]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iommu/amd_iommu.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/acpi.h>
23 #include <linux/amba/bus.h>
24 #include <linux/platform_device.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitmap.h>
27 #include <linux/slab.h>
28 #include <linux/debugfs.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/iommu-helper.h>
32 #include <linux/iommu.h>
33 #include <linux/delay.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/notifier.h>
36 #include <linux/export.h>
37 #include <linux/irq.h>
38 #include <linux/msi.h>
39 #include <linux/dma-contiguous.h>
40 #include <linux/irqdomain.h>
41 #include <linux/percpu.h>
42 #include <linux/iova.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/io_apic.h>
45 #include <asm/apic.h>
46 #include <asm/hw_irq.h>
47 #include <asm/msidef.h>
48 #include <asm/proto.h>
49 #include <asm/iommu.h>
50 #include <asm/gart.h>
51 #include <asm/dma.h>
52
53 #include "amd_iommu_proto.h"
54 #include "amd_iommu_types.h"
55 #include "irq_remapping.h"
56
57 #define AMD_IOMMU_MAPPING_ERROR 0
58
59 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
60
61 #define LOOP_TIMEOUT 100000
62
63 /* IO virtual address start page frame number */
64 #define IOVA_START_PFN (1)
65 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
66 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
67
68 /* Reserved IOVA ranges */
69 #define MSI_RANGE_START (0xfee00000)
70 #define MSI_RANGE_END (0xfeefffff)
71 #define HT_RANGE_START (0xfd00000000ULL)
72 #define HT_RANGE_END (0xffffffffffULL)
73
74 /*
75 * This bitmap is used to advertise the page sizes our hardware support
76 * to the IOMMU core, which will then use this information to split
77 * physically contiguous memory regions it is mapping into page sizes
78 * that we support.
79 *
80 * 512GB Pages are not supported due to a hardware bug
81 */
82 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
83
84 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
85
86 /* List of all available dev_data structures */
87 static LIST_HEAD(dev_data_list);
88 static DEFINE_SPINLOCK(dev_data_list_lock);
89
90 LIST_HEAD(ioapic_map);
91 LIST_HEAD(hpet_map);
92 LIST_HEAD(acpihid_map);
93
94 /*
95 * Domain for untranslated devices - only allocated
96 * if iommu=pt passed on kernel cmd line.
97 */
98 const struct iommu_ops amd_iommu_ops;
99
100 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101 int amd_iommu_max_glx_val = -1;
102
103 static const struct dma_map_ops amd_iommu_dma_ops;
104
105 /*
106 * This struct contains device specific data for the IOMMU
107 */
108 struct iommu_dev_data {
109 struct list_head list; /* For domain->dev_list */
110 struct list_head dev_data_list; /* For global dev_data_list */
111 struct protection_domain *domain; /* Domain the device is bound to */
112 u16 devid; /* PCI Device ID */
113 u16 alias; /* Alias Device ID */
114 bool iommu_v2; /* Device can make use of IOMMUv2 */
115 bool passthrough; /* Device is identity mapped */
116 struct {
117 bool enabled;
118 int qdep;
119 } ats; /* ATS state */
120 bool pri_tlp; /* PASID TLB required for
121 PPR completions */
122 u32 errata; /* Bitmap for errata to apply */
123 bool use_vapic; /* Enable device to use vapic mode */
124
125 struct ratelimit_state rs; /* Ratelimit IOPF messages */
126 };
127
128 /*
129 * general struct to manage commands send to an IOMMU
130 */
131 struct iommu_cmd {
132 u32 data[4];
133 };
134
135 struct kmem_cache *amd_iommu_irq_cache;
136
137 static void update_domain(struct protection_domain *domain);
138 static int protection_domain_init(struct protection_domain *domain);
139 static void detach_device(struct device *dev);
140
141 #define FLUSH_QUEUE_SIZE 256
142
143 struct flush_queue_entry {
144 unsigned long iova_pfn;
145 unsigned long pages;
146 u64 counter; /* Flush counter when this entry was added to the queue */
147 };
148
149 struct flush_queue {
150 struct flush_queue_entry *entries;
151 unsigned head, tail;
152 spinlock_t lock;
153 };
154
155 /*
156 * Data container for a dma_ops specific protection domain
157 */
158 struct dma_ops_domain {
159 /* generic protection domain information */
160 struct protection_domain domain;
161
162 /* IOVA RB-Tree */
163 struct iova_domain iovad;
164
165 struct flush_queue __percpu *flush_queue;
166
167 /*
168 * We need two counter here to be race-free wrt. IOTLB flushing and
169 * adding entries to the flush queue.
170 *
171 * The flush_start_cnt is incremented _before_ the IOTLB flush starts.
172 * New entries added to the flush ring-buffer get their 'counter' value
173 * from here. This way we can make sure that entries added to the queue
174 * (or other per-cpu queues of the same domain) while the TLB is about
175 * to be flushed are not considered to be flushed already.
176 */
177 atomic64_t flush_start_cnt;
178
179 /*
180 * The flush_finish_cnt is incremented when an IOTLB flush is complete.
181 * This value is always smaller than flush_start_cnt. The queue_add
182 * function frees all IOVAs that have a counter value smaller than
183 * flush_finish_cnt. This makes sure that we only free IOVAs that are
184 * flushed out of the IOTLB of the domain.
185 */
186 atomic64_t flush_finish_cnt;
187
188 /*
189 * Timer to make sure we don't keep IOVAs around unflushed
190 * for too long
191 */
192 struct timer_list flush_timer;
193 atomic_t flush_timer_on;
194 };
195
196 static struct iova_domain reserved_iova_ranges;
197 static struct lock_class_key reserved_rbtree_key;
198
199 /****************************************************************************
200 *
201 * Helper functions
202 *
203 ****************************************************************************/
204
205 static inline int match_hid_uid(struct device *dev,
206 struct acpihid_map_entry *entry)
207 {
208 const char *hid, *uid;
209
210 hid = acpi_device_hid(ACPI_COMPANION(dev));
211 uid = acpi_device_uid(ACPI_COMPANION(dev));
212
213 if (!hid || !(*hid))
214 return -ENODEV;
215
216 if (!uid || !(*uid))
217 return strcmp(hid, entry->hid);
218
219 if (!(*entry->uid))
220 return strcmp(hid, entry->hid);
221
222 return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
223 }
224
225 static inline u16 get_pci_device_id(struct device *dev)
226 {
227 struct pci_dev *pdev = to_pci_dev(dev);
228
229 return PCI_DEVID(pdev->bus->number, pdev->devfn);
230 }
231
232 static inline int get_acpihid_device_id(struct device *dev,
233 struct acpihid_map_entry **entry)
234 {
235 struct acpihid_map_entry *p;
236
237 list_for_each_entry(p, &acpihid_map, list) {
238 if (!match_hid_uid(dev, p)) {
239 if (entry)
240 *entry = p;
241 return p->devid;
242 }
243 }
244 return -EINVAL;
245 }
246
247 static inline int get_device_id(struct device *dev)
248 {
249 int devid;
250
251 if (dev_is_pci(dev))
252 devid = get_pci_device_id(dev);
253 else
254 devid = get_acpihid_device_id(dev, NULL);
255
256 return devid;
257 }
258
259 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
260 {
261 return container_of(dom, struct protection_domain, domain);
262 }
263
264 static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
265 {
266 BUG_ON(domain->flags != PD_DMA_OPS_MASK);
267 return container_of(domain, struct dma_ops_domain, domain);
268 }
269
270 static struct iommu_dev_data *alloc_dev_data(u16 devid)
271 {
272 struct iommu_dev_data *dev_data;
273 unsigned long flags;
274
275 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
276 if (!dev_data)
277 return NULL;
278
279 dev_data->devid = devid;
280
281 spin_lock_irqsave(&dev_data_list_lock, flags);
282 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
283 spin_unlock_irqrestore(&dev_data_list_lock, flags);
284
285 ratelimit_default_init(&dev_data->rs);
286
287 return dev_data;
288 }
289
290 static struct iommu_dev_data *search_dev_data(u16 devid)
291 {
292 struct iommu_dev_data *dev_data;
293 unsigned long flags;
294
295 spin_lock_irqsave(&dev_data_list_lock, flags);
296 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
297 if (dev_data->devid == devid)
298 goto out_unlock;
299 }
300
301 dev_data = NULL;
302
303 out_unlock:
304 spin_unlock_irqrestore(&dev_data_list_lock, flags);
305
306 return dev_data;
307 }
308
309 static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
310 {
311 *(u16 *)data = alias;
312 return 0;
313 }
314
315 static u16 get_alias(struct device *dev)
316 {
317 struct pci_dev *pdev = to_pci_dev(dev);
318 u16 devid, ivrs_alias, pci_alias;
319
320 /* The callers make sure that get_device_id() does not fail here */
321 devid = get_device_id(dev);
322 ivrs_alias = amd_iommu_alias_table[devid];
323 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
324
325 if (ivrs_alias == pci_alias)
326 return ivrs_alias;
327
328 /*
329 * DMA alias showdown
330 *
331 * The IVRS is fairly reliable in telling us about aliases, but it
332 * can't know about every screwy device. If we don't have an IVRS
333 * reported alias, use the PCI reported alias. In that case we may
334 * still need to initialize the rlookup and dev_table entries if the
335 * alias is to a non-existent device.
336 */
337 if (ivrs_alias == devid) {
338 if (!amd_iommu_rlookup_table[pci_alias]) {
339 amd_iommu_rlookup_table[pci_alias] =
340 amd_iommu_rlookup_table[devid];
341 memcpy(amd_iommu_dev_table[pci_alias].data,
342 amd_iommu_dev_table[devid].data,
343 sizeof(amd_iommu_dev_table[pci_alias].data));
344 }
345
346 return pci_alias;
347 }
348
349 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
350 "for device %s[%04x:%04x], kernel reported alias "
351 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
352 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
353 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
354 PCI_FUNC(pci_alias));
355
356 /*
357 * If we don't have a PCI DMA alias and the IVRS alias is on the same
358 * bus, then the IVRS table may know about a quirk that we don't.
359 */
360 if (pci_alias == devid &&
361 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
362 pci_add_dma_alias(pdev, ivrs_alias & 0xff);
363 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
364 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
365 dev_name(dev));
366 }
367
368 return ivrs_alias;
369 }
370
371 static struct iommu_dev_data *find_dev_data(u16 devid)
372 {
373 struct iommu_dev_data *dev_data;
374
375 dev_data = search_dev_data(devid);
376
377 if (dev_data == NULL)
378 dev_data = alloc_dev_data(devid);
379
380 return dev_data;
381 }
382
383 static struct iommu_dev_data *get_dev_data(struct device *dev)
384 {
385 return dev->archdata.iommu;
386 }
387
388 /*
389 * Find or create an IOMMU group for a acpihid device.
390 */
391 static struct iommu_group *acpihid_device_group(struct device *dev)
392 {
393 struct acpihid_map_entry *p, *entry = NULL;
394 int devid;
395
396 devid = get_acpihid_device_id(dev, &entry);
397 if (devid < 0)
398 return ERR_PTR(devid);
399
400 list_for_each_entry(p, &acpihid_map, list) {
401 if ((devid == p->devid) && p->group)
402 entry->group = p->group;
403 }
404
405 if (!entry->group)
406 entry->group = generic_device_group(dev);
407 else
408 iommu_group_ref_get(entry->group);
409
410 return entry->group;
411 }
412
413 static bool pci_iommuv2_capable(struct pci_dev *pdev)
414 {
415 static const int caps[] = {
416 PCI_EXT_CAP_ID_ATS,
417 PCI_EXT_CAP_ID_PRI,
418 PCI_EXT_CAP_ID_PASID,
419 };
420 int i, pos;
421
422 for (i = 0; i < 3; ++i) {
423 pos = pci_find_ext_capability(pdev, caps[i]);
424 if (pos == 0)
425 return false;
426 }
427
428 return true;
429 }
430
431 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
432 {
433 struct iommu_dev_data *dev_data;
434
435 dev_data = get_dev_data(&pdev->dev);
436
437 return dev_data->errata & (1 << erratum) ? true : false;
438 }
439
440 /*
441 * This function checks if the driver got a valid device from the caller to
442 * avoid dereferencing invalid pointers.
443 */
444 static bool check_device(struct device *dev)
445 {
446 int devid;
447
448 if (!dev || !dev->dma_mask)
449 return false;
450
451 devid = get_device_id(dev);
452 if (devid < 0)
453 return false;
454
455 /* Out of our scope? */
456 if (devid > amd_iommu_last_bdf)
457 return false;
458
459 if (amd_iommu_rlookup_table[devid] == NULL)
460 return false;
461
462 return true;
463 }
464
465 static void init_iommu_group(struct device *dev)
466 {
467 struct iommu_group *group;
468
469 group = iommu_group_get_for_dev(dev);
470 if (IS_ERR(group))
471 return;
472
473 iommu_group_put(group);
474 }
475
476 static int iommu_init_device(struct device *dev)
477 {
478 struct iommu_dev_data *dev_data;
479 struct amd_iommu *iommu;
480 int devid;
481
482 if (dev->archdata.iommu)
483 return 0;
484
485 devid = get_device_id(dev);
486 if (devid < 0)
487 return devid;
488
489 iommu = amd_iommu_rlookup_table[devid];
490
491 dev_data = find_dev_data(devid);
492 if (!dev_data)
493 return -ENOMEM;
494
495 dev_data->alias = get_alias(dev);
496
497 if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
498 struct amd_iommu *iommu;
499
500 iommu = amd_iommu_rlookup_table[dev_data->devid];
501 dev_data->iommu_v2 = iommu->is_iommu_v2;
502 }
503
504 dev->archdata.iommu = dev_data;
505
506 iommu_device_link(&iommu->iommu, dev);
507
508 return 0;
509 }
510
511 static void iommu_ignore_device(struct device *dev)
512 {
513 u16 alias;
514 int devid;
515
516 devid = get_device_id(dev);
517 if (devid < 0)
518 return;
519
520 alias = get_alias(dev);
521
522 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
523 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
524
525 amd_iommu_rlookup_table[devid] = NULL;
526 amd_iommu_rlookup_table[alias] = NULL;
527 }
528
529 static void iommu_uninit_device(struct device *dev)
530 {
531 struct iommu_dev_data *dev_data;
532 struct amd_iommu *iommu;
533 int devid;
534
535 devid = get_device_id(dev);
536 if (devid < 0)
537 return;
538
539 iommu = amd_iommu_rlookup_table[devid];
540
541 dev_data = search_dev_data(devid);
542 if (!dev_data)
543 return;
544
545 if (dev_data->domain)
546 detach_device(dev);
547
548 iommu_device_unlink(&iommu->iommu, dev);
549
550 iommu_group_remove_device(dev);
551
552 /* Remove dma-ops */
553 dev->dma_ops = NULL;
554
555 /*
556 * We keep dev_data around for unplugged devices and reuse it when the
557 * device is re-plugged - not doing so would introduce a ton of races.
