]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/iommu/amd_iommu.c
ASoC: cs42l52: Improve two size determinations in cs42l52_i2c_probe()
[mirror_ubuntu-jammy-kernel.git] / drivers / iommu / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/acpi.h>
23 #include <linux/amba/bus.h>
24 #include <linux/platform_device.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitmap.h>
27 #include <linux/slab.h>
28 #include <linux/debugfs.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/iommu-helper.h>
32 #include <linux/iommu.h>
33 #include <linux/delay.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/notifier.h>
36 #include <linux/export.h>
37 #include <linux/irq.h>
38 #include <linux/msi.h>
39 #include <linux/dma-contiguous.h>
40 #include <linux/irqdomain.h>
41 #include <linux/percpu.h>
42 #include <linux/iova.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/io_apic.h>
45 #include <asm/apic.h>
46 #include <asm/hw_irq.h>
47 #include <asm/msidef.h>
48 #include <asm/proto.h>
49 #include <asm/iommu.h>
50 #include <asm/gart.h>
51 #include <asm/dma.h>
52
53 #include "amd_iommu_proto.h"
54 #include "amd_iommu_types.h"
55 #include "irq_remapping.h"
56
57 #define AMD_IOMMU_MAPPING_ERROR 0
58
59 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
60
61 #define LOOP_TIMEOUT 100000
62
63 /* IO virtual address start page frame number */
64 #define IOVA_START_PFN (1)
65 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
66
67 /* Reserved IOVA ranges */
68 #define MSI_RANGE_START (0xfee00000)
69 #define MSI_RANGE_END (0xfeefffff)
70 #define HT_RANGE_START (0xfd00000000ULL)
71 #define HT_RANGE_END (0xffffffffffULL)
72
73 /*
74 * This bitmap is used to advertise the page sizes our hardware support
75 * to the IOMMU core, which will then use this information to split
76 * physically contiguous memory regions it is mapping into page sizes
77 * that we support.
78 *
79 * 512GB Pages are not supported due to a hardware bug
80 */
81 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
82
83 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
84
85 /* List of all available dev_data structures */
86 static LIST_HEAD(dev_data_list);
87 static DEFINE_SPINLOCK(dev_data_list_lock);
88
89 LIST_HEAD(ioapic_map);
90 LIST_HEAD(hpet_map);
91 LIST_HEAD(acpihid_map);
92
93 /*
94 * Domain for untranslated devices - only allocated
95 * if iommu=pt passed on kernel cmd line.
96 */
97 const struct iommu_ops amd_iommu_ops;
98
99 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
100 int amd_iommu_max_glx_val = -1;
101
102 static const struct dma_map_ops amd_iommu_dma_ops;
103
104 /*
105 * general struct to manage commands send to an IOMMU
106 */
107 struct iommu_cmd {
108 u32 data[4];
109 };
110
111 struct kmem_cache *amd_iommu_irq_cache;
112
113 static void update_domain(struct protection_domain *domain);
114 static int protection_domain_init(struct protection_domain *domain);
115 static void detach_device(struct device *dev);
116 static void iova_domain_flush_tlb(struct iova_domain *iovad);
117
118 /*
119 * Data container for a dma_ops specific protection domain
120 */
121 struct dma_ops_domain {
122 /* generic protection domain information */
123 struct protection_domain domain;
124
125 /* IOVA RB-Tree */
126 struct iova_domain iovad;
127 };
128
129 static struct iova_domain reserved_iova_ranges;
130 static struct lock_class_key reserved_rbtree_key;
131
132 /****************************************************************************
133 *
134 * Helper functions
135 *
136 ****************************************************************************/
137
138 static inline int match_hid_uid(struct device *dev,
139 struct acpihid_map_entry *entry)
140 {
141 const char *hid, *uid;
142
143 hid = acpi_device_hid(ACPI_COMPANION(dev));
144 uid = acpi_device_uid(ACPI_COMPANION(dev));
145
146 if (!hid || !(*hid))
147 return -ENODEV;
148
149 if (!uid || !(*uid))
150 return strcmp(hid, entry->hid);
151
152 if (!(*entry->uid))
153 return strcmp(hid, entry->hid);
154
155 return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
156 }
157
158 static inline u16 get_pci_device_id(struct device *dev)
159 {
160 struct pci_dev *pdev = to_pci_dev(dev);
161
162 return PCI_DEVID(pdev->bus->number, pdev->devfn);
163 }
164
165 static inline int get_acpihid_device_id(struct device *dev,
166 struct acpihid_map_entry **entry)
167 {
168 struct acpihid_map_entry *p;
169
170 list_for_each_entry(p, &acpihid_map, list) {
171 if (!match_hid_uid(dev, p)) {
172 if (entry)
173 *entry = p;
174 return p->devid;
175 }
176 }
177 return -EINVAL;
178 }
179
180 static inline int get_device_id(struct device *dev)
181 {
182 int devid;
183
184 if (dev_is_pci(dev))
185 devid = get_pci_device_id(dev);
186 else
187 devid = get_acpihid_device_id(dev, NULL);
188
189 return devid;
190 }
191
192 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
193 {
194 return container_of(dom, struct protection_domain, domain);
195 }
196
197 static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
198 {
199 BUG_ON(domain->flags != PD_DMA_OPS_MASK);
200 return container_of(domain, struct dma_ops_domain, domain);
201 }
202
203 static struct iommu_dev_data *alloc_dev_data(u16 devid)
204 {
205 struct iommu_dev_data *dev_data;
206 unsigned long flags;
207
208 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
209 if (!dev_data)
210 return NULL;
211
212 dev_data->devid = devid;
213
214 spin_lock_irqsave(&dev_data_list_lock, flags);
215 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
216 spin_unlock_irqrestore(&dev_data_list_lock, flags);
217
218 ratelimit_default_init(&dev_data->rs);
219
220 return dev_data;
221 }
222
223 static struct iommu_dev_data *search_dev_data(u16 devid)
224 {
225 struct iommu_dev_data *dev_data;
226 unsigned long flags;
227
228 spin_lock_irqsave(&dev_data_list_lock, flags);
229 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
230 if (dev_data->devid == devid)
231 goto out_unlock;
232 }
233
234 dev_data = NULL;
235
236 out_unlock:
237 spin_unlock_irqrestore(&dev_data_list_lock, flags);
238
239 return dev_data;
240 }
241
242 static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
243 {
244 *(u16 *)data = alias;
245 return 0;
246 }
247
248 static u16 get_alias(struct device *dev)
249 {
250 struct pci_dev *pdev = to_pci_dev(dev);
251 u16 devid, ivrs_alias, pci_alias;
252
253 /* The callers make sure that get_device_id() does not fail here */
254 devid = get_device_id(dev);
255 ivrs_alias = amd_iommu_alias_table[devid];
256 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
257
258 if (ivrs_alias == pci_alias)
259 return ivrs_alias;
260
261 /*
262 * DMA alias showdown
263 *
264 * The IVRS is fairly reliable in telling us about aliases, but it
265 * can't know about every screwy device. If we don't have an IVRS
266 * reported alias, use the PCI reported alias. In that case we may
267 * still need to initialize the rlookup and dev_table entries if the
268 * alias is to a non-existent device.
269 */
270 if (ivrs_alias == devid) {
271 if (!amd_iommu_rlookup_table[pci_alias]) {
272 amd_iommu_rlookup_table[pci_alias] =
273 amd_iommu_rlookup_table[devid];
274 memcpy(amd_iommu_dev_table[pci_alias].data,
275 amd_iommu_dev_table[devid].data,
276 sizeof(amd_iommu_dev_table[pci_alias].data));
277 }
278
279 return pci_alias;
280 }
281
282 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
283 "for device %s[%04x:%04x], kernel reported alias "
284 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
285 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
286 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
287 PCI_FUNC(pci_alias));
288
289 /*
290 * If we don't have a PCI DMA alias and the IVRS alias is on the same
291 * bus, then the IVRS table may know about a quirk that we don't.
292 */
293 if (pci_alias == devid &&
294 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
295 pci_add_dma_alias(pdev, ivrs_alias & 0xff);
296 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
297 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
298 dev_name(dev));
299 }
300
301 return ivrs_alias;
302 }
303
304 static struct iommu_dev_data *find_dev_data(u16 devid)
305 {
306 struct iommu_dev_data *dev_data;
307 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
308
309 dev_data = search_dev_data(devid);
310
311 if (dev_data == NULL) {
312 dev_data = alloc_dev_data(devid);
313
314 if (translation_pre_enabled(iommu))
315 dev_data->defer_attach = true;
316 }
317
318 return dev_data;
319 }
320
321 struct iommu_dev_data *get_dev_data(struct device *dev)
322 {
323 return dev->archdata.iommu;
324 }
325 EXPORT_SYMBOL(get_dev_data);
326
327 /*
328 * Find or create an IOMMU group for a acpihid device.
329 */
330 static struct iommu_group *acpihid_device_group(struct device *dev)
331 {
332 struct acpihid_map_entry *p, *entry = NULL;
333 int devid;
334
335 devid = get_acpihid_device_id(dev, &entry);
336 if (devid < 0)
337 return ERR_PTR(devid);
338
339 list_for_each_entry(p, &acpihid_map, list) {
340 if ((devid == p->devid) && p->group)
341 entry->group = p->group;
342 }
343
344 if (!entry->group)
345 entry->group = generic_device_group(dev);
346 else
347 iommu_group_ref_get(entry->group);
348
349 return entry->group;
350 }
351
352 static bool pci_iommuv2_capable(struct pci_dev *pdev)
353 {
354 static const int caps[] = {
355 PCI_EXT_CAP_ID_ATS,
356 PCI_EXT_CAP_ID_PRI,
357 PCI_EXT_CAP_ID_PASID,
358 };
359 int i, pos;
360
361 for (i = 0; i < 3; ++i) {
362 pos = pci_find_ext_capability(pdev, caps[i]);
363 if (pos == 0)
364 return false;
365 }
366
367 return true;
368 }
369
370 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
371 {
372 struct iommu_dev_data *dev_data;
373
374 dev_data = get_dev_data(&pdev->dev);
375
376 return dev_data->errata & (1 << erratum) ? true : false;
377 }
378
379 /*
380 * This function checks if the driver got a valid device from the caller to
381 * avoid dereferencing invalid pointers.
382 */
383 static bool check_device(struct device *dev)
384 {
385 int devid;
386
387 if (!dev || !dev->dma_mask)
388 return false;
389
390 devid = get_device_id(dev);
391 if (devid < 0)
392 return false;
393
394 /* Out of our scope? */
395 if (devid > amd_iommu_last_bdf)
396 return false;
397
398 if (amd_iommu_rlookup_table[devid] == NULL)
399 return false;
400
401 return true;
402 }
403
404 static void init_iommu_group(struct device *dev)
405 {
406 struct iommu_group *group;
407
408 group = iommu_group_get_for_dev(dev);
409 if (IS_ERR(group))
410 return;
411
412 iommu_group_put(group);
413 }
414
415 static int iommu_init_device(struct device *dev)
416 {
417 struct iommu_dev_data *dev_data;
418 struct amd_iommu *iommu;
419 int devid;
420
421 if (dev->archdata.iommu)
422 return 0;
423
424 devid = get_device_id(dev);
425 if (devid < 0)
426 return devid;
427
428 iommu = amd_iommu_rlookup_table[devid];
429
430 dev_data = find_dev_data(devid);
431 if (!dev_data)
432 return -ENOMEM;
433
434 dev_data->alias = get_alias(dev);
435
436 if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
437 struct amd_iommu *iommu;
438
439 iommu = amd_iommu_rlookup_table[dev_data->devid];
440 dev_data->iommu_v2 = iommu->is_iommu_v2;
441 }
442
443 dev->archdata.iommu = dev_data;
444
445 iommu_device_link(&iommu->iommu, dev);
446
447 return 0;
448 }
449
450 static void iommu_ignore_device(struct device *dev)
451 {
452 u16 alias;
453 int devid;
454
455 devid = get_device_id(dev);
456 if (devid < 0)
457 return;
458
459 alias = get_alias(dev);
460
461 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
462 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
463
464 amd_iommu_rlookup_table[devid] = NULL;
465 amd_iommu_rlookup_table[alias] = NULL;
466 }
467
468 static void iommu_uninit_device(struct device *dev)
469 {
470 struct iommu_dev_data *dev_data;
471 struct amd_iommu *iommu;
472 int devid;
473
474 devid = get_device_id(dev);
475 if (devid < 0)
476 return;
477
478 iommu = amd_iommu_rlookup_table[devid];
479
480 dev_data = search_dev_data(devid);
481 if (!dev_data)
482 return;
483
484 if (dev_data->domain)
485 detach_device(dev);
486
487 iommu_device_unlink(&iommu->iommu, dev);
488
489 iommu_group_remove_device(dev);
490
491 /* Remove dma-ops */
492 dev->dma_ops = NULL;
493
494 /*
495 * We keep dev_data around for unplugged devices and reuse it when the
496 * device is re-plugged - not doing so would introduce a ton of races.
497 */
498 }
499
500 /****************************************************************************
501 *
502 * Interrupt handling functions
503 *
504 ****************************************************************************/
505
506 static void dump_dte_entry(u16 devid)
507 {
508 int i;
509
510 for (i = 0; i < 4; ++i)
511 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
512 amd_iommu_dev_table[devid].data[i]);
513 }
514
515 static void dump_command(unsigned long phys_addr)
516 {
517 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
518 int i;
519
520 for (i = 0; i < 4; ++i)
521 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
522 }
523
524 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
525 u64 address, int flags)
526 {
527 struct iommu_dev_data *dev_data = NULL;
528 struct pci_dev *pdev;
529
530 pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
531 if (pdev)
532 dev_data = get_dev_data(&pdev->dev);
533
534 if (dev_data && __ratelimit(&dev_data->rs)) {
535 dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
536 domain_id, address, flags);
537 } else if (printk_ratelimit()) {
538 pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
539 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
540 domain_id, address, flags);
541 }
542
543 if (pdev)
544 pci_dev_put(pdev);
545 }
546
547 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
548 {
549 int type, devid, domid, flags;
550 volatile u32 *event = __evt;
551 int count = 0;
552 u64 address;
553
554 retry:
555 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
556 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
557 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
558 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
559 address = (u64)(((u64)event[3]) << 32) | event[2];
560
561 if (type == 0) {
562 /* Did we hit the erratum? */
563 if (++count == LOOP_TIMEOUT) {
564 pr_err("AMD-Vi: No event written to event log\n");
565 return;
566 }
567 udelay(1);
568 goto retry;
569 }
570
571 if (type == EVENT_TYPE_IO_FAULT) {
572 amd_iommu_report_page_fault(devid, domid, address, flags);
573 return;
574 } else {
575 printk(KERN_ERR "AMD-Vi: Event logged [");
576 }
577
578 switch (type) {
579 case EVENT_TYPE_ILL_DEV:
580 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
581 "address=0x%016llx flags=0x%04x]\n",
582 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
583 address, flags);
584 dump_dte_entry(devid);
585 break;
586 case EVENT_TYPE_DEV_TAB_ERR:
587 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
588 "address=0x%016llx flags=0x%04x]\n",
589 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
590 address, flags);
591 break;
592 case EVENT_TYPE_PAGE_TAB_ERR:
593 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
594 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
595 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
596 domid, address, flags);
597 break;
598 case EVENT_TYPE_ILL_CMD:
599 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
600 dump_command(address);
601 break;
602 case EVENT_TYPE_CMD_HARD_ERR:
603 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
604 "flags=0x%04x]\n", address, flags);
605 break;
606 case EVENT_TYPE_IOTLB_INV_TO:
607 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
608 "address=0x%016llx]\n",
609 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
610 address);
611 break;
612 case EVENT_TYPE_INV_DEV_REQ:
613 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
614 "address=0x%016llx flags=0x%04x]\n",
615 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
616 address, flags);
617 break;
618 default:
619 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
620 }
621
622 memset(__evt, 0, 4 * sizeof(u32));
623 }
624
625 static void iommu_poll_events(struct amd_iommu *iommu)
626 {
627 u32 head, tail;
628
629 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
630 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
631
632 while (head != tail) {
633 iommu_print_event(iommu, iommu->evt_buf + head);
634 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
635 }
636
637 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
638 }
639
640 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
641 {
642 struct amd_iommu_fault fault;
643
644 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
645 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
646 return;
647 }
648
649 fault.address = raw[1];
650 fault.pasid = PPR_PASID(raw[0]);
651 fault.device_id = PPR_DEVID(raw[0]);
652 fault.tag = PPR_TAG(raw[0]);
653 fault.flags = PPR_FLAGS(raw[0]);
654
655 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
656 }
657
658 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
659 {
660 u32 head, tail;
661
662 if (iommu->ppr_log == NULL)
663 return;
664
665 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
666 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
667
668 while (head != tail) {
669 volatile u64 *raw;
670 u64 entry[2];
671 int i;
672
673 raw = (u64 *)(iommu->ppr_log + head);
674
675 /*
676 * Hardware bug: Interrupt may arrive before the entry is
677 * written to memory. If this happens we need to wait for the
678 * entry to arrive.
