]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/iommu/amd_iommu.c
iommu/amd: Call free_iova_fast with pfn in map_sg
[mirror_ubuntu-eoan-kernel.git] / drivers / iommu / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #define pr_fmt(fmt) "AMD-Vi: " fmt
21
22 #include <linux/ratelimit.h>
23 #include <linux/pci.h>
24 #include <linux/acpi.h>
25 #include <linux/amba/bus.h>
26 #include <linux/platform_device.h>
27 #include <linux/pci-ats.h>
28 #include <linux/bitmap.h>
29 #include <linux/slab.h>
30 #include <linux/debugfs.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/dma-direct.h>
34 #include <linux/iommu-helper.h>
35 #include <linux/iommu.h>
36 #include <linux/delay.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/notifier.h>
39 #include <linux/export.h>
40 #include <linux/irq.h>
41 #include <linux/msi.h>
42 #include <linux/dma-contiguous.h>
43 #include <linux/irqdomain.h>
44 #include <linux/percpu.h>
45 #include <linux/iova.h>
46 #include <asm/irq_remapping.h>
47 #include <asm/io_apic.h>
48 #include <asm/apic.h>
49 #include <asm/hw_irq.h>
50 #include <asm/msidef.h>
51 #include <asm/proto.h>
52 #include <asm/iommu.h>
53 #include <asm/gart.h>
54 #include <asm/dma.h>
55
56 #include "amd_iommu_proto.h"
57 #include "amd_iommu_types.h"
58 #include "irq_remapping.h"
59
60 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
61
62 #define LOOP_TIMEOUT 100000
63
64 /* IO virtual address start page frame number */
65 #define IOVA_START_PFN (1)
66 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
67
68 /* Reserved IOVA ranges */
69 #define MSI_RANGE_START (0xfee00000)
70 #define MSI_RANGE_END (0xfeefffff)
71 #define HT_RANGE_START (0xfd00000000ULL)
72 #define HT_RANGE_END (0xffffffffffULL)
73
74 /*
75 * This bitmap is used to advertise the page sizes our hardware support
76 * to the IOMMU core, which will then use this information to split
77 * physically contiguous memory regions it is mapping into page sizes
78 * that we support.
79 *
80 * 512GB Pages are not supported due to a hardware bug
81 */
82 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
83
84 static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
85 static DEFINE_SPINLOCK(pd_bitmap_lock);
86
87 /* List of all available dev_data structures */
88 static LLIST_HEAD(dev_data_list);
89
90 LIST_HEAD(ioapic_map);
91 LIST_HEAD(hpet_map);
92 LIST_HEAD(acpihid_map);
93
94 /*
95 * Domain for untranslated devices - only allocated
96 * if iommu=pt passed on kernel cmd line.