558 */
559 }
560
561 /****************************************************************************
562 *
563 * Interrupt handling functions
564 *
565 ****************************************************************************/
566
567 static void dump_dte_entry(u16 devid)
568 {
569 int i;
570
571 for (i = 0; i < 4; ++i)
572 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
573 amd_iommu_dev_table[devid].data[i]);
574 }
575
576 static void dump_command(unsigned long phys_addr)
577 {
578 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
579 int i;
580
581 for (i = 0; i < 4; ++i)
582 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
583 }
584
585 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
586 u64 address, int flags)
587 {
588 struct iommu_dev_data *dev_data = NULL;
589 struct pci_dev *pdev;
590
591 pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
592 if (pdev)
593 dev_data = get_dev_data(&pdev->dev);
594
595 if (dev_data && __ratelimit(&dev_data->rs)) {
596 dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
597 domain_id, address, flags);
598 } else if (printk_ratelimit()) {
599 pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
600 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
601 domain_id, address, flags);
602 }
603
604 if (pdev)
605 pci_dev_put(pdev);
606 }
607
608 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
609 {
610 int type, devid, domid, flags;
611 volatile u32 *event = __evt;
612 int count = 0;
613 u64 address;
614
615 retry:
616 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
617 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
618 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
619 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
620 address = (u64)(((u64)event[3]) << 32) | event[2];
621
622 if (type == 0) {
623 /* Did we hit the erratum? */
624 if (++count == LOOP_TIMEOUT) {
625 pr_err("AMD-Vi: No event written to event log\n");
626 return;
627 }
628 udelay(1);
629 goto retry;
630 }
631
632 if (type == EVENT_TYPE_IO_FAULT) {
633 amd_iommu_report_page_fault(devid, domid, address, flags);
634 return;
635 } else {
636 printk(KERN_ERR "AMD-Vi: Event logged [");
637 }
638
639 switch (type) {
640 case EVENT_TYPE_ILL_DEV:
641 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
642 "address=0x%016llx flags=0x%04x]\n",
643 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
644 address, flags);
645 dump_dte_entry(devid);
646 break;
647 case EVENT_TYPE_DEV_TAB_ERR:
648 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
649 "address=0x%016llx flags=0x%04x]\n",
650 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
651 address, flags);
652 break;
653 case EVENT_TYPE_PAGE_TAB_ERR:
654 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
655 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
656 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
657 domid, address, flags);
658 break;
659 case EVENT_TYPE_ILL_CMD:
660 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
661 dump_command(address);
662 break;
663 case EVENT_TYPE_CMD_HARD_ERR:
664 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
665 "flags=0x%04x]\n", address, flags);
666 break;
667 case EVENT_TYPE_IOTLB_INV_TO:
668 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
669 "address=0x%016llx]\n",
670 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
671 address);
672 break;
673 case EVENT_TYPE_INV_DEV_REQ:
674 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
675 "address=0x%016llx flags=0x%04x]\n",
676 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
677 address, flags);
678 break;
679 default:
680 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
681 }
682
683 memset(__evt, 0, 4 * sizeof(u32));
684 }
685
686 static void iommu_poll_events(struct amd_iommu *iommu)
687 {
688 u32 head, tail;
689
690 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
691 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
692
693 while (head != tail) {
694 iommu_print_event(iommu, iommu->evt_buf + head);
695 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
696 }
697
698 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
699 }
700
701 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
702 {
703 struct amd_iommu_fault fault;
704
705 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
706 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
707 return;
708 }
709
710 fault.address = raw[1];
711 fault.pasid = PPR_PASID(raw[0]);
712 fault.device_id = PPR_DEVID(raw[0]);
713 fault.tag = PPR_TAG(raw[0]);
714 fault.flags = PPR_FLAGS(raw[0]);
715
716 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
717 }
718
719 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
720 {
721 u32 head, tail;
722
723 if (iommu->ppr_log == NULL)
724 return;
725
726 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
727 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
728
729 while (head != tail) {
730 volatile u64 *raw;
731 u64 entry[2];
732 int i;
733
734 raw = (u64 *)(iommu->ppr_log + head);
735
736 /*
737 * Hardware bug: Interrupt may arrive before the entry is
738 * written to memory. If this happens we need to wait for the
739 * entry to arrive.
740 */
741 for (i = 0; i < LOOP_TIMEOUT; ++i) {
742 if (PPR_REQ_TYPE(raw[0]) != 0)
743 break;
744 udelay(1);
745 }
746
747 /* Avoid memcpy function-call overhead */
748 entry[0] = raw[0];
749 entry[1] = raw[1];
750
751 /*
752 * To detect the hardware bug we need to clear the entry
753 * back to zero.
754 */
755 raw[0] = raw[1] = 0UL;
756
757 /* Update head pointer of hardware ring-buffer */
758 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
759 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
760
761 /* Handle PPR entry */
762 iommu_handle_ppr_entry(iommu, entry);
763
764 /* Refresh ring-buffer information */
765 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
766 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
767 }
768 }
769
770 #ifdef CONFIG_IRQ_REMAP
771 static int (*iommu_ga_log_notifier)(u32);
772
773 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
774 {
775 iommu_ga_log_notifier = notifier;
776
777 return 0;
778 }
779 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
780
781 static void iommu_poll_ga_log(struct amd_iommu *iommu)
782 {
783 u32 head, tail, cnt = 0;
784
785 if (iommu->ga_log == NULL)
786 return;
787
788 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
789 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
790
791 while (head != tail) {
792 volatile u64 *raw;
793 u64 log_entry;
794
795 raw = (u64 *)(iommu->ga_log + head);
796 cnt++;
797
798 /* Avoid memcpy function-call overhead */
799 log_entry = *raw;
800
801 /* Update head pointer of hardware ring-buffer */
802 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
803 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
804
805 /* Handle GA entry */
806 switch (GA_REQ_TYPE(log_entry)) {
807 case GA_GUEST_NR:
808 if (!iommu_ga_log_notifier)
809 break;
810
811 pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
812 __func__, GA_DEVID(log_entry),
813 GA_TAG(log_entry));
814
815 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
816 pr_err("AMD-Vi: GA log notifier failed.\n");
817 break;
818 default:
819 break;
820 }
821 }
822 }
823 #endif /* CONFIG_IRQ_REMAP */
824
825 #define AMD_IOMMU_INT_MASK \
826 (MMIO_STATUS_EVT_INT_MASK | \
827 MMIO_STATUS_PPR_INT_MASK | \
828 MMIO_STATUS_GALOG_INT_MASK)
829
830 irqreturn_t amd_iommu_int_thread(int irq, void *data)
831 {
832 struct amd_iommu *iommu = (struct amd_iommu *) data;
833 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
834
835 while (status & AMD_IOMMU_INT_MASK) {
836 /* Enable EVT and PPR and GA interrupts again */
837 writel(AMD_IOMMU_INT_MASK,
838 iommu->mmio_base + MMIO_STATUS_OFFSET);
839
840 if (status & MMIO_STATUS_EVT_INT_MASK) {
841 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
842 iommu_poll_events(iommu);
843 }
844
845 if (status & MMIO_STATUS_PPR_INT_MASK) {
846 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
847 iommu_poll_ppr_log(iommu);
848 }
849
850 #ifdef CONFIG_IRQ_REMAP
851 if (status & MMIO_STATUS_GALOG_INT_MASK) {
852 pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
853 iommu_poll_ga_log(iommu);
854 }
855 #endif
856
857 /*
858 * Hardware bug: ERBT1312
859 * When re-enabling interrupt (by writing 1
860 * to clear the bit), the hardware might also try to set
861 * the interrupt bit in the event status register.
862 * In this scenario, the bit will be set, and disable
863 * subsequent interrupts.
864 *
865 * Workaround: The IOMMU driver should read back the
866 * status register and check if the interrupt bits are cleared.
867 * If not, driver will need to go through the interrupt handler
868 * again and re-clear the bits
869 */
870 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
871 }
872 return IRQ_HANDLED;
873 }
874
875 irqreturn_t amd_iommu_int_handler(int irq, void *data)
876 {
877 return IRQ_WAKE_THREAD;
878 }
879
880 /****************************************************************************
881 *
882 * IOMMU command queuing functions
883 *
884 ****************************************************************************/
885
886 static int wait_on_sem(volatile u64 *sem)
887 {
888 int i = 0;
889
890 while (*sem == 0 && i < LOOP_TIMEOUT) {
891 udelay(1);
892 i += 1;
893 }
894
895 if (i == LOOP_TIMEOUT) {
896 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
897 return -EIO;
898 }
899
900 return 0;
901 }
902
903 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
904 struct iommu_cmd *cmd)
905 {
906 u8 *target;
907
908 target = iommu->cmd_buf + iommu->cmd_buf_tail;
909
910 iommu->cmd_buf_tail += sizeof(*cmd);
911 iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
912
913 /* Copy command to buffer */
914 memcpy(target, cmd, sizeof(*cmd));
915
916 /* Tell the IOMMU about it */
917 writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
918 }
919
920 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
921 {
922 WARN_ON(address & 0x7ULL);
923
924 memset(cmd, 0, sizeof(*cmd));
925 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
926 cmd->data[1] = upper_32_bits(__pa(address));
927 cmd->data[2] = 1;
928 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
929 }
930
931 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
932 {
933 memset(cmd, 0, sizeof(*cmd));
934 cmd->data[0] = devid;
935 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
936 }
937
938 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
939 size_t size, u16 domid, int pde)
940 {
941 u64 pages;
942 bool s;
943
944 pages = iommu_num_pages(address, size, PAGE_SIZE);
945 s = false;
946
947 if (pages > 1) {
948 /*
949 * If we have to flush more than one page, flush all
950 * TLB entries for this domain
951 */
952 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
953 s = true;
954 }
955
956 address &= PAGE_MASK;
957
958 memset(cmd, 0, sizeof(*cmd));
959 cmd->data[1] |= domid;
960 cmd->data[2] = lower_32_bits(address);
961 cmd->data[3] = upper_32_bits(address);
962 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
963 if (s) /* size bit - we flush more than one 4kb page */
964 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
965 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
966 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
967 }
968
969 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
970 u64 address, size_t size)
971 {
972 u64 pages;
973 bool s;
974
975 pages = iommu_num_pages(address, size, PAGE_SIZE);
976 s = false;
977
978 if (pages > 1) {
979 /*
980 * If we have to flush more than one page, flush all
981 * TLB entries for this domain
982 */
983 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
984 s = true;
985 }
986
987 address &= PAGE_MASK;
988
989 memset(cmd, 0, sizeof(*cmd));
990 cmd->data[0] = devid;
991 cmd->data[0] |= (qdep & 0xff) << 24;
992 cmd->data[1] = devid;
993 cmd->data[2] = lower_32_bits(address);
994 cmd->data[3] = upper_32_bits(address);
995 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
996 if (s)
997 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
998 }
999
1000 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
1001 u64 address, bool size)
1002 {
1003 memset(cmd, 0, sizeof(*cmd));
1004
1005 address &= ~(0xfffULL);
1006
1007 cmd->data[0] = pasid;
1008 cmd->data[1] = domid;
1009 cmd->data[2] = lower_32_bits(address);
1010 cmd->data[3] = upper_32_bits(address);
1011 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1012 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1013 if (size)
1014 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1015 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1016 }
1017
1018 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
1019 int qdep, u64 address, bool size)
1020 {
1021 memset(cmd, 0, sizeof(*cmd));
1022
1023 address &= ~(0xfffULL);
1024
1025 cmd->data[0] = devid;
1026 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1027 cmd->data[0] |= (qdep & 0xff) << 24;
1028 cmd->data[1] = devid;
1029 cmd->data[1] |= (pasid & 0xff) << 16;
1030 cmd->data[2] = lower_32_bits(address);
1031 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1032 cmd->data[3] = upper_32_bits(address);
1033 if (size)
1034 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1035 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1036 }
1037
1038 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
1039 int status, int tag, bool gn)
1040 {
1041 memset(cmd, 0, sizeof(*cmd));
1042
1043 cmd->data[0] = devid;
1044 if (gn) {
1045 cmd->data[1] = pasid;
1046 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1047 }
1048 cmd->data[3] = tag & 0x1ff;
1049 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1050
1051 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1052 }
1053
1054 static void build_inv_all(struct iommu_cmd *cmd)
1055 {
1056 memset(cmd, 0, sizeof(*cmd));
1057 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1058 }
1059
1060 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1061 {
1062 memset(cmd, 0, sizeof(*cmd));
1063 cmd->data[0] = devid;
1064 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1065 }
1066
1067 /*
1068 * Writes the command to the IOMMUs command buffer and informs the
1069 * hardware about the new command.
1070 */
1071 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1072 struct iommu_cmd *cmd,
1073 bool sync)
1074 {
1075 unsigned int count = 0;
1076 u32 left, next_tail;
1077
1078 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1079 again:
1080 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1081
1082 if (left <= 0x20) {
1083 /* Skip udelay() the first time around */
1084 if (count++) {
1085 if (count == LOOP_TIMEOUT) {
1086 pr_err("AMD-Vi: Command buffer timeout\n");
1087 return -EIO;
1088 }
1089
1090 udelay(1);
1091 }
1092
1093 /* Update head and recheck remaining space */
1094 iommu->cmd_buf_head = readl(iommu->mmio_base +
1095 MMIO_CMD_HEAD_OFFSET);
1096
1097 goto again;
1098 }
1099
1100 copy_cmd_to_buffer(iommu, cmd);
1101
1102 /* Do we need to make sure all commands are processed? */
1103 iommu->need_sync = sync;
1104
1105 return 0;
1106 }
1107
1108 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1109 struct iommu_cmd *cmd,
1110 bool sync)
1111 {
1112 unsigned long flags;
1113 int ret;
1114
1115 spin_lock_irqsave(&iommu->lock, flags);
1116 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1117 spin_unlock_irqrestore(&iommu->lock, flags);
1118
1119 return ret;
1120 }
1121
1122 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1123 {
1124 return iommu_queue_command_sync(iommu, cmd, true);
1125 }
1126
1127 /*
1128 * This function queues a completion wait command into the command
1129 * buffer of an IOMMU
1130 */
1131 static int iommu_completion_wait(struct amd_iommu *iommu)
1132 {
1133 struct iommu_cmd cmd;
1134 unsigned long flags;
1135 int ret;
1136
1137 if (!iommu->need_sync)
1138 return 0;
1139
1140
1141 build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1142
1143 spin_lock_irqsave(&iommu->lock, flags);
1144
1145 iommu->cmd_sem = 0;
1146
1147 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1148 if (ret)
1149 goto out_unlock;
1150
1151 ret = wait_on_sem(&iommu->cmd_sem);
1152
1153 out_unlock:
1154 spin_unlock_irqrestore(&iommu->lock, flags);
1155
1156 return ret;
1157 }
1158
1159 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1160 {
1161 struct iommu_cmd cmd;
1162
1163 build_inv_dte(&cmd, devid);
1164
1165 return iommu_queue_command(iommu, &cmd);
1166 }
1167
1168 static void iommu_flush_dte_all(struct amd_iommu *iommu)
1169 {
1170 u32 devid;
1171
1172 for (devid = 0; devid <= 0xffff; ++devid)
1173 iommu_flush_dte(iommu, devid);
1174
1175 iommu_completion_wait(iommu);
1176 }
1177
1178 /*
1179 * This function uses heavy locking and may disable irqs for some time. But
1180 * this is no issue because it is only called during resume.
1181 */
1182 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1183 {
1184 u32 dom_id;
1185
1186 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1187 struct iommu_cmd cmd;
1188 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1189 dom_id, 1);
1190 iommu_queue_command(iommu, &cmd);
1191 }
1192
1193 iommu_completion_wait(iommu);
1194 }
1195
1196 static void iommu_flush_all(struct amd_iommu *iommu)
1197 {
1198 struct iommu_cmd cmd;
1199
1200 build_inv_all(&cmd);
1201
1202 iommu_queue_command(iommu, &cmd);
1203 iommu_completion_wait(iommu);
1204 }
1205
1206 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1207 {
1208 struct iommu_cmd cmd;
1209
1210 build_inv_irt(&cmd, devid);
1211
1212 iommu_queue_command(iommu, &cmd);
1213 }
1214
1215 static void iommu_flush_irt_all(struct amd_iommu *iommu)
1216 {
1217 u32 devid;
1218
1219 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1220 iommu_flush_irt(iommu, devid);
1221
1222 iommu_completion_wait(iommu);
1223 }
1224
1225 void iommu_flush_all_caches(struct amd_iommu *iommu)
1226 {
1227 if (iommu_feature(iommu, FEATURE_IA)) {
1228 iommu_flush_all(iommu);
1229 } else {
1230 iommu_flush_dte_all(iommu);
1231 iommu_flush_irt_all(iommu);
1232 iommu_flush_tlb_all(iommu);
1233 }
1234 }
1235
1236 /*
1237 * Command send function for flushing on-device TLB
1238 */
1239 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1240 u64 address, size_t size)
1241 {
1242 struct amd_iommu *iommu;
1243 struct iommu_cmd cmd;
1244 int qdep;
1245
1246 qdep = dev_data->ats.qdep;
1247 iommu = amd_iommu_rlookup_table[dev_data->devid];
1248
1249 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1250
1251 return iommu_queue_command(iommu, &cmd);
1252 }
1253
1254 /*
1255 * Command send function for invalidating a device table entry
1256 */
1257 static int device_flush_dte(struct iommu_dev_data *dev_data)
1258 {
1259 struct amd_iommu *iommu;
1260 u16 alias;
1261 int ret;
1262
1263 iommu = amd_iommu_rlookup_table[dev_data->devid];
1264 alias = dev_data->alias;
1265
1266 ret = iommu_flush_dte(iommu, dev_data->devid);
1267 if (!ret && alias != dev_data->devid)
1268 ret = iommu_flush_dte(iommu, alias);
1269 if (ret)
1270 return ret;
1271
1272 if (dev_data->ats.enabled)
1273 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1274
1275 return ret;
1276 }
1277
1278 /*
1279 * TLB invalidation function which is called from the mapping functions.
