + i);
3734 cfg = irqd_cfg(irq_data);
3735 if (!irq_data || !cfg) {
3736 ret = -EINVAL;
3737 goto out_free_data;
3738 }
3739
3740 ret = -ENOMEM;
3741 data = kzalloc(sizeof(*data), GFP_KERNEL);
3742 if (!data)
3743 goto out_free_data;
3744
3745 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3746 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3747 else
3748 data->entry = kzalloc(sizeof(struct irte_ga),
3749 GFP_KERNEL);
3750 if (!data->entry) {
3751 kfree(data);
3752 goto out_free_data;
3753 }
3754
3755 irq_data->hwirq = (devid << 16) + i;
3756 irq_data->chip_data = data;
3757 irq_data->chip = &amd_ir_chip;
3758 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3759 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3760 }
3761
3762 return 0;
3763
3764 out_free_data:
3765 for (i--; i >= 0; i--) {
3766 irq_data = irq_domain_get_irq_data(domain, virq + i);
3767 if (irq_data)
3768 kfree(irq_data->chip_data);
3769 }
3770 for (i = 0; i < nr_irqs; i++)
3771 free_irte(devid, index + i);
3772 out_free_parent:
3773 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3774 return ret;
3775 }
3776
3777 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3778 unsigned int nr_irqs)
3779 {
3780 struct irq_2_irte *irte_info;
3781 struct irq_data *irq_data;
3782 struct amd_ir_data *data;
3783 int i;
3784
3785 for (i = 0; i < nr_irqs; i++) {
3786 irq_data = irq_domain_get_irq_data(domain, virq + i);
3787 if (irq_data && irq_data->chip_data) {
3788 data = irq_data->chip_data;
3789 irte_info = &data->irq_2_irte;
3790 free_irte(irte_info->devid, irte_info->index);
3791 kfree(data->entry);
3792 kfree(data);
3793 }
3794 }
3795 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3796 }
3797
3798 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3799 struct amd_ir_data *ir_data,
3800 struct irq_2_irte *irte_info,
3801 struct irq_cfg *cfg);
3802
3803 static int irq_remapping_activate(struct irq_domain *domain,
3804 struct irq_data *irq_data, bool reserve)
3805 {
3806 struct amd_ir_data *data = irq_data->chip_data;
3807 struct irq_2_irte *irte_info = &data->irq_2_irte;
3808 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3809 struct irq_cfg *cfg = irqd_cfg(irq_data);
3810
3811 if (!iommu)
3812 return 0;
3813
3814 iommu->irte_ops->activate(data->entry, irte_info->devid,
3815 irte_info->index);
3816 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3817 return 0;
3818 }
3819
3820 static void irq_remapping_deactivate(struct irq_domain *domain,
3821 struct irq_data *irq_data)
3822 {
3823 struct amd_ir_data *data = irq_data->chip_data;
3824 struct irq_2_irte *irte_info = &data->irq_2_irte;
3825 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3826
3827 if (iommu)
3828 iommu->irte_ops->deactivate(data->entry, irte_info->devid,
3829 irte_info->index);
3830 }
3831
3832 static const struct irq_domain_ops amd_ir_domain_ops = {
3833 .alloc = irq_remapping_alloc,
3834 .free = irq_remapping_free,
3835 .activate = irq_remapping_activate,
3836 .deactivate = irq_remapping_deactivate,
3837 };
3838
3839 int amd_iommu_activate_guest_mode(void *data)
3840 {
3841 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3842 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3843 u64 valid;
3844
3845 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3846 !entry || entry->lo.fields_vapic.guest_mode)
3847 return 0;
3848
3849 valid = entry->lo.fields_vapic.valid;
3850
3851 entry->lo.val = 0;
3852 entry->hi.val = 0;
3853
3854 entry->lo.fields_vapic.valid = valid;
3855 entry->lo.fields_vapic.guest_mode = 1;
3856 entry->lo.fields_vapic.ga_log_intr = 1;
3857 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
3858 entry->hi.fields.vector = ir_data->ga_vector;
3859 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
3860
3861 return modify_irte_ga(ir_data->irq_2_irte.devid,
3862 ir_data->irq_2_irte.index, entry, ir_data);
3863 }
3864 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3865
3866 int amd_iommu_deactivate_guest_mode(void *data)
3867 {
3868 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3869 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3870 struct irq_cfg *cfg = ir_data->cfg;
3871 u64 valid;
3872
3873 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3874 !entry || !entry->lo.fields_vapic.guest_mode)
3875 return 0;
3876
3877 valid = entry->lo.fields_remap.valid;
3878
3879 entry->lo.val = 0;
3880 entry->hi.val = 0;
3881
3882 entry->lo.fields_remap.valid = valid;
3883 entry->lo.fields_remap.dm = apic->irq_dest_mode;
3884 entry->lo.fields_remap.int_type = apic->irq_delivery_mode;
3885 entry->hi.fields.vector = cfg->vector;
3886 entry->lo.fields_remap.destination =
3887 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3888 entry->hi.fields.destination =
3889 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3890
3891 return modify_irte_ga(ir_data->irq_2_irte.devid,
3892 ir_data->irq_2_irte.index, entry, ir_data);
3893 }
3894 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3895
3896 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3897 {
3898 int ret;
3899 struct amd_iommu *iommu;
3900 struct amd_iommu_pi_data *pi_data = vcpu_info;
3901 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3902 struct amd_ir_data *ir_data = data->chip_data;
3903 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3904 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
3905
3906 /* Note:
3907 * This device has never been set up for guest mode.