97 */
98 const struct iommu_ops amd_iommu_ops;
99
100 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101 int amd_iommu_max_glx_val = -1;
102
103 static const struct dma_map_ops amd_iommu_dma_ops;
104
105 /*
106 * general struct to manage commands send to an IOMMU
107 */
108 struct iommu_cmd {
109 u32 data[4];
110 };
111
112 struct kmem_cache *amd_iommu_irq_cache;
113
114 static void update_domain(struct protection_domain *domain);
115 static int protection_domain_init(struct protection_domain *domain);
116 static void detach_device(struct device *dev);
117 static void iova_domain_flush_tlb(struct iova_domain *iovad);
118
119 /*
120 * Data container for a dma_ops specific protection domain
121 */
122 struct dma_ops_domain {
123 /* generic protection domain information */
124 struct protection_domain domain;
125
126 /* IOVA RB-Tree */
127 struct iova_domain iovad;
128 };
129
130 static struct iova_domain reserved_iova_ranges;
131 static struct lock_class_key reserved_rbtree_key;
132
133 /****************************************************************************
134 *
135 * Helper functions
136 *
137 ****************************************************************************/
138
139 static inline int match_hid_uid(struct device *dev,
140 struct acpihid_map_entry *entry)
141 {
142 const char *hid, *uid;
143
144 hid = acpi_device_hid(ACPI_COMPANION(dev));
145 uid = acpi_device_uid(ACPI_COMPANION(dev));
146
147 if (!hid || !(*hid))
148 return -ENODEV;
149
150 if (!uid || !(*uid))
151 return strcmp(hid, entry->hid);
152
153 if (!(*entry->uid))
154 return strcmp(hid, entry->hid);
155
156 return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
157 }
158
159 static inline u16 get_pci_device_id(struct device *dev)
160 {
161 struct pci_dev *pdev = to_pci_dev(dev);
162
163 return PCI_DEVID(pdev->bus->number, pdev->devfn);
164 }
165
166 static inline int get_acpihid_device_id(struct device *dev,
167 struct acpihid_map_entry **entry)
168 {
169 struct acpihid_map_entry *p;
170
171 list_for_each_entry(p, &acpihid_map, list) {
172 if (!match_hid_uid(dev, p)) {
173 if (entry)
174 *entry = p;
175 return p->devid;
176 }
177 }
178 return -EINVAL;
179 }
180
181 static inline int get_device_id(struct device *dev)
182 {
183 int devid;
184
185 if (dev_is_pci(dev))
186 devid = get_pci_device_id(dev);
187 else
188 devid = get_acpihid_device_id(dev, NULL);
189
190 return devid;
191 }
192
193 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
194 {
195 return container_of(dom, struct protection_domain, domain);
196 }
197
198 static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
199 {
200 BUG_ON(domain->flags != PD_DMA_OPS_MASK);
201 return container_of(domain, struct dma_ops_domain, domain);
202 }
203
204 static struct iommu_dev_data *alloc_dev_data(u16 devid)
205 {
206 struct iommu_dev_data *dev_data;
207
208 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
209 if (!dev_data)
210 return NULL;
211
212 dev_data->devid = devid;
213 ratelimit_default_init(&dev_data->rs);
214
215 llist_add(&dev_data->dev_data_list, &dev_data_list);
216 return dev_data;
217 }
218
219 static struct iommu_dev_data *search_dev_data(u16 devid)
220 {
221 struct iommu_dev_data *dev_data;
222 struct llist_node *node;
223
224 if (llist_empty(&dev_data_list))
225 return NULL;
226
227 node = dev_data_list.first;
228 llist_for_each_entry(dev_data, node, dev_data_list) {
229 if (dev_data->devid == devid)
230 return dev_data;
231 }
232
233 return NULL;
234 }
235
236 static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
237 {
238 *(u16 *)data = alias;
239 return 0;
240 }
241
242 static u16 get_alias(struct device *dev)
243 {
244 struct pci_dev *pdev = to_pci_dev(dev);
245 u16 devid, ivrs_alias, pci_alias;
246
247 /* The callers make sure that get_device_id() does not fail here */
248 devid = get_device_id(dev);
249
250 /* For ACPI HID devices, we simply return the devid as such */
251 if (!dev_is_pci(dev))
252 return devid;
253
254 ivrs_alias = amd_iommu_alias_table[devid];
255
256 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
257
258 if (ivrs_alias == pci_alias)
259 return ivrs_alias;
260
261 /*
262 * DMA alias showdown
263 *
264 * The IVRS is fairly reliable in telling us about aliases, but it
265 * can't know about every screwy device. If we don't have an IVRS
266 * reported alias, use the PCI reported alias. In that case we may
267 * still need to initialize the rlookup and dev_table entries if the
268 * alias is to a non-existent device.
