]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iommu/amd_iommu.c
4ee277a8521a49eb41b5056daebf13cadc3d68dd
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/pci.h>
21 #include <linux/pci-ats.h>
22 #include <linux/bitmap.h>
23 #include <linux/slab.h>
24 #include <linux/debugfs.h>
25 #include <linux/scatterlist.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/iommu-helper.h>
28 #include <linux/iommu.h>
29 #include <linux/delay.h>
30 #include <linux/amd-iommu.h>
31 #include <asm/msidef.h>
32 #include <asm/proto.h>
33 #include <asm/iommu.h>
34 #include <asm/gart.h>
35 #include <asm/dma.h>
36
37 #include "amd_iommu_proto.h"
38 #include "amd_iommu_types.h"
39
40 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
41
42 #define LOOP_TIMEOUT 100000
43
44 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
45
46 /* A list of preallocated protection domains */
47 static LIST_HEAD(iommu_pd_list);
48 static DEFINE_SPINLOCK(iommu_pd_list_lock);
49
50 /* List of all available dev_data structures */
51 static LIST_HEAD(dev_data_list);
52 static DEFINE_SPINLOCK(dev_data_list_lock);
53
54 /*
55 * Domain for untranslated devices - only allocated
56 * if iommu=pt passed on kernel cmd line.
57 */
58 static struct protection_domain *pt_domain;
59
60 static struct iommu_ops amd_iommu_ops;
61
62 /*
63 * general struct to manage commands send to an IOMMU
64 */
65 struct iommu_cmd {
66 u32 data[4];
67 };
68
69 static void update_domain(struct protection_domain *domain);
70
71 /****************************************************************************
72 *
73 * Helper functions
74 *
75 ****************************************************************************/
76
77 static struct iommu_dev_data *alloc_dev_data(u16 devid)
78 {
79 struct iommu_dev_data *dev_data;
80 unsigned long flags;
81
82 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
83 if (!dev_data)
84 return NULL;
85
86 dev_data->devid = devid;
87 atomic_set(&dev_data->bind, 0);
88
89 spin_lock_irqsave(&dev_data_list_lock, flags);
90 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
91 spin_unlock_irqrestore(&dev_data_list_lock, flags);
92
93 return dev_data;
94 }
95
96 static void free_dev_data(struct iommu_dev_data *dev_data)
97 {
98 unsigned long flags;
99
100 spin_lock_irqsave(&dev_data_list_lock, flags);
101 list_del(&dev_data->dev_data_list);
102 spin_unlock_irqrestore(&dev_data_list_lock, flags);
103
104 kfree(dev_data);
105 }
106
107 static struct iommu_dev_data *search_dev_data(u16 devid)
108 {
109 struct iommu_dev_data *dev_data;
110 unsigned long flags;
111
112 spin_lock_irqsave(&dev_data_list_lock, flags);
113 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
114 if (dev_data->devid == devid)
115 goto out_unlock;
116 }
117
118 dev_data = NULL;
119
120 out_unlock:
121 spin_unlock_irqrestore(&dev_data_list_lock, flags);
122
123 return dev_data;
124 }
125
126 static struct iommu_dev_data *find_dev_data(u16 devid)
127 {
128 struct iommu_dev_data *dev_data;
129
130 dev_data = search_dev_data(devid);
131
132 if (dev_data == NULL)
133 dev_data = alloc_dev_data(devid);
134
135 return dev_data;
136 }
137
138 static inline u16 get_device_id(struct device *dev)
139 {
140 struct pci_dev *pdev = to_pci_dev(dev);
141
142 return calc_devid(pdev->bus->number, pdev->devfn);
143 }
144
145 static struct iommu_dev_data *get_dev_data(struct device *dev)
146 {
147 return dev->archdata.iommu;
148 }
149
150 /*
151 * In this function the list of preallocated protection domains is traversed to
152 * find the domain for a specific device
153 */
154 static struct dma_ops_domain *find_protection_domain(u16 devid)
155 {
156 struct dma_ops_domain *entry, *ret = NULL;
157 unsigned long flags;
158 u16 alias = amd_iommu_alias_table[devid];
159
160 if (list_empty(&iommu_pd_list))
161 return NULL;
162
163 spin_lock_irqsave(&iommu_pd_list_lock, flags);
164
165 list_for_each_entry(entry, &iommu_pd_list, list) {
166 if (entry->target_dev == devid ||
167 entry->target_dev == alias) {
168 ret = entry;
169 break;
170 }
171 }
172
173 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
174
175 return ret;
176 }
177
178 /*
179 * This function checks if the driver got a valid device from the caller to
180 * avoid dereferencing invalid pointers.
181 */
182 static bool check_device(struct device *dev)
183 {
184 u16 devid;
185
186 if (!dev || !dev->dma_mask)
187 return false;
188
189 /* No device or no PCI device */
190 if (dev->bus != &pci_bus_type)
191 return false;
192
193 devid = get_device_id(dev);
194
195 /* Out of our scope? */
196 if (devid > amd_iommu_last_bdf)
197 return false;
198
199 if (amd_iommu_rlookup_table[devid] == NULL)
200 return false;
201
202 return true;
203 }
204
205 static int iommu_init_device(struct device *dev)
206 {
207 struct iommu_dev_data *dev_data;
208 u16 alias;
209
210 if (dev->archdata.iommu)
211 return 0;
212
213 dev_data = find_dev_data(get_device_id(dev));
214 if (!dev_data)
215 return -ENOMEM;
216
217 alias = amd_iommu_alias_table[dev_data->devid];
218 if (alias != dev_data->devid) {
219 struct iommu_dev_data *alias_data;
220
221 alias_data = find_dev_data(alias);
222 if (alias_data == NULL) {
223 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
224 dev_name(dev));
225 free_dev_data(dev_data);
226 return -ENOTSUPP;
227 }
228 dev_data->alias_data = alias_data;
229 }
230
231 dev->archdata.iommu = dev_data;
232
233 return 0;
234 }
235
236 static void iommu_ignore_device(struct device *dev)
237 {
238 u16 devid, alias;
239
240 devid = get_device_id(dev);
241 alias = amd_iommu_alias_table[devid];
242
243 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
244 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
245
246 amd_iommu_rlookup_table[devid] = NULL;
247 amd_iommu_rlookup_table[alias] = NULL;
248 }
249
250 static void iommu_uninit_device(struct device *dev)
251 {
252 /*
253 * Nothing to do here - we keep dev_data around for unplugged devices
254 * and reuse it when the device is re-plugged - not doing so would
255 * introduce a ton of races.
256 */
257 }
258
259 void __init amd_iommu_uninit_devices(void)
260 {
261 struct iommu_dev_data *dev_data, *n;
262 struct pci_dev *pdev = NULL;
263
264 for_each_pci_dev(pdev) {
265
266 if (!check_device(&pdev->dev))
267 continue;
268
269 iommu_uninit_device(&pdev->dev);
270 }
271
272 /* Free all of our dev_data structures */
273 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
274 free_dev_data(dev_data);
275 }
276
277 int __init amd_iommu_init_devices(void)
278 {
279 struct pci_dev *pdev = NULL;
280 int ret = 0;
281
282 for_each_pci_dev(pdev) {
283
284 if (!check_device(&pdev->dev))
285 continue;
286
287 ret = iommu_init_device(&pdev->dev);
288 if (ret == -ENOTSUPP)
289 iommu_ignore_device(&pdev->dev);
290 else if (ret)
291 goto out_free;
292 }
293
294 return 0;
295
296 out_free:
297
298 amd_iommu_uninit_devices();
299
300 return ret;
301 }
302 #ifdef CONFIG_AMD_IOMMU_STATS
303
304 /*
305 * Initialization code for statistics collection
306 */
307
308 DECLARE_STATS_COUNTER(compl_wait);
309 DECLARE_STATS_COUNTER(cnt_map_single);
310 DECLARE_STATS_COUNTER(cnt_unmap_single);
311 DECLARE_STATS_COUNTER(cnt_map_sg);
312 DECLARE_STATS_COUNTER(cnt_unmap_sg);
313 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
314 DECLARE_STATS_COUNTER(cnt_free_coherent);
315 DECLARE_STATS_COUNTER(cross_page);
316 DECLARE_STATS_COUNTER(domain_flush_single);
317 DECLARE_STATS_COUNTER(domain_flush_all);
318 DECLARE_STATS_COUNTER(alloced_io_mem);
319 DECLARE_STATS_COUNTER(total_map_requests);
320
321 static struct dentry *stats_dir;
322 static struct dentry *de_fflush;
323
324 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
325 {
326 if (stats_dir == NULL)
327 return;
328
329 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
330 &cnt->value);
331 }
332
333 static void amd_iommu_stats_init(void)
334 {
335 stats_dir = debugfs_create_dir("amd-iommu", NULL);
336 if (stats_dir == NULL)
337 return;
338
339 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
340 (u32 *)&amd_iommu_unmap_flush);
341
342 amd_iommu_stats_add(&compl_wait);
343 amd_iommu_stats_add(&cnt_map_single);
344 amd_iommu_stats_add(&cnt_unmap_single);
345 amd_iommu_stats_add(&cnt_map_sg);
346 amd_iommu_stats_add(&cnt_unmap_sg);
347 amd_iommu_stats_add(&cnt_alloc_coherent);
348 amd_iommu_stats_add(&cnt_free_coherent);
349 amd_iommu_stats_add(&cross_page);
350 amd_iommu_stats_add(&domain_flush_single);
351 amd_iommu_stats_add(&domain_flush_all);
352 amd_iommu_stats_add(&alloced_io_mem);
353 amd_iommu_stats_add(&total_map_requests);
354 }
355
356 #endif
357
358 /****************************************************************************
359 *
360 * Interrupt handling functions
361 *
362 ****************************************************************************/
363
364 static void dump_dte_entry(u16 devid)
365 {
366 int i;
367
368 for (i = 0; i < 8; ++i)
369 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
370 amd_iommu_dev_table[devid].data[i]);
371 }
372
373 static void dump_command(unsigned long phys_addr)
374 {
375 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
376 int i;
377
378 for (i = 0; i < 4; ++i)
379 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
380 }
381
382 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
383 {
384 u32 *event = __evt;
385 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
386 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
387 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
388 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
389 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
390
391 printk(KERN_ERR "AMD-Vi: Event logged [");
392
393 switch (type) {
394 case EVENT_TYPE_ILL_DEV:
395 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
396 "address=0x%016llx flags=0x%04x]\n",