3908 * we should not modify the IRTE
3909 */
3910 if (!dev_data || !dev_data->use_vapic)
3911 return 0;
3912
3913 ir_data->cfg = irqd_cfg(data);
3914 pi_data->ir_data = ir_data;
3915
3916 /* Note:
3917 * SVM tries to set up for VAPIC mode, but we are in
3918 * legacy mode. So, we force legacy mode instead.
3919 */
3920 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3921 pr_debug("%s: Fall back to using intr legacy remap\n",
3922 __func__);
3923 pi_data->is_guest_mode = false;
3924 }
3925
3926 iommu = amd_iommu_rlookup_table[irte_info->devid];
3927 if (iommu == NULL)
3928 return -EINVAL;
3929
3930 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3931 if (pi_data->is_guest_mode) {
3932 ir_data->ga_root_ptr = (pi_data->base >> 12);
3933 ir_data->ga_vector = vcpu_pi_info->vector;
3934 ir_data->ga_tag = pi_data->ga_tag;
3935 ret = amd_iommu_activate_guest_mode(ir_data);
3936 if (!ret)
3937 ir_data->cached_ga_tag = pi_data->ga_tag;
3938 } else {
3939 ret = amd_iommu_deactivate_guest_mode(ir_data);
3940
3941 /*
3942 * This communicates the ga_tag back to the caller
3943 * so that it can do all the necessary clean up.
3944 */
3945 if (!ret)
3946 ir_data->cached_ga_tag = 0;
3947 }
3948
3949 return ret;
3950 }
3951
3952
3953 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3954 struct amd_ir_data *ir_data,
3955 struct irq_2_irte *irte_info,
3956 struct irq_cfg *cfg)
3957 {
3958
3959 /*
3960 * Atomically updates the IRTE with the new destination, vector
3961 * and flushes the interrupt entry cache.
3962 */
3963 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
3964 irte_info->index, cfg->vector,
3965 cfg->dest_apicid);
3966 }
3967
3968 static int amd_ir_set_affinity(struct irq_data *data,
3969 const struct cpumask *mask, bool force)
3970 {
3971 struct amd_ir_data *ir_data = data->chip_data;
3972 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3973 struct irq_cfg *cfg = irqd_cfg(data);
3974 struct irq_data *parent = data->parent_data;
3975 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3976 int ret;
3977
3978 if (!iommu)
3979 return -ENODEV;
3980
3981 ret = parent->chip->irq_set_affinity(parent, mask, force);
3982 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3983 return ret;
3984
3985 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3986 /*
3987 * After this point, all the interrupts will start arriving
3988 * at the new destination. So, time to cleanup the previous
3989 * vector allocation.
3990 */
3991 send_cleanup_vector(cfg);
3992
3993 return IRQ_SET_MASK_OK_DONE;
3994 }
3995
3996 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3997 {
3998 struct amd_ir_data *ir_data = irq_data->chip_data;
3999
4000 *msg = ir_data->msi_entry;
4001 }
4002
4003 static struct irq_chip amd_ir_chip = {
4004 .name = "AMD-IR",
4005 .irq_ack = apic_ack_irq,
4006 .irq_set_affinity = amd_ir_set_affinity,
4007 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4008 .irq_compose_msi_msg = ir_compose_msi_msg,
4009 };
4010
4011 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4012 {
4013 struct fwnode_handle *fn;
4014
4015 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4016 if (!fn)
4017 return -ENOMEM;
4018 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4019 if (!iommu->ir_domain) {
4020 irq_domain_free_fwnode(fn);
4021 return -ENOMEM;
4022 }
4023
4024 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4025 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4026 "AMD-IR-MSI",
4027 iommu->index);
4028 return 0;
4029 }
4030
4031 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4032 {
4033 unsigned long flags;
4034 struct amd_iommu *iommu;
4035 struct irq_remap_table *table;
4036 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4037 int devid = ir_data->irq_2_irte.devid;
4038 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4039 struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4040
4041 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4042 !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4043 return 0;
4044
4045 iommu = amd_iommu_rlookup_table[devid];
4046 if (!iommu)
4047 return -ENODEV;
4048
4049 table = get_irq_table(devid);
4050 if (!table)
4051 return -ENODEV;
4052
4053 raw_spin_lock_irqsave(&table->lock, flags);
4054
4055 if (ref->lo.fields_vapic.guest_mode) {
4056 if (cpu >= 0) {
4057 ref->lo.fields_vapic.destination =
4058 APICID_TO_IRTE_DEST_LO(cpu);
4059 ref->hi.fields.destination =
4060 APICID_TO_IRTE_DEST_HI(cpu);
4061 }
4062 ref->lo.fields_vapic.is_run = is_run;
4063 barrier();
4064 }
4065
4066 raw_spin_unlock_irqrestore(&table->lock, flags);
4067
4068 iommu_flush_irt(iommu, devid);
4069 iommu_completion_wait(iommu);
4070 return 0;
4071 }
4072 EXPORT_SYMBOL(amd_iommu_update_ga);
4073 #endif