679 */
680 for (i = 0; i < LOOP_TIMEOUT; ++i) {
681 if (PPR_REQ_TYPE(raw[0]) != 0)
682 break;
683 udelay(1);
684 }
685
686 /* Avoid memcpy function-call overhead */
687 entry[0] = raw[0];
688 entry[1] = raw[1];
689
690 /*
691 * To detect the hardware bug we need to clear the entry
692 * back to zero.
693 */
694 raw[0] = raw[1] = 0UL;
695
696 /* Update head pointer of hardware ring-buffer */
697 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
698 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
699
700 /* Handle PPR entry */
701 iommu_handle_ppr_entry(iommu, entry);
702
703 /* Refresh ring-buffer information */
704 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
705 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
706 }
707 }
708
709 #ifdef CONFIG_IRQ_REMAP
710 static int (*iommu_ga_log_notifier)(u32);
711
712 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
713 {
714 iommu_ga_log_notifier = notifier;
715
716 return 0;
717 }
718 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
719
720 static void iommu_poll_ga_log(struct amd_iommu *iommu)
721 {
722 u32 head, tail, cnt = 0;
723
724 if (iommu->ga_log == NULL)
725 return;
726
727 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
728 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
729
730 while (head != tail) {
731 volatile u64 *raw;
732 u64 log_entry;
733
734 raw = (u64 *)(iommu->ga_log + head);
735 cnt++;
736
737 /* Avoid memcpy function-call overhead */
738 log_entry = *raw;
739
740 /* Update head pointer of hardware ring-buffer */
741 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
742 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
743
744 /* Handle GA entry */
745 switch (GA_REQ_TYPE(log_entry)) {
746 case GA_GUEST_NR:
747 if (!iommu_ga_log_notifier)
748 break;
749
750 pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
751 __func__, GA_DEVID(log_entry),
752 GA_TAG(log_entry));
753
754 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
755 pr_err("AMD-Vi: GA log notifier failed.\n");
756 break;
757 default:
758 break;
759 }
760 }
761 }
762 #endif /* CONFIG_IRQ_REMAP */
763
764 #define AMD_IOMMU_INT_MASK \
765 (MMIO_STATUS_EVT_INT_MASK | \
766 MMIO_STATUS_PPR_INT_MASK | \
767 MMIO_STATUS_GALOG_INT_MASK)
768
769 irqreturn_t amd_iommu_int_thread(int irq, void *data)
770 {
771 struct amd_iommu *iommu = (struct amd_iommu *) data;
772 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
773
774 while (status & AMD_IOMMU_INT_MASK) {
775 /* Enable EVT and PPR and GA interrupts again */
776 writel(AMD_IOMMU_INT_MASK,
777 iommu->mmio_base + MMIO_STATUS_OFFSET);
778
779 if (status & MMIO_STATUS_EVT_INT_MASK) {
780 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
781 iommu_poll_events(iommu);
782 }
783
784 if (status & MMIO_STATUS_PPR_INT_MASK) {
785 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
786 iommu_poll_ppr_log(iommu);
787 }
788
789 #ifdef CONFIG_IRQ_REMAP
790 if (status & MMIO_STATUS_GALOG_INT_MASK) {
791 pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
792 iommu_poll_ga_log(iommu);
793 }
794 #endif
795
796 /*
797 * Hardware bug: ERBT1312
798 * When re-enabling interrupt (by writing 1
799 * to clear the bit), the hardware might also try to set
800 * the interrupt bit in the event status register.
801 * In this scenario, the bit will be set, and disable
802 * subsequent interrupts.
803 *
804 * Workaround: The IOMMU driver should read back the
805 * status register and check if the interrupt bits are cleared.
806 * If not, driver will need to go through the interrupt handler
807 * again and re-clear the bits
808 */
809 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
810 }
811 return IRQ_HANDLED;
812 }
813
814 irqreturn_t amd_iommu_int_handler(int irq, void *data)
815 {
816 return IRQ_WAKE_THREAD;
817 }
818
819 /****************************************************************************
820 *
821 * IOMMU command queuing functions
822 *
823 ****************************************************************************/
824
825 static int wait_on_sem(volatile u64 *sem)
826 {
827 int i = 0;
828
829 while (*sem == 0 && i < LOOP_TIMEOUT) {
830 udelay(1);
831 i += 1;
832 }
833
834 if (i == LOOP_TIMEOUT) {
835 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
836 return -EIO;
837 }
838
839 return 0;
840 }
841
842 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
843 struct iommu_cmd *cmd)
844 {
845 u8 *target;
846
847 target = iommu->cmd_buf + iommu->cmd_buf_tail;
848
849 iommu->cmd_buf_tail += sizeof(*cmd);
850 iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
851
852 /* Copy command to buffer */
853 memcpy(target, cmd, sizeof(*cmd));
854
855 /* Tell the IOMMU about it */
856 writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
857 }
858
859 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
860 {
861 u64 paddr = iommu_virt_to_phys((void *)address);
862
863 WARN_ON(address & 0x7ULL);
864
865 memset(cmd, 0, sizeof(*cmd));
866 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
867 cmd->data[1] = upper_32_bits(paddr);
868 cmd->data[2] = 1;
869 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
870 }
871
872 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
873 {
874 memset(cmd, 0, sizeof(*cmd));
875 cmd->data[0] = devid;
876 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
877 }
878
879 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
880 size_t size, u16 domid, int pde)
881 {
882 u64 pages;
883 bool s;
884
885 pages = iommu_num_pages(address, size, PAGE_SIZE);
886 s = false;
887
888 if (pages > 1) {
889 /*
890 * If we have to flush more than one page, flush all
891 * TLB entries for this domain
892 */
893 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
894 s = true;
895 }
896
897 address &= PAGE_MASK;
898
899 memset(cmd, 0, sizeof(*cmd));
900 cmd->data[1] |= domid;
901 cmd->data[2] = lower_32_bits(address);
902 cmd->data[3] = upper_32_bits(address);
903 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
904 if (s) /* size bit - we flush more than one 4kb page */
905 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
906 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
907 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
908 }
909
910 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
911 u64 address, size_t size)
912 {
913 u64 pages;
914 bool s;
915
916 pages = iommu_num_pages(address, size, PAGE_SIZE);
917 s = false;
918
919 if (pages > 1) {
920 /*
921 * If we have to flush more than one page, flush all
922 * TLB entries for this domain
923 */
924 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
925 s = true;
926 }
927
928 address &= PAGE_MASK;
929
930 memset(cmd, 0, sizeof(*cmd));
931 cmd->data[0] = devid;
932 cmd->data[0] |= (qdep & 0xff) << 24;
933 cmd->data[1] = devid;
934 cmd->data[2] = lower_32_bits(address);
935 cmd->data[3] = upper_32_bits(address);
936 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
937 if (s)
938 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
939 }
940
941 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
942 u64 address, bool size)
943 {
944 memset(cmd, 0, sizeof(*cmd));
945
946 address &= ~(0xfffULL);
947
948 cmd->data[0] = pasid;
949 cmd->data[1] = domid;
950 cmd->data[2] = lower_32_bits(address);
951 cmd->data[3] = upper_32_bits(address);
952 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
953 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
954 if (size)
955 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
956 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
957 }
958
959 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
960 int qdep, u64 address, bool size)
961 {
962 memset(cmd, 0, sizeof(*cmd));
963
964 address &= ~(0xfffULL);
965
966 cmd->data[0] = devid;
967 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
968 cmd->data[0] |= (qdep & 0xff) << 24;
969 cmd->data[1] = devid;
970 cmd->data[1] |= (pasid & 0xff) << 16;
971 cmd->data[2] = lower_32_bits(address);
972 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
973 cmd->data[3] = upper_32_bits(address);
974 if (size)
975 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
976 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
977 }
978
979 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
980 int status, int tag, bool gn)
981 {
982 memset(cmd, 0, sizeof(*cmd));
983
984 cmd->data[0] = devid;
985 if (gn) {
986 cmd->data[1] = pasid;
987 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
988 }
989 cmd->data[3] = tag & 0x1ff;
990 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
991
992 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
993 }
994
995 static void build_inv_all(struct iommu_cmd *cmd)
996 {
997 memset(cmd, 0, sizeof(*cmd));
998 CMD_SET_TYPE(cmd, CMD_INV_ALL);
999 }
1000
1001 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1002 {
1003 memset(cmd, 0, sizeof(*cmd));
1004 cmd->data[0] = devid;
1005 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1006 }
1007
1008 /*
1009 * Writes the command to the IOMMUs command buffer and informs the
1010 * hardware about the new command.
1011 */
1012 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1013 struct iommu_cmd *cmd,
1014 bool sync)
1015 {
1016 unsigned int count = 0;
1017 u32 left, next_tail;
1018
1019 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1020 again:
1021 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1022
1023 if (left <= 0x20) {
1024 /* Skip udelay() the first time around */
1025 if (count++) {
1026 if (count == LOOP_TIMEOUT) {
1027 pr_err("AMD-Vi: Command buffer timeout\n");
1028 return -EIO;
1029 }
1030
1031 udelay(1);
1032 }
1033
1034 /* Update head and recheck remaining space */
1035 iommu->cmd_buf_head = readl(iommu->mmio_base +
1036 MMIO_CMD_HEAD_OFFSET);
1037
1038 goto again;
1039 }
1040
1041 copy_cmd_to_buffer(iommu, cmd);
1042
1043 /* Do we need to make sure all commands are processed? */
1044 iommu->need_sync = sync;
1045
1046 return 0;
1047 }
1048
1049 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1050 struct iommu_cmd *cmd,
1051 bool sync)
1052 {
1053 unsigned long flags;
1054 int ret;
1055
1056 spin_lock_irqsave(&iommu->lock, flags);
1057 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1058 spin_unlock_irqrestore(&iommu->lock, flags);
1059
1060 return ret;
1061 }
1062
1063 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1064 {
1065 return iommu_queue_command_sync(iommu, cmd, true);
1066 }
1067
1068 /*
1069 * This function queues a completion wait command into the command
1070 * buffer of an IOMMU
1071 */
1072 static int iommu_completion_wait(struct amd_iommu *iommu)
1073 {
1074 struct iommu_cmd cmd;
1075 unsigned long flags;
1076 int ret;
1077
1078 if (!iommu->need_sync)
1079 return 0;
1080
1081
1082 build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1083
1084 spin_lock_irqsave(&iommu->lock, flags);
1085
1086 iommu->cmd_sem = 0;
1087
1088 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1089 if (ret)
1090 goto out_unlock;
1091
1092 ret = wait_on_sem(&iommu->cmd_sem);
1093
1094 out_unlock:
1095 spin_unlock_irqrestore(&iommu->lock, flags);
1096
1097 return ret;
1098 }
1099
1100 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1101 {
1102 struct iommu_cmd cmd;
1103
1104 build_inv_dte(&cmd, devid);
1105
1106 return iommu_queue_command(iommu, &cmd);
1107 }
1108
1109 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1110 {
1111 u32 devid;
1112
1113 for (devid = 0; devid <= 0xffff; ++devid)
1114 iommu_flush_dte(iommu, devid);
1115
1116 iommu_completion_wait(iommu);
1117 }
1118
1119 /*
1120 * This function uses heavy locking and may disable irqs for some time. But
1121 * this is no issue because it is only called during resume.
1122 */
1123 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1124 {
1125 u32 dom_id;
1126
1127 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1128 struct iommu_cmd cmd;
1129 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1130 dom_id, 1);
1131 iommu_queue_command(iommu, &cmd);
1132 }
1133
1134 iommu_completion_wait(iommu);
1135 }
1136
1137 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1138 {
1139 struct iommu_cmd cmd;
1140
1141 build_inv_all(&cmd);
1142
1143 iommu_queue_command(iommu, &cmd);
1144 iommu_completion_wait(iommu);
1145 }
1146
1147 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1148 {
1149 struct iommu_cmd cmd;
1150
1151 build_inv_irt(&cmd, devid);
1152
1153 iommu_queue_command(iommu, &cmd);
1154 }
1155
1156 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1157 {
1158 u32 devid;
1159
1160 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1161 iommu_flush_irt(iommu, devid);
1162
1163 iommu_completion_wait(iommu);
1164 }
1165
1166 void iommu_flush_all_caches(struct amd_iommu *iommu)
1167 {
1168 if (iommu_feature(iommu, FEATURE_IA)) {
1169 amd_iommu_flush_all(iommu);
1170 } else {
1171 amd_iommu_flush_dte_all(iommu);
1172 amd_iommu_flush_irt_all(iommu);
1173 amd_iommu_flush_tlb_all(iommu);
1174 }
1175 }
1176
1177 /*
1178 * Command send function for flushing on-device TLB
1179 */
1180 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1181 u64 address, size_t size)
1182 {
1183 struct amd_iommu *iommu;
1184 struct iommu_cmd cmd;
1185 int qdep;
1186
1187 qdep = dev_data->ats.qdep;
1188 iommu = amd_iommu_rlookup_table[dev_data->devid];
1189
1190 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1191
1192 return iommu_queue_command(iommu, &cmd);
1193 }
1194
1195 /*
1196 * Command send function for invalidating a device table entry
1197 */
1198 static int device_flush_dte(struct iommu_dev_data *dev_data)
1199 {
1200 struct amd_iommu *iommu;
1201 u16 alias;
1202 int ret;
1203
1204 iommu = amd_iommu_rlookup_table[dev_data->devid];
1205 alias = dev_data->alias;
1206
1207 ret = iommu_flush_dte(iommu, dev_data->devid);
1208 if (!ret && alias != dev_data->devid)
1209 ret = iommu_flush_dte(iommu, alias);
1210 if (ret)
1211 return ret;
1212
1213 if (dev_data->ats.enabled)
1214 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1215
1216 return ret;
1217 }
1218
1219 /*
1220 * TLB invalidation function which is called from the mapping functions.