397 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
398 address, flags);
399 dump_dte_entry(devid);
400 break;
401 case EVENT_TYPE_IO_FAULT:
402 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
403 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
404 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
405 domid, address, flags);
406 break;
407 case EVENT_TYPE_DEV_TAB_ERR:
408 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
409 "address=0x%016llx flags=0x%04x]\n",
410 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
411 address, flags);
412 break;
413 case EVENT_TYPE_PAGE_TAB_ERR:
414 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
415 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
416 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
417 domid, address, flags);
418 break;
419 case EVENT_TYPE_ILL_CMD:
420 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
421 dump_command(address);
422 break;
423 case EVENT_TYPE_CMD_HARD_ERR:
424 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
425 "flags=0x%04x]\n", address, flags);
426 break;
427 case EVENT_TYPE_IOTLB_INV_TO:
428 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
429 "address=0x%016llx]\n",
430 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
431 address);
432 break;
433 case EVENT_TYPE_INV_DEV_REQ:
434 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
435 "address=0x%016llx flags=0x%04x]\n",
436 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
437 address, flags);
438 break;
439 default:
440 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
441 }
442 }
443
444 static void iommu_poll_events(struct amd_iommu *iommu)
445 {
446 u32 head, tail;
447 unsigned long flags;
448
449 spin_lock_irqsave(&iommu->lock, flags);
450
451 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
452 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
453
454 while (head != tail) {
455 iommu_print_event(iommu, iommu->evt_buf + head);
456 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
457 }
458
459 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
460
461 spin_unlock_irqrestore(&iommu->lock, flags);
462 }
463
464 irqreturn_t amd_iommu_int_thread(int irq, void *data)
465 {
466 struct amd_iommu *iommu;
467
468 for_each_iommu(iommu)
469 iommu_poll_events(iommu);
470
471 return IRQ_HANDLED;
472 }
473
474 irqreturn_t amd_iommu_int_handler(int irq, void *data)
475 {
476 return IRQ_WAKE_THREAD;
477 }
478
479 /****************************************************************************
480 *
481 * IOMMU command queuing functions
482 *
483 ****************************************************************************/
484
485 static int wait_on_sem(volatile u64 *sem)
486 {
487 int i = 0;
488
489 while (*sem == 0 && i < LOOP_TIMEOUT) {
490 udelay(1);
491 i += 1;
492 }
493
494 if (i == LOOP_TIMEOUT) {
495 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
496 return -EIO;
497 }
498
499 return 0;
500 }
501
502 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
503 struct iommu_cmd *cmd,
504 u32 tail)
505 {
506 u8 *target;
507
508 target = iommu->cmd_buf + tail;
509 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
510
511 /* Copy command to buffer */
512 memcpy(target, cmd, sizeof(*cmd));
513
514 /* Tell the IOMMU about it */
515 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
516 }
517
518 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
519 {
520 WARN_ON(address & 0x7ULL);
521
522 memset(cmd, 0, sizeof(*cmd));
523 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
524 cmd->data[1] = upper_32_bits(__pa(address));
525 cmd->data[2] = 1;
526 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
527 }
528
529 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
530 {
531 memset(cmd, 0, sizeof(*cmd));
532 cmd->data[0] = devid;
533 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
534 }
535
536 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
537 size_t size, u16 domid, int pde)
538 {
539 u64 pages;
540 int s;
541
542 pages = iommu_num_pages(address, size, PAGE_SIZE);
543 s = 0;
544
545 if (pages > 1) {
546 /*
547 * If we have to flush more than one page, flush all
548 * TLB entries for this domain
549 */
550 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
551 s = 1;
552 }
553
554 address &= PAGE_MASK;
555
556 memset(cmd, 0, sizeof(*cmd));
557 cmd->data[1] |= domid;
558 cmd->data[2] = lower_32_bits(address);
559 cmd->data[3] = upper_32_bits(address);
560 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
561 if (s) /* size bit - we flush more than one 4kb page */
562 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
563 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
564 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
565 }
566
567 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
568 u64 address, size_t size)
569 {
570 u64 pages;
571 int s;
572
573 pages = iommu_num_pages(address, size, PAGE_SIZE);
574 s = 0;
575
576 if (pages > 1) {
577 /*
578 * If we have to flush more than one page, flush all
579 * TLB entries for this domain
580 */
581 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
582 s = 1;
583 }
584
585 address &= PAGE_MASK;
586
587 memset(cmd, 0, sizeof(*cmd));
588 cmd->data[0] = devid;
589 cmd->data[0] |= (qdep & 0xff) << 24;
590 cmd->data[1] = devid;
591 cmd->data[2] = lower_32_bits(address);
592 cmd->data[3] = upper_32_bits(address);
593 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
594 if (s)
595 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
596 }
597
598 static void build_inv_all(struct iommu_cmd *cmd)
599 {
600 memset(cmd, 0, sizeof(*cmd));
601 CMD_SET_TYPE(cmd, CMD_INV_ALL);
602 }
603
604 /*
605 * Writes the command to the IOMMUs command buffer and informs the
606 * hardware about the new command.
607 */
608 static int iommu_queue_command_sync(struct amd_iommu *iommu,
609 struct iommu_cmd *cmd,
610 bool sync)
611 {
612 u32 left, tail, head, next_tail;
613 unsigned long flags;
614
615 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
616
617 again:
618 spin_lock_irqsave(&iommu->lock, flags);
619
620 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
621 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
622 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
623 left = (head - next_tail) % iommu->cmd_buf_size;
624
625 if (left <= 2) {
626 struct iommu_cmd sync_cmd;
627 volatile u64 sem = 0;
628 int ret;
629
630 build_completion_wait(&sync_cmd, (u64)&sem);
631 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
632
633 spin_unlock_irqrestore(&iommu->lock, flags);
634
635 if ((ret = wait_on_sem(&sem)) != 0)
636 return ret;
637
638 goto again;
639 }
640
641 copy_cmd_to_buffer(iommu, cmd, tail);
642
643 /* We need to sync now to make sure all commands are processed */
644 iommu->need_sync = sync;
645
646 spin_unlock_irqrestore(&iommu->lock, flags);
647
648 return 0;
649 }
650
651 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
652 {
653 return iommu_queue_command_sync(iommu, cmd, true);
654 }
655
656 /*
657 * This function queues a completion wait command into the command
658 * buffer of an IOMMU
659 */
660 static int iommu_completion_wait(struct amd_iommu *iommu)
661 {
662 struct iommu_cmd cmd;
663 volatile u64 sem = 0;
664 int ret;
665
666 if (!iommu->need_sync)
667 return 0;
668
669 build_completion_wait(&cmd, (u64)&sem);
670
671 ret = iommu_queue_command_sync(iommu, &cmd, false);
672 if (ret)
673 return ret;
674
675 return wait_on_sem(&sem);
676 }
677
678 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
679 {
680 struct iommu_cmd cmd;
681
682 build_inv_dte(&cmd, devid);
683
684 return iommu_queue_command(iommu, &cmd);
685 }
686
687 static void iommu_flush_dte_all(struct amd_iommu *iommu)
688 {
689 u32 devid;
690
691 for (devid = 0; devid <= 0xffff; ++devid)
692 iommu_flush_dte(iommu, devid);
693
694 iommu_completion_wait(iommu);
695 }
696
697 /*
698 * This function uses heavy locking and may disable irqs for some time. But
699 * this is no issue because it is only called during resume.
700 */
701 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
702 {
703 u32 dom_id;
704
705 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
706 struct iommu_cmd cmd;
707 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
708 dom_id, 1);
709 iommu_queue_command(iommu, &cmd);
710 }
711
712 iommu_completion_wait(iommu);
713 }
714
715 static void iommu_flush_all(struct amd_iommu *iommu)
716 {
717 struct iommu_cmd cmd;
718
719 build_inv_all(&cmd);
720
721 iommu_queue_command(iommu, &cmd);
722 iommu_completion_wait(iommu);
723 }
724
725 void iommu_flush_all_caches(struct amd_iommu *iommu)
726 {
727 if (iommu_feature(iommu, FEATURE_IA)) {
728 iommu_flush_all(iommu);
729 } else {
730 iommu_flush_dte_all(iommu);
731 iommu_flush_tlb_all(iommu);
732 }
733 }
734
735 /*
736 * Command send function for flushing on-device TLB
737 */
738 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
739 u64 address, size_t size)
740 {
741 struct amd_iommu *iommu;
742 struct iommu_cmd cmd;
743 int qdep;
744
745 qdep = dev_data->ats.qdep;
746 iommu = amd_iommu_rlookup_table[dev_data->devid];
747
748 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
749
750 return iommu_queue_command(iommu, &cmd);
751 }
752
753 /*
754 * Command send function for invalidating a device table entry
755 */
756 static int device_flush_dte(struct iommu_dev_data *dev_data)
757 {
758 struct amd_iommu *iommu;
759 int ret;
760
761 iommu = amd_iommu_rlookup_table[dev_data->devid];
762
763 ret = iommu_flush_dte(iommu, dev_data->devid);
764 if (ret)
765 return ret;
766
767 if (dev_data->ats.enabled)
768 ret = device_flush_iotlb(dev_data, 0, ~0UL);
769
770 return ret;
771 }
772
773 /*
774 * TLB invalidation function which is called from the mapping functions.