1280 * It invalidates a single PTE if the range to flush is within a single
1281 * page. Otherwise it flushes the whole TLB of the IOMMU.
1282 */
1283 static void __domain_flush_pages(struct protection_domain *domain,
1284 u64 address, size_t size, int pde)
1285 {
1286 struct iommu_dev_data *dev_data;
1287 struct iommu_cmd cmd;
1288 int ret = 0, i;
1289
1290 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1291
1292 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1293 if (!domain->dev_iommu[i])
1294 continue;
1295
1296 /*
1297 * Devices of this domain are behind this IOMMU
1298 * We need a TLB flush
1299 */
1300 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1301 }
1302
1303 list_for_each_entry(dev_data, &domain->dev_list, list) {
1304
1305 if (!dev_data->ats.enabled)
1306 continue;
1307
1308 ret |= device_flush_iotlb(dev_data, address, size);
1309 }
1310
1311 WARN_ON(ret);
1312 }
1313
1314 static void domain_flush_pages(struct protection_domain *domain,
1315 u64 address, size_t size)
1316 {
1317 __domain_flush_pages(domain, address, size, 0);
1318 }
1319
1320 /* Flush the whole IO/TLB for a given protection domain */
1321 static void domain_flush_tlb(struct protection_domain *domain)
1322 {
1323 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1324 }
1325
1326 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1327 static void domain_flush_tlb_pde(struct protection_domain *domain)
1328 {
1329 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1330 }
1331
1332 static void domain_flush_complete(struct protection_domain *domain)
1333 {
1334 int i;
1335
1336 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1337 if (domain && !domain->dev_iommu[i])
1338 continue;
1339
1340 /*
1341 * Devices of this domain are behind this IOMMU
1342 * We need to wait for completion of all commands.
1343 */
1344 iommu_completion_wait(amd_iommus[i]);
1345 }
1346 }
1347
1348
1349 /*
1350 * This function flushes the DTEs for all devices in domain
1351 */
1352 static void domain_flush_devices(struct protection_domain *domain)
1353 {
1354 struct iommu_dev_data *dev_data;
1355
1356 list_for_each_entry(dev_data, &domain->dev_list, list)
1357 device_flush_dte(dev_data);
1358 }
1359
1360 /****************************************************************************
1361 *
1362 * The functions below are used the create the page table mappings for
1363 * unity mapped regions.
1364 *
1365 ****************************************************************************/
1366
1367 /*
1368 * This function is used to add another level to an IO page table. Adding
1369 * another level increases the size of the address space by 9 bits to a size up
1370 * to 64 bits.
1371 */
1372 static bool increase_address_space(struct protection_domain *domain,
1373 gfp_t gfp)
1374 {
1375 u64 *pte;
1376
1377 if (domain->mode == PAGE_MODE_6_LEVEL)
1378 /* address space already 64 bit large */
1379 return false;
1380
1381 pte = (void *)get_zeroed_page(gfp);
1382 if (!pte)
1383 return false;
1384
1385 *pte = PM_LEVEL_PDE(domain->mode,
1386 virt_to_phys(domain->pt_root));
1387 domain->pt_root = pte;
1388 domain->mode += 1;
1389 domain->updated = true;
1390
1391 return true;
1392 }
1393
1394 static u64 *alloc_pte(struct protection_domain *domain,
1395 unsigned long address,
1396 unsigned long page_size,
1397 u64 **pte_page,
1398 gfp_t gfp)
1399 {
1400 int level, end_lvl;
1401 u64 *pte, *page;
1402
1403 BUG_ON(!is_power_of_2(page_size));
1404
1405 while (address > PM_LEVEL_SIZE(domain->mode))
1406 increase_address_space(domain, gfp);
1407
1408 level = domain->mode - 1;
1409 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1410 address = PAGE_SIZE_ALIGN(address, page_size);
1411 end_lvl = PAGE_SIZE_LEVEL(page_size);
1412
1413 while (level > end_lvl) {
1414 u64 __pte, __npte;
1415
1416 __pte = *pte;
1417
1418 if (!IOMMU_PTE_PRESENT(__pte)) {
1419 page = (u64 *)get_zeroed_page(gfp);
1420 if (!page)
1421 return NULL;
1422
1423 __npte = PM_LEVEL_PDE(level, virt_to_phys(page));
1424
1425 /* pte could have been changed somewhere. */
1426 if (cmpxchg64(pte, __pte, __npte) != __pte) {
1427 free_page((unsigned long)page);
1428 continue;
1429 }
1430 }
1431
1432 /* No level skipping support yet */
1433 if (PM_PTE_LEVEL(*pte) != level)
1434 return NULL;
1435
1436 level -= 1;
1437
1438 pte = IOMMU_PTE_PAGE(*pte);
1439
1440 if (pte_page && level == end_lvl)
1441 *pte_page = pte;
1442
1443 pte = &pte[PM_LEVEL_INDEX(level, address)];
1444 }
1445
1446 return pte;
1447 }
1448
1449 /*
1450 * This function checks if there is a PTE for a given dma address. If
1451 * there is one, it returns the pointer to it.
1452 */
1453 static u64 *fetch_pte(struct protection_domain *domain,
1454 unsigned long address,
1455 unsigned long *page_size)
1456 {
1457 int level;
1458 u64 *pte;
1459
1460 if (address > PM_LEVEL_SIZE(domain->mode))
1461 return NULL;
1462
1463 level = domain->mode - 1;
1464 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1465 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1466
1467 while (level > 0) {
1468
1469 /* Not Present */
1470 if (!IOMMU_PTE_PRESENT(*pte))
1471 return NULL;
1472
1473 /* Large PTE */
1474 if (PM_PTE_LEVEL(*pte) == 7 ||
1475 PM_PTE_LEVEL(*pte) == 0)
1476 break;
1477
1478 /* No level skipping support yet */
1479 if (PM_PTE_LEVEL(*pte) != level)
1480 return NULL;
1481
1482 level -= 1;
1483
1484 /* Walk to the next level */
1485 pte = IOMMU_PTE_PAGE(*pte);
1486 pte = &pte[PM_LEVEL_INDEX(level, address)];
1487 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1488 }
1489
1490 if (PM_PTE_LEVEL(*pte) == 0x07) {
1491 unsigned long pte_mask;
1492
1493 /*
1494 * If we have a series of large PTEs, make
1495 * sure to return a pointer to the first one.
1496 */
1497 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1498 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1499 pte = (u64 *)(((unsigned long)pte) & pte_mask);
1500 }
1501
1502 return pte;
1503 }
1504
1505 /*
1506 * Generic mapping functions. It maps a physical address into a DMA
1507 * address space. It allocates the page table pages if necessary.
1508 * In the future it can be extended to a generic mapping function
1509 * supporting all features of AMD IOMMU page tables like level skipping
1510 * and full 64 bit address spaces.
1511 */
1512 static int iommu_map_page(struct protection_domain *dom,
1513 unsigned long bus_addr,
1514 unsigned long phys_addr,
1515 unsigned long page_size,
1516 int prot,
1517 gfp_t gfp)
1518 {
1519 u64 __pte, *pte;
1520 int i, count;
1521
1522 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1523 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1524
1525 if (!(prot & IOMMU_PROT_MASK))
1526 return -EINVAL;
1527
1528 count = PAGE_SIZE_PTE_COUNT(page_size);
1529 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1530
1531 if (!pte)
1532 return -ENOMEM;
1533
1534 for (i = 0; i < count; ++i)
1535 if (IOMMU_PTE_PRESENT(pte[i]))
1536 return -EBUSY;
1537
1538 if (count > 1) {
1539 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1540 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1541 } else
1542 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1543
1544 if (prot & IOMMU_PROT_IR)
1545 __pte |= IOMMU_PTE_IR;
1546 if (prot & IOMMU_PROT_IW)
1547 __pte |= IOMMU_PTE_IW;
1548
1549 for (i = 0; i < count; ++i)
1550 pte[i] = __pte;
1551
1552 update_domain(dom);
1553
1554 return 0;
1555 }
1556
1557 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1558 unsigned long bus_addr,
1559 unsigned long page_size)
1560 {
1561 unsigned long long unmapped;
1562 unsigned long unmap_size;
1563 u64 *pte;
1564
1565 BUG_ON(!is_power_of_2(page_size));
1566
1567 unmapped = 0;
1568
1569 while (unmapped < page_size) {
1570
1571 pte = fetch_pte(dom, bus_addr, &unmap_size);
1572
1573 if (pte) {
1574 int i, count;
1575
1576 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1577 for (i = 0; i < count; i++)
1578 pte[i] = 0ULL;
1579 }
1580
1581 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1582 unmapped += unmap_size;
1583 }
1584
1585 BUG_ON(unmapped && !is_power_of_2(unmapped));
1586
1587 return unmapped;
1588 }
1589
1590 /****************************************************************************
1591 *
1592 * The next functions belong to the address allocator for the dma_ops
1593 * interface functions.
1594 *
1595 ****************************************************************************/
1596
1597
1598 static unsigned long dma_ops_alloc_iova(struct device *dev,
1599 struct dma_ops_domain *dma_dom,
1600 unsigned int pages, u64 dma_mask)
1601 {
1602 unsigned long pfn = 0;
1603
1604 pages = __roundup_pow_of_two(pages);
1605
1606 if (dma_mask > DMA_BIT_MASK(32))
1607 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1608 IOVA_PFN(DMA_BIT_MASK(32)));
1609
1610 if (!pfn)
1611 pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1612
1613 return (pfn << PAGE_SHIFT);
1614 }
1615
1616 static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1617 unsigned long address,
1618 unsigned int pages)
1619 {
1620 pages = __roundup_pow_of_two(pages);
1621 address >>= PAGE_SHIFT;
1622
1623 free_iova_fast(&dma_dom->iovad, address, pages);
1624 }
1625
1626 /****************************************************************************
1627 *
1628 * The next functions belong to the domain allocation. A domain is
1629 * allocated for every IOMMU as the default domain. If device isolation
1630 * is enabled, every device get its own domain. The most important thing
1631 * about domains is the page table mapping the DMA address space they
1632 * contain.
1633 *
1634 ****************************************************************************/
1635
1636 /*
1637 * This function adds a protection domain to the global protection domain list
1638 */
1639 static void add_domain_to_list(struct protection_domain *domain)
1640 {
1641 unsigned long flags;
1642
1643 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1644 list_add(&domain->list, &amd_iommu_pd_list);
1645 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1646 }
1647
1648 /*
1649 * This function removes a protection domain to the global
1650 * protection domain list
1651 */
1652 static void del_domain_from_list(struct protection_domain *domain)
1653 {
1654 unsigned long flags;
1655
1656 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1657 list_del(&domain->list);
1658 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1659 }
1660
1661 static u16 domain_id_alloc(void)
1662 {
1663 unsigned long flags;
1664 int id;
1665
1666 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1667 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1668 BUG_ON(id == 0);
1669 if (id > 0 && id < MAX_DOMAIN_ID)
1670 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1671 else
1672 id = 0;
1673 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1674
1675 return id;
1676 }
1677
1678 static void domain_id_free(int id)
1679 {
1680 unsigned long flags;
1681
1682 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1683 if (id > 0 && id < MAX_DOMAIN_ID)
1684 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1685 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1686 }
1687
1688 #define DEFINE_FREE_PT_FN(LVL, FN) \
1689 static void free_pt_##LVL (unsigned long __pt) \
1690 { \
1691 unsigned long p; \
1692 u64 *pt; \
1693 int i; \
1694 \
1695 pt = (u64 *)__pt; \
1696 \
1697 for (i = 0; i < 512; ++i) { \
1698 /* PTE present? */ \
1699 if (!IOMMU_PTE_PRESENT(pt[i])) \
1700 continue; \
1701 \
1702 /* Large PTE? */ \
1703 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1704 PM_PTE_LEVEL(pt[i]) == 7) \
1705 continue; \
1706 \
1707 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1708 FN(p); \
1709 } \
1710 free_page((unsigned long)pt); \
1711 }
1712
1713 DEFINE_FREE_PT_FN(l2, free_page)
1714 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1715 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1716 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1717 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1718
1719 static void free_pagetable(struct protection_domain *domain)
1720 {
1721 unsigned long root = (unsigned long)domain->pt_root;
1722
1723 switch (domain->mode) {
1724 case PAGE_MODE_NONE:
1725 break;
1726 case PAGE_MODE_1_LEVEL:
1727 free_page(root);
1728 break;
1729 case PAGE_MODE_2_LEVEL:
1730 free_pt_l2(root);
1731 break;
1732 case PAGE_MODE_3_LEVEL:
1733 free_pt_l3(root);
1734 break;
1735 case PAGE_MODE_4_LEVEL:
1736 free_pt_l4(root);
1737 break;
1738 case PAGE_MODE_5_LEVEL:
1739 free_pt_l5(root);
1740 break;
1741 case PAGE_MODE_6_LEVEL:
1742 free_pt_l6(root);
1743 break;
1744 default:
1745 BUG();
1746 }
1747 }
1748
1749 static void free_gcr3_tbl_level1(u64 *tbl)
1750 {
1751 u64 *ptr;
1752 int i;
1753
1754 for (i = 0; i < 512; ++i) {
1755 if (!(tbl[i] & GCR3_VALID))
1756 continue;
1757
1758 ptr = __va(tbl[i] & PAGE_MASK);
1759
1760 free_page((unsigned long)ptr);
1761 }
1762 }
1763
1764 static void free_gcr3_tbl_level2(u64 *tbl)
1765 {
1766 u64 *ptr;
1767 int i;
1768
1769 for (i = 0; i < 512; ++i) {
1770 if (!(tbl[i] & GCR3_VALID))
1771 continue;
1772
1773 ptr = __va(tbl[i] & PAGE_MASK);
1774
1775 free_gcr3_tbl_level1(ptr);
1776 }
1777 }
1778
1779 static void free_gcr3_table(struct protection_domain *domain)
1780 {
1781 if (domain->glx == 2)
1782 free_gcr3_tbl_level2(domain->gcr3_tbl);
1783 else if (domain->glx == 1)
1784 free_gcr3_tbl_level1(domain->gcr3_tbl);
1785 else
1786 BUG_ON(domain->glx != 0);
1787
1788 free_page((unsigned long)domain->gcr3_tbl);
1789 }
1790
1791 static void dma_ops_domain_free_flush_queue(struct dma_ops_domain *dom)
1792 {
1793 int cpu;
1794
1795 for_each_possible_cpu(cpu) {
1796 struct flush_queue *queue;
1797
1798 queue = per_cpu_ptr(dom->flush_queue, cpu);
1799 kfree(queue->entries);
1800 }
1801
1802 free_percpu(dom->flush_queue);
1803
1804 dom->flush_queue = NULL;
1805 }
1806
1807 static int dma_ops_domain_alloc_flush_queue(struct dma_ops_domain *dom)
1808 {
1809 int cpu;
1810
1811 atomic64_set(&dom->flush_start_cnt, 0);
1812 atomic64_set(&dom->flush_finish_cnt, 0);
1813
1814 dom->flush_queue = alloc_percpu(struct flush_queue);
1815 if (!dom->flush_queue)
1816 return -ENOMEM;
1817
1818 /* First make sure everything is cleared */
1819 for_each_possible_cpu(cpu) {
1820 struct flush_queue *queue;
1821
1822 queue = per_cpu_ptr(dom->flush_queue, cpu);
1823 queue->head = 0;
1824 queue->tail = 0;
1825 queue->entries = NULL;
1826 }
1827
1828 /* Now start doing the allocation */
1829 for_each_possible_cpu(cpu) {
1830 struct flush_queue *queue;
1831
1832 queue = per_cpu_ptr(dom->flush_queue, cpu);
1833 queue->entries = kzalloc(FLUSH_QUEUE_SIZE * sizeof(*queue->entries),
1834 GFP_KERNEL);
1835 if (!queue->entries) {
1836 dma_ops_domain_free_flush_queue(dom);
1837 return -ENOMEM;
1838 }
1839
1840 spin_lock_init(&queue->lock);
1841 }
1842
1843 return 0;
1844 }
1845
1846 static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1847 {
1848 atomic64_inc(&dom->flush_start_cnt);
1849 domain_flush_tlb(&dom->domain);
1850 domain_flush_complete(&dom->domain);
1851 atomic64_inc(&dom->flush_finish_cnt);
1852 }
1853
1854 static inline bool queue_ring_full(struct flush_queue *queue)
1855 {
1856 assert_spin_locked(&queue->lock);
1857
1858 return (((queue->tail + 1) % FLUSH_QUEUE_SIZE) == queue->head);
1859 }
1860
1861 #define queue_ring_for_each(i, q) \
1862 for (i = (q)->head; i != (q)->tail; i = (i + 1) % FLUSH_QUEUE_SIZE)
1863
1864 static inline unsigned queue_ring_add(struct flush_queue *queue)
1865 {
1866 unsigned idx = queue->tail;
1867
1868 assert_spin_locked(&queue->lock);
1869 queue->tail = (idx + 1) % FLUSH_QUEUE_SIZE;
1870
1871 return idx;
1872 }
1873
1874 static inline void queue_ring_remove_head(struct flush_queue *queue)
1875 {
1876 assert_spin_locked(&queue->lock);
1877 queue->head = (queue->head + 1) % FLUSH_QUEUE_SIZE;
1878 }
1879
1880 static void queue_ring_free_flushed(struct dma_ops_domain *dom,
1881 struct flush_queue *queue)
1882 {
1883 u64 counter = atomic64_read(&dom->flush_finish_cnt);
1884 int idx;
1885
1886 queue_ring_for_each(idx, queue) {
1887 /*
1888 * This assumes that counter values in the ring-buffer are
1889 * monotonously rising.