1221 * It invalidates a single PTE if the range to flush is within a single
1222 * page. Otherwise it flushes the whole TLB of the IOMMU.
1223 */
1224 static void __domain_flush_pages(struct protection_domain *domain,
1225 u64 address, size_t size, int pde)
1226 {
1227 struct iommu_dev_data *dev_data;
1228 struct iommu_cmd cmd;
1229 int ret = 0, i;
1230
1231 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1232
1233 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1234 if (!domain->dev_iommu[i])
1235 continue;
1236
1237 /*
1238 * Devices of this domain are behind this IOMMU
1239 * We need a TLB flush
1240 */
1241 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1242 }
1243
1244 list_for_each_entry(dev_data, &domain->dev_list, list) {
1245
1246 if (!dev_data->ats.enabled)
1247 continue;
1248
1249 ret |= device_flush_iotlb(dev_data, address, size);
1250 }
1251
1252 WARN_ON(ret);
1253 }
1254
1255 static void domain_flush_pages(struct protection_domain *domain,
1256 u64 address, size_t size)
1257 {
1258 __domain_flush_pages(domain, address, size, 0);
1259 }
1260
1261 /* Flush the whole IO/TLB for a given protection domain */
1262 static void domain_flush_tlb(struct protection_domain *domain)
1263 {
1264 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1265 }
1266
1267 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1268 static void domain_flush_tlb_pde(struct protection_domain *domain)
1269 {
1270 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1271 }
1272
1273 static void domain_flush_complete(struct protection_domain *domain)
1274 {
1275 int i;
1276
1277 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1278 if (domain && !domain->dev_iommu[i])
1279 continue;
1280
1281 /*
1282 * Devices of this domain are behind this IOMMU
1283 * We need to wait for completion of all commands.
1284 */
1285 iommu_completion_wait(amd_iommus[i]);
1286 }
1287 }
1288
1289
1290 /*
1291 * This function flushes the DTEs for all devices in domain
1292 */
1293 static void domain_flush_devices(struct protection_domain *domain)
1294 {
1295 struct iommu_dev_data *dev_data;
1296
1297 list_for_each_entry(dev_data, &domain->dev_list, list)
1298 device_flush_dte(dev_data);
1299 }
1300
1301 /****************************************************************************
1302 *
1303 * The functions below are used the create the page table mappings for
1304 * unity mapped regions.
1305 *
1306 ****************************************************************************/
1307
1308 /*
1309 * This function is used to add another level to an IO page table. Adding
1310 * another level increases the size of the address space by 9 bits to a size up
1311 * to 64 bits.
1312 */
1313 static bool increase_address_space(struct protection_domain *domain,
1314 gfp_t gfp)
1315 {
1316 u64 *pte;
1317
1318 if (domain->mode == PAGE_MODE_6_LEVEL)
1319 /* address space already 64 bit large */
1320 return false;
1321
1322 pte = (void *)get_zeroed_page(gfp);
1323 if (!pte)
1324 return false;
1325
1326 *pte = PM_LEVEL_PDE(domain->mode,
1327 iommu_virt_to_phys(domain->pt_root));
1328 domain->pt_root = pte;
1329 domain->mode += 1;
1330 domain->updated = true;
1331
1332 return true;
1333 }
1334
1335 static u64 *alloc_pte(struct protection_domain *domain,
1336 unsigned long address,
1337 unsigned long page_size,
1338 u64 **pte_page,
1339 gfp_t gfp)
1340 {
1341 int level, end_lvl;
1342 u64 *pte, *page;
1343
1344 BUG_ON(!is_power_of_2(page_size));
1345
1346 while (address > PM_LEVEL_SIZE(domain->mode))
1347 increase_address_space(domain, gfp);
1348
1349 level = domain->mode - 1;
1350 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1351 address = PAGE_SIZE_ALIGN(address, page_size);
1352 end_lvl = PAGE_SIZE_LEVEL(page_size);
1353
1354 while (level > end_lvl) {
1355 u64 __pte, __npte;
1356
1357 __pte = *pte;
1358
1359 if (!IOMMU_PTE_PRESENT(__pte)) {
1360 page = (u64 *)get_zeroed_page(gfp);
1361 if (!page)
1362 return NULL;
1363
1364 __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1365
1366 /* pte could have been changed somewhere. */
1367 if (cmpxchg64(pte, __pte, __npte) != __pte) {
1368 free_page((unsigned long)page);
1369 continue;
1370 }
1371 }
1372
1373 /* No level skipping support yet */
1374 if (PM_PTE_LEVEL(*pte) != level)
1375 return NULL;
1376
1377 level -= 1;
1378
1379 pte = IOMMU_PTE_PAGE(*pte);
1380
1381 if (pte_page && level == end_lvl)
1382 *pte_page = pte;
1383
1384 pte = &pte[PM_LEVEL_INDEX(level, address)];
1385 }
1386
1387 return pte;
1388 }
1389
1390 /*
1391 * This function checks if there is a PTE for a given dma address. If
1392 * there is one, it returns the pointer to it.
1393 */
1394 static u64 *fetch_pte(struct protection_domain *domain,
1395 unsigned long address,
1396 unsigned long *page_size)
1397 {
1398 int level;
1399 u64 *pte;
1400
1401 if (address > PM_LEVEL_SIZE(domain->mode))
1402 return NULL;
1403
1404 level = domain->mode - 1;
1405 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1406 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1407
1408 while (level > 0) {
1409
1410 /* Not Present */
1411 if (!IOMMU_PTE_PRESENT(*pte))
1412 return NULL;
1413
1414 /* Large PTE */
1415 if (PM_PTE_LEVEL(*pte) == 7 ||
1416 PM_PTE_LEVEL(*pte) == 0)
1417 break;
1418
1419 /* No level skipping support yet */
1420 if (PM_PTE_LEVEL(*pte) != level)
1421 return NULL;
1422
1423 level -= 1;
1424
1425 /* Walk to the next level */
1426 pte = IOMMU_PTE_PAGE(*pte);
1427 pte = &pte[PM_LEVEL_INDEX(level, address)];
1428 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1429 }
1430
1431 if (PM_PTE_LEVEL(*pte) == 0x07) {
1432 unsigned long pte_mask;
1433
1434 /*
1435 * If we have a series of large PTEs, make
1436 * sure to return a pointer to the first one.
1437 */
1438 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1439 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1440 pte = (u64 *)(((unsigned long)pte) & pte_mask);
1441 }
1442
1443 return pte;
1444 }
1445
1446 /*
1447 * Generic mapping functions. It maps a physical address into a DMA
1448 * address space. It allocates the page table pages if necessary.
1449 * In the future it can be extended to a generic mapping function
1450 * supporting all features of AMD IOMMU page tables like level skipping
1451 * and full 64 bit address spaces.
1452 */
1453 static int iommu_map_page(struct protection_domain *dom,
1454 unsigned long bus_addr,
1455 unsigned long phys_addr,
1456 unsigned long page_size,
1457 int prot,
1458 gfp_t gfp)
1459 {
1460 u64 __pte, *pte;
1461 int i, count;
1462
1463 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1464 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1465
1466 if (!(prot & IOMMU_PROT_MASK))
1467 return -EINVAL;
1468
1469 count = PAGE_SIZE_PTE_COUNT(page_size);
1470 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1471
1472 if (!pte)
1473 return -ENOMEM;
1474
1475 for (i = 0; i < count; ++i)
1476 if (IOMMU_PTE_PRESENT(pte[i]))
1477 return -EBUSY;
1478
1479 if (count > 1) {
1480 __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1481 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1482 } else
1483 __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1484
1485 if (prot & IOMMU_PROT_IR)
1486 __pte |= IOMMU_PTE_IR;
1487 if (prot & IOMMU_PROT_IW)
1488 __pte |= IOMMU_PTE_IW;
1489
1490 for (i = 0; i < count; ++i)
1491 pte[i] = __pte;
1492
1493 update_domain(dom);
1494
1495 return 0;
1496 }
1497
1498 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1499 unsigned long bus_addr,
1500 unsigned long page_size)
1501 {
1502 unsigned long long unmapped;
1503 unsigned long unmap_size;
1504 u64 *pte;
1505
1506 BUG_ON(!is_power_of_2(page_size));
1507
1508 unmapped = 0;
1509
1510 while (unmapped < page_size) {
1511
1512 pte = fetch_pte(dom, bus_addr, &unmap_size);
1513
1514 if (pte) {
1515 int i, count;
1516
1517 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1518 for (i = 0; i < count; i++)
1519 pte[i] = 0ULL;
1520 }
1521
1522 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1523 unmapped += unmap_size;
1524 }
1525
1526 BUG_ON(unmapped && !is_power_of_2(unmapped));
1527
1528 return unmapped;
1529 }
1530
1531 /****************************************************************************
1532 *
1533 * The next functions belong to the address allocator for the dma_ops
1534 * interface functions.
1535 *
1536 ****************************************************************************/
1537
1538
1539 static unsigned long dma_ops_alloc_iova(struct device *dev,
1540 struct dma_ops_domain *dma_dom,
1541 unsigned int pages, u64 dma_mask)
1542 {
1543 unsigned long pfn = 0;
1544
1545 pages = __roundup_pow_of_two(pages);
1546
1547 if (dma_mask > DMA_BIT_MASK(32))
1548 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1549 IOVA_PFN(DMA_BIT_MASK(32)), false);
1550
1551 if (!pfn)
1552 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1553 IOVA_PFN(dma_mask), true);
1554
1555 return (pfn << PAGE_SHIFT);
1556 }
1557
1558 static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1559 unsigned long address,
1560 unsigned int pages)
1561 {
1562 pages = __roundup_pow_of_two(pages);
1563 address >>= PAGE_SHIFT;
1564
1565 free_iova_fast(&dma_dom->iovad, address, pages);
1566 }
1567
1568 /****************************************************************************
1569 *
1570 * The next functions belong to the domain allocation. A domain is
1571 * allocated for every IOMMU as the default domain. If device isolation
1572 * is enabled, every device get its own domain. The most important thing
1573 * about domains is the page table mapping the DMA address space they
1574 * contain.
1575 *
1576 ****************************************************************************/
1577
1578 /*
1579 * This function adds a protection domain to the global protection domain list
1580 */
1581 static void add_domain_to_list(struct protection_domain *domain)
1582 {
1583 unsigned long flags;
1584
1585 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1586 list_add(&domain->list, &amd_iommu_pd_list);
1587 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1588 }
1589
1590 /*
1591 * This function removes a protection domain to the global
1592 * protection domain list
1593 */
1594 static void del_domain_from_list(struct protection_domain *domain)
1595 {
1596 unsigned long flags;
1597
1598 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1599 list_del(&domain->list);
1600 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1601 }
1602
1603 static u16 domain_id_alloc(void)
1604 {
1605 unsigned long flags;
1606 int id;
1607
1608 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1609 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1610 BUG_ON(id == 0);
1611 if (id > 0 && id < MAX_DOMAIN_ID)
1612 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1613 else
1614 id = 0;
1615 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1616
1617 return id;
1618 }
1619
1620 static void domain_id_free(int id)
1621 {
1622 unsigned long flags;
1623
1624 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1625 if (id > 0 && id < MAX_DOMAIN_ID)
1626 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1627 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1628 }
1629
1630 #define DEFINE_FREE_PT_FN(LVL, FN) \
1631 static void free_pt_##LVL (unsigned long __pt) \
1632 { \
1633 unsigned long p; \
1634 u64 *pt; \
1635 int i; \
1636 \
1637 pt = (u64 *)__pt; \
1638 \
1639 for (i = 0; i < 512; ++i) { \
1640 /* PTE present? */ \
1641 if (!IOMMU_PTE_PRESENT(pt[i])) \
1642 continue; \
1643 \
1644 /* Large PTE? */ \
1645 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1646 PM_PTE_LEVEL(pt[i]) == 7) \
1647 continue; \
1648 \
1649 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1650 FN(p); \
1651 } \
1652 free_page((unsigned long)pt); \
1653 }
1654
1655 DEFINE_FREE_PT_FN(l2, free_page)
1656 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1657 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1658 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1659 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1660
1661 static void free_pagetable(struct protection_domain *domain)
1662 {
1663 unsigned long root = (unsigned long)domain->pt_root;
1664
1665 switch (domain->mode) {
1666 case PAGE_MODE_NONE:
1667 break;
1668 case PAGE_MODE_1_LEVEL:
1669 free_page(root);
1670 break;
1671 case PAGE_MODE_2_LEVEL:
1672 free_pt_l2(root);
1673 break;
1674 case PAGE_MODE_3_LEVEL:
1675 free_pt_l3(root);
1676 break;
1677 case PAGE_MODE_4_LEVEL:
1678 free_pt_l4(root);
1679 break;
1680 case PAGE_MODE_5_LEVEL:
1681 free_pt_l5(root);
1682 break;
1683 case PAGE_MODE_6_LEVEL:
1684 free_pt_l6(root);
1685 break;
1686 default:
1687 BUG();
1688 }
1689 }
1690
1691 static void free_gcr3_tbl_level1(u64 *tbl)
1692 {
1693 u64 *ptr;
1694 int i;
1695
1696 for (i = 0; i < 512; ++i) {
1697 if (!(tbl[i] & GCR3_VALID))
1698 continue;
1699
1700 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1701
1702 free_page((unsigned long)ptr);
1703 }
1704 }
1705
1706 static void free_gcr3_tbl_level2(u64 *tbl)
1707 {
1708 u64 *ptr;
1709 int i;
1710
1711 for (i = 0; i < 512; ++i) {
1712 if (!(tbl[i] & GCR3_VALID))
1713 continue;
1714
1715 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1716
1717 free_gcr3_tbl_level1(ptr);
1718 }
1719 }
1720
1721 static void free_gcr3_table(struct protection_domain *domain)
1722 {
1723 if (domain->glx == 2)
1724 free_gcr3_tbl_level2(domain->gcr3_tbl);
1725 else if (domain->glx == 1)
1726 free_gcr3_tbl_level1(domain->gcr3_tbl);
1727 else
1728 BUG_ON(domain->glx != 0);
1729
1730 free_page((unsigned long)domain->gcr3_tbl);
1731 }
1732
1733 static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1734 {
1735 domain_flush_tlb(&dom->domain);
1736 domain_flush_complete(&dom->domain);
1737 }
1738
1739 static void iova_domain_flush_tlb(struct iova_domain *iovad)
1740 {
1741 struct dma_ops_domain *dom;
1742
1743 dom = container_of(iovad, struct dma_ops_domain, iovad);
1744
1745 dma_ops_domain_flush_tlb(dom);
1746 }
1747
1748 /*
1749 * Free a domain, only used if something went wrong in the
1750 * allocation path and we need to free an already allocated page table
1751 */
1752 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1753 {
1754 if (!dom)
1755 return;
1756
1757 del_domain_from_list(&dom->domain);
1758
1759 put_iova_domain(&dom->iovad);
1760
1761 free_pagetable(&dom->domain);
1762
1763 if (dom->domain.id)
1764 domain_id_free(dom->domain.id);
1765
1766 kfree(dom);
1767 }
1768
1769 /*
1770 * Allocates a new protection domain usable for the dma_ops functions.