775 * It invalidates a single PTE if the range to flush is within a single
776 * page. Otherwise it flushes the whole TLB of the IOMMU.
777 */
778 static void __domain_flush_pages(struct protection_domain *domain,
779 u64 address, size_t size, int pde)
780 {
781 struct iommu_dev_data *dev_data;
782 struct iommu_cmd cmd;
783 int ret = 0, i;
784
785 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
786
787 for (i = 0; i < amd_iommus_present; ++i) {
788 if (!domain->dev_iommu[i])
789 continue;
790
791 /*
792 * Devices of this domain are behind this IOMMU
793 * We need a TLB flush
794 */
795 ret |= iommu_queue_command(amd_iommus[i], &cmd);
796 }
797
798 list_for_each_entry(dev_data, &domain->dev_list, list) {
799
800 if (!dev_data->ats.enabled)
801 continue;
802
803 ret |= device_flush_iotlb(dev_data, address, size);
804 }
805
806 WARN_ON(ret);
807 }
808
809 static void domain_flush_pages(struct protection_domain *domain,
810 u64 address, size_t size)
811 {
812 __domain_flush_pages(domain, address, size, 0);
813 }
814
815 /* Flush the whole IO/TLB for a given protection domain */
816 static void domain_flush_tlb(struct protection_domain *domain)
817 {
818 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
819 }
820
821 /* Flush the whole IO/TLB for a given protection domain - including PDE */
822 static void domain_flush_tlb_pde(struct protection_domain *domain)
823 {
824 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
825 }
826
827 static void domain_flush_complete(struct protection_domain *domain)
828 {
829 int i;
830
831 for (i = 0; i < amd_iommus_present; ++i) {
832 if (!domain->dev_iommu[i])
833 continue;
834
835 /*
836 * Devices of this domain are behind this IOMMU
837 * We need to wait for completion of all commands.
838 */
839 iommu_completion_wait(amd_iommus[i]);
840 }
841 }
842
843
844 /*
845 * This function flushes the DTEs for all devices in domain
846 */
847 static void domain_flush_devices(struct protection_domain *domain)
848 {
849 struct iommu_dev_data *dev_data;
850
851 list_for_each_entry(dev_data, &domain->dev_list, list)
852 device_flush_dte(dev_data);
853 }
854
855 /****************************************************************************
856 *
857 * The functions below are used the create the page table mappings for
858 * unity mapped regions.
859 *
860 ****************************************************************************/
861
862 /*
863 * This function is used to add another level to an IO page table. Adding
864 * another level increases the size of the address space by 9 bits to a size up
865 * to 64 bits.
866 */
867 static bool increase_address_space(struct protection_domain *domain,
868 gfp_t gfp)
869 {
870 u64 *pte;
871
872 if (domain->mode == PAGE_MODE_6_LEVEL)
873 /* address space already 64 bit large */
874 return false;
875
876 pte = (void *)get_zeroed_page(gfp);
877 if (!pte)
878 return false;
879
880 *pte = PM_LEVEL_PDE(domain->mode,
881 virt_to_phys(domain->pt_root));
882 domain->pt_root = pte;
883 domain->mode += 1;
884 domain->updated = true;
885
886 return true;
887 }
888
889 static u64 *alloc_pte(struct protection_domain *domain,
890 unsigned long address,
891 unsigned long page_size,
892 u64 **pte_page,
893 gfp_t gfp)
894 {
895 int level, end_lvl;
896 u64 *pte, *page;
897
898 BUG_ON(!is_power_of_2(page_size));
899
900 while (address > PM_LEVEL_SIZE(domain->mode))
901 increase_address_space(domain, gfp);
902
903 level = domain->mode - 1;
904 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
905 address = PAGE_SIZE_ALIGN(address, page_size);
906 end_lvl = PAGE_SIZE_LEVEL(page_size);
907
908 while (level > end_lvl) {
909 if (!IOMMU_PTE_PRESENT(*pte)) {
910 page = (u64 *)get_zeroed_page(gfp);
911 if (!page)
912 return NULL;
913 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
914 }
915
916 /* No level skipping support yet */
917 if (PM_PTE_LEVEL(*pte) != level)
918 return NULL;
919
920 level -= 1;
921
922 pte = IOMMU_PTE_PAGE(*pte);
923
924 if (pte_page && level == end_lvl)
925 *pte_page = pte;
926
927 pte = &pte[PM_LEVEL_INDEX(level, address)];
928 }
929
930 return pte;
931 }
932
933 /*
934 * This function checks if there is a PTE for a given dma address. If
935 * there is one, it returns the pointer to it.
936 */
937 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
938 {
939 int level;
940 u64 *pte;
941
942 if (address > PM_LEVEL_SIZE(domain->mode))
943 return NULL;
944
945 level = domain->mode - 1;
946 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
947
948 while (level > 0) {
949
950 /* Not Present */
951 if (!IOMMU_PTE_PRESENT(*pte))
952 return NULL;
953
954 /* Large PTE */
955 if (PM_PTE_LEVEL(*pte) == 0x07) {
956 unsigned long pte_mask, __pte;
957
958 /*
959 * If we have a series of large PTEs, make
960 * sure to return a pointer to the first one.
961 */
962 pte_mask = PTE_PAGE_SIZE(*pte);
963 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
964 __pte = ((unsigned long)pte) & pte_mask;
965
966 return (u64 *)__pte;
967 }
968
969 /* No level skipping support yet */
970 if (PM_PTE_LEVEL(*pte) != level)
971 return NULL;
972
973 level -= 1;
974
975 /* Walk to the next level */
976 pte = IOMMU_PTE_PAGE(*pte);
977 pte = &pte[PM_LEVEL_INDEX(level, address)];
978 }
979
980 return pte;
981 }
982
983 /*
984 * Generic mapping functions. It maps a physical address into a DMA
985 * address space. It allocates the page table pages if necessary.
986 * In the future it can be extended to a generic mapping function
987 * supporting all features of AMD IOMMU page tables like level skipping
988 * and full 64 bit address spaces.
989 */
990 static int iommu_map_page(struct protection_domain *dom,
991 unsigned long bus_addr,
992 unsigned long phys_addr,
993 int prot,
994 unsigned long page_size)
995 {
996 u64 __pte, *pte;
997 int i, count;
998
999 if (!(prot & IOMMU_PROT_MASK))
1000 return -EINVAL;
1001
1002 bus_addr = PAGE_ALIGN(bus_addr);
1003 phys_addr = PAGE_ALIGN(phys_addr);
1004 count = PAGE_SIZE_PTE_COUNT(page_size);
1005 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1006
1007 for (i = 0; i < count; ++i)
1008 if (IOMMU_PTE_PRESENT(pte[i]))
1009 return -EBUSY;
1010
1011 if (page_size > PAGE_SIZE) {
1012 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1013 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1014 } else
1015 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1016
1017 if (prot & IOMMU_PROT_IR)
1018 __pte |= IOMMU_PTE_IR;
1019 if (prot & IOMMU_PROT_IW)
1020 __pte |= IOMMU_PTE_IW;
1021
1022 for (i = 0; i < count; ++i)
1023 pte[i] = __pte;
1024
1025 update_domain(dom);
1026
1027 return 0;
1028 }
1029
1030 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1031 unsigned long bus_addr,
1032 unsigned long page_size)
1033 {
1034 unsigned long long unmap_size, unmapped;
1035 u64 *pte;
1036
1037 BUG_ON(!is_power_of_2(page_size));
1038
1039 unmapped = 0;
1040
1041 while (unmapped < page_size) {
1042
1043 pte = fetch_pte(dom, bus_addr);
1044
1045 if (!pte) {
1046 /*
1047 * No PTE for this address
1048 * move forward in 4kb steps
1049 */
1050 unmap_size = PAGE_SIZE;
1051 } else if (PM_PTE_LEVEL(*pte) == 0) {
1052 /* 4kb PTE found for this address */
1053 unmap_size = PAGE_SIZE;
1054 *pte = 0ULL;
1055 } else {
1056 int count, i;
1057
1058 /* Large PTE found which maps this address */
1059 unmap_size = PTE_PAGE_SIZE(*pte);
1060 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1061 for (i = 0; i < count; i++)
1062 pte[i] = 0ULL;
1063 }
1064
1065 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1066 unmapped += unmap_size;
1067 }
1068
1069 BUG_ON(!is_power_of_2(unmapped));
1070
1071 return unmapped;
1072 }
1073
1074 /*
1075 * This function checks if a specific unity mapping entry is needed for
1076 * this specific IOMMU.
1077 */
1078 static int iommu_for_unity_map(struct amd_iommu *iommu,
1079 struct unity_map_entry *entry)
1080 {
1081 u16 bdf, i;
1082
1083 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1084 bdf = amd_iommu_alias_table[i];
1085 if (amd_iommu_rlookup_table[bdf] == iommu)
1086 return 1;
1087 }
1088
1089 return 0;
1090 }
1091
1092 /*
1093 * This function actually applies the mapping to the page table of the
1094 * dma_ops domain.