1890 */
1891 if (queue->entries[idx].counter >= counter)
1892 break;
1893
1894 free_iova_fast(&dom->iovad,
1895 queue->entries[idx].iova_pfn,
1896 queue->entries[idx].pages);
1897
1898 queue_ring_remove_head(queue);
1899 }
1900 }
1901
1902 static void queue_add(struct dma_ops_domain *dom,
1903 unsigned long address, unsigned long pages)
1904 {
1905 struct flush_queue *queue;
1906 unsigned long flags;
1907 int idx;
1908
1909 pages = __roundup_pow_of_two(pages);
1910 address >>= PAGE_SHIFT;
1911
1912 queue = get_cpu_ptr(dom->flush_queue);
1913 spin_lock_irqsave(&queue->lock, flags);
1914
1915 /*
1916 * First remove the enries from the ring-buffer that are already
1917 * flushed to make the below queue_ring_full() check less likely
1918 */
1919 queue_ring_free_flushed(dom, queue);
1920
1921 /*
1922 * When ring-queue is full, flush the entries from the IOTLB so
1923 * that we can free all entries with queue_ring_free_flushed()
1924 * below.
1925 */
1926 if (queue_ring_full(queue)) {
1927 dma_ops_domain_flush_tlb(dom);
1928 queue_ring_free_flushed(dom, queue);
1929 }
1930
1931 idx = queue_ring_add(queue);
1932
1933 queue->entries[idx].iova_pfn = address;
1934 queue->entries[idx].pages = pages;
1935 queue->entries[idx].counter = atomic64_read(&dom->flush_start_cnt);
1936
1937 spin_unlock_irqrestore(&queue->lock, flags);
1938
1939 if (atomic_cmpxchg(&dom->flush_timer_on, 0, 1) == 0)
1940 mod_timer(&dom->flush_timer, jiffies + msecs_to_jiffies(10));
1941
1942 put_cpu_ptr(dom->flush_queue);
1943 }
1944
1945 static void queue_flush_timeout(unsigned long data)
1946 {
1947 struct dma_ops_domain *dom = (struct dma_ops_domain *)data;
1948 int cpu;
1949
1950 atomic_set(&dom->flush_timer_on, 0);
1951
1952 dma_ops_domain_flush_tlb(dom);
1953
1954 for_each_possible_cpu(cpu) {
1955 struct flush_queue *queue;
1956 unsigned long flags;
1957
1958 queue = per_cpu_ptr(dom->flush_queue, cpu);
1959 spin_lock_irqsave(&queue->lock, flags);
1960 queue_ring_free_flushed(dom, queue);
1961 spin_unlock_irqrestore(&queue->lock, flags);
1962 }
1963 }
1964
1965 /*
1966 * Free a domain, only used if something went wrong in the
1967 * allocation path and we need to free an already allocated page table
1968 */
1969 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1970 {
1971 if (!dom)
1972 return;
1973
1974 del_domain_from_list(&dom->domain);
1975
1976 if (timer_pending(&dom->flush_timer))
1977 del_timer(&dom->flush_timer);
1978
1979 dma_ops_domain_free_flush_queue(dom);
1980
1981 put_iova_domain(&dom->iovad);
1982
1983 free_pagetable(&dom->domain);
1984
1985 if (dom->domain.id)
1986 domain_id_free(dom->domain.id);
1987
1988 kfree(dom);
1989 }
1990
1991 /*
1992 * Allocates a new protection domain usable for the dma_ops functions.
1993 * It also initializes the page table and the address allocator data
1994 * structures required for the dma_ops interface
1995 */
1996 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1997 {
1998 struct dma_ops_domain *dma_dom;
1999
2000 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2001 if (!dma_dom)
2002 return NULL;
2003
2004 if (protection_domain_init(&dma_dom->domain))
2005 goto free_dma_dom;
2006
2007 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
2008 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2009 dma_dom->domain.flags = PD_DMA_OPS_MASK;
2010 if (!dma_dom->domain.pt_root)
2011 goto free_dma_dom;
2012
2013 init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
2014 IOVA_START_PFN, DMA_32BIT_PFN);
2015
2016 /* Initialize reserved ranges */
2017 copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
2018
2019 if (dma_ops_domain_alloc_flush_queue(dma_dom))
2020 goto free_dma_dom;
2021
2022 setup_timer(&dma_dom->flush_timer, queue_flush_timeout,
2023 (unsigned long)dma_dom);
2024
2025 atomic_set(&dma_dom->flush_timer_on, 0);
2026
2027 add_domain_to_list(&dma_dom->domain);
2028
2029 return dma_dom;
2030
2031 free_dma_dom:
2032 dma_ops_domain_free(dma_dom);
2033
2034 return NULL;
2035 }
2036
2037 /*
2038 * little helper function to check whether a given protection domain is a
2039 * dma_ops domain
2040 */
2041 static bool dma_ops_domain(struct protection_domain *domain)
2042 {
2043 return domain->flags & PD_DMA_OPS_MASK;
2044 }
2045
2046 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2047 {
2048 u64 pte_root = 0;
2049 u64 flags = 0;
2050
2051 if (domain->mode != PAGE_MODE_NONE)
2052 pte_root = virt_to_phys(domain->pt_root);
2053
2054 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2055 << DEV_ENTRY_MODE_SHIFT;
2056 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2057
2058 flags = amd_iommu_dev_table[devid].data[1];
2059
2060 if (ats)
2061 flags |= DTE_FLAG_IOTLB;
2062
2063 if (domain->flags & PD_IOMMUV2_MASK) {
2064 u64 gcr3 = __pa(domain->gcr3_tbl);
2065 u64 glx = domain->glx;
2066 u64 tmp;
2067
2068 pte_root |= DTE_FLAG_GV;
2069 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2070
2071 /* First mask out possible old values for GCR3 table */
2072 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2073 flags &= ~tmp;
2074
2075 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2076 flags &= ~tmp;
2077
2078 /* Encode GCR3 table into DTE */
2079 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2080 pte_root |= tmp;
2081
2082 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2083 flags |= tmp;
2084
2085 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2086 flags |= tmp;
2087 }
2088
2089
2090 flags &= ~(DTE_FLAG_SA | 0xffffULL);
2091 flags |= domain->id;
2092
2093 amd_iommu_dev_table[devid].data[1] = flags;
2094 amd_iommu_dev_table[devid].data[0] = pte_root;
2095 }
2096
2097 static void clear_dte_entry(u16 devid)
2098 {
2099 /* remove entry from the device table seen by the hardware */
2100 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2101 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2102
2103 amd_iommu_apply_erratum_63(devid);
2104 }
2105
2106 static void do_attach(struct iommu_dev_data *dev_data,
2107 struct protection_domain *domain)
2108 {
2109 struct amd_iommu *iommu;
2110 u16 alias;
2111 bool ats;
2112
2113 iommu = amd_iommu_rlookup_table[dev_data->devid];
2114 alias = dev_data->alias;
2115 ats = dev_data->ats.enabled;
2116
2117 /* Update data structures */
2118 dev_data->domain = domain;
2119 list_add(&dev_data->list, &domain->dev_list);
2120
2121 /* Do reference counting */
2122 domain->dev_iommu[iommu->index] += 1;
2123 domain->dev_cnt += 1;
2124
2125 /* Update device table */
2126 set_dte_entry(dev_data->devid, domain, ats);
2127 if (alias != dev_data->devid)
2128 set_dte_entry(alias, domain, ats);
2129
2130 device_flush_dte(dev_data);
2131 }
2132
2133 static void do_detach(struct iommu_dev_data *dev_data)
2134 {
2135 struct amd_iommu *iommu;
2136 u16 alias;
2137
2138 /*
2139 * First check if the device is still attached. It might already
2140 * be detached from its domain because the generic
2141 * iommu_detach_group code detached it and we try again here in
2142 * our alias handling.
2143 */
2144 if (!dev_data->domain)
2145 return;
2146
2147 iommu = amd_iommu_rlookup_table[dev_data->devid];
2148 alias = dev_data->alias;
2149
2150 /* decrease reference counters */
2151 dev_data->domain->dev_iommu[iommu->index] -= 1;
2152 dev_data->domain->dev_cnt -= 1;
2153
2154 /* Update data structures */
2155 dev_data->domain = NULL;
2156 list_del(&dev_data->list);
2157 clear_dte_entry(dev_data->devid);
2158 if (alias != dev_data->devid)
2159 clear_dte_entry(alias);
2160
2161 /* Flush the DTE entry */
2162 device_flush_dte(dev_data);
2163 }
2164
2165 /*
2166 * If a device is not yet associated with a domain, this function does
2167 * assigns it visible for the hardware
2168 */
2169 static int __attach_device(struct iommu_dev_data *dev_data,
2170 struct protection_domain *domain)
2171 {
2172 int ret;
2173
2174 /*
2175 * Must be called with IRQs disabled. Warn here to detect early
2176 * when its not.
2177 */
2178 WARN_ON(!irqs_disabled());
2179
2180 /* lock domain */
2181 spin_lock(&domain->lock);
2182
2183 ret = -EBUSY;
2184 if (dev_data->domain != NULL)
2185 goto out_unlock;
2186
2187 /* Attach alias group root */
2188 do_attach(dev_data, domain);
2189
2190 ret = 0;
2191
2192 out_unlock:
2193
2194 /* ready */
2195 spin_unlock(&domain->lock);
2196
2197 return ret;
2198 }
2199
2200
2201 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2202 {
2203 pci_disable_ats(pdev);
2204 pci_disable_pri(pdev);
2205 pci_disable_pasid(pdev);
2206 }
2207
2208 /* FIXME: Change generic reset-function to do the same */
2209 static int pri_reset_while_enabled(struct pci_dev *pdev)
2210 {
2211 u16 control;
2212 int pos;
2213
2214 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2215 if (!pos)
2216 return -EINVAL;
2217
2218 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2219 control |= PCI_PRI_CTRL_RESET;
2220 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2221
2222 return 0;
2223 }
2224
2225 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2226 {
2227 bool reset_enable;
2228 int reqs, ret;
2229
2230 /* FIXME: Hardcode number of outstanding requests for now */
2231 reqs = 32;
2232 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2233 reqs = 1;
2234 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2235
2236 /* Only allow access to user-accessible pages */
2237 ret = pci_enable_pasid(pdev, 0);
2238 if (ret)
2239 goto out_err;
2240
2241 /* First reset the PRI state of the device */
2242 ret = pci_reset_pri(pdev);
2243 if (ret)
2244 goto out_err;
2245
2246 /* Enable PRI */
2247 ret = pci_enable_pri(pdev, reqs);
2248 if (ret)
2249 goto out_err;
2250
2251 if (reset_enable) {
2252 ret = pri_reset_while_enabled(pdev);
2253 if (ret)
2254 goto out_err;
2255 }
2256
2257 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2258 if (ret)
2259 goto out_err;
2260
2261 return 0;
2262
2263 out_err:
2264 pci_disable_pri(pdev);
2265 pci_disable_pasid(pdev);
2266
2267 return ret;
2268 }
2269
2270 /* FIXME: Move this to PCI code */
2271 #define PCI_PRI_TLP_OFF (1 << 15)
2272
2273 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2274 {
2275 u16 status;
2276 int pos;
2277
2278 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2279 if (!pos)
2280 return false;
2281
2282 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2283
2284 return (status & PCI_PRI_TLP_OFF) ? true : false;
2285 }
2286
2287 /*
2288 * If a device is not yet associated with a domain, this function
2289 * assigns it visible for the hardware
2290 */
2291 static int attach_device(struct device *dev,
2292 struct protection_domain *domain)
2293 {
2294 struct pci_dev *pdev;
2295 struct iommu_dev_data *dev_data;
2296 unsigned long flags;
2297 int ret;
2298
2299 dev_data = get_dev_data(dev);
2300
2301 if (!dev_is_pci(dev))
2302 goto skip_ats_check;
2303
2304 pdev = to_pci_dev(dev);
2305 if (domain->flags & PD_IOMMUV2_MASK) {
2306 if (!dev_data->passthrough)
2307 return -EINVAL;
2308
2309 if (dev_data->iommu_v2) {
2310 if (pdev_iommuv2_enable(pdev) != 0)
2311 return -EINVAL;
2312
2313 dev_data->ats.enabled = true;
2314 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2315 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2316 }
2317 } else if (amd_iommu_iotlb_sup &&
2318 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2319 dev_data->ats.enabled = true;
2320 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2321 }
2322
2323 skip_ats_check:
2324 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2325 ret = __attach_device(dev_data, domain);
2326 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2327
2328 /*
2329 * We might boot into a crash-kernel here. The crashed kernel
2330 * left the caches in the IOMMU dirty. So we have to flush
2331 * here to evict all dirty stuff.
2332 */
2333 domain_flush_tlb_pde(domain);
2334
2335 return ret;
2336 }
2337
2338 /*
2339 * Removes a device from a protection domain (unlocked)
2340 */
2341 static void __detach_device(struct iommu_dev_data *dev_data)
2342 {
2343 struct protection_domain *domain;
2344
2345 /*
2346 * Must be called with IRQs disabled. Warn here to detect early
2347 * when its not.