1771 * It also initializes the page table and the address allocator data
1772 * structures required for the dma_ops interface
1773 */
1774 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1775 {
1776 struct dma_ops_domain *dma_dom;
1777
1778 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1779 if (!dma_dom)
1780 return NULL;
1781
1782 if (protection_domain_init(&dma_dom->domain))
1783 goto free_dma_dom;
1784
1785 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1786 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1787 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1788 if (!dma_dom->domain.pt_root)
1789 goto free_dma_dom;
1790
1791 init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1792
1793 if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1794 goto free_dma_dom;
1795
1796 /* Initialize reserved ranges */
1797 copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1798
1799 add_domain_to_list(&dma_dom->domain);
1800
1801 return dma_dom;
1802
1803 free_dma_dom:
1804 dma_ops_domain_free(dma_dom);
1805
1806 return NULL;
1807 }
1808
1809 /*
1810 * little helper function to check whether a given protection domain is a
1811 * dma_ops domain
1812 */
1813 static bool dma_ops_domain(struct protection_domain *domain)
1814 {
1815 return domain->flags & PD_DMA_OPS_MASK;
1816 }
1817
1818 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1819 {
1820 u64 pte_root = 0;
1821 u64 flags = 0;
1822
1823 if (domain->mode != PAGE_MODE_NONE)
1824 pte_root = iommu_virt_to_phys(domain->pt_root);
1825
1826 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1827 << DEV_ENTRY_MODE_SHIFT;
1828 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1829
1830 flags = amd_iommu_dev_table[devid].data[1];
1831
1832 if (ats)
1833 flags |= DTE_FLAG_IOTLB;
1834
1835 if (domain->flags & PD_IOMMUV2_MASK) {
1836 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1837 u64 glx = domain->glx;
1838 u64 tmp;
1839
1840 pte_root |= DTE_FLAG_GV;
1841 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1842
1843 /* First mask out possible old values for GCR3 table */
1844 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1845 flags &= ~tmp;
1846
1847 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1848 flags &= ~tmp;
1849
1850 /* Encode GCR3 table into DTE */
1851 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1852 pte_root |= tmp;
1853
1854 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1855 flags |= tmp;
1856
1857 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1858 flags |= tmp;
1859 }
1860
1861 flags &= ~DEV_DOMID_MASK;
1862 flags |= domain->id;
1863
1864 amd_iommu_dev_table[devid].data[1] = flags;
1865 amd_iommu_dev_table[devid].data[0] = pte_root;
1866 }
1867
1868 static void clear_dte_entry(u16 devid)
1869 {
1870 /* remove entry from the device table seen by the hardware */
1871 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV;
1872 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1873
1874 amd_iommu_apply_erratum_63(devid);
1875 }
1876
1877 static void do_attach(struct iommu_dev_data *dev_data,
1878 struct protection_domain *domain)
1879 {
1880 struct amd_iommu *iommu;
1881 u16 alias;
1882 bool ats;
1883
1884 iommu = amd_iommu_rlookup_table[dev_data->devid];
1885 alias = dev_data->alias;
1886 ats = dev_data->ats.enabled;
1887
1888 /* Update data structures */
1889 dev_data->domain = domain;
1890 list_add(&dev_data->list, &domain->dev_list);
1891
1892 /* Do reference counting */
1893 domain->dev_iommu[iommu->index] += 1;
1894 domain->dev_cnt += 1;
1895
1896 /* Update device table */
1897 set_dte_entry(dev_data->devid, domain, ats);
1898 if (alias != dev_data->devid)
1899 set_dte_entry(alias, domain, ats);
1900
1901 device_flush_dte(dev_data);
1902 }
1903
1904 static void do_detach(struct iommu_dev_data *dev_data)
1905 {
1906 struct amd_iommu *iommu;
1907 u16 alias;
1908
1909 /*
1910 * First check if the device is still attached. It might already
1911 * be detached from its domain because the generic
1912 * iommu_detach_group code detached it and we try again here in
1913 * our alias handling.
1914 */
1915 if (!dev_data->domain)
1916 return;
1917
1918 iommu = amd_iommu_rlookup_table[dev_data->devid];
1919 alias = dev_data->alias;
1920
1921 /* decrease reference counters */
1922 dev_data->domain->dev_iommu[iommu->index] -= 1;
1923 dev_data->domain->dev_cnt -= 1;
1924
1925 /* Update data structures */
1926 dev_data->domain = NULL;
1927 list_del(&dev_data->list);
1928 clear_dte_entry(dev_data->devid);
1929 if (alias != dev_data->devid)
1930 clear_dte_entry(alias);
1931
1932 /* Flush the DTE entry */
1933 device_flush_dte(dev_data);
1934 }
1935
1936 /*
1937 * If a device is not yet associated with a domain, this function does
1938 * assigns it visible for the hardware
1939 */
1940 static int __attach_device(struct iommu_dev_data *dev_data,
1941 struct protection_domain *domain)
1942 {
1943 int ret;
1944
1945 /*
1946 * Must be called with IRQs disabled. Warn here to detect early
1947 * when its not.
1948 */
1949 WARN_ON(!irqs_disabled());
1950
1951 /* lock domain */
1952 spin_lock(&domain->lock);
1953
1954 ret = -EBUSY;
1955 if (dev_data->domain != NULL)
1956 goto out_unlock;
1957
1958 /* Attach alias group root */
1959 do_attach(dev_data, domain);
1960
1961 ret = 0;
1962
1963 out_unlock:
1964
1965 /* ready */
1966 spin_unlock(&domain->lock);
1967
1968 return ret;
1969 }
1970
1971
1972 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1973 {
1974 pci_disable_ats(pdev);
1975 pci_disable_pri(pdev);
1976 pci_disable_pasid(pdev);
1977 }
1978
1979 /* FIXME: Change generic reset-function to do the same */
1980 static int pri_reset_while_enabled(struct pci_dev *pdev)
1981 {
1982 u16 control;
1983 int pos;
1984
1985 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1986 if (!pos)
1987 return -EINVAL;
1988
1989 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
1990 control |= PCI_PRI_CTRL_RESET;
1991 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1992
1993 return 0;
1994 }
1995
1996 static int pdev_iommuv2_enable(struct pci_dev *pdev)
1997 {
1998 bool reset_enable;
1999 int reqs, ret;
2000
2001 /* FIXME: Hardcode number of outstanding requests for now */
2002 reqs = 32;
2003 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2004 reqs = 1;
2005 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2006
2007 /* Only allow access to user-accessible pages */
2008 ret = pci_enable_pasid(pdev, 0);
2009 if (ret)
2010 goto out_err;
2011
2012 /* First reset the PRI state of the device */
2013 ret = pci_reset_pri(pdev);
2014 if (ret)
2015 goto out_err;
2016
2017 /* Enable PRI */
2018 ret = pci_enable_pri(pdev, reqs);
2019 if (ret)
2020 goto out_err;
2021
2022 if (reset_enable) {
2023 ret = pri_reset_while_enabled(pdev);
2024 if (ret)
2025 goto out_err;
2026 }
2027
2028 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2029 if (ret)
2030 goto out_err;
2031
2032 return 0;
2033
2034 out_err:
2035 pci_disable_pri(pdev);
2036 pci_disable_pasid(pdev);
2037
2038 return ret;
2039 }
2040
2041 /* FIXME: Move this to PCI code */
2042 #define PCI_PRI_TLP_OFF (1 << 15)
2043
2044 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2045 {
2046 u16 status;
2047 int pos;
2048
2049 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2050 if (!pos)
2051 return false;
2052
2053 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2054
2055 return (status & PCI_PRI_TLP_OFF) ? true : false;
2056 }
2057
2058 /*
2059 * If a device is not yet associated with a domain, this function
2060 * assigns it visible for the hardware
2061 */
2062 static int attach_device(struct device *dev,
2063 struct protection_domain *domain)
2064 {
2065 struct pci_dev *pdev;
2066 struct iommu_dev_data *dev_data;
2067 unsigned long flags;
2068 int ret;
2069
2070 dev_data = get_dev_data(dev);
2071
2072 if (!dev_is_pci(dev))
2073 goto skip_ats_check;
2074
2075 pdev = to_pci_dev(dev);
2076 if (domain->flags & PD_IOMMUV2_MASK) {
2077 if (!dev_data->passthrough)
2078 return -EINVAL;
2079
2080 if (dev_data->iommu_v2) {
2081 if (pdev_iommuv2_enable(pdev) != 0)
2082 return -EINVAL;
2083
2084 dev_data->ats.enabled = true;
2085 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2086 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2087 }
2088 } else if (amd_iommu_iotlb_sup &&
2089 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2090 dev_data->ats.enabled = true;
2091 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2092 }
2093
2094 skip_ats_check:
2095 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2096 ret = __attach_device(dev_data, domain);
2097 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2098
2099 /*
2100 * We might boot into a crash-kernel here. The crashed kernel
2101 * left the caches in the IOMMU dirty. So we have to flush
2102 * here to evict all dirty stuff.
2103 */
2104 domain_flush_tlb_pde(domain);
2105
2106 return ret;
2107 }
2108
2109 /*
2110 * Removes a device from a protection domain (unlocked)
2111 */
2112 static void __detach_device(struct iommu_dev_data *dev_data)
2113 {
2114 struct protection_domain *domain;
2115
2116 /*
2117 * Must be called with IRQs disabled. Warn here to detect early
2118 * when its not.
2119 */
2120 WARN_ON(!irqs_disabled());
2121
2122 if (WARN_ON(!dev_data->domain))
2123 return;
2124
2125 domain = dev_data->domain;
2126
2127 spin_lock(&domain->lock);
2128
2129 do_detach(dev_data);
2130
2131 spin_unlock(&domain->lock);
2132 }
2133
2134 /*
2135 * Removes a device from a protection domain (with devtable_lock held)
2136 */
2137 static void detach_device(struct device *dev)
2138 {
2139 struct protection_domain *domain;
2140 struct iommu_dev_data *dev_data;
2141 unsigned long flags;
2142
2143 dev_data = get_dev_data(dev);
2144 domain = dev_data->domain;
2145
2146 /* lock device table */
2147 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2148 __detach_device(dev_data);
2149 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2150
2151 if (!dev_is_pci(dev))
2152 return;
2153
2154 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2155 pdev_iommuv2_disable(to_pci_dev(dev));
2156 else if (dev_data->ats.enabled)
2157 pci_disable_ats(to_pci_dev(dev));
2158
2159 dev_data->ats.enabled = false;
2160 }
2161
2162 static int amd_iommu_add_device(struct device *dev)
2163 {
2164 struct iommu_dev_data *dev_data;
2165 struct iommu_domain *domain;
2166 struct amd_iommu *iommu;
2167 int ret, devid;
2168
2169 if (!check_device(dev) || get_dev_data(dev))
2170 return 0;
2171
2172 devid = get_device_id(dev);
2173 if (devid < 0)
2174 return devid;
2175
2176 iommu = amd_iommu_rlookup_table[devid];
2177
2178 ret = iommu_init_device(dev);
2179 if (ret) {
2180 if (ret != -ENOTSUPP)
2181 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2182 dev_name(dev));
2183
2184 iommu_ignore_device(dev);
2185 dev->dma_ops = &nommu_dma_ops;
2186 goto out;
2187 }
2188 init_iommu_group(dev);
2189
2190 dev_data = get_dev_data(dev);
2191
2192 BUG_ON(!dev_data);
2193
2194 if (iommu_pass_through || dev_data->iommu_v2)
2195 iommu_request_dm_for_dev(dev);
2196
2197 /* Domains are initialized for this device - have a look what we ended up with */
2198 domain = iommu_get_domain_for_dev(dev);
2199 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2200 dev_data->passthrough = true;
2201 else
2202 dev->dma_ops = &amd_iommu_dma_ops;
2203
2204 out:
2205 iommu_completion_wait(iommu);
2206
2207 return 0;
2208 }
2209
2210 static void amd_iommu_remove_device(struct device *dev)
2211 {
2212 struct amd_iommu *iommu;
2213 int devid;
2214
2215 if (!check_device(dev))
2216 return;
2217
2218 devid = get_device_id(dev);
2219 if (devid < 0)
2220 return;
2221
2222 iommu = amd_iommu_rlookup_table[devid];
2223
2224 iommu_uninit_device(dev);
2225 iommu_completion_wait(iommu);
2226 }
2227
2228 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2229 {
2230 if (dev_is_pci(dev))
2231 return pci_device_group(dev);
2232
2233 return acpihid_device_group(dev);
2234 }
2235
2236 /*****************************************************************************
2237 *
2238 * The next functions belong to the dma_ops mapping/unmapping code.
2239 *
2240 *****************************************************************************/
2241
2242 /*
2243 * In the dma_ops path we only have the struct device. This function
2244 * finds the corresponding IOMMU, the protection domain and the
2245 * requestor id for a given device.
2246 * If the device is not yet associated with a domain this is also done
2247 * in this function.
2248 */
2249 static struct protection_domain *get_domain(struct device *dev)
2250 {
2251 struct protection_domain *domain;
2252 struct iommu_domain *io_domain;
2253
2254 if (!check_device(dev))
2255 return ERR_PTR(-EINVAL);
2256
2257 domain = get_dev_data(dev)->domain;
2258 if (domain == NULL && get_dev_data(dev)->defer_attach) {
2259 get_dev_data(dev)->defer_attach = false;
2260 io_domain = iommu_get_domain_for_dev(dev);
2261 domain = to_pdomain(io_domain);
2262 attach_device(dev, domain);
2263 }
2264 if (domain == NULL)
2265 return ERR_PTR(-EBUSY);
2266
2267 if (!dma_ops_domain(domain))
2268 return ERR_PTR(-EBUSY);
2269
2270 return domain;
2271 }
2272
2273 static void update_device_table(struct protection_domain *domain)
2274 {
2275 struct iommu_dev_data *dev_data;
2276
2277 list_for_each_entry(dev_data, &domain->dev_list, list) {
2278 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2279
2280 if (dev_data->devid == dev_data->alias)
2281 continue;
2282
2283 /* There is an alias, update device table entry for it */
2284 set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
2285 }
2286 }
2287
2288 static void update_domain(struct protection_domain *domain)
2289 {
2290 if (!domain->updated)
2291 return;
2292
2293 update_device_table(domain);
2294
2295 domain_flush_devices(domain);
2296 domain_flush_tlb_pde(domain);
2297
2298 domain->updated = false;
2299 }
2300
2301 static int dir2prot(enum dma_data_direction direction)
2302 {
2303 if (direction == DMA_TO_DEVICE)
2304 return IOMMU_PROT_IR;
2305 else if (direction == DMA_FROM_DEVICE)
2306 return IOMMU_PROT_IW;
2307 else if (direction == DMA_BIDIRECTIONAL)
2308 return IOMMU_PROT_IW | IOMMU_PROT_IR;
2309 else
2310 return 0;
2311 }
2312
2313 /*
2314 * This function contains common code for mapping of a physically
2315 * contiguous memory region into DMA address space. It is used by all
2316 * mapping functions provided with this IOMMU driver.