1095 */
1096 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1097 struct unity_map_entry *e)
1098 {
1099 u64 addr;
1100 int ret;
1101
1102 for (addr = e->address_start; addr < e->address_end;
1103 addr += PAGE_SIZE) {
1104 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1105 PAGE_SIZE);
1106 if (ret)
1107 return ret;
1108 /*
1109 * if unity mapping is in aperture range mark the page
1110 * as allocated in the aperture
1111 */
1112 if (addr < dma_dom->aperture_size)
1113 __set_bit(addr >> PAGE_SHIFT,
1114 dma_dom->aperture[0]->bitmap);
1115 }
1116
1117 return 0;
1118 }
1119
1120 /*
1121 * Init the unity mappings for a specific IOMMU in the system
1122 *
1123 * Basically iterates over all unity mapping entries and applies them to
1124 * the default domain DMA of that IOMMU if necessary.
1125 */
1126 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1127 {
1128 struct unity_map_entry *entry;
1129 int ret;
1130
1131 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1132 if (!iommu_for_unity_map(iommu, entry))
1133 continue;
1134 ret = dma_ops_unity_map(iommu->default_dom, entry);
1135 if (ret)
1136 return ret;
1137 }
1138
1139 return 0;
1140 }
1141
1142 /*
1143 * Inits the unity mappings required for a specific device
1144 */
1145 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1146 u16 devid)
1147 {
1148 struct unity_map_entry *e;
1149 int ret;
1150
1151 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1152 if (!(devid >= e->devid_start && devid <= e->devid_end))
1153 continue;
1154 ret = dma_ops_unity_map(dma_dom, e);
1155 if (ret)
1156 return ret;
1157 }
1158
1159 return 0;
1160 }
1161
1162 /****************************************************************************
1163 *
1164 * The next functions belong to the address allocator for the dma_ops
1165 * interface functions. They work like the allocators in the other IOMMU
1166 * drivers. Its basically a bitmap which marks the allocated pages in
1167 * the aperture. Maybe it could be enhanced in the future to a more
1168 * efficient allocator.
1169 *
1170 ****************************************************************************/
1171
1172 /*
1173 * The address allocator core functions.
1174 *
1175 * called with domain->lock held
1176 */
1177
1178 /*
1179 * Used to reserve address ranges in the aperture (e.g. for exclusion
1180 * ranges.
1181 */
1182 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1183 unsigned long start_page,
1184 unsigned int pages)
1185 {
1186 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1187
1188 if (start_page + pages > last_page)
1189 pages = last_page - start_page;
1190
1191 for (i = start_page; i < start_page + pages; ++i) {
1192 int index = i / APERTURE_RANGE_PAGES;
1193 int page = i % APERTURE_RANGE_PAGES;
1194 __set_bit(page, dom->aperture[index]->bitmap);
1195 }
1196 }
1197
1198 /*
1199 * This function is used to add a new aperture range to an existing
1200 * aperture in case of dma_ops domain allocation or address allocation
1201 * failure.
1202 */
1203 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1204 bool populate, gfp_t gfp)
1205 {
1206 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1207 struct amd_iommu *iommu;
1208 unsigned long i, old_size;
1209
1210 #ifdef CONFIG_IOMMU_STRESS
1211 populate = false;
1212 #endif
1213
1214 if (index >= APERTURE_MAX_RANGES)
1215 return -ENOMEM;
1216
1217 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1218 if (!dma_dom->aperture[index])
1219 return -ENOMEM;
1220
1221 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1222 if (!dma_dom->aperture[index]->bitmap)
1223 goto out_free;
1224
1225 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1226
1227 if (populate) {
1228 unsigned long address = dma_dom->aperture_size;
1229 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1230 u64 *pte, *pte_page;
1231
1232 for (i = 0; i < num_ptes; ++i) {
1233 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1234 &pte_page, gfp);
1235 if (!pte)
1236 goto out_free;
1237
1238 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1239
1240 address += APERTURE_RANGE_SIZE / 64;
1241 }
1242 }
1243
1244 old_size = dma_dom->aperture_size;
1245 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1246
1247 /* Reserve address range used for MSI messages */
1248 if (old_size < MSI_ADDR_BASE_LO &&
1249 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1250 unsigned long spage;
1251 int pages;
1252
1253 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1254 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1255
1256 dma_ops_reserve_addresses(dma_dom, spage, pages);
1257 }
1258
1259 /* Initialize the exclusion range if necessary */
1260 for_each_iommu(iommu) {
1261 if (iommu->exclusion_start &&
1262 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1263 && iommu->exclusion_start < dma_dom->aperture_size) {
1264 unsigned long startpage;
1265 int pages = iommu_num_pages(iommu->exclusion_start,
1266 iommu->exclusion_length,
1267 PAGE_SIZE);
1268 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1269 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1270 }
1271 }
1272
1273 /*
1274 * Check for areas already mapped as present in the new aperture
1275 * range and mark those pages as reserved in the allocator. Such
1276 * mappings may already exist as a result of requested unity
1277 * mappings for devices.
1278 */
1279 for (i = dma_dom->aperture[index]->offset;
1280 i < dma_dom->aperture_size;
1281 i += PAGE_SIZE) {
1282 u64 *pte = fetch_pte(&dma_dom->domain, i);
1283 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1284 continue;
1285
1286 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1287 }
1288
1289 update_domain(&dma_dom->domain);
1290
1291 return 0;
1292
1293 out_free:
1294 update_domain(&dma_dom->domain);
1295
1296 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1297
1298 kfree(dma_dom->aperture[index]);
1299 dma_dom->aperture[index] = NULL;
1300
1301 return -ENOMEM;
1302 }
1303
1304 static unsigned long dma_ops_area_alloc(struct device *dev,
1305 struct dma_ops_domain *dom,
1306 unsigned int pages,
1307 unsigned long align_mask,
1308 u64 dma_mask,
1309 unsigned long start)
1310 {
1311 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1312 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1313 int i = start >> APERTURE_RANGE_SHIFT;
1314 unsigned long boundary_size;
1315 unsigned long address = -1;
1316 unsigned long limit;
1317
1318 next_bit >>= PAGE_SHIFT;
1319
1320 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1321 PAGE_SIZE) >> PAGE_SHIFT;
1322
1323 for (;i < max_index; ++i) {
1324 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1325
1326 if (dom->aperture[i]->offset >= dma_mask)
1327 break;
1328
1329 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1330 dma_mask >> PAGE_SHIFT);
1331
1332 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1333 limit, next_bit, pages, 0,
1334 boundary_size, align_mask);
1335 if (address != -1) {
1336 address = dom->aperture[i]->offset +
1337 (address << PAGE_SHIFT);
1338 dom->next_address = address + (pages << PAGE_SHIFT);
1339 break;
1340 }
1341
1342 next_bit = 0;
1343 }
1344
1345 return address;
1346 }
1347
1348 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1349 struct dma_ops_domain *dom,
1350 unsigned int pages,
1351 unsigned long align_mask,
1352 u64 dma_mask)
1353 {
1354 unsigned long address;
1355
1356 #ifdef CONFIG_IOMMU_STRESS
1357 dom->next_address = 0;
1358 dom->need_flush = true;
1359 #endif
1360
1361 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1362 dma_mask, dom->next_address);
1363
1364 if (address == -1) {
1365 dom->next_address = 0;
1366 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1367 dma_mask, 0);
1368 dom->need_flush = true;
1369 }
1370
1371 if (unlikely(address == -1))
1372 address = DMA_ERROR_CODE;
1373
1374 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1375
1376 return address;
1377 }
1378
1379 /*
1380 * The address free function.
1381 *
1382 * called with domain->lock held
1383 */
1384 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1385 unsigned long address,
1386 unsigned int pages)
1387 {
1388 unsigned i = address >> APERTURE_RANGE_SHIFT;
1389 struct aperture_range *range = dom->aperture[i];
1390
1391 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1392
1393 #ifdef CONFIG_IOMMU_STRESS
1394 if (i < 4)
1395 return;
1396 #endif
1397
1398 if (address >= dom->next_address)
1399 dom->need_flush = true;
1400
1401 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1402
1403 bitmap_clear(range->bitmap, address, pages);
1404
1405 }
1406
1407 /****************************************************************************
1408 *
1409 * The next functions belong to the domain allocation. A domain is
1410 * allocated for every IOMMU as the default domain. If device isolation
1411 * is enabled, every device get its own domain. The most important thing
1412 * about domains is the page table mapping the DMA address space they
1413 * contain.
1414 *
1415 ****************************************************************************/
1416
1417 /*
1418 * This function adds a protection domain to the global protection domain list
1419 */
1420 static void add_domain_to_list(struct protection_domain *domain)
1421 {
1422 unsigned long flags;
1423
1424 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1425 list_add(&domain->list, &amd_iommu_pd_list);
1426 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1427 }
1428
1429 /*
1430 * This function removes a protection domain to the global
1431 * protection domain list
1432 */
1433 static void del_domain_from_list(struct protection_domain *domain)
1434 {
1435 unsigned long flags;
1436
1437 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1438 list_del(&domain->list);
1439 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1440 }
1441
1442 static u16 domain_id_alloc(void)
1443 {
1444 unsigned long flags;
1445 int id;
1446
1447 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1448 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1449 BUG_ON(id == 0);
1450 if (id > 0 && id < MAX_DOMAIN_ID)
1451 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1452 else
1453 id = 0;
1454 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1455
1456 return id;
1457 }
1458
1459 static void domain_id_free(int id)
1460 {
1461 unsigned long flags;
1462
1463 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1464 if (id > 0 && id < MAX_DOMAIN_ID)
1465 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1466 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1467 }
1468
1469 static void free_pagetable(struct protection_domain *domain)
1470 {
1471 int i, j;
1472 u64 *p1, *p2, *p3;
1473
1474 p1 = domain->pt_root;
1475
1476 if (!p1)
1477 return;
1478
1479 for (i = 0; i < 512; ++i) {
1480 if (!IOMMU_PTE_PRESENT(p1[i]))
1481 continue;
1482
1483 p2 = IOMMU_PTE_PAGE(p1[i]);
1484 for (j = 0; j < 512; ++j) {
1485 if (!IOMMU_PTE_PRESENT(p2[j]))
1486 continue;
1487 p3 = IOMMU_PTE_PAGE(p2[j]);
1488 free_page((unsigned long)p3);
1489 }
1490
1491 free_page((unsigned long)p2);
1492 }
1493
1494 free_page((unsigned long)p1);
1495
1496 domain->pt_root = NULL;
1497 }
1498
1499 /*
1500 * Free a domain, only used if something went wrong in the
1501 * allocation path and we need to free an already allocated page table
1502 */
1503 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1504 {
1505 int i;
1506
1507 if (!dom)
1508 return;
1509
1510 del_domain_from_list(&dom->domain);
1511
1512 free_pagetable(&dom->domain);
1513
1514 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1515 if (!dom->aperture[i])
1516 continue;
1517 free_page((unsigned long)dom->aperture[i]->bitmap);
1518 kfree(dom->aperture[i]);
1519 }
1520
1521 kfree(dom);
1522 }
1523
1524 /*
1525 * Allocates a new protection domain usable for the dma_ops functions.