269 */
270 if (ivrs_alias == devid) {
271 if (!amd_iommu_rlookup_table[pci_alias]) {
272 amd_iommu_rlookup_table[pci_alias] =
273 amd_iommu_rlookup_table[devid];
274 memcpy(amd_iommu_dev_table[pci_alias].data,
275 amd_iommu_dev_table[devid].data,
276 sizeof(amd_iommu_dev_table[pci_alias].data));
277 }
278
279 return pci_alias;
280 }
281
282 pr_info("Using IVRS reported alias %02x:%02x.%d "
283 "for device %s[%04x:%04x], kernel reported alias "
284 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
285 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
286 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
287 PCI_FUNC(pci_alias));
288
289 /*
290 * If we don't have a PCI DMA alias and the IVRS alias is on the same
291 * bus, then the IVRS table may know about a quirk that we don't.
292 */
293 if (pci_alias == devid &&
294 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
295 pci_add_dma_alias(pdev, ivrs_alias & 0xff);
296 pr_info("Added PCI DMA alias %02x.%d for %s\n",
297 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
298 dev_name(dev));
299 }
300
301 return ivrs_alias;
302 }
303
304 static struct iommu_dev_data *find_dev_data(u16 devid)
305 {
306 struct iommu_dev_data *dev_data;
307 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
308
309 dev_data = search_dev_data(devid);
310
311 if (dev_data == NULL) {
312 dev_data = alloc_dev_data(devid);
313 if (!dev_data)
314 return NULL;
315
316 if (translation_pre_enabled(iommu))
317 dev_data->defer_attach = true;
318 }
319
320 return dev_data;
321 }
322
323 struct iommu_dev_data *get_dev_data(struct device *dev)
324 {
325 return dev->archdata.iommu;
326 }
327 EXPORT_SYMBOL(get_dev_data);
328
329 /*
330 * Find or create an IOMMU group for a acpihid device.
331 */
332 static struct iommu_group *acpihid_device_group(struct device *dev)
333 {
334 struct acpihid_map_entry *p, *entry = NULL;
335 int devid;
336
337 devid = get_acpihid_device_id(dev, &entry);
338 if (devid < 0)
339 return ERR_PTR(devid);
340
341 list_for_each_entry(p, &acpihid_map, list) {
342 if ((devid == p->devid) && p->group)
343 entry->group = p->group;
344 }
345
346 if (!entry->group)
347 entry->group = generic_device_group(dev);
348 else
349 iommu_group_ref_get(entry->group);
350
351 return entry->group;
352 }
353
354 static bool pci_iommuv2_capable(struct pci_dev *pdev)
355 {
356 static const int caps[] = {
357 PCI_EXT_CAP_ID_ATS,
358 PCI_EXT_CAP_ID_PRI,
359 PCI_EXT_CAP_ID_PASID,
360 };
361 int i, pos;
362
363 if (pci_ats_disabled())
364 return false;
365
366 for (i = 0; i < 3; ++i) {
367 pos = pci_find_ext_capability(pdev, caps[i]);
368 if (pos == 0)
369 return false;
370 }
371
372 return true;
373 }
374
375 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
376 {
377 struct iommu_dev_data *dev_data;
378
379 dev_data = get_dev_data(&pdev->dev);
380
381 return dev_data->errata & (1 << erratum) ? true : false;
382 }
383
384 /*
385 * This function checks if the driver got a valid device from the caller to
386 * avoid dereferencing invalid pointers.
387 */
388 static bool check_device(struct device *dev)
389 {
390 int devid;
391
392 if (!dev || !dev->dma_mask)
393 return false;
394
395 devid = get_device_id(dev);
396 if (devid < 0)
397 return false;
398
399 /* Out of our scope? */
400 if (devid > amd_iommu_last_bdf)
401 return false;
402
403 if (amd_iommu_rlookup_table[devid] == NULL)
404 return false;
405
406 return true;
407 }
408
409 static void init_iommu_group(struct device *dev)
410 {
411 struct iommu_group *group;
412
413 group = iommu_group_get_for_dev(dev);
414 if (IS_ERR(group))
415 return;
416
417 iommu_group_put(group);
418 }
419
420 static int iommu_init_device(struct device *dev)
421 {
422 struct iommu_dev_data *dev_data;
423 struct amd_iommu *iommu;
424 int devid;
425
426 if (dev->archdata.iommu)
427 return 0;
428
429 devid = get_device_id(dev);
430 if (devid < 0)
431 return devid;
432
433 iommu = amd_iommu_rlookup_table[devid];
434
435 dev_data = find_dev_data(devid);
436 if (!dev_data)
437 return -ENOMEM;
438
439 dev_data->alias = get_alias(dev);
440
441 /*
442 * By default we use passthrough mode for IOMMUv2 capable device.