2317 * Must be called with the domain lock held.
2318 */
2319 static dma_addr_t __map_single(struct device *dev,
2320 struct dma_ops_domain *dma_dom,
2321 phys_addr_t paddr,
2322 size_t size,
2323 enum dma_data_direction direction,
2324 u64 dma_mask)
2325 {
2326 dma_addr_t offset = paddr & ~PAGE_MASK;
2327 dma_addr_t address, start, ret;
2328 unsigned int pages;
2329 int prot = 0;
2330 int i;
2331
2332 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2333 paddr &= PAGE_MASK;
2334
2335 address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2336 if (address == AMD_IOMMU_MAPPING_ERROR)
2337 goto out;
2338
2339 prot = dir2prot(direction);
2340
2341 start = address;
2342 for (i = 0; i < pages; ++i) {
2343 ret = iommu_map_page(&dma_dom->domain, start, paddr,
2344 PAGE_SIZE, prot, GFP_ATOMIC);
2345 if (ret)
2346 goto out_unmap;
2347
2348 paddr += PAGE_SIZE;
2349 start += PAGE_SIZE;
2350 }
2351 address += offset;
2352
2353 if (unlikely(amd_iommu_np_cache)) {
2354 domain_flush_pages(&dma_dom->domain, address, size);
2355 domain_flush_complete(&dma_dom->domain);
2356 }
2357
2358 out:
2359 return address;
2360
2361 out_unmap:
2362
2363 for (--i; i >= 0; --i) {
2364 start -= PAGE_SIZE;
2365 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2366 }
2367
2368 domain_flush_tlb(&dma_dom->domain);
2369 domain_flush_complete(&dma_dom->domain);
2370
2371 dma_ops_free_iova(dma_dom, address, pages);
2372
2373 return AMD_IOMMU_MAPPING_ERROR;
2374 }
2375
2376 /*
2377 * Does the reverse of the __map_single function. Must be called with
2378 * the domain lock held too
2379 */
2380 static void __unmap_single(struct dma_ops_domain *dma_dom,
2381 dma_addr_t dma_addr,
2382 size_t size,
2383 int dir)
2384 {
2385 dma_addr_t i, start;
2386 unsigned int pages;
2387
2388 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2389 dma_addr &= PAGE_MASK;
2390 start = dma_addr;
2391
2392 for (i = 0; i < pages; ++i) {
2393 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2394 start += PAGE_SIZE;
2395 }
2396
2397 if (amd_iommu_unmap_flush) {
2398 dma_ops_free_iova(dma_dom, dma_addr, pages);
2399 domain_flush_tlb(&dma_dom->domain);
2400 domain_flush_complete(&dma_dom->domain);
2401 } else {
2402 pages = __roundup_pow_of_two(pages);
2403 queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2404 }
2405 }
2406
2407 /*
2408 * The exported map_single function for dma_ops.
2409 */
2410 static dma_addr_t map_page(struct device *dev, struct page *page,
2411 unsigned long offset, size_t size,
2412 enum dma_data_direction dir,
2413 unsigned long attrs)
2414 {
2415 phys_addr_t paddr = page_to_phys(page) + offset;
2416 struct protection_domain *domain;
2417 struct dma_ops_domain *dma_dom;
2418 u64 dma_mask;
2419
2420 domain = get_domain(dev);
2421 if (PTR_ERR(domain) == -EINVAL)
2422 return (dma_addr_t)paddr;
2423 else if (IS_ERR(domain))
2424 return AMD_IOMMU_MAPPING_ERROR;
2425
2426 dma_mask = *dev->dma_mask;
2427 dma_dom = to_dma_ops_domain(domain);
2428
2429 return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2430 }
2431
2432 /*
2433 * The exported unmap_single function for dma_ops.
2434 */
2435 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2436 enum dma_data_direction dir, unsigned long attrs)
2437 {
2438 struct protection_domain *domain;
2439 struct dma_ops_domain *dma_dom;
2440
2441 domain = get_domain(dev);
2442 if (IS_ERR(domain))
2443 return;
2444
2445 dma_dom = to_dma_ops_domain(domain);
2446
2447 __unmap_single(dma_dom, dma_addr, size, dir);
2448 }
2449
2450 static int sg_num_pages(struct device *dev,
2451 struct scatterlist *sglist,
2452 int nelems)
2453 {
2454 unsigned long mask, boundary_size;
2455 struct scatterlist *s;
2456 int i, npages = 0;
2457
2458 mask = dma_get_seg_boundary(dev);
2459 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2460 1UL << (BITS_PER_LONG - PAGE_SHIFT);
2461
2462 for_each_sg(sglist, s, nelems, i) {
2463 int p, n;
2464
2465 s->dma_address = npages << PAGE_SHIFT;
2466 p = npages % boundary_size;
2467 n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2468 if (p + n > boundary_size)
2469 npages += boundary_size - p;
2470 npages += n;
2471 }
2472
2473 return npages;
2474 }
2475
2476 /*
2477 * The exported map_sg function for dma_ops (handles scatter-gather
2478 * lists).
2479 */
2480 static int map_sg(struct device *dev, struct scatterlist *sglist,
2481 int nelems, enum dma_data_direction direction,
2482 unsigned long attrs)
2483 {
2484 int mapped_pages = 0, npages = 0, prot = 0, i;
2485 struct protection_domain *domain;
2486 struct dma_ops_domain *dma_dom;
2487 struct scatterlist *s;
2488 unsigned long address;
2489 u64 dma_mask;
2490
2491 domain = get_domain(dev);
2492 if (IS_ERR(domain))
2493 return 0;
2494
2495 dma_dom = to_dma_ops_domain(domain);
2496 dma_mask = *dev->dma_mask;
2497
2498 npages = sg_num_pages(dev, sglist, nelems);
2499
2500 address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2501 if (address == AMD_IOMMU_MAPPING_ERROR)
2502 goto out_err;
2503
2504 prot = dir2prot(direction);
2505
2506 /* Map all sg entries */
2507 for_each_sg(sglist, s, nelems, i) {
2508 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2509
2510 for (j = 0; j < pages; ++j) {
2511 unsigned long bus_addr, phys_addr;
2512 int ret;
2513
2514 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2515 phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2516 ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
2517 if (ret)
2518 goto out_unmap;
2519
2520 mapped_pages += 1;
2521 }
2522 }
2523
2524 /* Everything is mapped - write the right values into s->dma_address */
2525 for_each_sg(sglist, s, nelems, i) {
2526 s->dma_address += address + s->offset;
2527 s->dma_length = s->length;
2528 }
2529
2530 return nelems;
2531
2532 out_unmap:
2533 pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2534 dev_name(dev), npages);
2535
2536 for_each_sg(sglist, s, nelems, i) {
2537 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2538
2539 for (j = 0; j < pages; ++j) {
2540 unsigned long bus_addr;
2541
2542 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2543 iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2544
2545 if (--mapped_pages)
2546 goto out_free_iova;
2547 }
2548 }
2549
2550 out_free_iova:
2551 free_iova_fast(&dma_dom->iovad, address, npages);
2552
2553 out_err:
2554 return 0;
2555 }
2556
2557 /*
2558 * The exported map_sg function for dma_ops (handles scatter-gather
2559 * lists).
2560 */
2561 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2562 int nelems, enum dma_data_direction dir,
2563 unsigned long attrs)
2564 {
2565 struct protection_domain *domain;
2566 struct dma_ops_domain *dma_dom;
2567 unsigned long startaddr;
2568 int npages = 2;
2569
2570 domain = get_domain(dev);
2571 if (IS_ERR(domain))
2572 return;
2573
2574 startaddr = sg_dma_address(sglist) & PAGE_MASK;
2575 dma_dom = to_dma_ops_domain(domain);
2576 npages = sg_num_pages(dev, sglist, nelems);
2577
2578 __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2579 }
2580
2581 /*
2582 * The exported alloc_coherent function for dma_ops.
2583 */
2584 static void *alloc_coherent(struct device *dev, size_t size,
2585 dma_addr_t *dma_addr, gfp_t flag,
2586 unsigned long attrs)
2587 {
2588 u64 dma_mask = dev->coherent_dma_mask;
2589 struct protection_domain *domain;
2590 struct dma_ops_domain *dma_dom;
2591 struct page *page;
2592
2593 domain = get_domain(dev);
2594 if (PTR_ERR(domain) == -EINVAL) {
2595 page = alloc_pages(flag, get_order(size));
2596 *dma_addr = page_to_phys(page);
2597 return page_address(page);
2598 } else if (IS_ERR(domain))
2599 return NULL;
2600
2601 dma_dom = to_dma_ops_domain(domain);
2602 size = PAGE_ALIGN(size);
2603 dma_mask = dev->coherent_dma_mask;
2604 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2605 flag |= __GFP_ZERO;
2606
2607 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2608 if (!page) {
2609 if (!gfpflags_allow_blocking(flag))
2610 return NULL;
2611
2612 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2613 get_order(size), flag);
2614 if (!page)
2615 return NULL;
2616 }
2617
2618 if (!dma_mask)
2619 dma_mask = *dev->dma_mask;
2620
2621 *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2622 size, DMA_BIDIRECTIONAL, dma_mask);
2623
2624 if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2625 goto out_free;
2626
2627 return page_address(page);
2628
2629 out_free:
2630
2631 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2632 __free_pages(page, get_order(size));
2633
2634 return NULL;
2635 }
2636
2637 /*
2638 * The exported free_coherent function for dma_ops.
2639 */
2640 static void free_coherent(struct device *dev, size_t size,
2641 void *virt_addr, dma_addr_t dma_addr,
2642 unsigned long attrs)
2643 {
2644 struct protection_domain *domain;
2645 struct dma_ops_domain *dma_dom;
2646 struct page *page;
2647
2648 page = virt_to_page(virt_addr);
2649 size = PAGE_ALIGN(size);
2650
2651 domain = get_domain(dev);
2652 if (IS_ERR(domain))
2653 goto free_mem;
2654
2655 dma_dom = to_dma_ops_domain(domain);
2656
2657 __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2658
2659 free_mem:
2660 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2661 __free_pages(page, get_order(size));
2662 }
2663
2664 /*
2665 * This function is called by the DMA layer to find out if we can handle a
2666 * particular device. It is part of the dma_ops.
2667 */
2668 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2669 {
2670 if (!x86_dma_supported(dev, mask))
2671 return 0;
2672 return check_device(dev);
2673 }
2674
2675 static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
2676 {
2677 return dma_addr == AMD_IOMMU_MAPPING_ERROR;
2678 }
2679
2680 static const struct dma_map_ops amd_iommu_dma_ops = {
2681 .alloc = alloc_coherent,
2682 .free = free_coherent,
2683 .map_page = map_page,
2684 .unmap_page = unmap_page,
2685 .map_sg = map_sg,
2686 .unmap_sg = unmap_sg,
2687 .dma_supported = amd_iommu_dma_supported,
2688 .mapping_error = amd_iommu_mapping_error,
2689 };
2690
2691 static int init_reserved_iova_ranges(void)
2692 {
2693 struct pci_dev *pdev = NULL;
2694 struct iova *val;
2695
2696 init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2697
2698 lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2699 &reserved_rbtree_key);
2700
2701 /* MSI memory range */
2702 val = reserve_iova(&reserved_iova_ranges,
2703 IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2704 if (!val) {
2705 pr_err("Reserving MSI range failed\n");
2706 return -ENOMEM;
2707 }
2708
2709 /* HT memory range */
2710 val = reserve_iova(&reserved_iova_ranges,
2711 IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2712 if (!val) {
2713 pr_err("Reserving HT range failed\n");
2714 return -ENOMEM;
2715 }
2716
2717 /*
2718 * Memory used for PCI resources
2719 * FIXME: Check whether we can reserve the PCI-hole completly
2720 */
2721 for_each_pci_dev(pdev) {
2722 int i;
2723
2724 for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2725 struct resource *r = &pdev->resource[i];
2726
2727 if (!(r->flags & IORESOURCE_MEM))
2728 continue;
2729
2730 val = reserve_iova(&reserved_iova_ranges,
2731 IOVA_PFN(r->start),
2732 IOVA_PFN(r->end));
2733 if (!val) {
2734 pr_err("Reserve pci-resource range failed\n");
2735 return -ENOMEM;
2736 }
2737 }
2738 }
2739
2740 return 0;
2741 }
2742
2743 int __init amd_iommu_init_api(void)
2744 {
2745 int ret, err = 0;
2746
2747 ret = iova_cache_get();
2748 if (ret)
2749 return ret;
2750
2751 ret = init_reserved_iova_ranges();
2752 if (ret)
2753 return ret;
2754
2755 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2756 if (err)
2757 return err;
2758 #ifdef CONFIG_ARM_AMBA
2759 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2760 if (err)
2761 return err;
2762 #endif
2763 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2764 if (err)
2765 return err;
2766
2767 return 0;
2768 }
2769
2770 int __init amd_iommu_init_dma_ops(void)
2771 {
2772 swiotlb = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2773 iommu_detected = 1;
2774
2775 /*
2776 * In case we don't initialize SWIOTLB (actually the common case
2777 * when AMD IOMMU is enabled and SME is not active), make sure there
2778 * are global dma_ops set as a fall-back for devices not handled by
2779 * this driver (for example non-PCI devices). When SME is active,
2780 * make sure that swiotlb variable remains set so the global dma_ops
2781 * continue to be SWIOTLB.
2782 */
2783 if (!swiotlb)
2784 dma_ops = &nommu_dma_ops;
2785
2786 if (amd_iommu_unmap_flush)
2787 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2788 else
2789 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2790
2791 return 0;
2792
2793 }
2794
2795 /*****************************************************************************
2796 *
2797 * The following functions belong to the exported interface of AMD IOMMU
2798 *
2799 * This interface allows access to lower level functions of the IOMMU
2800 * like protection domain handling and assignement of devices to domains
2801 * which is not possible with the dma_ops interface.