1526 * It also initializes the page table and the address allocator data
1527 * structures required for the dma_ops interface
1528 */
1529 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1530 {
1531 struct dma_ops_domain *dma_dom;
1532
1533 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1534 if (!dma_dom)
1535 return NULL;
1536
1537 spin_lock_init(&dma_dom->domain.lock);
1538
1539 dma_dom->domain.id = domain_id_alloc();
1540 if (dma_dom->domain.id == 0)
1541 goto free_dma_dom;
1542 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1543 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1544 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1545 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1546 dma_dom->domain.priv = dma_dom;
1547 if (!dma_dom->domain.pt_root)
1548 goto free_dma_dom;
1549
1550 dma_dom->need_flush = false;
1551 dma_dom->target_dev = 0xffff;
1552
1553 add_domain_to_list(&dma_dom->domain);
1554
1555 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1556 goto free_dma_dom;
1557
1558 /*
1559 * mark the first page as allocated so we never return 0 as
1560 * a valid dma-address. So we can use 0 as error value
1561 */
1562 dma_dom->aperture[0]->bitmap[0] = 1;
1563 dma_dom->next_address = 0;
1564
1565
1566 return dma_dom;
1567
1568 free_dma_dom:
1569 dma_ops_domain_free(dma_dom);
1570
1571 return NULL;
1572 }
1573
1574 /*
1575 * little helper function to check whether a given protection domain is a
1576 * dma_ops domain
1577 */
1578 static bool dma_ops_domain(struct protection_domain *domain)
1579 {
1580 return domain->flags & PD_DMA_OPS_MASK;
1581 }
1582
1583 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1584 {
1585 u64 pte_root = virt_to_phys(domain->pt_root);
1586 u32 flags = 0;
1587
1588 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1589 << DEV_ENTRY_MODE_SHIFT;
1590 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1591
1592 if (ats)
1593 flags |= DTE_FLAG_IOTLB;
1594
1595 amd_iommu_dev_table[devid].data[3] |= flags;
1596 amd_iommu_dev_table[devid].data[2] = domain->id;
1597 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1598 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1599 }
1600
1601 static void clear_dte_entry(u16 devid)
1602 {
1603 /* remove entry from the device table seen by the hardware */
1604 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1605 amd_iommu_dev_table[devid].data[1] = 0;
1606 amd_iommu_dev_table[devid].data[2] = 0;
1607
1608 amd_iommu_apply_erratum_63(devid);
1609 }
1610
1611 static void do_attach(struct iommu_dev_data *dev_data,
1612 struct protection_domain *domain)
1613 {
1614 struct amd_iommu *iommu;
1615 bool ats;
1616
1617 iommu = amd_iommu_rlookup_table[dev_data->devid];
1618 ats = dev_data->ats.enabled;
1619
1620 /* Update data structures */
1621 dev_data->domain = domain;
1622 list_add(&dev_data->list, &domain->dev_list);
1623 set_dte_entry(dev_data->devid, domain, ats);
1624
1625 /* Do reference counting */
1626 domain->dev_iommu[iommu->index] += 1;
1627 domain->dev_cnt += 1;
1628
1629 /* Flush the DTE entry */
1630 device_flush_dte(dev_data);
1631 }
1632
1633 static void do_detach(struct iommu_dev_data *dev_data)
1634 {
1635 struct amd_iommu *iommu;
1636
1637 iommu = amd_iommu_rlookup_table[dev_data->devid];
1638
1639 /* decrease reference counters */
1640 dev_data->domain->dev_iommu[iommu->index] -= 1;
1641 dev_data->domain->dev_cnt -= 1;
1642
1643 /* Update data structures */
1644 dev_data->domain = NULL;
1645 list_del(&dev_data->list);
1646 clear_dte_entry(dev_data->devid);
1647
1648 /* Flush the DTE entry */
1649 device_flush_dte(dev_data);
1650 }
1651
1652 /*
1653 * If a device is not yet associated with a domain, this function does
1654 * assigns it visible for the hardware
1655 */
1656 static int __attach_device(struct iommu_dev_data *dev_data,
1657 struct protection_domain *domain)
1658 {
1659 int ret;
1660
1661 /* lock domain */
1662 spin_lock(&domain->lock);
1663
1664 if (dev_data->alias_data != NULL) {
1665 struct iommu_dev_data *alias_data = dev_data->alias_data;
1666
1667 /* Some sanity checks */
1668 ret = -EBUSY;
1669 if (alias_data->domain != NULL &&
1670 alias_data->domain != domain)
1671 goto out_unlock;
1672
1673 if (dev_data->domain != NULL &&
1674 dev_data->domain != domain)
1675 goto out_unlock;
1676
1677 /* Do real assignment */
1678 if (alias_data->domain == NULL)
1679 do_attach(alias_data, domain);
1680
1681 atomic_inc(&alias_data->bind);
1682 }
1683
1684 if (dev_data->domain == NULL)
1685 do_attach(dev_data, domain);
1686
1687 atomic_inc(&dev_data->bind);
1688
1689 ret = 0;
1690
1691 out_unlock:
1692
1693 /* ready */
1694 spin_unlock(&domain->lock);
1695
1696 return ret;
1697 }
1698
1699 /*
1700 * If a device is not yet associated with a domain, this function does
1701 * assigns it visible for the hardware
1702 */
1703 static int attach_device(struct device *dev,
1704 struct protection_domain *domain)
1705 {
1706 struct pci_dev *pdev = to_pci_dev(dev);
1707 struct iommu_dev_data *dev_data;
1708 unsigned long flags;
1709 int ret;
1710
1711 dev_data = get_dev_data(dev);
1712
1713 if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1714 dev_data->ats.enabled = true;
1715 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
1716 }
1717
1718 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1719 ret = __attach_device(dev_data, domain);
1720 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1721
1722 /*
1723 * We might boot into a crash-kernel here. The crashed kernel
1724 * left the caches in the IOMMU dirty. So we have to flush
1725 * here to evict all dirty stuff.
1726 */
1727 domain_flush_tlb_pde(domain);
1728
1729 return ret;
1730 }
1731
1732 /*
1733 * Removes a device from a protection domain (unlocked)
1734 */
1735 static void __detach_device(struct iommu_dev_data *dev_data)
1736 {
1737 struct protection_domain *domain;
1738 unsigned long flags;
1739
1740 BUG_ON(!dev_data->domain);
1741
1742 domain = dev_data->domain;
1743
1744 spin_lock_irqsave(&domain->lock, flags);
1745
1746 if (dev_data->alias_data != NULL) {
1747 struct iommu_dev_data *alias_data = dev_data->alias_data;
1748
1749 if (atomic_dec_and_test(&alias_data->bind))
1750 do_detach(alias_data);
1751 }
1752
1753 if (atomic_dec_and_test(&dev_data->bind))
1754 do_detach(dev_data);
1755
1756 spin_unlock_irqrestore(&domain->lock, flags);
1757
1758 /*
1759 * If we run in passthrough mode the device must be assigned to the
1760 * passthrough domain if it is detached from any other domain.
1761 * Make sure we can deassign from the pt_domain itself.
1762 */
1763 if (iommu_pass_through &&
1764 (dev_data->domain == NULL && domain != pt_domain))
1765 __attach_device(dev_data, pt_domain);
1766 }
1767
1768 /*
1769 * Removes a device from a protection domain (with devtable_lock held)
1770 */
1771 static void detach_device(struct device *dev)
1772 {
1773 struct iommu_dev_data *dev_data;
1774 unsigned long flags;
1775
1776 dev_data = get_dev_data(dev);
1777
1778 /* lock device table */
1779 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1780 __detach_device(dev_data);
1781 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1782
1783 if (dev_data->ats.enabled) {
1784 pci_disable_ats(to_pci_dev(dev));
1785 dev_data->ats.enabled = false;
1786 }
1787 }
1788
1789 /*
1790 * Find out the protection domain structure for a given PCI device. This
1791 * will give us the pointer to the page table root for example.