443 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
444 * invalid address), we ignore the capability for the device so
445 * it'll be forced to go into translation mode.
446 */
447 if ((iommu_pass_through || !amd_iommu_force_isolation) &&
448 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
449 struct amd_iommu *iommu;
450
451 iommu = amd_iommu_rlookup_table[dev_data->devid];
452 dev_data->iommu_v2 = iommu->is_iommu_v2;
453 }
454
455 dev->archdata.iommu = dev_data;
456
457 iommu_device_link(&iommu->iommu, dev);
458
459 return 0;
460 }
461
462 static void iommu_ignore_device(struct device *dev)
463 {
464 u16 alias;
465 int devid;
466
467 devid = get_device_id(dev);
468 if (devid < 0)
469 return;
470
471 alias = get_alias(dev);
472
473 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
474 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
475
476 amd_iommu_rlookup_table[devid] = NULL;
477 amd_iommu_rlookup_table[alias] = NULL;
478 }
479
480 static void iommu_uninit_device(struct device *dev)
481 {
482 struct iommu_dev_data *dev_data;
483 struct amd_iommu *iommu;
484 int devid;
485
486 devid = get_device_id(dev);
487 if (devid < 0)
488 return;
489
490 iommu = amd_iommu_rlookup_table[devid];
491
492 dev_data = search_dev_data(devid);
493 if (!dev_data)
494 return;
495
496 if (dev_data->domain)
497 detach_device(dev);
498
499 iommu_device_unlink(&iommu->iommu, dev);
500
501 iommu_group_remove_device(dev);
502
503 /* Remove dma-ops */
504 dev->dma_ops = NULL;
505
506 /*
507 * We keep dev_data around for unplugged devices and reuse it when the
508 * device is re-plugged - not doing so would introduce a ton of races.
509 */
510 }
511
512 /****************************************************************************
513 *
514 * Interrupt handling functions
515 *
516 ****************************************************************************/
517
518 static void dump_dte_entry(u16 devid)
519 {
520 int i;
521
522 for (i = 0; i < 4; ++i)
523 pr_err("DTE[%d]: %016llx\n", i,
524 amd_iommu_dev_table[devid].data[i]);
525 }
526
527 static void dump_command(unsigned long phys_addr)
528 {
529 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
530 int i;
531
532 for (i = 0; i < 4; ++i)
533 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
534 }
535
536 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
537 u64 address, int flags)
538 {
539 struct iommu_dev_data *dev_data = NULL;
540 struct pci_dev *pdev;
541
542 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
543 devid & 0xff);
544 if (pdev)
545 dev_data = get_dev_data(&pdev->dev);
546
547 if (dev_data && __ratelimit(&dev_data->rs)) {
548 dev_err(&pdev->dev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
549 domain_id, address, flags);
550 } else if (printk_ratelimit()) {
551 pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
552 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
553 domain_id, address, flags);
554 }
555
556 if (pdev)
557 pci_dev_put(pdev);
558 }
559
560 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
561 {
562 struct device *dev = iommu->iommu.dev;
563 int type, devid, pasid, flags, tag;
564 volatile u32 *event = __evt;
565 int count = 0;
566 u64 address;
567
568 retry:
569 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
570 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
571 pasid = PPR_PASID(*(u64 *)&event[0]);
572 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
573 address = (u64)(((u64)event[3]) << 32) | event[2];
574
575 if (type == 0) {
576 /* Did we hit the erratum? */
577 if (++count == LOOP_TIMEOUT) {
578 pr_err("No event written to event log\n");
579 return;