2802 *
2803 *****************************************************************************/
2804
2805 static void cleanup_domain(struct protection_domain *domain)
2806 {
2807 struct iommu_dev_data *entry;
2808 unsigned long flags;
2809
2810 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2811
2812 while (!list_empty(&domain->dev_list)) {
2813 entry = list_first_entry(&domain->dev_list,
2814 struct iommu_dev_data, list);
2815 __detach_device(entry);
2816 }
2817
2818 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2819 }
2820
2821 static void protection_domain_free(struct protection_domain *domain)
2822 {
2823 if (!domain)
2824 return;
2825
2826 del_domain_from_list(domain);
2827
2828 if (domain->id)
2829 domain_id_free(domain->id);
2830
2831 kfree(domain);
2832 }
2833
2834 static int protection_domain_init(struct protection_domain *domain)
2835 {
2836 spin_lock_init(&domain->lock);
2837 mutex_init(&domain->api_lock);
2838 domain->id = domain_id_alloc();
2839 if (!domain->id)
2840 return -ENOMEM;
2841 INIT_LIST_HEAD(&domain->dev_list);
2842
2843 return 0;
2844 }
2845
2846 static struct protection_domain *protection_domain_alloc(void)
2847 {
2848 struct protection_domain *domain;
2849
2850 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2851 if (!domain)
2852 return NULL;
2853
2854 if (protection_domain_init(domain))
2855 goto out_err;
2856
2857 add_domain_to_list(domain);
2858
2859 return domain;
2860
2861 out_err:
2862 kfree(domain);
2863
2864 return NULL;
2865 }
2866
2867 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2868 {
2869 struct protection_domain *pdomain;
2870 struct dma_ops_domain *dma_domain;
2871
2872 switch (type) {
2873 case IOMMU_DOMAIN_UNMANAGED:
2874 pdomain = protection_domain_alloc();
2875 if (!pdomain)
2876 return NULL;
2877
2878 pdomain->mode = PAGE_MODE_3_LEVEL;
2879 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2880 if (!pdomain->pt_root) {
2881 protection_domain_free(pdomain);
2882 return NULL;
2883 }
2884
2885 pdomain->domain.geometry.aperture_start = 0;
2886 pdomain->domain.geometry.aperture_end = ~0ULL;
2887 pdomain->domain.geometry.force_aperture = true;
2888
2889 break;
2890 case IOMMU_DOMAIN_DMA:
2891 dma_domain = dma_ops_domain_alloc();
2892 if (!dma_domain) {
2893 pr_err("AMD-Vi: Failed to allocate\n");
2894 return NULL;
2895 }
2896 pdomain = &dma_domain->domain;
2897 break;
2898 case IOMMU_DOMAIN_IDENTITY:
2899 pdomain = protection_domain_alloc();
2900 if (!pdomain)
2901 return NULL;
2902
2903 pdomain->mode = PAGE_MODE_NONE;
2904 break;
2905 default:
2906 return NULL;
2907 }
2908
2909 return &pdomain->domain;
2910 }
2911
2912 static void amd_iommu_domain_free(struct iommu_domain *dom)
2913 {
2914 struct protection_domain *domain;
2915 struct dma_ops_domain *dma_dom;
2916
2917 domain = to_pdomain(dom);
2918
2919 if (domain->dev_cnt > 0)
2920 cleanup_domain(domain);
2921
2922 BUG_ON(domain->dev_cnt != 0);
2923
2924 if (!dom)
2925 return;
2926
2927 switch (dom->type) {
2928 case IOMMU_DOMAIN_DMA:
2929 /* Now release the domain */
2930 dma_dom = to_dma_ops_domain(domain);
2931 dma_ops_domain_free(dma_dom);
2932 break;
2933 default:
2934 if (domain->mode != PAGE_MODE_NONE)
2935 free_pagetable(domain);
2936
2937 if (domain->flags & PD_IOMMUV2_MASK)
2938 free_gcr3_table(domain);
2939
2940 protection_domain_free(domain);
2941 break;
2942 }
2943 }
2944
2945 static void amd_iommu_detach_device(struct iommu_domain *dom,
2946 struct device *dev)
2947 {
2948 struct iommu_dev_data *dev_data = dev->archdata.iommu;
2949 struct amd_iommu *iommu;
2950 int devid;
2951
2952 if (!check_device(dev))
2953 return;
2954
2955 devid = get_device_id(dev);
2956 if (devid < 0)
2957 return;
2958
2959 if (dev_data->domain != NULL)
2960 detach_device(dev);
2961
2962 iommu = amd_iommu_rlookup_table[devid];
2963 if (!iommu)
2964 return;
2965
2966 #ifdef CONFIG_IRQ_REMAP
2967 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2968 (dom->type == IOMMU_DOMAIN_UNMANAGED))
2969 dev_data->use_vapic = 0;
2970 #endif
2971
2972 iommu_completion_wait(iommu);
2973 }
2974
2975 static int amd_iommu_attach_device(struct iommu_domain *dom,
2976 struct device *dev)
2977 {
2978 struct protection_domain *domain = to_pdomain(dom);
2979 struct iommu_dev_data *dev_data;
2980 struct amd_iommu *iommu;
2981 int ret;
2982
2983 if (!check_device(dev))
2984 return -EINVAL;
2985
2986 dev_data = dev->archdata.iommu;
2987
2988 iommu = amd_iommu_rlookup_table[dev_data->devid];
2989 if (!iommu)
2990 return -EINVAL;
2991
2992 if (dev_data->domain)
2993 detach_device(dev);
2994
2995 ret = attach_device(dev, domain);
2996
2997 #ifdef CONFIG_IRQ_REMAP
2998 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2999 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3000 dev_data->use_vapic = 1;
3001 else
3002 dev_data->use_vapic = 0;
3003 }
3004 #endif
3005
3006 iommu_completion_wait(iommu);
3007
3008 return ret;
3009 }
3010
3011 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3012 phys_addr_t paddr, size_t page_size, int iommu_prot)
3013 {
3014 struct protection_domain *domain = to_pdomain(dom);
3015 int prot = 0;
3016 int ret;
3017
3018 if (domain->mode == PAGE_MODE_NONE)
3019 return -EINVAL;
3020
3021 if (iommu_prot & IOMMU_READ)
3022 prot |= IOMMU_PROT_IR;
3023 if (iommu_prot & IOMMU_WRITE)
3024 prot |= IOMMU_PROT_IW;
3025
3026 mutex_lock(&domain->api_lock);
3027 ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3028 mutex_unlock(&domain->api_lock);
3029
3030 return ret;
3031 }
3032
3033 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3034 size_t page_size)
3035 {
3036 struct protection_domain *domain = to_pdomain(dom);
3037 size_t unmap_size;
3038
3039 if (domain->mode == PAGE_MODE_NONE)
3040 return -EINVAL;
3041
3042 mutex_lock(&domain->api_lock);
3043 unmap_size = iommu_unmap_page(domain, iova, page_size);
3044 mutex_unlock(&domain->api_lock);
3045
3046 domain_flush_tlb_pde(domain);
3047 domain_flush_complete(domain);
3048
3049 return unmap_size;
3050 }
3051
3052 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3053 dma_addr_t iova)
3054 {
3055 struct protection_domain *domain = to_pdomain(dom);
3056 unsigned long offset_mask, pte_pgsize;
3057 u64 *pte, __pte;
3058
3059 if (domain->mode == PAGE_MODE_NONE)
3060 return iova;
3061
3062 pte = fetch_pte(domain, iova, &pte_pgsize);
3063
3064 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3065 return 0;
3066
3067 offset_mask = pte_pgsize - 1;
3068 __pte = *pte & PM_ADDR_MASK;
3069
3070 return (__pte & ~offset_mask) | (iova & offset_mask);
3071 }
3072
3073 static bool amd_iommu_capable(enum iommu_cap cap)
3074 {
3075 switch (cap) {
3076 case IOMMU_CAP_CACHE_COHERENCY:
3077 return true;
3078 case IOMMU_CAP_INTR_REMAP:
3079 return (irq_remapping_enabled == 1);
3080 case IOMMU_CAP_NOEXEC:
3081 return false;
3082 }
3083
3084 return false;
3085 }
3086
3087 static void amd_iommu_get_resv_regions(struct device *dev,
3088 struct list_head *head)
3089 {
3090 struct iommu_resv_region *region;
3091 struct unity_map_entry *entry;
3092 int devid;
3093
3094 devid = get_device_id(dev);
3095 if (devid < 0)
3096 return;
3097
3098 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3099 size_t length;
3100 int prot = 0;
3101
3102 if (devid < entry->devid_start || devid > entry->devid_end)
3103 continue;
3104
3105 length = entry->address_end - entry->address_start;
3106 if (entry->prot & IOMMU_PROT_IR)
3107 prot |= IOMMU_READ;
3108 if (entry->prot & IOMMU_PROT_IW)
3109 prot |= IOMMU_WRITE;
3110
3111 region = iommu_alloc_resv_region(entry->address_start,
3112 length, prot,
3113 IOMMU_RESV_DIRECT);
3114 if (!region) {
3115 pr_err("Out of memory allocating dm-regions for %s\n",
3116 dev_name(dev));
3117 return;
3118 }
3119 list_add_tail(&region->list, head);
3120 }
3121
3122 region = iommu_alloc_resv_region(MSI_RANGE_START,
3123 MSI_RANGE_END - MSI_RANGE_START + 1,
3124 0, IOMMU_RESV_MSI);
3125 if (!region)
3126 return;
3127 list_add_tail(&region->list, head);
3128
3129 region = iommu_alloc_resv_region(HT_RANGE_START,
3130 HT_RANGE_END - HT_RANGE_START + 1,
3131 0, IOMMU_RESV_RESERVED);
3132 if (!region)
3133 return;
3134 list_add_tail(&region->list, head);
3135 }
3136
3137 static void amd_iommu_put_resv_regions(struct device *dev,
3138 struct list_head *head)
3139 {
3140 struct iommu_resv_region *entry, *next;
3141
3142 list_for_each_entry_safe(entry, next, head, list)
3143 kfree(entry);
3144 }
3145
3146 static void amd_iommu_apply_resv_region(struct device *dev,
3147 struct iommu_domain *domain,
3148 struct iommu_resv_region *region)
3149 {
3150 struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3151 unsigned long start, end;
3152
3153 start = IOVA_PFN(region->start);
3154 end = IOVA_PFN(region->start + region->length - 1);
3155
3156 WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3157 }
3158
3159 static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3160 struct device *dev)
3161 {
3162 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3163 return dev_data->defer_attach;
3164 }
3165
3166 const struct iommu_ops amd_iommu_ops = {
3167 .capable = amd_iommu_capable,
3168 .domain_alloc = amd_iommu_domain_alloc,
3169 .domain_free = amd_iommu_domain_free,
3170 .attach_dev = amd_iommu_attach_device,
3171 .detach_dev = amd_iommu_detach_device,
3172 .map = amd_iommu_map,
3173 .unmap = amd_iommu_unmap,
3174 .map_sg = default_iommu_map_sg,
3175 .iova_to_phys = amd_iommu_iova_to_phys,
3176 .add_device = amd_iommu_add_device,
3177 .remove_device = amd_iommu_remove_device,
3178 .device_group = amd_iommu_device_group,
3179 .get_resv_regions = amd_iommu_get_resv_regions,
3180 .put_resv_regions = amd_iommu_put_resv_regions,
3181 .apply_resv_region = amd_iommu_apply_resv_region,
3182 .is_attach_deferred = amd_iommu_is_attach_deferred,
3183 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3184 };
3185
3186 /*****************************************************************************
3187 *
3188 * The next functions do a basic initialization of IOMMU for pass through
3189 * mode
3190 *
3191 * In passthrough mode the IOMMU is initialized and enabled but not used for
3192 * DMA-API translation.
3193 *
3194 *****************************************************************************/
3195
3196 /* IOMMUv2 specific functions */
3197 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3198 {
3199 return atomic_notifier_chain_register(&ppr_notifier, nb);
3200 }
3201 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3202
3203 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3204 {
3205 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3206 }
3207 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3208
3209 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3210 {
3211 struct protection_domain *domain = to_pdomain(dom);
3212 unsigned long flags;
3213
3214 spin_lock_irqsave(&domain->lock, flags);
3215
3216 /* Update data structure */
3217 domain->mode = PAGE_MODE_NONE;
3218 domain->updated = true;
3219
3220 /* Make changes visible to IOMMUs */
3221 update_domain(domain);
3222
3223 /* Page-table is not visible to IOMMU anymore, so free it */
3224 free_pagetable(domain);
3225
3226 spin_unlock_irqrestore(&domain->lock, flags);
3227 }
3228 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3229
3230 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3231 {
3232 struct protection_domain *domain = to_pdomain(dom);
3233 unsigned long flags;
3234 int levels, ret;
3235
3236 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3237 return -EINVAL;
3238
3239 /* Number of GCR3 table levels required */
3240 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3241 levels += 1;
3242
3243 if (levels > amd_iommu_max_glx_val)
3244 return -EINVAL;
3245
3246 spin_lock_irqsave(&domain->lock, flags);
3247
3248 /*
3249 * Save us all sanity checks whether devices already in the
3250 * domain support IOMMUv2. Just force that the domain has no
3251 * devices attached when it is switched into IOMMUv2 mode.
3252 */
3253 ret = -EBUSY;
3254 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3255 goto out;
3256
3257 ret = -ENOMEM;
3258 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3259 if (domain->gcr3_tbl == NULL)
3260 goto out;
3261
3262 domain->glx = levels;
3263 domain->flags |= PD_IOMMUV2_MASK;
3264 domain->updated = true;
3265
3266 update_domain(domain);
3267
3268 ret = 0;
3269
3270 out:
3271 spin_unlock_irqrestore(&domain->lock, flags);
3272
3273 return ret;
3274 }
3275 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3276
3277 static int __flush_pasid(struct protection_domain *domain, int pasid,
3278 u64 address, bool size)
3279 {
3280 struct iommu_dev_data *dev_data;
3281 struct iommu_cmd cmd;
3282 int i, ret;
3283
3284 if (!(domain->flags & PD_IOMMUV2_MASK))
3285 return -EINVAL;
3286
3287 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3288
3289 /*
3290 * IOMMU TLB needs to be flushed before Device TLB to
3291 * prevent device TLB refill from IOMMU TLB
3292 */
3293 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3294 if (domain->dev_iommu[i] == 0)
3295 continue;
3296
3297 ret = iommu_queue_command(amd_iommus[i], &cmd);
3298 if (ret != 0)
3299 goto out;
3300 }
3301
3302 /* Wait until IOMMU TLB flushes are complete */
3303 domain_flush_complete(domain);
3304
3305 /* Now flush device TLBs */
3306 list_for_each_entry(dev_data, &domain->dev_list, list) {
3307 struct amd_iommu *iommu;
3308 int qdep;
3309
3310 /*
3311 There might be non-IOMMUv2 capable devices in an IOMMUv2
3312 * domain.