1792 */
1793 static struct protection_domain *domain_for_device(struct device *dev)
1794 {
1795 struct iommu_dev_data *dev_data;
1796 struct protection_domain *dom = NULL;
1797 unsigned long flags;
1798
1799 dev_data = get_dev_data(dev);
1800
1801 if (dev_data->domain)
1802 return dev_data->domain;
1803
1804 if (dev_data->alias_data != NULL) {
1805 struct iommu_dev_data *alias_data = dev_data->alias_data;
1806
1807 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1808 if (alias_data->domain != NULL) {
1809 __attach_device(dev_data, alias_data->domain);
1810 dom = alias_data->domain;
1811 }
1812 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1813 }
1814
1815 return dom;
1816 }
1817
1818 static int device_change_notifier(struct notifier_block *nb,
1819 unsigned long action, void *data)
1820 {
1821 struct device *dev = data;
1822 u16 devid;
1823 struct protection_domain *domain;
1824 struct dma_ops_domain *dma_domain;
1825 struct amd_iommu *iommu;
1826 unsigned long flags;
1827
1828 if (!check_device(dev))
1829 return 0;
1830
1831 devid = get_device_id(dev);
1832 iommu = amd_iommu_rlookup_table[devid];
1833
1834 switch (action) {
1835 case BUS_NOTIFY_UNBOUND_DRIVER:
1836
1837 domain = domain_for_device(dev);
1838
1839 if (!domain)
1840 goto out;
1841 if (iommu_pass_through)
1842 break;
1843 detach_device(dev);
1844 break;
1845 case BUS_NOTIFY_ADD_DEVICE:
1846
1847 iommu_init_device(dev);
1848
1849 domain = domain_for_device(dev);
1850
1851 /* allocate a protection domain if a device is added */
1852 dma_domain = find_protection_domain(devid);
1853 if (dma_domain)
1854 goto out;
1855 dma_domain = dma_ops_domain_alloc();
1856 if (!dma_domain)
1857 goto out;
1858 dma_domain->target_dev = devid;
1859
1860 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1861 list_add_tail(&dma_domain->list, &iommu_pd_list);
1862 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1863
1864 break;
1865 case BUS_NOTIFY_DEL_DEVICE:
1866
1867 iommu_uninit_device(dev);
1868
1869 default:
1870 goto out;
1871 }
1872
1873 iommu_completion_wait(iommu);
1874
1875 out:
1876 return 0;
1877 }
1878
1879 static struct notifier_block device_nb = {
1880 .notifier_call = device_change_notifier,
1881 };
1882
1883 void amd_iommu_init_notifier(void)
1884 {
1885 bus_register_notifier(&pci_bus_type, &device_nb);
1886 }
1887
1888 /*****************************************************************************
1889 *
1890 * The next functions belong to the dma_ops mapping/unmapping code.
1891 *
1892 *****************************************************************************/
1893
1894 /*
1895 * In the dma_ops path we only have the struct device. This function
1896 * finds the corresponding IOMMU, the protection domain and the
1897 * requestor id for a given device.
1898 * If the device is not yet associated with a domain this is also done
1899 * in this function.
1900 */
1901 static struct protection_domain *get_domain(struct device *dev)
1902 {
1903 struct protection_domain *domain;
1904 struct dma_ops_domain *dma_dom;
1905 u16 devid = get_device_id(dev);
1906
1907 if (!check_device(dev))
1908 return ERR_PTR(-EINVAL);
1909
1910 domain = domain_for_device(dev);
1911 if (domain != NULL && !dma_ops_domain(domain))
1912 return ERR_PTR(-EBUSY);
1913
1914 if (domain != NULL)
1915 return domain;
1916
1917 /* Device not bount yet - bind it */
1918 dma_dom = find_protection_domain(devid);
1919 if (!dma_dom)
1920 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1921 attach_device(dev, &dma_dom->domain);
1922 DUMP_printk("Using protection domain %d for device %s\n",
1923 dma_dom->domain.id, dev_name(dev));
1924
1925 return &dma_dom->domain;
1926 }
1927
1928 static void update_device_table(struct protection_domain *domain)
1929 {
1930 struct iommu_dev_data *dev_data;
1931
1932 list_for_each_entry(dev_data, &domain->dev_list, list)
1933 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
1934 }
1935
1936 static void update_domain(struct protection_domain *domain)
1937 {
1938 if (!domain->updated)
1939 return;
1940
1941 update_device_table(domain);
1942
1943 domain_flush_devices(domain);
1944 domain_flush_tlb_pde(domain);
1945
1946 domain->updated = false;
1947 }
1948
1949 /*
1950 * This function fetches the PTE for a given address in the aperture
1951 */
1952 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1953 unsigned long address)
1954 {
1955 struct aperture_range *aperture;
1956 u64 *pte, *pte_page;
1957
1958 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1959 if (!aperture)
1960 return NULL;
1961
1962 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1963 if (!pte) {
1964 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1965 GFP_ATOMIC);
1966 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1967 } else
1968 pte += PM_LEVEL_INDEX(0, address);
1969
1970 update_domain(&dom->domain);
1971
1972 return pte;
1973 }
1974
1975 /*
1976 * This is the generic map function. It maps one 4kb page at paddr to
1977 * the given address in the DMA address space for the domain.
1978 */
1979 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1980 unsigned long address,
1981 phys_addr_t paddr,
1982 int direction)
1983 {
1984 u64 *pte, __pte;
1985
1986 WARN_ON(address > dom->aperture_size);
1987
1988 paddr &= PAGE_MASK;
1989
1990 pte = dma_ops_get_pte(dom, address);
1991 if (!pte)
1992 return DMA_ERROR_CODE;
1993
1994 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1995
1996 if (direction == DMA_TO_DEVICE)
1997 __pte |= IOMMU_PTE_IR;
1998 else if (direction == DMA_FROM_DEVICE)
1999 __pte |= IOMMU_PTE_IW;
2000 else if (direction == DMA_BIDIRECTIONAL)
2001 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2002
2003 WARN_ON(*pte);
2004
2005 *pte = __pte;
2006
2007 return (dma_addr_t)address;
2008 }
2009
2010 /*
2011 * The generic unmapping function for on page in the DMA address space.
2012 */
2013 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2014 unsigned long address)
2015 {
2016 struct aperture_range *aperture;
2017 u64 *pte;
2018
2019 if (address >= dom->aperture_size)
2020 return;
2021
2022 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2023 if (!aperture)
2024 return;
2025
2026 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2027 if (!pte)
2028 return;
2029
2030 pte += PM_LEVEL_INDEX(0, address);
2031
2032 WARN_ON(!*pte);
2033
2034 *pte = 0ULL;
2035 }
2036
2037 /*
2038 * This function contains common code for mapping of a physically
2039 * contiguous memory region into DMA address space. It is used by all
2040 * mapping functions provided with this IOMMU driver.
2041 * Must be called with the domain lock held.
2042 */
2043 static dma_addr_t __map_single(struct device *dev,
2044 struct dma_ops_domain *dma_dom,
2045 phys_addr_t paddr,
2046 size_t size,
2047 int dir,
2048 bool align,
2049 u64 dma_mask)
2050 {
2051 dma_addr_t offset = paddr & ~PAGE_MASK;
2052 dma_addr_t address, start, ret;
2053 unsigned int pages;
2054 unsigned long align_mask = 0;
2055 int i;
2056
2057 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2058 paddr &= PAGE_MASK;
2059
2060 INC_STATS_COUNTER(total_map_requests);
2061
2062 if (pages > 1)
2063 INC_STATS_COUNTER(cross_page);
2064
2065 if (align)
2066 align_mask = (1UL << get_order(size)) - 1;
2067
2068 retry:
2069 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2070 dma_mask);
2071 if (unlikely(address == DMA_ERROR_CODE)) {
2072 /*
2073 * setting next_address here will let the address
2074 * allocator only scan the new allocated range in the
2075 * first run. This is a small optimization.
2076 */
2077 dma_dom->next_address = dma_dom->aperture_size;
2078
2079 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2080 goto out;
2081
2082 /*
2083 * aperture was successfully enlarged by 128 MB, try
2084 * allocation again
2085 */
2086 goto retry;
2087 }
2088
2089 start = address;
2090 for (i = 0; i < pages; ++i) {
2091 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2092 if (ret == DMA_ERROR_CODE)
2093 goto out_unmap;
2094
2095 paddr += PAGE_SIZE;
2096 start += PAGE_SIZE;
2097 }
2098 address += offset;
2099
2100 ADD_STATS_COUNTER(alloced_io_mem, size);
2101
2102 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2103 domain_flush_tlb(&dma_dom->domain);
2104 dma_dom->need_flush = false;
2105 } else if (unlikely(amd_iommu_np_cache))
2106 domain_flush_pages(&dma_dom->domain, address, size);
2107
2108 out:
2109 return address;
2110
2111 out_unmap:
2112
2113 for (--i; i >= 0; --i) {
2114 start -= PAGE_SIZE;
2115 dma_ops_domain_unmap(dma_dom, start);
2116 }
2117
2118 dma_ops_free_addresses(dma_dom, address, pages);
2119
2120 return DMA_ERROR_CODE;
2121 }
2122
2123 /*
2124 * Does the reverse of the __map_single function. Must be called with
2125 * the domain lock held too
2126 */
2127 static void __unmap_single(struct dma_ops_domain *dma_dom,
2128 dma_addr_t dma_addr,
2129 size_t size,
2130 int dir)
2131 {
2132 dma_addr_t flush_addr;
2133 dma_addr_t i, start;
2134 unsigned int pages;
2135
2136 if ((dma_addr == DMA_ERROR_CODE) ||
2137 (dma_addr + size > dma_dom->aperture_size))
2138 return;
2139
2140 flush_addr = dma_addr;
2141 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2142 dma_addr &= PAGE_MASK;
2143 start = dma_addr;
2144
2145 for (i = 0; i < pages; ++i) {
2146 dma_ops_domain_unmap(dma_dom, start);
2147 start += PAGE_SIZE;
2148 }
2149
2150 SUB_STATS_COUNTER(alloced_io_mem, size);
2151
2152 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2153
2154 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2155 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2156 dma_dom->need_flush = false;
2157 }
2158 }
2159
2160 /*
2161 * The exported map_single function for dma_ops.