2348 */
2349 WARN_ON(!irqs_disabled());
2350
2351 if (WARN_ON(!dev_data->domain))
2352 return;
2353
2354 domain = dev_data->domain;
2355
2356 spin_lock(&domain->lock);
2357
2358 do_detach(dev_data);
2359
2360 spin_unlock(&domain->lock);
2361 }
2362
2363 /*
2364 * Removes a device from a protection domain (with devtable_lock held)
2365 */
2366 static void detach_device(struct device *dev)
2367 {
2368 struct protection_domain *domain;
2369 struct iommu_dev_data *dev_data;
2370 unsigned long flags;
2371
2372 dev_data = get_dev_data(dev);
2373 domain = dev_data->domain;
2374
2375 /* lock device table */
2376 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2377 __detach_device(dev_data);
2378 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2379
2380 if (!dev_is_pci(dev))
2381 return;
2382
2383 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2384 pdev_iommuv2_disable(to_pci_dev(dev));
2385 else if (dev_data->ats.enabled)
2386 pci_disable_ats(to_pci_dev(dev));
2387
2388 dev_data->ats.enabled = false;
2389 }
2390
2391 static int amd_iommu_add_device(struct device *dev)
2392 {
2393 struct iommu_dev_data *dev_data;
2394 struct iommu_domain *domain;
2395 struct amd_iommu *iommu;
2396 int ret, devid;
2397
2398 if (!check_device(dev) || get_dev_data(dev))
2399 return 0;
2400
2401 devid = get_device_id(dev);
2402 if (devid < 0)
2403 return devid;
2404
2405 iommu = amd_iommu_rlookup_table[devid];
2406
2407 ret = iommu_init_device(dev);
2408 if (ret) {
2409 if (ret != -ENOTSUPP)
2410 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2411 dev_name(dev));
2412
2413 iommu_ignore_device(dev);
2414 dev->dma_ops = &nommu_dma_ops;
2415 goto out;
2416 }
2417 init_iommu_group(dev);
2418
2419 dev_data = get_dev_data(dev);
2420
2421 BUG_ON(!dev_data);
2422
2423 if (iommu_pass_through || dev_data->iommu_v2)
2424 iommu_request_dm_for_dev(dev);
2425
2426 /* Domains are initialized for this device - have a look what we ended up with */
2427 domain = iommu_get_domain_for_dev(dev);
2428 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2429 dev_data->passthrough = true;
2430 else
2431 dev->dma_ops = &amd_iommu_dma_ops;
2432
2433 out:
2434 iommu_completion_wait(iommu);
2435
2436 return 0;
2437 }
2438
2439 static void amd_iommu_remove_device(struct device *dev)
2440 {
2441 struct amd_iommu *iommu;
2442 int devid;
2443
2444 if (!check_device(dev))
2445 return;
2446
2447 devid = get_device_id(dev);
2448 if (devid < 0)
2449 return;
2450
2451 iommu = amd_iommu_rlookup_table[devid];
2452
2453 iommu_uninit_device(dev);
2454 iommu_completion_wait(iommu);
2455 }
2456
2457 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2458 {
2459 if (dev_is_pci(dev))
2460 return pci_device_group(dev);
2461
2462 return acpihid_device_group(dev);
2463 }
2464
2465 /*****************************************************************************
2466 *
2467 * The next functions belong to the dma_ops mapping/unmapping code.
2468 *
2469 *****************************************************************************/
2470
2471 /*
2472 * In the dma_ops path we only have the struct device. This function
2473 * finds the corresponding IOMMU, the protection domain and the
2474 * requestor id for a given device.
2475 * If the device is not yet associated with a domain this is also done
2476 * in this function.
2477 */
2478 static struct protection_domain *get_domain(struct device *dev)
2479 {
2480 struct protection_domain *domain;
2481
2482 if (!check_device(dev))
2483 return ERR_PTR(-EINVAL);
2484
2485 domain = get_dev_data(dev)->domain;
2486 if (!dma_ops_domain(domain))
2487 return ERR_PTR(-EBUSY);
2488
2489 return domain;
2490 }
2491
2492 static void update_device_table(struct protection_domain *domain)
2493 {
2494 struct iommu_dev_data *dev_data;
2495
2496 list_for_each_entry(dev_data, &domain->dev_list, list) {
2497 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2498
2499 if (dev_data->devid == dev_data->alias)
2500 continue;
2501
2502 /* There is an alias, update device table entry for it */
2503 set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
2504 }
2505 }
2506
2507 static void update_domain(struct protection_domain *domain)
2508 {
2509 if (!domain->updated)
2510 return;
2511
2512 update_device_table(domain);
2513
2514 domain_flush_devices(domain);
2515 domain_flush_tlb_pde(domain);
2516
2517 domain->updated = false;
2518 }
2519
2520 static int dir2prot(enum dma_data_direction direction)
2521 {
2522 if (direction == DMA_TO_DEVICE)
2523 return IOMMU_PROT_IR;
2524 else if (direction == DMA_FROM_DEVICE)
2525 return IOMMU_PROT_IW;
2526 else if (direction == DMA_BIDIRECTIONAL)
2527 return IOMMU_PROT_IW | IOMMU_PROT_IR;
2528 else
2529 return 0;
2530 }
2531 /*
2532 * This function contains common code for mapping of a physically
2533 * contiguous memory region into DMA address space. It is used by all
2534 * mapping functions provided with this IOMMU driver.
2535 * Must be called with the domain lock held.
2536 */
2537 static dma_addr_t __map_single(struct device *dev,
2538 struct dma_ops_domain *dma_dom,
2539 phys_addr_t paddr,
2540 size_t size,
2541 enum dma_data_direction direction,
2542 u64 dma_mask)
2543 {
2544 dma_addr_t offset = paddr & ~PAGE_MASK;
2545 dma_addr_t address, start, ret;
2546 unsigned int pages;
2547 int prot = 0;
2548 int i;
2549
2550 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2551 paddr &= PAGE_MASK;
2552
2553 address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2554 if (address == AMD_IOMMU_MAPPING_ERROR)
2555 goto out;
2556
2557 prot = dir2prot(direction);
2558
2559 start = address;
2560 for (i = 0; i < pages; ++i) {
2561 ret = iommu_map_page(&dma_dom->domain, start, paddr,
2562 PAGE_SIZE, prot, GFP_ATOMIC);
2563 if (ret)
2564 goto out_unmap;
2565
2566 paddr += PAGE_SIZE;
2567 start += PAGE_SIZE;
2568 }
2569 address += offset;
2570
2571 if (unlikely(amd_iommu_np_cache)) {
2572 domain_flush_pages(&dma_dom->domain, address, size);
2573 domain_flush_complete(&dma_dom->domain);
2574 }
2575
2576 out:
2577 return address;
2578
2579 out_unmap:
2580
2581 for (--i; i >= 0; --i) {
2582 start -= PAGE_SIZE;
2583 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2584 }
2585
2586 domain_flush_tlb(&dma_dom->domain);
2587 domain_flush_complete(&dma_dom->domain);
2588
2589 dma_ops_free_iova(dma_dom, address, pages);
2590
2591 return AMD_IOMMU_MAPPING_ERROR;
2592 }
2593
2594 /*
2595 * Does the reverse of the __map_single function. Must be called with
2596 * the domain lock held too
2597 */
2598 static void __unmap_single(struct dma_ops_domain *dma_dom,
2599 dma_addr_t dma_addr,
2600 size_t size,
2601 int dir)
2602 {
2603 dma_addr_t flush_addr;
2604 dma_addr_t i, start;
2605 unsigned int pages;
2606
2607 flush_addr = dma_addr;
2608 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2609 dma_addr &= PAGE_MASK;
2610 start = dma_addr;
2611
2612 for (i = 0; i < pages; ++i) {
2613 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2614 start += PAGE_SIZE;
2615 }
2616
2617 if (amd_iommu_unmap_flush) {
2618 dma_ops_free_iova(dma_dom, dma_addr, pages);
2619 domain_flush_tlb(&dma_dom->domain);
2620 domain_flush_complete(&dma_dom->domain);
2621 } else {
2622 queue_add(dma_dom, dma_addr, pages);
2623 }
2624 }
2625
2626 /*
2627 * The exported map_single function for dma_ops.
2628 */
2629 static dma_addr_t map_page(struct device *dev, struct page *page,
2630 unsigned long offset, size_t size,
2631 enum dma_data_direction dir,
2632 unsigned long attrs)
2633 {
2634 phys_addr_t paddr = page_to_phys(page) + offset;
2635 struct protection_domain *domain;
2636 struct dma_ops_domain *dma_dom;
2637 u64 dma_mask;
2638
2639 domain = get_domain(dev);
2640 if (PTR_ERR(domain) == -EINVAL)
2641 return (dma_addr_t)paddr;
2642 else if (IS_ERR(domain))
2643 return AMD_IOMMU_MAPPING_ERROR;
2644
2645 dma_mask = *dev->dma_mask;
2646 dma_dom = to_dma_ops_domain(domain);
2647
2648 return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2649 }
2650
2651 /*
2652 * The exported unmap_single function for dma_ops.
2653 */
2654 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2655 enum dma_data_direction dir, unsigned long attrs)
2656 {
2657 struct protection_domain *domain;
2658 struct dma_ops_domain *dma_dom;
2659
2660 domain = get_domain(dev);
2661 if (IS_ERR(domain))
2662 return;
2663
2664 dma_dom = to_dma_ops_domain(domain);
2665
2666 __unmap_single(dma_dom, dma_addr, size, dir);
2667 }
2668
2669 static int sg_num_pages(struct device *dev,
2670 struct scatterlist *sglist,
2671 int nelems)
2672 {
2673 unsigned long mask, boundary_size;
2674 struct scatterlist *s;
2675 int i, npages = 0;
2676
2677 mask = dma_get_seg_boundary(dev);
2678 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2679 1UL << (BITS_PER_LONG - PAGE_SHIFT);
2680
2681 for_each_sg(sglist, s, nelems, i) {
2682 int p, n;
2683
2684 s->dma_address = npages << PAGE_SHIFT;
2685 p = npages % boundary_size;
2686 n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2687 if (p + n > boundary_size)
2688 npages += boundary_size - p;
2689 npages += n;
2690 }
2691
2692 return npages;
2693 }
2694
2695 /*
2696 * The exported map_sg function for dma_ops (handles scatter-gather
2697 * lists).
2698 */
2699 static int map_sg(struct device *dev, struct scatterlist *sglist,
2700 int nelems, enum dma_data_direction direction,
2701 unsigned long attrs)
2702 {
2703 int mapped_pages = 0, npages = 0, prot = 0, i;
2704 struct protection_domain *domain;
2705 struct dma_ops_domain *dma_dom;
2706 struct scatterlist *s;
2707 unsigned long address;
2708 u64 dma_mask;
2709
2710 domain = get_domain(dev);
2711 if (IS_ERR(domain))
2712 return 0;
2713
2714 dma_dom = to_dma_ops_domain(domain);
2715 dma_mask = *dev->dma_mask;
2716
2717 npages = sg_num_pages(dev, sglist, nelems);
2718
2719 address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2720 if (address == AMD_IOMMU_MAPPING_ERROR)
2721 goto out_err;
2722
2723 prot = dir2prot(direction);
2724
2725 /* Map all sg entries */
2726 for_each_sg(sglist, s, nelems, i) {
2727 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2728
2729 for (j = 0; j < pages; ++j) {
2730 unsigned long bus_addr, phys_addr;
2731 int ret;
2732
2733 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2734 phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2735 ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
2736 if (ret)
2737 goto out_unmap;
2738
2739 mapped_pages += 1;
2740 }
2741 }
2742
2743 /* Everything is mapped - write the right values into s->dma_address */
2744 for_each_sg(sglist, s, nelems, i) {
2745 s->dma_address += address + s->offset;
2746 s->dma_length = s->length;
2747 }
2748
2749 return nelems;
2750
2751 out_unmap:
2752 pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2753 dev_name(dev), npages);
2754
2755 for_each_sg(sglist, s, nelems, i) {
2756 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2757
2758 for (j = 0; j < pages; ++j) {
2759 unsigned long bus_addr;
2760
2761 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2762 iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2763
2764 if (--mapped_pages)
2765 goto out_free_iova;
2766 }
2767 }
2768
2769 out_free_iova:
2770 free_iova_fast(&dma_dom->iovad, address, npages);
2771
2772 out_err:
2773 return 0;
2774 }
2775
2776 /*
2777 * The exported map_sg function for dma_ops (handles scatter-gather
2778 * lists).
2779 */
2780 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2781 int nelems, enum dma_data_direction dir,
2782 unsigned long attrs)
2783 {
2784 struct protection_domain *domain;
2785 struct dma_ops_domain *dma_dom;
2786 unsigned long startaddr;
2787 int npages = 2;
2788
2789 domain = get_domain(dev);
2790 if (IS_ERR(domain))
2791 return;
2792
2793 startaddr = sg_dma_address(sglist) & PAGE_MASK;
2794 dma_dom = to_dma_ops_domain(domain);
2795 npages = sg_num_pages(dev, sglist, nelems);
2796
2797 __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2798 }
2799
2800 /*
2801 * The exported alloc_coherent function for dma_ops.
2802 */
2803 static void *alloc_coherent(struct device *dev, size_t size,
2804 dma_addr_t *dma_addr, gfp_t flag,
2805 unsigned long attrs)
2806 {
2807 u64 dma_mask = dev->coherent_dma_mask;
2808 struct protection_domain *domain;
2809 struct dma_ops_domain *dma_dom;
2810 struct page *page;
2811
2812 domain = get_domain(dev);
2813 if (PTR_ERR(domain) == -EINVAL) {
2814 page = alloc_pages(flag, get_order(size));
2815 *dma_addr = page_to_phys(page);
2816 return page_address(page);
2817 } else if (IS_ERR(domain))
2818 return NULL;
2819
2820 dma_dom = to_dma_ops_domain(domain);
2821 size = PAGE_ALIGN(size);
2822 dma_mask = dev->coherent_dma_mask;
2823 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2824 flag |= __GFP_ZERO;
2825
2826 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2827 if (!page) {
2828 if (!gfpflags_allow_blocking(flag))
2829 return NULL;
2830
2831 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2832 get_order(size), flag);
2833 if (!page)
2834 return NULL;
2835 }
2836
2837 if (!dma_mask)
2838 dma_mask = *dev->dma_mask;
2839
2840 *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2841 size, DMA_BIDIRECTIONAL, dma_mask);
2842
2843 if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2844 goto out_free;
2845
2846 return page_address(page);
2847
2848 out_free:
2849
2850 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2851 __free_pages(page, get_order(size));
2852
2853 return NULL;
2854 }
2855
2856 /*
2857 * The exported free_coherent function for dma_ops.
2858 */
2859 static void free_coherent(struct device *dev, size_t size,
2860 void *virt_addr, dma_addr_t dma_addr,
2861 unsigned long attrs)
2862 {
2863 struct protection_domain *domain;
2864 struct dma_ops_domain *dma_dom;
2865 struct page *page;
2866
2867 page = virt_to_page(virt_addr);
2868 size = PAGE_ALIGN(size);
2869
2870 domain = get_domain(dev);
2871 if (IS_ERR(domain))
2872 goto free_mem;
2873
2874 dma_dom = to_dma_ops_domain(domain);
2875
2876 __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2877
2878 free_mem:
2879 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2880 __free_pages(page, get_order(size));
2881 }
2882
2883 /*
2884 * This function is called by the DMA layer to find out if we can handle a
2885 * particular device. It is part of the dma_ops.