3313 */
3314 if (!dev_data->ats.enabled)
3315 continue;
3316
3317 qdep = dev_data->ats.qdep;
3318 iommu = amd_iommu_rlookup_table[dev_data->devid];
3319
3320 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3321 qdep, address, size);
3322
3323 ret = iommu_queue_command(iommu, &cmd);
3324 if (ret != 0)
3325 goto out;
3326 }
3327
3328 /* Wait until all device TLBs are flushed */
3329 domain_flush_complete(domain);
3330
3331 ret = 0;
3332
3333 out:
3334
3335 return ret;
3336 }
3337
3338 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3339 u64 address)
3340 {
3341 return __flush_pasid(domain, pasid, address, false);
3342 }
3343
3344 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3345 u64 address)
3346 {
3347 struct protection_domain *domain = to_pdomain(dom);
3348 unsigned long flags;
3349 int ret;
3350
3351 spin_lock_irqsave(&domain->lock, flags);
3352 ret = __amd_iommu_flush_page(domain, pasid, address);
3353 spin_unlock_irqrestore(&domain->lock, flags);
3354
3355 return ret;
3356 }
3357 EXPORT_SYMBOL(amd_iommu_flush_page);
3358
3359 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3360 {
3361 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3362 true);
3363 }
3364
3365 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3366 {
3367 struct protection_domain *domain = to_pdomain(dom);
3368 unsigned long flags;
3369 int ret;
3370
3371 spin_lock_irqsave(&domain->lock, flags);
3372 ret = __amd_iommu_flush_tlb(domain, pasid);
3373 spin_unlock_irqrestore(&domain->lock, flags);
3374
3375 return ret;
3376 }
3377 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3378
3379 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3380 {
3381 int index;
3382 u64 *pte;
3383
3384 while (true) {
3385
3386 index = (pasid >> (9 * level)) & 0x1ff;
3387 pte = &root[index];
3388
3389 if (level == 0)
3390 break;
3391
3392 if (!(*pte & GCR3_VALID)) {
3393 if (!alloc)
3394 return NULL;
3395
3396 root = (void *)get_zeroed_page(GFP_ATOMIC);
3397 if (root == NULL)
3398 return NULL;
3399
3400 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
3401 }
3402
3403 root = iommu_phys_to_virt(*pte & PAGE_MASK);
3404
3405 level -= 1;
3406 }
3407
3408 return pte;
3409 }
3410
3411 static int __set_gcr3(struct protection_domain *domain, int pasid,
3412 unsigned long cr3)
3413 {
3414 u64 *pte;
3415
3416 if (domain->mode != PAGE_MODE_NONE)
3417 return -EINVAL;
3418
3419 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3420 if (pte == NULL)
3421 return -ENOMEM;
3422
3423 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3424
3425 return __amd_iommu_flush_tlb(domain, pasid);
3426 }
3427
3428 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3429 {
3430 u64 *pte;
3431
3432 if (domain->mode != PAGE_MODE_NONE)
3433 return -EINVAL;
3434
3435 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3436 if (pte == NULL)
3437 return 0;
3438
3439 *pte = 0;
3440
3441 return __amd_iommu_flush_tlb(domain, pasid);
3442 }
3443
3444 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3445 unsigned long cr3)
3446 {
3447 struct protection_domain *domain = to_pdomain(dom);
3448 unsigned long flags;
3449 int ret;
3450
3451 spin_lock_irqsave(&domain->lock, flags);
3452 ret = __set_gcr3(domain, pasid, cr3);
3453 spin_unlock_irqrestore(&domain->lock, flags);
3454
3455 return ret;
3456 }
3457 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3458
3459 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3460 {
3461 struct protection_domain *domain = to_pdomain(dom);
3462 unsigned long flags;
3463 int ret;
3464
3465 spin_lock_irqsave(&domain->lock, flags);
3466 ret = __clear_gcr3(domain, pasid);
3467 spin_unlock_irqrestore(&domain->lock, flags);
3468
3469 return ret;
3470 }
3471 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3472
3473 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3474 int status, int tag)
3475 {
3476 struct iommu_dev_data *dev_data;
3477 struct amd_iommu *iommu;
3478 struct iommu_cmd cmd;
3479
3480 dev_data = get_dev_data(&pdev->dev);
3481 iommu = amd_iommu_rlookup_table[dev_data->devid];
3482
3483 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3484 tag, dev_data->pri_tlp);
3485
3486 return iommu_queue_command(iommu, &cmd);
3487 }
3488 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3489
3490 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3491 {
3492 struct protection_domain *pdomain;
3493
3494 pdomain = get_domain(&pdev->dev);
3495 if (IS_ERR(pdomain))
3496 return NULL;
3497
3498 /* Only return IOMMUv2 domains */
3499 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3500 return NULL;
3501
3502 return &pdomain->domain;
3503 }
3504 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3505
3506 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3507 {
3508 struct iommu_dev_data *dev_data;
3509
3510 if (!amd_iommu_v2_supported())
3511 return;
3512
3513 dev_data = get_dev_data(&pdev->dev);
3514 dev_data->errata |= (1 << erratum);
3515 }
3516 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3517
3518 int amd_iommu_device_info(struct pci_dev *pdev,
3519 struct amd_iommu_device_info *info)
3520 {
3521 int max_pasids;
3522 int pos;
3523
3524 if (pdev == NULL || info == NULL)
3525 return -EINVAL;
3526
3527 if (!amd_iommu_v2_supported())
3528 return -EINVAL;
3529
3530 memset(info, 0, sizeof(*info));
3531
3532 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3533 if (pos)
3534 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3535
3536 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3537 if (pos)
3538 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3539
3540 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3541 if (pos) {
3542 int features;
3543
3544 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3545 max_pasids = min(max_pasids, (1 << 20));
3546
3547 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3548 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3549
3550 features = pci_pasid_features(pdev);
3551 if (features & PCI_PASID_CAP_EXEC)
3552 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3553 if (features & PCI_PASID_CAP_PRIV)
3554 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3555 }
3556
3557 return 0;
3558 }
3559 EXPORT_SYMBOL(amd_iommu_device_info);
3560
3561 #ifdef CONFIG_IRQ_REMAP
3562
3563 /*****************************************************************************
3564 *
3565 * Interrupt Remapping Implementation
3566 *
3567 *****************************************************************************/
3568
3569 static struct irq_chip amd_ir_chip;
3570
3571 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3572 {
3573 u64 dte;
3574
3575 dte = amd_iommu_dev_table[devid].data[2];
3576 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3577 dte |= iommu_virt_to_phys(table->table);
3578 dte |= DTE_IRQ_REMAP_INTCTL;
3579 dte |= DTE_IRQ_TABLE_LEN;
3580 dte |= DTE_IRQ_REMAP_ENABLE;
3581
3582 amd_iommu_dev_table[devid].data[2] = dte;
3583 }
3584
3585 static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3586 {
3587 struct irq_remap_table *table = NULL;
3588 struct amd_iommu *iommu;
3589 unsigned long flags;
3590 u16 alias;
3591
3592 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3593
3594 iommu = amd_iommu_rlookup_table[devid];
3595 if (!iommu)
3596 goto out_unlock;
3597
3598 table = irq_lookup_table[devid];
3599 if (table)
3600 goto out_unlock;
3601
3602 alias = amd_iommu_alias_table[devid];
3603 table = irq_lookup_table[alias];
3604 if (table) {
3605 irq_lookup_table[devid] = table;
3606 set_dte_irq_entry(devid, table);
3607 iommu_flush_dte(iommu, devid);
3608 goto out;
3609 }
3610
3611 /* Nothing there yet, allocate new irq remapping table */
3612 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3613 if (!table)
3614 goto out_unlock;
3615
3616 /* Initialize table spin-lock */
3617 spin_lock_init(&table->lock);
3618
3619 if (ioapic)
3620 /* Keep the first 32 indexes free for IOAPIC interrupts */
3621 table->min_index = 32;
3622
3623 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3624 if (!table->table) {
3625 kfree(table);
3626 table = NULL;
3627 goto out_unlock;
3628 }
3629
3630 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3631 memset(table->table, 0,
3632 MAX_IRQS_PER_TABLE * sizeof(u32));
3633 else
3634 memset(table->table, 0,
3635 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3636
3637 if (ioapic) {
3638 int i;
3639
3640 for (i = 0; i < 32; ++i)
3641 iommu->irte_ops->set_allocated(table, i);
3642 }
3643
3644 irq_lookup_table[devid] = table;
3645 set_dte_irq_entry(devid, table);
3646 iommu_flush_dte(iommu, devid);
3647 if (devid != alias) {
3648 irq_lookup_table[alias] = table;
3649 set_dte_irq_entry(alias, table);
3650 iommu_flush_dte(iommu, alias);
3651 }
3652
3653 out:
3654 iommu_completion_wait(iommu);
3655
3656 out_unlock:
3657 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3658
3659 return table;
3660 }
3661
3662 static int alloc_irq_index(u16 devid, int count, bool align)
3663 {
3664 struct irq_remap_table *table;
3665 int index, c, alignment = 1;
3666 unsigned long flags;
3667 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3668
3669 if (!iommu)
3670 return -ENODEV;
3671
3672 table = get_irq_table(devid, false);
3673 if (!table)
3674 return -ENODEV;
3675
3676 if (align)
3677 alignment = roundup_pow_of_two(count);
3678
3679 spin_lock_irqsave(&table->lock, flags);
3680
3681 /* Scan table for free entries */
3682 for (index = ALIGN(table->min_index, alignment), c = 0;
3683 index < MAX_IRQS_PER_TABLE;) {
3684 if (!iommu->irte_ops->is_allocated(table, index)) {
3685 c += 1;
3686 } else {
3687 c = 0;
3688 index = ALIGN(index + 1, alignment);
3689 continue;
3690 }
3691
3692 if (c == count) {
3693 for (; c != 0; --c)
3694 iommu->irte_ops->set_allocated(table, index - c + 1);
3695
3696 index -= count - 1;
3697 goto out;
3698 }
3699
3700 index++;
3701 }
3702
3703 index = -ENOSPC;
3704
3705 out:
3706 spin_unlock_irqrestore(&table->lock, flags);
3707
3708 return index;
3709 }
3710
3711 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3712 struct amd_ir_data *data)
3713 {
3714 struct irq_remap_table *table;
3715 struct amd_iommu *iommu;
3716 unsigned long flags;
3717 struct irte_ga *entry;
3718
3719 iommu = amd_iommu_rlookup_table[devid];
3720 if (iommu == NULL)
3721 return -EINVAL;
3722
3723 table = get_irq_table(devid, false);
3724 if (!table)
3725 return -ENOMEM;
3726
3727 spin_lock_irqsave(&table->lock, flags);
3728
3729 entry = (struct irte_ga *)table->table;
3730 entry = &entry[index];
3731 entry->lo.fields_remap.valid = 0;
3732 entry->hi.val = irte->hi.val;
3733 entry->lo.val = irte->lo.val;
3734 entry->lo.fields_remap.valid = 1;
3735 if (data)
3736 data->ref = entry;
3737
3738 spin_unlock_irqrestore(&table->lock, flags);
3739
3740 iommu_flush_irt(iommu, devid);
3741 iommu_completion_wait(iommu);
3742
3743 return 0;
3744 }
3745
3746 static int modify_irte(u16 devid, int index, union irte *irte)
3747 {
3748 struct irq_remap_table *table;
3749 struct amd_iommu *iommu;
3750 unsigned long flags;
3751
3752 iommu = amd_iommu_rlookup_table[devid];
3753 if (iommu == NULL)
3754 return -EINVAL;
3755
3756 table = get_irq_table(devid, false);
3757 if (!table)
3758 return -ENOMEM;
3759
3760 spin_lock_irqsave(&table->lock, flags);
3761 table->table[index] = irte->val;
3762 spin_unlock_irqrestore(&table->lock, flags);
3763
3764 iommu_flush_irt(iommu, devid);
3765 iommu_completion_wait(iommu);
3766
3767 return 0;
3768 }
3769
3770 static void free_irte(u16 devid, int index)
3771 {
3772 struct irq_remap_table *table;
3773 struct amd_iommu *iommu;
3774 unsigned long flags;
3775
3776 iommu = amd_iommu_rlookup_table[devid];
3777 if (iommu == NULL)
3778 return;
3779
3780 table = get_irq_table(devid, false);
3781 if (!table)
3782 return;
3783
3784 spin_lock_irqsave(&table->lock, flags);
3785 iommu->irte_ops->clear_allocated(table, index);
3786 spin_unlock_irqrestore(&table->lock, flags);
3787
3788 iommu_flush_irt(iommu, devid);
3789 iommu_completion_wait(iommu);
3790 }
3791
3792 static void irte_prepare(void *entry,
3793 u32 delivery_mode, u32 dest_mode,
3794 u8 vector, u32 dest_apicid, int devid)
3795 {
3796 union irte *irte = (union irte *) entry;
3797
3798 irte->val = 0;
3799 irte->fields.vector = vector;
3800 irte->fields.int_type = delivery_mode;
3801 irte->fields.destination = dest_apicid;
3802 irte->fields.dm = dest_mode;
3803 irte->fields.valid = 1;
3804 }
3805
3806 static void irte_ga_prepare(void *entry,
3807 u32 delivery_mode, u32 dest_mode,
3808 u8 vector, u32 dest_apicid, int devid)
3809 {
3810 struct irte_ga *irte = (struct irte_ga *) entry;
3811
3812 irte->lo.val = 0;
3813 irte->hi.val = 0;
3814 irte->lo.fields_remap.int_type = delivery_mode;
3815 irte->lo.fields_remap.dm = dest_mode;
3816 irte->hi.fields.vector = vector;
3817 irte->lo.fields_remap.destination = dest_apicid;
3818 irte->lo.fields_remap.valid = 1;
3819 }
3820
3821 static void irte_activate(void *entry, u16 devid, u16 index)
3822 {
3823 union irte *irte = (union irte *) entry;
3824
3825 irte->fields.valid = 1;
3826 modify_irte(devid, index, irte);
3827 }
3828
3829 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3830 {
3831 struct irte_ga *irte = (struct irte_ga *) entry;
3832
3833 irte->lo.fields_remap.valid = 1;
3834 modify_irte_ga(devid, index, irte, NULL);
3835 }
3836
3837 static void irte_deactivate(void *entry, u16 devid, u16 index)
3838 {
3839 union irte *irte = (union irte *) entry;
3840
3841 irte->fields.valid = 0;
3842 modify_irte(devid, index, irte);
3843 }
3844
3845 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3846 {
3847 struct irte_ga *irte = (struct irte_ga *) entry;
3848
3849 irte->lo.fields_remap.valid = 0;
3850 modify_irte_ga(devid, index, irte, NULL);
3851 }
3852
3853 static void irte_set_affinity(void *entry, u16 devid, u16 index,
3854 u8 vector, u32 dest_apicid)
3855 {
3856 union irte *irte = (union irte *) entry;
3857
3858 irte->fields.vector = vector;
3859 irte->fields.destination = dest_apicid;
3860 modify_irte(devid, index, irte);
3861 }
3862
3863 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3864 u8 vector, u32 dest_apicid)
3865 {
3866 struct irte_ga *irte = (struct irte_ga *) entry;
3867 struct iommu_dev_data *dev_data = search_dev_data(devid);
3868
3869 if (!dev_data || !dev_data->use_vapic ||
3870 !irte->lo.fields_remap.guest_mode) {
3871 irte->hi.fields.vector = vector;
3872 irte->lo.fields_remap.destination = dest_apicid;
3873 modify_irte_ga(devid, index, irte, NULL);
3874 }
3875 }
3876
3877 #define IRTE_ALLOCATED (~1U)
3878 static void irte_set_allocated(struct irq_remap_table *table, int index)
3879 {
3880 table->table[index] = IRTE_ALLOCATED;
3881 }
3882
3883 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3884 {
3885 struct irte_ga *ptr = (struct irte_ga *)table->table;