2162 */
2163 static dma_addr_t map_page(struct device *dev, struct page *page,
2164 unsigned long offset, size_t size,
2165 enum dma_data_direction dir,
2166 struct dma_attrs *attrs)
2167 {
2168 unsigned long flags;
2169 struct protection_domain *domain;
2170 dma_addr_t addr;
2171 u64 dma_mask;
2172 phys_addr_t paddr = page_to_phys(page) + offset;
2173
2174 INC_STATS_COUNTER(cnt_map_single);
2175
2176 domain = get_domain(dev);
2177 if (PTR_ERR(domain) == -EINVAL)
2178 return (dma_addr_t)paddr;
2179 else if (IS_ERR(domain))
2180 return DMA_ERROR_CODE;
2181
2182 dma_mask = *dev->dma_mask;
2183
2184 spin_lock_irqsave(&domain->lock, flags);
2185
2186 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2187 dma_mask);
2188 if (addr == DMA_ERROR_CODE)
2189 goto out;
2190
2191 domain_flush_complete(domain);
2192
2193 out:
2194 spin_unlock_irqrestore(&domain->lock, flags);
2195
2196 return addr;
2197 }
2198
2199 /*
2200 * The exported unmap_single function for dma_ops.
2201 */
2202 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2203 enum dma_data_direction dir, struct dma_attrs *attrs)
2204 {
2205 unsigned long flags;
2206 struct protection_domain *domain;
2207
2208 INC_STATS_COUNTER(cnt_unmap_single);
2209
2210 domain = get_domain(dev);
2211 if (IS_ERR(domain))
2212 return;
2213
2214 spin_lock_irqsave(&domain->lock, flags);
2215
2216 __unmap_single(domain->priv, dma_addr, size, dir);
2217
2218 domain_flush_complete(domain);
2219
2220 spin_unlock_irqrestore(&domain->lock, flags);
2221 }
2222
2223 /*
2224 * This is a special map_sg function which is used if we should map a
2225 * device which is not handled by an AMD IOMMU in the system.
2226 */
2227 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2228 int nelems, int dir)
2229 {
2230 struct scatterlist *s;
2231 int i;
2232
2233 for_each_sg(sglist, s, nelems, i) {
2234 s->dma_address = (dma_addr_t)sg_phys(s);
2235 s->dma_length = s->length;
2236 }
2237
2238 return nelems;
2239 }
2240
2241 /*
2242 * The exported map_sg function for dma_ops (handles scatter-gather
2243 * lists).
2244 */
2245 static int map_sg(struct device *dev, struct scatterlist *sglist,
2246 int nelems, enum dma_data_direction dir,
2247 struct dma_attrs *attrs)
2248 {
2249 unsigned long flags;
2250 struct protection_domain *domain;
2251 int i;
2252 struct scatterlist *s;
2253 phys_addr_t paddr;
2254 int mapped_elems = 0;
2255 u64 dma_mask;
2256
2257 INC_STATS_COUNTER(cnt_map_sg);
2258
2259 domain = get_domain(dev);
2260 if (PTR_ERR(domain) == -EINVAL)
2261 return map_sg_no_iommu(dev, sglist, nelems, dir);
2262 else if (IS_ERR(domain))
2263 return 0;
2264
2265 dma_mask = *dev->dma_mask;
2266
2267 spin_lock_irqsave(&domain->lock, flags);
2268
2269 for_each_sg(sglist, s, nelems, i) {
2270 paddr = sg_phys(s);
2271
2272 s->dma_address = __map_single(dev, domain->priv,
2273 paddr, s->length, dir, false,
2274 dma_mask);
2275
2276 if (s->dma_address) {
2277 s->dma_length = s->length;
2278 mapped_elems++;
2279 } else
2280 goto unmap;
2281 }
2282
2283 domain_flush_complete(domain);
2284
2285 out:
2286 spin_unlock_irqrestore(&domain->lock, flags);
2287
2288 return mapped_elems;
2289 unmap:
2290 for_each_sg(sglist, s, mapped_elems, i) {
2291 if (s->dma_address)
2292 __unmap_single(domain->priv, s->dma_address,
2293 s->dma_length, dir);
2294 s->dma_address = s->dma_length = 0;
2295 }
2296
2297 mapped_elems = 0;
2298
2299 goto out;
2300 }
2301
2302 /*
2303 * The exported map_sg function for dma_ops (handles scatter-gather
2304 * lists).
2305 */
2306 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2307 int nelems, enum dma_data_direction dir,
2308 struct dma_attrs *attrs)
2309 {
2310 unsigned long flags;
2311 struct protection_domain *domain;
2312 struct scatterlist *s;
2313 int i;
2314
2315 INC_STATS_COUNTER(cnt_unmap_sg);
2316
2317 domain = get_domain(dev);
2318 if (IS_ERR(domain))
2319 return;
2320
2321 spin_lock_irqsave(&domain->lock, flags);
2322
2323 for_each_sg(sglist, s, nelems, i) {
2324 __unmap_single(domain->priv, s->dma_address,
2325 s->dma_length, dir);
2326 s->dma_address = s->dma_length = 0;
2327 }
2328
2329 domain_flush_complete(domain);
2330
2331 spin_unlock_irqrestore(&domain->lock, flags);
2332 }
2333
2334 /*
2335 * The exported alloc_coherent function for dma_ops.
2336 */
2337 static void *alloc_coherent(struct device *dev, size_t size,
2338 dma_addr_t *dma_addr, gfp_t flag)
2339 {
2340 unsigned long flags;
2341 void *virt_addr;
2342 struct protection_domain *domain;
2343 phys_addr_t paddr;
2344 u64 dma_mask = dev->coherent_dma_mask;
2345
2346 INC_STATS_COUNTER(cnt_alloc_coherent);
2347
2348 domain = get_domain(dev);
2349 if (PTR_ERR(domain) == -EINVAL) {
2350 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2351 *dma_addr = __pa(virt_addr);
2352 return virt_addr;
2353 } else if (IS_ERR(domain))
2354 return NULL;
2355
2356 dma_mask = dev->coherent_dma_mask;
2357 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2358 flag |= __GFP_ZERO;
2359
2360 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2361 if (!virt_addr)
2362 return NULL;
2363
2364 paddr = virt_to_phys(virt_addr);
2365
2366 if (!dma_mask)
2367 dma_mask = *dev->dma_mask;
2368
2369 spin_lock_irqsave(&domain->lock, flags);
2370
2371 *dma_addr = __map_single(dev, domain->priv, paddr,
2372 size, DMA_BIDIRECTIONAL, true, dma_mask);
2373
2374 if (*dma_addr == DMA_ERROR_CODE) {
2375 spin_unlock_irqrestore(&domain->lock, flags);
2376 goto out_free;
2377 }
2378
2379 domain_flush_complete(domain);
2380
2381 spin_unlock_irqrestore(&domain->lock, flags);
2382
2383 return virt_addr;
2384
2385 out_free:
2386
2387 free_pages((unsigned long)virt_addr, get_order(size));
2388
2389 return NULL;
2390 }
2391
2392 /*
2393 * The exported free_coherent function for dma_ops.
2394 */
2395 static void free_coherent(struct device *dev, size_t size,
2396 void *virt_addr, dma_addr_t dma_addr)
2397 {
2398 unsigned long flags;
2399 struct protection_domain *domain;
2400
2401 INC_STATS_COUNTER(cnt_free_coherent);
2402
2403 domain = get_domain(dev);
2404 if (IS_ERR(domain))
2405 goto free_mem;
2406
2407 spin_lock_irqsave(&domain->lock, flags);
2408
2409 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2410
2411 domain_flush_complete(domain);
2412
2413 spin_unlock_irqrestore(&domain->lock, flags);
2414
2415 free_mem:
2416 free_pages((unsigned long)virt_addr, get_order(size));
2417 }
2418
2419 /*
2420 * This function is called by the DMA layer to find out if we can handle a
2421 * particular device. It is part of the dma_ops.
2422 */
2423 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2424 {
2425 return check_device(dev);
2426 }
2427
2428 /*
2429 * The function for pre-allocating protection domains.
2430 *
2431 * If the driver core informs the DMA layer if a driver grabs a device
2432 * we don't need to preallocate the protection domains anymore.
2433 * For now we have to.
2434 */
2435 static void prealloc_protection_domains(void)
2436 {
2437 struct pci_dev *dev = NULL;
2438 struct dma_ops_domain *dma_dom;
2439 u16 devid;
2440
2441 for_each_pci_dev(dev) {
2442
2443 /* Do we handle this device? */
2444 if (!check_device(&dev->dev))
2445 continue;
2446
2447 /* Is there already any domain for it? */
2448 if (domain_for_device(&dev->dev))
2449 continue;
2450
2451 devid = get_device_id(&dev->dev);
2452
2453 dma_dom = dma_ops_domain_alloc();
2454 if (!dma_dom)
2455 continue;
2456 init_unity_mappings_for_device(dma_dom, devid);
2457 dma_dom->target_dev = devid;
2458
2459 attach_device(&dev->dev, &dma_dom->domain);
2460
2461 list_add_tail(&dma_dom->list, &iommu_pd_list);
2462 }
2463 }
2464
2465 static struct dma_map_ops amd_iommu_dma_ops = {
2466 .alloc_coherent = alloc_coherent,
2467 .free_coherent = free_coherent,
2468 .map_page = map_page,
2469 .unmap_page = unmap_page,
2470 .map_sg = map_sg,
2471 .unmap_sg = unmap_sg,
2472 .dma_supported = amd_iommu_dma_supported,
2473 };
2474
2475 static unsigned device_dma_ops_init(void)
2476 {
2477 struct pci_dev *pdev = NULL;
2478 unsigned unhandled = 0;
2479
2480 for_each_pci_dev(pdev) {
2481 if (!check_device(&pdev->dev)) {
2482 unhandled += 1;
2483 continue;
2484 }
2485
2486 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2487 }
2488
2489 return unhandled;
2490 }
2491
2492 /*
2493 * The function which clues the AMD IOMMU driver into dma_ops.