580 }
581 udelay(1);
582 goto retry;
583 }
584
585 if (type == EVENT_TYPE_IO_FAULT) {
586 amd_iommu_report_page_fault(devid, pasid, address, flags);
587 return;
588 }
589
590 switch (type) {
591 case EVENT_TYPE_ILL_DEV:
592 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
593 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
594 pasid, address, flags);
595 dump_dte_entry(devid);
596 break;
597 case EVENT_TYPE_DEV_TAB_ERR:
598 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
599 "address=0x%llx flags=0x%04x]\n",
600 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
601 address, flags);
602 break;
603 case EVENT_TYPE_PAGE_TAB_ERR:
604 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
605 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
606 pasid, address, flags);
607 break;
608 case EVENT_TYPE_ILL_CMD:
609 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
610 dump_command(address);
611 break;
612 case EVENT_TYPE_CMD_HARD_ERR:
613 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
614 address, flags);
615 break;
616 case EVENT_TYPE_IOTLB_INV_TO:
617 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
618 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
619 address);
620 break;
621 case EVENT_TYPE_INV_DEV_REQ:
622 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
623 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
624 pasid, address, flags);
625 break;
626 case EVENT_TYPE_INV_PPR_REQ:
627 pasid = ((event[0] >> 16) & 0xFFFF)
628 | ((event[1] << 6) & 0xF0000);
629 tag = event[1] & 0x03FF;
630 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
631 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
632 pasid, address, flags);
633 break;
634 default:
635 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
636 event[0], event[1], event[2], event[3]);
637 }
638
639 memset(__evt, 0, 4 * sizeof(u32));
640 }
641
642 static void iommu_poll_events(struct amd_iommu *iommu)
643 {
644 u32 head, tail;
645
646 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
647 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
648
649 while (head != tail) {
650 iommu_print_event(iommu, iommu->evt_buf + head);
651 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
652 }
653
654 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
655 }
656
657 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
658 {
659 struct amd_iommu_fault fault;
660
661 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
662 pr_err_ratelimited("Unknown PPR request received\n");
663 return;
664 }
665
666 fault.address = raw[1];
667 fault.pasid = PPR_PASID(raw[0]);
668 fault.device_id = PPR_DEVID(raw[0]);
669 fault.tag = PPR_TAG(raw[0]);
670 fault.flags = PPR_FLAGS(raw[0]);
671
672 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
673 }
674
675 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
676 {
677 u32 head, tail;
678
679 if (iommu->ppr_log == NULL)
680 return;
681
682 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
683 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
684
685 while (head != tail) {
686 volatile u64 *raw;
687 u64 entry[2];
688 int i;
689
690 raw = (u64 *)(iommu->ppr_log + head);
691
692 /*
693 * Hardware bug: Interrupt may arrive before the entry is
694 * written to memory. If this happens we need to wait for the
695 * entry to arrive.
696 */
697 for (i = 0; i < LOOP_TIMEOUT; ++i) {
698 if (PPR_REQ_TYPE(raw[0]) != 0)
699 break;
700 udelay(1);
701 }
702
703 /* Avoid memcpy function-call overhead */
704 entry[0] = raw[0];
705 entry[1] = raw[1];
706
707 /*
708 * To detect the hardware bug we need to clear the entry
709 * back to zero.