2886 */
2887 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2888 {
2889 if (!x86_dma_supported(dev, mask))
2890 return 0;
2891 return check_device(dev);
2892 }
2893
2894 static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
2895 {
2896 return dma_addr == AMD_IOMMU_MAPPING_ERROR;
2897 }
2898
2899 static const struct dma_map_ops amd_iommu_dma_ops = {
2900 .alloc = alloc_coherent,
2901 .free = free_coherent,
2902 .map_page = map_page,
2903 .unmap_page = unmap_page,
2904 .map_sg = map_sg,
2905 .unmap_sg = unmap_sg,
2906 .dma_supported = amd_iommu_dma_supported,
2907 .mapping_error = amd_iommu_mapping_error,
2908 };
2909
2910 static int init_reserved_iova_ranges(void)
2911 {
2912 struct pci_dev *pdev = NULL;
2913 struct iova *val;
2914
2915 init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
2916 IOVA_START_PFN, DMA_32BIT_PFN);
2917
2918 lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2919 &reserved_rbtree_key);
2920
2921 /* MSI memory range */
2922 val = reserve_iova(&reserved_iova_ranges,
2923 IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2924 if (!val) {
2925 pr_err("Reserving MSI range failed\n");
2926 return -ENOMEM;
2927 }
2928
2929 /* HT memory range */
2930 val = reserve_iova(&reserved_iova_ranges,
2931 IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2932 if (!val) {
2933 pr_err("Reserving HT range failed\n");
2934 return -ENOMEM;
2935 }
2936
2937 /*
2938 * Memory used for PCI resources
2939 * FIXME: Check whether we can reserve the PCI-hole completly
2940 */
2941 for_each_pci_dev(pdev) {
2942 int i;
2943
2944 for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2945 struct resource *r = &pdev->resource[i];
2946
2947 if (!(r->flags & IORESOURCE_MEM))
2948 continue;
2949
2950 val = reserve_iova(&reserved_iova_ranges,
2951 IOVA_PFN(r->start),
2952 IOVA_PFN(r->end));
2953 if (!val) {
2954 pr_err("Reserve pci-resource range failed\n");
2955 return -ENOMEM;
2956 }
2957 }
2958 }
2959
2960 return 0;
2961 }
2962
2963 int __init amd_iommu_init_api(void)
2964 {
2965 int ret, err = 0;
2966
2967 ret = iova_cache_get();
2968 if (ret)
2969 return ret;
2970
2971 ret = init_reserved_iova_ranges();
2972 if (ret)
2973 return ret;
2974
2975 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2976 if (err)
2977 return err;
2978 #ifdef CONFIG_ARM_AMBA
2979 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2980 if (err)
2981 return err;
2982 #endif
2983 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2984 if (err)
2985 return err;
2986
2987 return 0;
2988 }
2989
2990 int __init amd_iommu_init_dma_ops(void)
2991 {
2992 swiotlb = iommu_pass_through ? 1 : 0;
2993 iommu_detected = 1;
2994
2995 /*
2996 * In case we don't initialize SWIOTLB (actually the common case
2997 * when AMD IOMMU is enabled), make sure there are global
2998 * dma_ops set as a fall-back for devices not handled by this
2999 * driver (for example non-PCI devices).
3000 */
3001 if (!swiotlb)
3002 dma_ops = &nommu_dma_ops;
3003
3004 if (amd_iommu_unmap_flush)
3005 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3006 else
3007 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3008
3009 return 0;
3010
3011 }
3012
3013 /*****************************************************************************
3014 *
3015 * The following functions belong to the exported interface of AMD IOMMU
3016 *
3017 * This interface allows access to lower level functions of the IOMMU
3018 * like protection domain handling and assignement of devices to domains
3019 * which is not possible with the dma_ops interface.
3020 *
3021 *****************************************************************************/
3022
3023 static void cleanup_domain(struct protection_domain *domain)
3024 {
3025 struct iommu_dev_data *entry;
3026 unsigned long flags;
3027
3028 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3029
3030 while (!list_empty(&domain->dev_list)) {
3031 entry = list_first_entry(&domain->dev_list,
3032 struct iommu_dev_data, list);
3033 __detach_device(entry);
3034 }
3035
3036 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3037 }
3038
3039 static void protection_domain_free(struct protection_domain *domain)
3040 {
3041 if (!domain)
3042 return;
3043
3044 del_domain_from_list(domain);
3045
3046 if (domain->id)
3047 domain_id_free(domain->id);
3048
3049 kfree(domain);
3050 }
3051
3052 static int protection_domain_init(struct protection_domain *domain)
3053 {
3054 spin_lock_init(&domain->lock);
3055 mutex_init(&domain->api_lock);
3056 domain->id = domain_id_alloc();
3057 if (!domain->id)
3058 return -ENOMEM;
3059 INIT_LIST_HEAD(&domain->dev_list);
3060
3061 return 0;
3062 }
3063
3064 static struct protection_domain *protection_domain_alloc(void)
3065 {
3066 struct protection_domain *domain;
3067
3068 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3069 if (!domain)
3070 return NULL;
3071
3072 if (protection_domain_init(domain))
3073 goto out_err;
3074
3075 add_domain_to_list(domain);
3076
3077 return domain;
3078
3079 out_err:
3080 kfree(domain);
3081
3082 return NULL;
3083 }
3084
3085 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3086 {
3087 struct protection_domain *pdomain;
3088 struct dma_ops_domain *dma_domain;
3089
3090 switch (type) {
3091 case IOMMU_DOMAIN_UNMANAGED:
3092 pdomain = protection_domain_alloc();
3093 if (!pdomain)
3094 return NULL;
3095
3096 pdomain->mode = PAGE_MODE_3_LEVEL;
3097 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3098 if (!pdomain->pt_root) {
3099 protection_domain_free(pdomain);
3100 return NULL;
3101 }
3102
3103 pdomain->domain.geometry.aperture_start = 0;
3104 pdomain->domain.geometry.aperture_end = ~0ULL;
3105 pdomain->domain.geometry.force_aperture = true;
3106
3107 break;
3108 case IOMMU_DOMAIN_DMA:
3109 dma_domain = dma_ops_domain_alloc();
3110 if (!dma_domain) {
3111 pr_err("AMD-Vi: Failed to allocate\n");
3112 return NULL;
3113 }
3114 pdomain = &dma_domain->domain;
3115 break;
3116 case IOMMU_DOMAIN_IDENTITY:
3117 pdomain = protection_domain_alloc();
3118 if (!pdomain)
3119 return NULL;
3120
3121 pdomain->mode = PAGE_MODE_NONE;
3122 break;
3123 default:
3124 return NULL;
3125 }
3126
3127 return &pdomain->domain;
3128 }
3129
3130 static void amd_iommu_domain_free(struct iommu_domain *dom)
3131 {
3132 struct protection_domain *domain;
3133 struct dma_ops_domain *dma_dom;
3134
3135 domain = to_pdomain(dom);
3136
3137 if (domain->dev_cnt > 0)
3138 cleanup_domain(domain);
3139
3140 BUG_ON(domain->dev_cnt != 0);
3141
3142 if (!dom)
3143 return;
3144
3145 switch (dom->type) {
3146 case IOMMU_DOMAIN_DMA:
3147 /* Now release the domain */
3148 dma_dom = to_dma_ops_domain(domain);
3149 dma_ops_domain_free(dma_dom);
3150 break;
3151 default:
3152 if (domain->mode != PAGE_MODE_NONE)
3153 free_pagetable(domain);
3154
3155 if (domain->flags & PD_IOMMUV2_MASK)
3156 free_gcr3_table(domain);
3157
3158 protection_domain_free(domain);
3159 break;
3160 }
3161 }
3162
3163 static void amd_iommu_detach_device(struct iommu_domain *dom,
3164 struct device *dev)
3165 {
3166 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3167 struct amd_iommu *iommu;
3168 int devid;
3169
3170 if (!check_device(dev))
3171 return;
3172
3173 devid = get_device_id(dev);
3174 if (devid < 0)
3175 return;
3176
3177 if (dev_data->domain != NULL)
3178 detach_device(dev);
3179
3180 iommu = amd_iommu_rlookup_table[devid];
3181 if (!iommu)
3182 return;
3183
3184 #ifdef CONFIG_IRQ_REMAP
3185 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
3186 (dom->type == IOMMU_DOMAIN_UNMANAGED))
3187 dev_data->use_vapic = 0;
3188 #endif
3189
3190 iommu_completion_wait(iommu);
3191 }
3192
3193 static int amd_iommu_attach_device(struct iommu_domain *dom,
3194 struct device *dev)
3195 {
3196 struct protection_domain *domain = to_pdomain(dom);
3197 struct iommu_dev_data *dev_data;
3198 struct amd_iommu *iommu;
3199 int ret;
3200
3201 if (!check_device(dev))
3202 return -EINVAL;
3203
3204 dev_data = dev->archdata.iommu;
3205
3206 iommu = amd_iommu_rlookup_table[dev_data->devid];
3207 if (!iommu)
3208 return -EINVAL;
3209
3210 if (dev_data->domain)
3211 detach_device(dev);
3212
3213 ret = attach_device(dev, domain);
3214
3215 #ifdef CONFIG_IRQ_REMAP
3216 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3217 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3218 dev_data->use_vapic = 1;
3219 else
3220 dev_data->use_vapic = 0;
3221 }
3222 #endif
3223
3224 iommu_completion_wait(iommu);
3225
3226 return ret;
3227 }
3228
3229 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3230 phys_addr_t paddr, size_t page_size, int iommu_prot)
3231 {
3232 struct protection_domain *domain = to_pdomain(dom);
3233 int prot = 0;
3234 int ret;
3235
3236 if (domain->mode == PAGE_MODE_NONE)
3237 return -EINVAL;
3238
3239 if (iommu_prot & IOMMU_READ)
3240 prot |= IOMMU_PROT_IR;
3241 if (iommu_prot & IOMMU_WRITE)
3242 prot |= IOMMU_PROT_IW;
3243
3244 mutex_lock(&domain->api_lock);
3245 ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3246 mutex_unlock(&domain->api_lock);
3247
3248 return ret;
3249 }
3250
3251 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3252 size_t page_size)
3253 {
3254 struct protection_domain *domain = to_pdomain(dom);
3255 size_t unmap_size;
3256
3257 if (domain->mode == PAGE_MODE_NONE)
3258 return -EINVAL;
3259
3260 mutex_lock(&domain->api_lock);
3261 unmap_size = iommu_unmap_page(domain, iova, page_size);
3262 mutex_unlock(&domain->api_lock);
3263
3264 domain_flush_tlb_pde(domain);
3265
3266 return unmap_size;
3267 }
3268
3269 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3270 dma_addr_t iova)
3271 {
3272 struct protection_domain *domain = to_pdomain(dom);
3273 unsigned long offset_mask, pte_pgsize;
3274 u64 *pte, __pte;
3275
3276 if (domain->mode == PAGE_MODE_NONE)
3277 return iova;
3278
3279 pte = fetch_pte(domain, iova, &pte_pgsize);
3280
3281 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3282 return 0;
3283
3284 offset_mask = pte_pgsize - 1;
3285 __pte = *pte & PM_ADDR_MASK;
3286
3287 return (__pte & ~offset_mask) | (iova & offset_mask);
3288 }
3289
3290 static bool amd_iommu_capable(enum iommu_cap cap)
3291 {
3292 switch (cap) {
3293 case IOMMU_CAP_CACHE_COHERENCY:
3294 return true;
3295 case IOMMU_CAP_INTR_REMAP:
3296 return (irq_remapping_enabled == 1);
3297 case IOMMU_CAP_NOEXEC:
3298 return false;
3299 }
3300
3301 return false;
3302 }
3303
3304 static void amd_iommu_get_resv_regions(struct device *dev,
3305 struct list_head *head)
3306 {
3307 struct iommu_resv_region *region;
3308 struct unity_map_entry *entry;
3309 int devid;
3310
3311 devid = get_device_id(dev);
3312 if (devid < 0)
3313 return;
3314
3315 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3316 size_t length;
3317 int prot = 0;
3318
3319 if (devid < entry->devid_start || devid > entry->devid_end)
3320 continue;
3321
3322 length = entry->address_end - entry->address_start;
3323 if (entry->prot & IOMMU_PROT_IR)
3324 prot |= IOMMU_READ;
3325 if (entry->prot & IOMMU_PROT_IW)
3326 prot |= IOMMU_WRITE;
3327
3328 region = iommu_alloc_resv_region(entry->address_start,
3329 length, prot,
3330 IOMMU_RESV_DIRECT);
3331 if (!region) {
3332 pr_err("Out of memory allocating dm-regions for %s\n",
3333 dev_name(dev));
3334 return;
3335 }
3336 list_add_tail(&region->list, head);
3337 }
3338
3339 region = iommu_alloc_resv_region(MSI_RANGE_START,
3340 MSI_RANGE_END - MSI_RANGE_START + 1,
3341 0, IOMMU_RESV_MSI);
3342 if (!region)
3343 return;
3344 list_add_tail(&region->list, head);
3345
3346 region = iommu_alloc_resv_region(HT_RANGE_START,
3347 HT_RANGE_END - HT_RANGE_START + 1,
3348 0, IOMMU_RESV_RESERVED);
3349 if (!region)
3350 return;
3351 list_add_tail(&region->list, head);
3352 }
3353
3354 static void amd_iommu_put_resv_regions(struct device *dev,
3355 struct list_head *head)
3356 {
3357 struct iommu_resv_region *entry, *next;
3358
3359 list_for_each_entry_safe(entry, next, head, list)
3360 kfree(entry);
3361 }
3362
3363 static void amd_iommu_apply_resv_region(struct device *dev,
3364 struct iommu_domain *domain,
3365 struct iommu_resv_region *region)
3366 {
3367 struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3368 unsigned long start, end;
3369
3370 start = IOVA_PFN(region->start);
3371 end = IOVA_PFN(region->start + region->length);
3372
3373 WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3374 }
3375
3376 const struct iommu_ops amd_iommu_ops = {
3377 .capable = amd_iommu_capable,
3378 .domain_alloc = amd_iommu_domain_alloc,
3379 .domain_free = amd_iommu_domain_free,
3380 .attach_dev = amd_iommu_attach_device,
3381 .detach_dev = amd_iommu_detach_device,
3382 .map = amd_iommu_map,
3383 .unmap = amd_iommu_unmap,
3384 .map_sg = default_iommu_map_sg,
3385 .iova_to_phys = amd_iommu_iova_to_phys,
3386 .add_device = amd_iommu_add_device,
3387 .remove_device = amd_iommu_remove_device,
3388 .device_group = amd_iommu_device_group,
3389 .get_resv_regions = amd_iommu_get_resv_regions,
3390 .put_resv_regions = amd_iommu_put_resv_regions,
3391 .apply_resv_region = amd_iommu_apply_resv_region,
3392 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3393 };
3394
3395 /*****************************************************************************
3396 *
3397 * The next functions do a basic initialization of IOMMU for pass through
3398 * mode
3399 *
3400 * In passthrough mode the IOMMU is initialized and enabled but not used for
3401 * DMA-API translation.
3402 *
3403 *****************************************************************************/
3404
3405 /* IOMMUv2 specific functions */
3406 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3407 {
3408 return atomic_notifier_chain_register(&ppr_notifier, nb);
3409 }
3410 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3411
3412 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3413 {
3414 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3415 }
3416 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3417
3418 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3419 {
3420 struct protection_domain *domain = to_pdomain(dom);
3421 unsigned long flags;
3422
3423 spin_lock_irqsave(&domain->lock, flags);
3424
3425 /* Update data structure */
3426 domain->mode = PAGE_MODE_NONE;
3427 domain->updated = true;
3428
3429 /* Make changes visible to IOMMUs */
3430 update_domain(domain);
3431
3432 /* Page-table is not visible to IOMMU anymore, so free it */
3433 free_pagetable(domain);
3434
3435 spin_unlock_irqrestore(&domain->lock, flags);
3436 }
3437 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3438
3439 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3440 {
3441 struct protection_domain *domain = to_pdomain(dom);
3442 unsigned long flags;
3443 int levels, ret;
3444
3445 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3446 return -EINVAL;
3447
3448 /* Number of GCR3 table levels required */
3449 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3450 levels += 1;
3451
3452 if (levels > amd_iommu_max_glx_val)
3453 return -EINVAL;
3454
3455 spin_lock_irqsave(&domain->lock, flags);
3456
3457 /*
3458 * Save us all sanity checks whether devices already in the
3459 * domain support IOMMUv2. Just force that the domain has no
3460 * devices attached when it is switched into IOMMUv2 mode.