2494 */
2495
2496 void __init amd_iommu_init_api(void)
2497 {
2498 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2499 }
2500
2501 int __init amd_iommu_init_dma_ops(void)
2502 {
2503 struct amd_iommu *iommu;
2504 int ret, unhandled;
2505
2506 /*
2507 * first allocate a default protection domain for every IOMMU we
2508 * found in the system. Devices not assigned to any other
2509 * protection domain will be assigned to the default one.
2510 */
2511 for_each_iommu(iommu) {
2512 iommu->default_dom = dma_ops_domain_alloc();
2513 if (iommu->default_dom == NULL)
2514 return -ENOMEM;
2515 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2516 ret = iommu_init_unity_mappings(iommu);
2517 if (ret)
2518 goto free_domains;
2519 }
2520
2521 /*
2522 * Pre-allocate the protection domains for each device.
2523 */
2524 prealloc_protection_domains();
2525
2526 iommu_detected = 1;
2527 swiotlb = 0;
2528
2529 /* Make the driver finally visible to the drivers */
2530 unhandled = device_dma_ops_init();
2531 if (unhandled && max_pfn > MAX_DMA32_PFN) {
2532 /* There are unhandled devices - initialize swiotlb for them */
2533 swiotlb = 1;
2534 }
2535
2536 amd_iommu_stats_init();
2537
2538 return 0;
2539
2540 free_domains:
2541
2542 for_each_iommu(iommu) {
2543 if (iommu->default_dom)
2544 dma_ops_domain_free(iommu->default_dom);
2545 }
2546
2547 return ret;
2548 }
2549
2550 /*****************************************************************************
2551 *
2552 * The following functions belong to the exported interface of AMD IOMMU
2553 *
2554 * This interface allows access to lower level functions of the IOMMU
2555 * like protection domain handling and assignement of devices to domains
2556 * which is not possible with the dma_ops interface.
2557 *
2558 *****************************************************************************/
2559
2560 static void cleanup_domain(struct protection_domain *domain)
2561 {
2562 struct iommu_dev_data *dev_data, *next;
2563 unsigned long flags;
2564
2565 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2566
2567 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2568 __detach_device(dev_data);
2569 atomic_set(&dev_data->bind, 0);
2570 }
2571
2572 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2573 }
2574
2575 static void protection_domain_free(struct protection_domain *domain)
2576 {
2577 if (!domain)
2578 return;
2579
2580 del_domain_from_list(domain);
2581
2582 if (domain->id)
2583 domain_id_free(domain->id);
2584
2585 kfree(domain);
2586 }
2587
2588 static struct protection_domain *protection_domain_alloc(void)
2589 {
2590 struct protection_domain *domain;
2591
2592 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2593 if (!domain)
2594 return NULL;
2595
2596 spin_lock_init(&domain->lock);
2597 mutex_init(&domain->api_lock);
2598 domain->id = domain_id_alloc();
2599 if (!domain->id)
2600 goto out_err;
2601 INIT_LIST_HEAD(&domain->dev_list);
2602
2603 add_domain_to_list(domain);
2604
2605 return domain;
2606
2607 out_err:
2608 kfree(domain);
2609
2610 return NULL;
2611 }
2612
2613 static int amd_iommu_domain_init(struct iommu_domain *dom)
2614 {
2615 struct protection_domain *domain;
2616
2617 domain = protection_domain_alloc();
2618 if (!domain)
2619 goto out_free;
2620
2621 domain->mode = PAGE_MODE_3_LEVEL;
2622 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2623 if (!domain->pt_root)
2624 goto out_free;
2625
2626 dom->priv = domain;
2627
2628 return 0;
2629
2630 out_free:
2631 protection_domain_free(domain);
2632
2633 return -ENOMEM;
2634 }
2635
2636 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2637 {
2638 struct protection_domain *domain = dom->priv;
2639
2640 if (!domain)
2641 return;
2642
2643 if (domain->dev_cnt > 0)
2644 cleanup_domain(domain);
2645
2646 BUG_ON(domain->dev_cnt != 0);
2647
2648 free_pagetable(domain);
2649
2650 protection_domain_free(domain);
2651
2652 dom->priv = NULL;
2653 }
2654
2655 static void amd_iommu_detach_device(struct iommu_domain *dom,
2656 struct device *dev)
2657 {
2658 struct iommu_dev_data *dev_data = dev->archdata.iommu;
2659 struct amd_iommu *iommu;
2660 u16 devid;
2661
2662 if (!check_device(dev))
2663 return;
2664
2665 devid = get_device_id(dev);
2666
2667 if (dev_data->domain != NULL)
2668 detach_device(dev);
2669
2670 iommu = amd_iommu_rlookup_table[devid];
2671 if (!iommu)
2672 return;
2673
2674 iommu_completion_wait(iommu);
2675 }
2676
2677 static int amd_iommu_attach_device(struct iommu_domain *dom,
2678 struct device *dev)
2679 {
2680 struct protection_domain *domain = dom->priv;
2681 struct iommu_dev_data *dev_data;
2682 struct amd_iommu *iommu;
2683 int ret;
2684
2685 if (!check_device(dev))
2686 return -EINVAL;
2687
2688 dev_data = dev->archdata.iommu;
2689
2690 iommu = amd_iommu_rlookup_table[dev_data->devid];
2691 if (!iommu)
2692 return -EINVAL;
2693
2694 if (dev_data->domain)
2695 detach_device(dev);
2696
2697 ret = attach_device(dev, domain);
2698
2699 iommu_completion_wait(iommu);
2700
2701 return ret;
2702 }
2703
2704 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2705 phys_addr_t paddr, int gfp_order, int iommu_prot)
2706 {
2707 unsigned long page_size = 0x1000UL << gfp_order;
2708 struct protection_domain *domain = dom->priv;
2709 int prot = 0;
2710 int ret;
2711
2712 if (iommu_prot & IOMMU_READ)
2713 prot |= IOMMU_PROT_IR;
2714 if (iommu_prot & IOMMU_WRITE)
2715 prot |= IOMMU_PROT_IW;
2716
2717 mutex_lock(&domain->api_lock);
2718 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2719 mutex_unlock(&domain->api_lock);
2720
2721 return ret;
2722 }
2723
2724 static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2725 int gfp_order)
2726 {
2727 struct protection_domain *domain = dom->priv;
2728 unsigned long page_size, unmap_size;
2729
2730 page_size = 0x1000UL << gfp_order;
2731
2732 mutex_lock(&domain->api_lock);
2733 unmap_size = iommu_unmap_page(domain, iova, page_size);
2734 mutex_unlock(&domain->api_lock);
2735
2736 domain_flush_tlb_pde(domain);
2737
2738 return get_order(unmap_size);
2739 }
2740
2741 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2742 unsigned long iova)
2743 {
2744 struct protection_domain *domain = dom->priv;
2745 unsigned long offset_mask;
2746 phys_addr_t paddr;
2747 u64 *pte, __pte;
2748
2749 pte = fetch_pte(domain, iova);
2750
2751 if (!pte || !IOMMU_PTE_PRESENT(*pte))
2752 return 0;
2753
2754 if (PM_PTE_LEVEL(*pte) == 0)
2755 offset_mask = PAGE_SIZE - 1;
2756 else
2757 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2758
2759 __pte = *pte & PM_ADDR_MASK;
2760 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2761
2762 return paddr;
2763 }
2764
2765 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2766 unsigned long cap)
2767 {
2768 switch (cap) {
2769 case IOMMU_CAP_CACHE_COHERENCY:
2770 return 1;
2771 }
2772
2773 return 0;
2774 }
2775
2776 static struct iommu_ops amd_iommu_ops = {
2777 .domain_init = amd_iommu_domain_init,
2778 .domain_destroy = amd_iommu_domain_destroy,
2779 .attach_dev = amd_iommu_attach_device,
2780 .detach_dev = amd_iommu_detach_device,
2781 .map = amd_iommu_map,
2782 .unmap = amd_iommu_unmap,
2783 .iova_to_phys = amd_iommu_iova_to_phys,
2784 .domain_has_cap = amd_iommu_domain_has_cap,
2785 };
2786
2787 /*****************************************************************************
2788 *
2789 * The next functions do a basic initialization of IOMMU for pass through
2790 * mode
2791 *
2792 * In passthrough mode the IOMMU is initialized and enabled but not used for
2793 * DMA-API translation.
2794 *
2795 *****************************************************************************/
2796
2797 int __init amd_iommu_init_passthrough(void)
2798 {
2799 struct amd_iommu *iommu;
2800 struct pci_dev *dev = NULL;
2801 u16 devid;
2802
2803 /* allocate passthrough domain */
2804 pt_domain = protection_domain_alloc();
2805 if (!pt_domain)
2806 return -ENOMEM;
2807
2808 pt_domain->mode |= PAGE_MODE_NONE;
2809
2810 for_each_pci_dev(dev) {
2811 if (!check_device(&dev->dev))
2812 continue;
2813
2814 devid = get_device_id(&dev->dev);
2815
2816 iommu = amd_iommu_rlookup_table[devid];
2817 if (!iommu)
2818 continue;
2819
2820 attach_device(&dev->dev, pt_domain);
2821 }
2822
2823 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2824
2825 return 0;
2826 }