710 */
711 raw[0] = raw[1] = 0UL;
712
713 /* Update head pointer of hardware ring-buffer */
714 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
715 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
716
717 /* Handle PPR entry */
718 iommu_handle_ppr_entry(iommu, entry);
719
720 /* Refresh ring-buffer information */
721 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
722 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
723 }
724 }
725
726 #ifdef CONFIG_IRQ_REMAP
727 static int (*iommu_ga_log_notifier)(u32);
728
729 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
730 {
731 iommu_ga_log_notifier = notifier;
732
733 return 0;
734 }
735 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
736
737 static void iommu_poll_ga_log(struct amd_iommu *iommu)
738 {
739 u32 head, tail, cnt = 0;
740
741 if (iommu->ga_log == NULL)
742 return;
743
744 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
745 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
746
747 while (head != tail) {
748 volatile u64 *raw;
749 u64 log_entry;
750
751 raw = (u64 *)(iommu->ga_log + head);
752 cnt++;
753
754 /* Avoid memcpy function-call overhead */
755 log_entry = *raw;
756
757 /* Update head pointer of hardware ring-buffer */
758 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
759 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
760
761 /* Handle GA entry */
762 switch (GA_REQ_TYPE(log_entry)) {
763 case GA_GUEST_NR:
764 if (!iommu_ga_log_notifier)
765 break;
766
767 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
768 __func__, GA_DEVID(log_entry),
769 GA_TAG(log_entry));
770
771 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
772 pr_err("GA log notifier failed.\n");
773 break;
774 default:
775 break;
776 }
777 }
778 }
779 #endif /* CONFIG_IRQ_REMAP */
780
781 #define AMD_IOMMU_INT_MASK \
782 (MMIO_STATUS_EVT_INT_MASK | \
783 MMIO_STATUS_PPR_INT_MASK | \
784 MMIO_STATUS_GALOG_INT_MASK)
785
786 irqreturn_t amd_iommu_int_thread(int irq, void *data)
787 {
788 struct amd_iommu *iommu = (struct amd_iommu *) data;
789 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
790
791 while (status & AMD_IOMMU_INT_MASK) {
792 /* Enable EVT and PPR and GA interrupts again */
793 writel(AMD_IOMMU_INT_MASK,
794 iommu->mmio_base + MMIO_STATUS_OFFSET);
795
796 if (status & MMIO_STATUS_EVT_INT_MASK) {
797 pr_devel("Processing IOMMU Event Log\n");
798 iommu_poll_events(iommu);
799 }
800
801 if (status & MMIO_STATUS_PPR_INT_MASK) {
802 pr_devel("Processing IOMMU PPR Log\n");
803 iommu_poll_ppr_log(iommu);
804 }
805
806 #ifdef CONFIG_IRQ_REMAP
807 if (status & MMIO_STATUS_GALOG_INT_MASK) {
808 pr_devel("Processing IOMMU GA Log\n");
809 iommu_poll_ga_log(iommu);
810 }
811 #endif
812
813 /*
814 * Hardware bug: ERBT1312
815 * When re-enabling interrupt (by writing 1
816 * to clear the bit), the hardware might also try to set
817 * the interrupt bit in the event status register.
818 * In this scenario, the bit will be set, and disable
819 * subsequent interrupts.
820 *
821 * Workaround: The IOMMU driver should read back the
822 * status register and check if the interrupt bits are cleared.