3886 struct irte_ga *irte = &ptr[index];
3887
3888 memset(&irte->lo.val, 0, sizeof(u64));
3889 memset(&irte->hi.val, 0, sizeof(u64));
3890 irte->hi.fields.vector = 0xff;
3891 }
3892
3893 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3894 {
3895 union irte *ptr = (union irte *)table->table;
3896 union irte *irte = &ptr[index];
3897
3898 return irte->val != 0;
3899 }
3900
3901 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3902 {
3903 struct irte_ga *ptr = (struct irte_ga *)table->table;
3904 struct irte_ga *irte = &ptr[index];
3905
3906 return irte->hi.fields.vector != 0;
3907 }
3908
3909 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3910 {
3911 table->table[index] = 0;
3912 }
3913
3914 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3915 {
3916 struct irte_ga *ptr = (struct irte_ga *)table->table;
3917 struct irte_ga *irte = &ptr[index];
3918
3919 memset(&irte->lo.val, 0, sizeof(u64));
3920 memset(&irte->hi.val, 0, sizeof(u64));
3921 }
3922
3923 static int get_devid(struct irq_alloc_info *info)
3924 {
3925 int devid = -1;
3926
3927 switch (info->type) {
3928 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3929 devid = get_ioapic_devid(info->ioapic_id);
3930 break;
3931 case X86_IRQ_ALLOC_TYPE_HPET:
3932 devid = get_hpet_devid(info->hpet_id);
3933 break;
3934 case X86_IRQ_ALLOC_TYPE_MSI:
3935 case X86_IRQ_ALLOC_TYPE_MSIX:
3936 devid = get_device_id(&info->msi_dev->dev);
3937 break;
3938 default:
3939 BUG_ON(1);
3940 break;
3941 }
3942
3943 return devid;
3944 }
3945
3946 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3947 {
3948 struct amd_iommu *iommu;
3949 int devid;
3950
3951 if (!info)
3952 return NULL;
3953
3954 devid = get_devid(info);
3955 if (devid >= 0) {
3956 iommu = amd_iommu_rlookup_table[devid];
3957 if (iommu)
3958 return iommu->ir_domain;
3959 }
3960
3961 return NULL;
3962 }
3963
3964 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3965 {
3966 struct amd_iommu *iommu;
3967 int devid;
3968
3969 if (!info)
3970 return NULL;
3971
3972 switch (info->type) {
3973 case X86_IRQ_ALLOC_TYPE_MSI:
3974 case X86_IRQ_ALLOC_TYPE_MSIX:
3975 devid = get_device_id(&info->msi_dev->dev);
3976 if (devid < 0)
3977 return NULL;
3978
3979 iommu = amd_iommu_rlookup_table[devid];
3980 if (iommu)
3981 return iommu->msi_domain;
3982 break;
3983 default:
3984 break;
3985 }
3986
3987 return NULL;
3988 }
3989
3990 struct irq_remap_ops amd_iommu_irq_ops = {
3991 .prepare = amd_iommu_prepare,
3992 .enable = amd_iommu_enable,
3993 .disable = amd_iommu_disable,
3994 .reenable = amd_iommu_reenable,
3995 .enable_faulting = amd_iommu_enable_faulting,
3996 .get_ir_irq_domain = get_ir_irq_domain,
3997 .get_irq_domain = get_irq_domain,
3998 };
3999
4000 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4001 struct irq_cfg *irq_cfg,
4002 struct irq_alloc_info *info,
4003 int devid, int index, int sub_handle)
4004 {
4005 struct irq_2_irte *irte_info = &data->irq_2_irte;
4006 struct msi_msg *msg = &data->msi_entry;
4007 struct IO_APIC_route_entry *entry;
4008 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4009
4010 if (!iommu)
4011 return;
4012
4013 data->irq_2_irte.devid = devid;
4014 data->irq_2_irte.index = index + sub_handle;
4015 iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4016 apic->irq_dest_mode, irq_cfg->vector,
4017 irq_cfg->dest_apicid, devid);
4018
4019 switch (info->type) {
4020 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4021 /* Setup IOAPIC entry */
4022 entry = info->ioapic_entry;
4023 info->ioapic_entry = NULL;
4024 memset(entry, 0, sizeof(*entry));
4025 entry->vector = index;
4026 entry->mask = 0;
4027 entry->trigger = info->ioapic_trigger;
4028 entry->polarity = info->ioapic_polarity;
4029 /* Mask level triggered irqs. */
4030 if (info->ioapic_trigger)
4031 entry->mask = 1;
4032 break;
4033
4034 case X86_IRQ_ALLOC_TYPE_HPET:
4035 case X86_IRQ_ALLOC_TYPE_MSI:
4036 case X86_IRQ_ALLOC_TYPE_MSIX:
4037 msg->address_hi = MSI_ADDR_BASE_HI;
4038 msg->address_lo = MSI_ADDR_BASE_LO;
4039 msg->data = irte_info->index;
4040 break;
4041
4042 default:
4043 BUG_ON(1);
4044 break;
4045 }
4046 }
4047
4048 struct amd_irte_ops irte_32_ops = {
4049 .prepare = irte_prepare,
4050 .activate = irte_activate,
4051 .deactivate = irte_deactivate,
4052 .set_affinity = irte_set_affinity,
4053 .set_allocated = irte_set_allocated,
4054 .is_allocated = irte_is_allocated,
4055 .clear_allocated = irte_clear_allocated,
4056 };
4057
4058 struct amd_irte_ops irte_128_ops = {
4059 .prepare = irte_ga_prepare,
4060 .activate = irte_ga_activate,
4061 .deactivate = irte_ga_deactivate,
4062 .set_affinity = irte_ga_set_affinity,
4063 .set_allocated = irte_ga_set_allocated,
4064 .is_allocated = irte_ga_is_allocated,
4065 .clear_allocated = irte_ga_clear_allocated,
4066 };
4067
4068 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4069 unsigned int nr_irqs, void *arg)
4070 {
4071 struct irq_alloc_info *info = arg;
4072 struct irq_data *irq_data;
4073 struct amd_ir_data *data = NULL;
4074 struct irq_cfg *cfg;
4075 int i, ret, devid;
4076 int index = -1;
4077
4078 if (!info)
4079 return -EINVAL;
4080 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4081 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4082 return -EINVAL;
4083
4084 /*
4085 * With IRQ remapping enabled, don't need contiguous CPU vectors
4086 * to support multiple MSI interrupts.
4087 */
4088 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4089 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4090
4091 devid = get_devid(info);
4092 if (devid < 0)
4093 return -EINVAL;
4094
4095 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4096 if (ret < 0)
4097 return ret;
4098
4099 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4100 if (get_irq_table(devid, true))
4101 index = info->ioapic_pin;
4102 else
4103 ret = -ENOMEM;
4104 } else {
4105 bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4106
4107 index = alloc_irq_index(devid, nr_irqs, align);
4108 }
4109 if (index < 0) {
4110 pr_warn("Failed to allocate IRTE\n");
4111 ret = index;
4112 goto out_free_parent;
4113 }
4114
4115 for (i = 0; i < nr_irqs; i++) {
4116 irq_data = irq_domain_get_irq_data(domain, virq + i);
4117 cfg = irqd_cfg(irq_data);
4118 if (!irq_data || !cfg) {
4119 ret = -EINVAL;
4120 goto out_free_data;
4121 }
4122
4123 ret = -ENOMEM;
4124 data = kzalloc(sizeof(*data), GFP_KERNEL);
4125 if (!data)
4126 goto out_free_data;
4127
4128 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4129 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4130 else
4131 data->entry = kzalloc(sizeof(struct irte_ga),
4132 GFP_KERNEL);
4133 if (!data->entry) {
4134 kfree(data);
4135 goto out_free_data;
4136 }
4137
4138 irq_data->hwirq = (devid << 16) + i;
4139 irq_data->chip_data = data;
4140 irq_data->chip = &amd_ir_chip;
4141 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4142 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4143 }
4144
4145 return 0;
4146
4147 out_free_data:
4148 for (i--; i >= 0; i--) {
4149 irq_data = irq_domain_get_irq_data(domain, virq + i);
4150 if (irq_data)
4151 kfree(irq_data->chip_data);
4152 }
4153 for (i = 0; i < nr_irqs; i++)
4154 free_irte(devid, index + i);
4155 out_free_parent:
4156 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4157 return ret;
4158 }
4159
4160 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4161 unsigned int nr_irqs)
4162 {
4163 struct irq_2_irte *irte_info;
4164 struct irq_data *irq_data;
4165 struct amd_ir_data *data;
4166 int i;
4167
4168 for (i = 0; i < nr_irqs; i++) {
4169 irq_data = irq_domain_get_irq_data(domain, virq + i);
4170 if (irq_data && irq_data->chip_data) {
4171 data = irq_data->chip_data;
4172 irte_info = &data->irq_2_irte;
4173 free_irte(irte_info->devid, irte_info->index);
4174 kfree(data->entry);
4175 kfree(data);
4176 }
4177 }
4178 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4179 }
4180
4181 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4182 struct amd_ir_data *ir_data,
4183 struct irq_2_irte *irte_info,
4184 struct irq_cfg *cfg);
4185
4186 static int irq_remapping_activate(struct irq_domain *domain,
4187 struct irq_data *irq_data, bool early)
4188 {
4189 struct amd_ir_data *data = irq_data->chip_data;
4190 struct irq_2_irte *irte_info = &data->irq_2_irte;
4191 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4192 struct irq_cfg *cfg = irqd_cfg(irq_data);
4193
4194 if (!iommu)
4195 return 0;
4196
4197 iommu->irte_ops->activate(data->entry, irte_info->devid,
4198 irte_info->index);
4199 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4200 return 0;
4201 }
4202
4203 static void irq_remapping_deactivate(struct irq_domain *domain,
4204 struct irq_data *irq_data)
4205 {
4206 struct amd_ir_data *data = irq_data->chip_data;
4207 struct irq_2_irte *irte_info = &data->irq_2_irte;
4208 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4209
4210 if (iommu)
4211 iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4212 irte_info->index);
4213 }
4214
4215 static const struct irq_domain_ops amd_ir_domain_ops = {
4216 .alloc = irq_remapping_alloc,
4217 .free = irq_remapping_free,
4218 .activate = irq_remapping_activate,
4219 .deactivate = irq_remapping_deactivate,
4220 };
4221
4222 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4223 {
4224 struct amd_iommu *iommu;
4225 struct amd_iommu_pi_data *pi_data = vcpu_info;
4226 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4227 struct amd_ir_data *ir_data = data->chip_data;
4228 struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
4229 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4230 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4231
4232 /* Note:
4233 * This device has never been set up for guest mode.
4234 * we should not modify the IRTE
4235 */
4236 if (!dev_data || !dev_data->use_vapic)
4237 return 0;
4238
4239 pi_data->ir_data = ir_data;
4240
4241 /* Note:
4242 * SVM tries to set up for VAPIC mode, but we are in
4243 * legacy mode. So, we force legacy mode instead.
4244 */
4245 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4246 pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4247 __func__);
4248 pi_data->is_guest_mode = false;
4249 }
4250
4251 iommu = amd_iommu_rlookup_table[irte_info->devid];
4252 if (iommu == NULL)
4253 return -EINVAL;
4254
4255 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4256 if (pi_data->is_guest_mode) {
4257 /* Setting */
4258 irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
4259 irte->hi.fields.vector = vcpu_pi_info->vector;
4260 irte->lo.fields_vapic.ga_log_intr = 1;
4261 irte->lo.fields_vapic.guest_mode = 1;
4262 irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
4263
4264 ir_data->cached_ga_tag = pi_data->ga_tag;
4265 } else {
4266 /* Un-Setting */
4267 struct irq_cfg *cfg = irqd_cfg(data);
4268
4269 irte->hi.val = 0;
4270 irte->lo.val = 0;
4271 irte->hi.fields.vector = cfg->vector;
4272 irte->lo.fields_remap.guest_mode = 0;
4273 irte->lo.fields_remap.destination = cfg->dest_apicid;
4274 irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
4275 irte->lo.fields_remap.dm = apic->irq_dest_mode;
4276
4277 /*
4278 * This communicates the ga_tag back to the caller
4279 * so that it can do all the necessary clean up.
4280 */
4281 ir_data->cached_ga_tag = 0;
4282 }
4283
4284 return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
4285 }
4286
4287
4288 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4289 struct amd_ir_data *ir_data,
4290 struct irq_2_irte *irte_info,
4291 struct irq_cfg *cfg)
4292 {
4293
4294 /*
4295 * Atomically updates the IRTE with the new destination, vector
4296 * and flushes the interrupt entry cache.
4297 */
4298 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4299 irte_info->index, cfg->vector,
4300 cfg->dest_apicid);
4301 }
4302
4303 static int amd_ir_set_affinity(struct irq_data *data,
4304 const struct cpumask *mask, bool force)
4305 {
4306 struct amd_ir_data *ir_data = data->chip_data;
4307 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4308 struct irq_cfg *cfg = irqd_cfg(data);
4309 struct irq_data *parent = data->parent_data;
4310 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4311 int ret;
4312
4313 if (!iommu)
4314 return -ENODEV;
4315
4316 ret = parent->chip->irq_set_affinity(parent, mask, force);
4317 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4318 return ret;
4319
4320 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4321 /*
4322 * After this point, all the interrupts will start arriving
4323 * at the new destination. So, time to cleanup the previous
4324 * vector allocation.
4325 */
4326 send_cleanup_vector(cfg);
4327
4328 return IRQ_SET_MASK_OK_DONE;
4329 }
4330
4331 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4332 {
4333 struct amd_ir_data *ir_data = irq_data->chip_data;
4334
4335 *msg = ir_data->msi_entry;
4336 }
4337
4338 static struct irq_chip amd_ir_chip = {
4339 .name = "AMD-IR",
4340 .irq_ack = ir_ack_apic_edge,
4341 .irq_set_affinity = amd_ir_set_affinity,
4342 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4343 .irq_compose_msi_msg = ir_compose_msi_msg,
4344 };
4345
4346 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4347 {
4348 struct fwnode_handle *fn;
4349
4350 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4351 if (!fn)
4352 return -ENOMEM;
4353 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4354 irq_domain_free_fwnode(fn);
4355 if (!iommu->ir_domain)
4356 return -ENOMEM;
4357
4358 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4359 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4360 "AMD-IR-MSI",
4361 iommu->index);
4362 return 0;
4363 }
4364
4365 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4366 {
4367 unsigned long flags;
4368 struct amd_iommu *iommu;
4369 struct irq_remap_table *irt;
4370 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4371 int devid = ir_data->irq_2_irte.devid;
4372 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4373 struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4374
4375 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4376 !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4377 return 0;
4378
4379 iommu = amd_iommu_rlookup_table[devid];
4380 if (!iommu)
4381 return -ENODEV;
4382
4383 irt = get_irq_table(devid, false);
4384 if (!irt)
4385 return -ENODEV;
4386
4387 spin_lock_irqsave(&irt->lock, flags);
4388
4389 if (ref->lo.fields_vapic.guest_mode) {
4390 if (cpu >= 0)
4391 ref->lo.fields_vapic.destination = cpu;
4392 ref->lo.fields_vapic.is_run = is_run;
4393 barrier();
4394 }
4395
4396 spin_unlock_irqrestore(&irt->lock, flags);
4397
4398 iommu_flush_irt(iommu, devid);
4399 iommu_completion_wait(iommu);
4400 return 0;
4401 }
4402 EXPORT_SYMBOL(amd_iommu_update_ga);
4403 #endif