3461 */
3462 ret = -EBUSY;
3463 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3464 goto out;
3465
3466 ret = -ENOMEM;
3467 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3468 if (domain->gcr3_tbl == NULL)
3469 goto out;
3470
3471 domain->glx = levels;
3472 domain->flags |= PD_IOMMUV2_MASK;
3473 domain->updated = true;
3474
3475 update_domain(domain);
3476
3477 ret = 0;
3478
3479 out:
3480 spin_unlock_irqrestore(&domain->lock, flags);
3481
3482 return ret;
3483 }
3484 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3485
3486 static int __flush_pasid(struct protection_domain *domain, int pasid,
3487 u64 address, bool size)
3488 {
3489 struct iommu_dev_data *dev_data;
3490 struct iommu_cmd cmd;
3491 int i, ret;
3492
3493 if (!(domain->flags & PD_IOMMUV2_MASK))
3494 return -EINVAL;
3495
3496 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3497
3498 /*
3499 * IOMMU TLB needs to be flushed before Device TLB to
3500 * prevent device TLB refill from IOMMU TLB
3501 */
3502 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3503 if (domain->dev_iommu[i] == 0)
3504 continue;
3505
3506 ret = iommu_queue_command(amd_iommus[i], &cmd);
3507 if (ret != 0)
3508 goto out;
3509 }
3510
3511 /* Wait until IOMMU TLB flushes are complete */
3512 domain_flush_complete(domain);
3513
3514 /* Now flush device TLBs */
3515 list_for_each_entry(dev_data, &domain->dev_list, list) {
3516 struct amd_iommu *iommu;
3517 int qdep;
3518
3519 /*
3520 There might be non-IOMMUv2 capable devices in an IOMMUv2
3521 * domain.
3522 */
3523 if (!dev_data->ats.enabled)
3524 continue;
3525
3526 qdep = dev_data->ats.qdep;
3527 iommu = amd_iommu_rlookup_table[dev_data->devid];
3528
3529 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3530 qdep, address, size);
3531
3532 ret = iommu_queue_command(iommu, &cmd);
3533 if (ret != 0)
3534 goto out;
3535 }
3536
3537 /* Wait until all device TLBs are flushed */
3538 domain_flush_complete(domain);
3539
3540 ret = 0;
3541
3542 out:
3543
3544 return ret;
3545 }
3546
3547 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3548 u64 address)
3549 {
3550 return __flush_pasid(domain, pasid, address, false);
3551 }
3552
3553 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3554 u64 address)
3555 {
3556 struct protection_domain *domain = to_pdomain(dom);
3557 unsigned long flags;
3558 int ret;
3559
3560 spin_lock_irqsave(&domain->lock, flags);
3561 ret = __amd_iommu_flush_page(domain, pasid, address);
3562 spin_unlock_irqrestore(&domain->lock, flags);
3563
3564 return ret;
3565 }
3566 EXPORT_SYMBOL(amd_iommu_flush_page);
3567
3568 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3569 {
3570 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3571 true);
3572 }
3573
3574 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3575 {
3576 struct protection_domain *domain = to_pdomain(dom);
3577 unsigned long flags;
3578 int ret;
3579
3580 spin_lock_irqsave(&domain->lock, flags);
3581 ret = __amd_iommu_flush_tlb(domain, pasid);
3582 spin_unlock_irqrestore(&domain->lock, flags);
3583
3584 return ret;
3585 }
3586 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3587
3588 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3589 {
3590 int index;
3591 u64 *pte;
3592
3593 while (true) {
3594
3595 index = (pasid >> (9 * level)) & 0x1ff;
3596 pte = &root[index];
3597
3598 if (level == 0)
3599 break;
3600
3601 if (!(*pte & GCR3_VALID)) {
3602 if (!alloc)
3603 return NULL;
3604
3605 root = (void *)get_zeroed_page(GFP_ATOMIC);
3606 if (root == NULL)
3607 return NULL;
3608
3609 *pte = __pa(root) | GCR3_VALID;
3610 }
3611
3612 root = __va(*pte & PAGE_MASK);
3613
3614 level -= 1;
3615 }
3616
3617 return pte;
3618 }
3619
3620 static int __set_gcr3(struct protection_domain *domain, int pasid,
3621 unsigned long cr3)
3622 {
3623 u64 *pte;
3624
3625 if (domain->mode != PAGE_MODE_NONE)
3626 return -EINVAL;
3627
3628 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3629 if (pte == NULL)
3630 return -ENOMEM;
3631
3632 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3633
3634 return __amd_iommu_flush_tlb(domain, pasid);
3635 }
3636
3637 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3638 {
3639 u64 *pte;
3640
3641 if (domain->mode != PAGE_MODE_NONE)
3642 return -EINVAL;
3643
3644 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3645 if (pte == NULL)
3646 return 0;
3647
3648 *pte = 0;
3649
3650 return __amd_iommu_flush_tlb(domain, pasid);
3651 }
3652
3653 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3654 unsigned long cr3)
3655 {
3656 struct protection_domain *domain = to_pdomain(dom);
3657 unsigned long flags;
3658 int ret;
3659
3660 spin_lock_irqsave(&domain->lock, flags);
3661 ret = __set_gcr3(domain, pasid, cr3);
3662 spin_unlock_irqrestore(&domain->lock, flags);
3663
3664 return ret;
3665 }
3666 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3667
3668 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3669 {
3670 struct protection_domain *domain = to_pdomain(dom);
3671 unsigned long flags;
3672 int ret;
3673
3674 spin_lock_irqsave(&domain->lock, flags);
3675 ret = __clear_gcr3(domain, pasid);
3676 spin_unlock_irqrestore(&domain->lock, flags);
3677
3678 return ret;
3679 }
3680 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3681
3682 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3683 int status, int tag)
3684 {
3685 struct iommu_dev_data *dev_data;
3686 struct amd_iommu *iommu;
3687 struct iommu_cmd cmd;
3688
3689 dev_data = get_dev_data(&pdev->dev);
3690 iommu = amd_iommu_rlookup_table[dev_data->devid];
3691
3692 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3693 tag, dev_data->pri_tlp);
3694
3695 return iommu_queue_command(iommu, &cmd);
3696 }
3697 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3698
3699 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3700 {
3701 struct protection_domain *pdomain;
3702
3703 pdomain = get_domain(&pdev->dev);
3704 if (IS_ERR(pdomain))
3705 return NULL;
3706
3707 /* Only return IOMMUv2 domains */
3708 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3709 return NULL;
3710
3711 return &pdomain->domain;
3712 }
3713 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3714
3715 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3716 {
3717 struct iommu_dev_data *dev_data;
3718
3719 if (!amd_iommu_v2_supported())
3720 return;
3721
3722 dev_data = get_dev_data(&pdev->dev);
3723 dev_data->errata |= (1 << erratum);
3724 }
3725 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3726
3727 int amd_iommu_device_info(struct pci_dev *pdev,
3728 struct amd_iommu_device_info *info)
3729 {
3730 int max_pasids;
3731 int pos;
3732
3733 if (pdev == NULL || info == NULL)
3734 return -EINVAL;
3735
3736 if (!amd_iommu_v2_supported())
3737 return -EINVAL;
3738
3739 memset(info, 0, sizeof(*info));
3740
3741 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3742 if (pos)
3743 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3744
3745 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3746 if (pos)
3747 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3748
3749 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3750 if (pos) {
3751 int features;
3752
3753 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3754 max_pasids = min(max_pasids, (1 << 20));
3755
3756 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3757 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3758
3759 features = pci_pasid_features(pdev);
3760 if (features & PCI_PASID_CAP_EXEC)
3761 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3762 if (features & PCI_PASID_CAP_PRIV)
3763 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3764 }
3765
3766 return 0;
3767 }
3768 EXPORT_SYMBOL(amd_iommu_device_info);
3769
3770 #ifdef CONFIG_IRQ_REMAP
3771
3772 /*****************************************************************************
3773 *
3774 * Interrupt Remapping Implementation
3775 *
3776 *****************************************************************************/
3777
3778 static struct irq_chip amd_ir_chip;
3779
3780 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3781 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3782 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3783 #define DTE_IRQ_REMAP_ENABLE 1ULL
3784
3785 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3786 {
3787 u64 dte;
3788
3789 dte = amd_iommu_dev_table[devid].data[2];
3790 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3791 dte |= virt_to_phys(table->table);
3792 dte |= DTE_IRQ_REMAP_INTCTL;
3793 dte |= DTE_IRQ_TABLE_LEN;
3794 dte |= DTE_IRQ_REMAP_ENABLE;
3795
3796 amd_iommu_dev_table[devid].data[2] = dte;
3797 }
3798
3799 static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3800 {
3801 struct irq_remap_table *table = NULL;
3802 struct amd_iommu *iommu;
3803 unsigned long flags;
3804 u16 alias;
3805
3806 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3807
3808 iommu = amd_iommu_rlookup_table[devid];
3809 if (!iommu)
3810 goto out_unlock;
3811
3812 table = irq_lookup_table[devid];
3813 if (table)
3814 goto out_unlock;
3815
3816 alias = amd_iommu_alias_table[devid];
3817 table = irq_lookup_table[alias];
3818 if (table) {
3819 irq_lookup_table[devid] = table;
3820 set_dte_irq_entry(devid, table);
3821 iommu_flush_dte(iommu, devid);
3822 goto out;
3823 }
3824
3825 /* Nothing there yet, allocate new irq remapping table */
3826 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3827 if (!table)
3828 goto out_unlock;
3829
3830 /* Initialize table spin-lock */
3831 spin_lock_init(&table->lock);
3832
3833 if (ioapic)
3834 /* Keep the first 32 indexes free for IOAPIC interrupts */
3835 table->min_index = 32;
3836
3837 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3838 if (!table->table) {
3839 kfree(table);
3840 table = NULL;
3841 goto out_unlock;
3842 }
3843
3844 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3845 memset(table->table, 0,
3846 MAX_IRQS_PER_TABLE * sizeof(u32));
3847 else
3848 memset(table->table, 0,
3849 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3850
3851 if (ioapic) {
3852 int i;
3853
3854 for (i = 0; i < 32; ++i)
3855 iommu->irte_ops->set_allocated(table, i);
3856 }
3857
3858 irq_lookup_table[devid] = table;
3859 set_dte_irq_entry(devid, table);
3860 iommu_flush_dte(iommu, devid);
3861 if (devid != alias) {
3862 irq_lookup_table[alias] = table;
3863 set_dte_irq_entry(alias, table);
3864 iommu_flush_dte(iommu, alias);
3865 }
3866
3867 out:
3868 iommu_completion_wait(iommu);
3869
3870 out_unlock:
3871 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3872
3873 return table;
3874 }
3875
3876 static int alloc_irq_index(u16 devid, int count)
3877 {
3878 struct irq_remap_table *table;
3879 unsigned long flags;
3880 int index, c;
3881 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3882
3883 if (!iommu)
3884 return -ENODEV;
3885
3886 table = get_irq_table(devid, false);
3887 if (!table)
3888 return -ENODEV;
3889
3890 spin_lock_irqsave(&table->lock, flags);
3891
3892 /* Scan table for free entries */
3893 for (c = 0, index = table->min_index;
3894 index < MAX_IRQS_PER_TABLE;
3895 ++index) {
3896 if (!iommu->irte_ops->is_allocated(table, index))
3897 c += 1;
3898 else
3899 c = 0;
3900
3901 if (c == count) {
3902 for (; c != 0; --c)
3903 iommu->irte_ops->set_allocated(table, index - c + 1);
3904
3905 index -= count - 1;
3906 goto out;
3907 }
3908 }
3909
3910 index = -ENOSPC;
3911
3912 out:
3913 spin_unlock_irqrestore(&table->lock, flags);
3914
3915 return index;
3916 }
3917
3918 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3919 struct amd_ir_data *data)
3920 {
3921 struct irq_remap_table *table;
3922 struct amd_iommu *iommu;
3923 unsigned long flags;
3924 struct irte_ga *entry;
3925
3926 iommu = amd_iommu_rlookup_table[devid];
3927 if (iommu == NULL)
3928 return -EINVAL;
3929
3930 table = get_irq_table(devid, false);
3931 if (!table)
3932 return -ENOMEM;
3933
3934 spin_lock_irqsave(&table->lock, flags);
3935
3936 entry = (struct irte_ga *)table->table;
3937 entry = &entry[index];
3938 entry->lo.fields_remap.valid = 0;
3939 entry->hi.val = irte->hi.val;
3940 entry->lo.val = irte->lo.val;
3941 entry->lo.fields_remap.valid = 1;
3942 if (data)
3943 data->ref = entry;
3944
3945 spin_unlock_irqrestore(&table->lock, flags);
3946
3947 iommu_flush_irt(iommu, devid);
3948 iommu_completion_wait(iommu);
3949
3950 return 0;
3951 }
3952
3953 static int modify_irte(u16 devid, int index, union irte *irte)
3954 {
3955 struct irq_remap_table *table;
3956 struct amd_iommu *iommu;
3957 unsigned long flags;
3958
3959 iommu = amd_iommu_rlookup_table[devid];
3960 if (iommu == NULL)
3961 return -EINVAL;
3962
3963 table = get_irq_table(devid, false);
3964 if (!table)
3965 return -ENOMEM;
3966
3967 spin_lock_irqsave(&table->lock, flags);
3968 table->table[index] = irte->val;
3969 spin_unlock_irqrestore(&table->lock, flags);
3970
3971 iommu_flush_irt(iommu, devid);
3972 iommu_completion_wait(iommu);
3973
3974 return 0;
3975 }
3976
3977 static void free_irte(u16 devid, int index)
3978 {
3979 struct irq_remap_table *table;
3980 struct amd_iommu *iommu;
3981 unsigned long flags;
3982
3983 iommu = amd_iommu_rlookup_table[devid];
3984 if (iommu == NULL)
3985 return;
3986
3987 table = get_irq_table(devid, false);
3988 if (!table)
3989 return;
3990
3991 spin_lock_irqsave(&table->lock, flags);
3992 iommu->irte_ops->clear_allocated(table, index);
3993 spin_unlock_irqrestore(&table->lock, flags);
3994
3995 iommu_flush_irt(iommu, devid);
3996 iommu_completion_wait(iommu);
3997 }
3998
3999 static void irte_prepare(void *entry,
4000 u32 delivery_mode, u32 dest_mode,
4001 u8 vector, u32 dest_apicid, int devid)
4002 {
4003 union irte *irte = (union irte *) entry;
4004
4005 irte->val = 0;
4006 irte->fields.vector = vector;
4007 irte->fields.int_type = delivery_mode;
4008 irte->fields.destination = dest_apicid;
4009 irte->fields.dm = dest_mode;
4010 irte->fields.valid = 1;
4011 }
4012
4013 static void irte_ga_prepare(void *entry,
4014 u32 delivery_mode, u32 dest_mode,
4015 u8 vector, u32 dest_apicid, int devid)
4016 {
4017 struct irte_ga *irte = (struct irte_ga *) entry;
4018
4019 irte->lo.val = 0;
4020 irte->hi.val = 0;
4021 irte->lo.fields_remap.int_type = delivery_mode;
4022 irte->lo.fields_remap.dm = dest_mode;
4023 irte->hi.fields.vector = vector;
4024 irte->lo.fields_remap.destination = dest_apicid;
4025 irte->lo.fields_remap.valid = 1;
4026 }
4027
4028 static void irte_activate(void *entry, u16 devid, u16 index)
4029 {
4030 union irte *irte = (union irte *) entry;
4031
4032 irte->fields.valid = 1;
4033 modify_irte(devid, index, irte);
4034 }
4035
4036 static void irte_ga_activate(void *entry, u16 devid, u16 index)
4037 {
4038 struct irte_ga *irte = (struct irte_ga *) entry;
4039
4040 irte->lo.fields_remap.valid = 1;
4041 modify_irte_ga(devid, index, irte, NULL);
4042 }
4043
4044 static void irte_deactivate(void *entry, u16 devid, u16 index)
4045 {
4046 union irte *irte = (union irte *) entry;
4047
4048 irte->fields.valid = 0;
4049 modify_irte(devid, index, irte);
4050 }
4051
4052 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
4053 {
4054 struct irte_ga *irte = (struct irte_ga *) entry;
4055
4056 irte->lo.fields_remap.valid = 0;
4057 modify_irte_ga(devid, index, irte, NULL);
4058 }
4059
4060 static void irte_set_affinity(void *entry, u16 devid, u16 index,
4061 u8 vector, u32 dest_apicid)
4062 {
4063 union irte *irte = (union irte *) entry;
4064
4065 irte->fields.vector = vector;
4066 irte->fields.destination = dest_apicid;
4067 modify_irte(devid, index, irte);
4068 }
4069
4070 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
4071 u8 vector, u32 dest_apicid)
4072 {
4073 struct irte_ga *irte = (struct irte_ga *) entry;
4074 struct iommu_dev_data *dev_data = search_dev_data(devid);
4075
4076 if (!dev_data || !dev_data->use_vapic ||
4077 !irte->lo.fields_remap.guest_mode) {
4078 irte->hi.fields.vector = vector;
4079 irte->lo.fields_remap.destination = dest_apicid;
4080 modify_irte_ga(devid, index, irte, NULL);
4081 }
4082 }
4083
4084 #define IRTE_ALLOCATED (~1U)
4085 static void irte_set_allocated(struct irq_remap_table *table, int index)
4086 {
4087 table->table[index] = IRTE_ALLOCATED;
4088 }
4089
4090 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
4091 {
4092 struct irte_ga *ptr = (struct irte_ga *)table->table;
4093 struct irte_ga *irte = &ptr[index];
4094
4095 memset(&irte->lo.val, 0, sizeof(u64));
4096 memset(&irte->hi.val, 0, sizeof(u64));
4097 irte->hi.fields.vector = 0xff;
4098 }
4099
4100 static bool irte_is_allocated(struct irq_remap_table *table, int index)
4101 {
4102 union irte *ptr = (union irte *)table->table;
4103 union irte *irte = &ptr[index];
4104
4105 return irte->val != 0;
4106 }
4107
4108 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
4109 {
4110 struct irte_ga *ptr = (struct irte_ga *)table->table;
4111 struct irte_ga *irte = &ptr[index];
4112
4113 return irte->hi.fields.vector != 0;
4114 }
4115
4116 static void irte_clear_allocated(struct irq_remap_table *table, int index)
4117 {
4118 table->table[index] = 0;
4119 }
4120
4121 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
4122 {
4123 struct irte_ga *ptr = (struct irte_ga *)table->table;
4124 struct irte_ga *irte = &ptr[index];
4125
4126 memset(&irte->lo.val, 0, sizeof(u64));
4127 memset(&irte->hi.val, 0, sizeof(u64));
4128 }
4129
4130 static int get_devid(struct irq_alloc_info *info)
4131 {
4132 int devid = -1;
4133
4134 switch (info->type) {
4135 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4136 devid = get_ioapic_devid(info->ioapic_id);
4137 break;
4138 case X86_IRQ_ALLOC_TYPE_HPET:
4139 devid = get_hpet_devid(info->hpet_id);
4140 break;
4141 case X86_IRQ_ALLOC_TYPE_MSI:
4142 case X86_IRQ_ALLOC_TYPE_MSIX:
4143 devid = get_device_id(&info->msi_dev->dev);
4144 break;
4145 default:
4146 BUG_ON(1);
4147 break;
4148 }
4149
4150 return devid;
4151 }
4152
4153 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4154 {
4155 struct amd_iommu *iommu;
4156 int devid;
4157
4158 if (!info)
4159 return NULL;
4160
4161 devid = get_devid(info);
4162 if (devid >= 0) {
4163 iommu = amd_iommu_rlookup_table[devid];
4164 if (iommu)
4165 return iommu->ir_domain;
4166 }
4167
4168 return NULL;
4169 }
4170
4171 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4172 {
4173 struct amd_iommu *iommu;
4174 int devid;
4175
4176 if (!info)
4177 return NULL;
4178
4179 switch (info->type) {
4180 case X86_IRQ_ALLOC_TYPE_MSI:
4181 case X86_IRQ_ALLOC_TYPE_MSIX:
4182 devid = get_device_id(&info->msi_dev->dev);
4183 if (devid < 0)
4184 return NULL;
4185
4186 iommu = amd_iommu_rlookup_table[devid];
4187 if (iommu)
4188 return iommu->msi_domain;
4189 break;
4190 default:
4191 break;
4192 }
4193
4194 return NULL;
4195 }
4196
4197 struct irq_remap_ops amd_iommu_irq_ops = {
4198 .prepare = amd_iommu_prepare,
4199 .enable = amd_iommu_enable,
4200 .disable = amd_iommu_disable,
4201 .reenable = amd_iommu_reenable,
4202 .enable_faulting = amd_iommu_enable_faulting,
4203 .get_ir_irq_domain = get_ir_irq_domain,
4204 .get_irq_domain = get_irq_domain,
4205 };
4206
4207 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4208 struct irq_cfg *irq_cfg,
4209 struct irq_alloc_info *info,
4210 int devid, int index, int sub_handle)
4211 {
4212 struct irq_2_irte *irte_info = &data->irq_2_irte;
4213 struct msi_msg *msg = &data->msi_entry;
4214 struct IO_APIC_route_entry *entry;
4215 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4216
4217 if (!iommu)
4218 return;
4219
4220 data->irq_2_irte.devid = devid;
4221 data->irq_2_irte.index = index + sub_handle;
4222 iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4223 apic->irq_dest_mode, irq_cfg->vector,
4224 irq_cfg->dest_apicid, devid);
4225
4226 switch (info->type) {
4227 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4228 /* Setup IOAPIC entry */
4229 entry = info->ioapic_entry;
4230 info->ioapic_entry = NULL;
4231 memset(entry, 0, sizeof(*entry));
4232 entry->vector = index;
4233 entry->mask = 0;
4234 entry->trigger = info->ioapic_trigger;
4235 entry->polarity = info->ioapic_polarity;
4236 /* Mask level triggered irqs. */
4237 if (info->ioapic_trigger)
4238 entry->mask = 1;
4239 break;
4240
4241 case X86_IRQ_ALLOC_TYPE_HPET:
4242 case X86_IRQ_ALLOC_TYPE_MSI:
4243 case X86_IRQ_ALLOC_TYPE_MSIX:
4244 msg->address_hi = MSI_ADDR_BASE_HI;
4245 msg->address_lo = MSI_ADDR_BASE_LO;
4246 msg->data = irte_info->index;
4247 break;
4248
4249 default:
4250 BUG_ON(1);
4251 break;
4252 }
4253 }
4254
4255 struct amd_irte_ops irte_32_ops = {
4256 .prepare = irte_prepare,
4257 .activate = irte_activate,
4258 .deactivate = irte_deactivate,
4259 .set_affinity = irte_set_affinity,
4260 .set_allocated = irte_set_allocated,
4261 .is_allocated = irte_is_allocated,
4262 .clear_allocated = irte_clear_allocated,
4263 };
4264
4265 struct amd_irte_ops irte_128_ops = {
4266 .prepare = irte_ga_prepare,
4267 .activate = irte_ga_activate,
4268 .deactivate = irte_ga_deactivate,
4269 .set_affinity = irte_ga_set_affinity,
4270 .set_allocated = irte_ga_set_allocated,
4271 .is_allocated = irte_ga_is_allocated,
4272 .clear_allocated = irte_ga_clear_allocated,
4273 };
4274
4275 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4276 unsigned int nr_irqs, void *arg)
4277 {
4278 struct irq_alloc_info *info = arg;
4279 struct irq_data *irq_data;
4280 struct amd_ir_data *data = NULL;
4281 struct irq_cfg *cfg;
4282 int i, ret, devid;
4283 int index = -1;
4284
4285 if (!info)
4286 return -EINVAL;
4287 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4288 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4289 return -EINVAL;
4290
4291 /*
4292 * With IRQ remapping enabled, don't need contiguous CPU vectors
4293 * to support multiple MSI interrupts.
4294 */
4295 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4296 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4297
4298 devid = get_devid(info);
4299 if (devid < 0)
4300 return -EINVAL;
4301
4302 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4303 if (ret < 0)
4304 return ret;
4305
4306 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4307 if (get_irq_table(devid, true))
4308 index = info->ioapic_pin;
4309 else
4310 ret = -ENOMEM;
4311 } else {
4312 index = alloc_irq_index(devid, nr_irqs);
4313 }
4314 if (index < 0) {
4315 pr_warn("Failed to allocate IRTE\n");
4316 ret = index;
4317 goto out_free_parent;
4318 }
4319
4320 for (i = 0; i < nr_irqs; i++) {
4321 irq_data = irq_domain_get_irq_data(domain, virq + i);
4322 cfg = irqd_cfg(irq_data);
4323 if (!irq_data || !cfg) {
4324 ret = -EINVAL;
4325 goto out_free_data;
4326 }
4327
4328 ret = -ENOMEM;
4329 data = kzalloc(sizeof(*data), GFP_KERNEL);
4330 if (!data)
4331 goto out_free_data;
4332
4333 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4334 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4335 else
4336 data->entry = kzalloc(sizeof(struct irte_ga),
4337 GFP_KERNEL);
4338 if (!data->entry) {
4339 kfree(data);
4340 goto out_free_data;
4341 }
4342
4343 irq_data->hwirq = (devid << 16) + i;
4344 irq_data->chip_data = data;
4345 irq_data->chip = &amd_ir_chip;
4346 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4347 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4348 }
4349
4350 return 0;
4351
4352 out_free_data:
4353 for (i--; i >= 0; i--) {
4354 irq_data = irq_domain_get_irq_data(domain, virq + i);
4355 if (irq_data)
4356 kfree(irq_data->chip_data);
4357 }
4358 for (i = 0; i < nr_irqs; i++)
4359 free_irte(devid, index + i);
4360 out_free_parent:
4361 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4362 return ret;
4363 }
4364
4365 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4366 unsigned int nr_irqs)
4367 {
4368 struct irq_2_irte *irte_info;
4369 struct irq_data *irq_data;
4370 struct amd_ir_data *data;
4371 int i;
4372
4373 for (i = 0; i < nr_irqs; i++) {
4374 irq_data = irq_domain_get_irq_data(domain, virq + i);
4375 if (irq_data && irq_data->chip_data) {
4376 data = irq_data->chip_data;
4377 irte_info = &data->irq_2_irte;
4378 free_irte(irte_info->devid, irte_info->index);
4379 kfree(data->entry);
4380 kfree(data);
4381 }
4382 }
4383 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4384 }
4385
4386 static void irq_remapping_activate(struct irq_domain *domain,
4387 struct irq_data *irq_data)
4388 {
4389 struct amd_ir_data *data = irq_data->chip_data;
4390 struct irq_2_irte *irte_info = &data->irq_2_irte;
4391 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4392
4393 if (iommu)
4394 iommu->irte_ops->activate(data->entry, irte_info->devid,
4395 irte_info->index);
4396 }
4397
4398 static void irq_remapping_deactivate(struct irq_domain *domain,
4399 struct irq_data *irq_data)
4400 {
4401 struct amd_ir_data *data = irq_data->chip_data;
4402 struct irq_2_irte *irte_info = &data->irq_2_irte;
4403 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4404
4405 if (iommu)
4406 iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4407 irte_info->index);
4408 }
4409
4410 static const struct irq_domain_ops amd_ir_domain_ops = {
4411 .alloc = irq_remapping_alloc,
4412 .free = irq_remapping_free,
4413 .activate = irq_remapping_activate,
4414 .deactivate = irq_remapping_deactivate,
4415 };
4416
4417 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4418 {
4419 struct amd_iommu *iommu;
4420 struct amd_iommu_pi_data *pi_data = vcpu_info;
4421 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4422 struct amd_ir_data *ir_data = data->chip_data;
4423 struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
4424 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4425 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4426
4427 /* Note:
4428 * This device has never been set up for guest mode.
4429 * we should not modify the IRTE
4430 */
4431 if (!dev_data || !dev_data->use_vapic)
4432 return 0;
4433
4434 pi_data->ir_data = ir_data;
4435
4436 /* Note:
4437 * SVM tries to set up for VAPIC mode, but we are in
4438 * legacy mode. So, we force legacy mode instead.
4439 */
4440 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4441 pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4442 __func__);
4443 pi_data->is_guest_mode = false;
4444 }
4445
4446 iommu = amd_iommu_rlookup_table[irte_info->devid];
4447 if (iommu == NULL)
4448 return -EINVAL;
4449
4450 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4451 if (pi_data->is_guest_mode) {
4452 /* Setting */
4453 irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
4454 irte->hi.fields.vector = vcpu_pi_info->vector;
4455 irte->lo.fields_vapic.ga_log_intr = 1;
4456 irte->lo.fields_vapic.guest_mode = 1;
4457 irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
4458
4459 ir_data->cached_ga_tag = pi_data->ga_tag;
4460 } else {
4461 /* Un-Setting */
4462 struct irq_cfg *cfg = irqd_cfg(data);
4463
4464 irte->hi.val = 0;
4465 irte->lo.val = 0;
4466 irte->hi.fields.vector = cfg->vector;
4467 irte->lo.fields_remap.guest_mode = 0;
4468 irte->lo.fields_remap.destination = cfg->dest_apicid;
4469 irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
4470 irte->lo.fields_remap.dm = apic->irq_dest_mode;
4471
4472 /*
4473 * This communicates the ga_tag back to the caller
4474 * so that it can do all the necessary clean up.
4475 */
4476 ir_data->cached_ga_tag = 0;
4477 }
4478
4479 return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
4480 }
4481
4482 static int amd_ir_set_affinity(struct irq_data *data,
4483 const struct cpumask *mask, bool force)
4484 {
4485 struct amd_ir_data *ir_data = data->chip_data;
4486 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4487 struct irq_cfg *cfg = irqd_cfg(data);
4488 struct irq_data *parent = data->parent_data;
4489 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4490 int ret;
4491
4492 if (!iommu)
4493 return -ENODEV;
4494
4495 ret = parent->chip->irq_set_affinity(parent, mask, force);
4496 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4497 return ret;
4498
4499 /*
4500 * Atomically updates the IRTE with the new destination, vector
4501 * and flushes the interrupt entry cache.
4502 */
4503 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4504 irte_info->index, cfg->vector, cfg->dest_apicid);
4505
4506 /*
4507 * After this point, all the interrupts will start arriving
4508 * at the new destination. So, time to cleanup the previous
4509 * vector allocation.
4510 */
4511 send_cleanup_vector(cfg);
4512
4513 return IRQ_SET_MASK_OK_DONE;
4514 }
4515
4516 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4517 {
4518 struct amd_ir_data *ir_data = irq_data->chip_data;
4519
4520 *msg = ir_data->msi_entry;
4521 }
4522
4523 static struct irq_chip amd_ir_chip = {
4524 .name = "AMD-IR",
4525 .irq_ack = ir_ack_apic_edge,
4526 .irq_set_affinity = amd_ir_set_affinity,
4527 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4528 .irq_compose_msi_msg = ir_compose_msi_msg,
4529 };
4530
4531 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4532 {
4533 struct fwnode_handle *fn;
4534
4535 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4536 if (!fn)
4537 return -ENOMEM;
4538 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4539 irq_domain_free_fwnode(fn);
4540 if (!iommu->ir_domain)
4541 return -ENOMEM;
4542
4543 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4544 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4545 "AMD-IR-MSI",
4546 iommu->index);
4547 return 0;
4548 }
4549
4550 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4551 {
4552 unsigned long flags;
4553 struct amd_iommu *iommu;
4554 struct irq_remap_table *irt;
4555 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4556 int devid = ir_data->irq_2_irte.devid;
4557 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4558 struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4559
4560 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4561 !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4562 return 0;
4563
4564 iommu = amd_iommu_rlookup_table[devid];
4565 if (!iommu)
4566 return -ENODEV;
4567
4568 irt = get_irq_table(devid, false);
4569 if (!irt)
4570 return -ENODEV;
4571
4572 spin_lock_irqsave(&irt->lock, flags);
4573
4574 if (ref->lo.fields_vapic.guest_mode) {
4575 if (cpu >= 0)
4576 ref->lo.fields_vapic.destination = cpu;
4577 ref->lo.fields_vapic.is_run = is_run;
4578 barrier();
4579 }
4580
4581 spin_unlock_irqrestore(&irt->lock, flags);
4582
4583 iommu_flush_irt(iommu, devid);
4584 iommu_completion_wait(iommu);
4585 return 0;
4586 }
4587 EXPORT_SYMBOL(amd_iommu_update_ga);
4588 #endif