823 * If not, driver will need to go through the interrupt handler
824 * again and re-clear the bits
825 */
826 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
827 }
828 return IRQ_HANDLED;
829 }
830
831 irqreturn_t amd_iommu_int_handler(int irq, void *data)
832 {
833 return IRQ_WAKE_THREAD;
834 }
835
836 /****************************************************************************
837 *
838 * IOMMU command queuing functions
839 *
840 ****************************************************************************/
841
842 static int wait_on_sem(volatile u64 *sem)
843 {
844 int i = 0;
845
846 while (*sem == 0 && i < LOOP_TIMEOUT) {
847 udelay(1);
848 i += 1;
849 }
850
851 if (i == LOOP_TIMEOUT) {
852 pr_alert("Completion-Wait loop timed out\n");
853 return -EIO;
854 }
855
856 return 0;
857 }
858
859 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
860 struct iommu_cmd *cmd)
861 {
862 u8 *target;
863
864 target = iommu->cmd_buf + iommu->cmd_buf_tail;
865
866 iommu->cmd_buf_tail += sizeof(*cmd);
867 iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
868
869 /* Copy command to buffer */
870 memcpy(target, cmd, sizeof(*cmd));
871
872 /* Tell the IOMMU about it */
873 writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
874 }
875
876 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
877 {
878 u64 paddr = iommu_virt_to_phys((void *)address);
879
880 WARN_ON(address & 0x7ULL);
881
882 memset(cmd, 0, sizeof(*cmd));
883 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
884 cmd->data[1] = upper_32_bits(paddr);
885 cmd->data[2] = 1;
886 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
887 }
888
889 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
890 {
891 memset(cmd, 0, sizeof(*cmd));
892 cmd->data[0] = devid;
893 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
894 }
895
896 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
897 size_t size, u16 domid, int pde)
898 {
899 u64 pages;
900 bool s;
901
902 pages = iommu_num_pages(address, size, PAGE_SIZE);
903 s = false;
904
905 if (pages > 1) {
906 /*
907 * If we have to flush more than one page, flush all
908 * TLB entries for this domain
909 */
910 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
911 s = true;
912 }
913
914 address &= PAGE_MASK;
915
916 memset(cmd, 0, sizeof(*cmd));
917 cmd->data[1] |= domid;
918 cmd->data[2] = lower_32_bits(address);
919 cmd->data[3] = upper_32_bits(address);
920 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
921 if (s) /* size bit - we flush more than one 4kb page */
922 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
923 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
924 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
925 }
926
927 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
928 u64 address, size_t size)
929 {
930 u64 pages;
931 bool s;
932
933 pages = iommu_num_pages(address, size, PAGE_SIZE);
934 s = false;
935
936 if (pages > 1) {
937 /*
938 * If we have to flush more than one page, flush all
939 * TLB entries for this domain
940 */
941 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
942 s = true;
943 }
944
945 address &= PAGE_MASK;
946
947 memset(cmd, 0, sizeof(*cmd));
948 cmd->data[0] = devid;
949 cmd->data[0] |= (qdep & 0xff) << 24;
950 cmd->data[1] = devid;
951 cmd->data[2] = lower_32_bits(address);
952 cmd->data[3] = upper_32_bits(address);
953 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
954 if (s)
955 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
956 }
957
958 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
959 u64 address, bool size)
960 {
961 memset(cmd, 0, sizeof(*cmd));
962
963 address &= ~(0xfffULL);
964
965 cmd->data[0] = pasid;
966 cmd->data[1] = domid;
967 cmd->data[2] = lower_32_bits(address);
968 cmd->data[3] = upper_32_bits(address);
969 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
970 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
971 if (size)
972 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
973 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
974 }
975
976 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
977 int qdep, u64 address, bool size)
978 {
979 memset(cmd, 0, sizeof(*cmd));
980
981 address &= ~(0xfffULL);
982
983 cmd->data[0] = devid;
984 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
985 cmd->data[0] |= (qdep & 0xff) << 24;
986 cmd->data[1] = devid;
987 cmd->data[1] |= (pasid & 0xff) << 16;
988 cmd->data[2] = lower_32_bits(address);
989 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
990 cmd->data[3] = upper_32_bits(address);
991 if (size)
992 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
993 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
994 }
995
996 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
997 int status, int tag, bool gn)
998 {
999 memset(cmd, 0, sizeof(*cmd));
1000
1001 cmd->data[0] = devid;
1002 if (gn) {
1003 cmd->data[1] = pasid;
1004 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1005 }
1006 cmd->data[3] = tag & 0x1ff;
1007 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1008
1009 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1010 }
1011
1012 static void build_inv_all(struct iommu_cmd *cmd)
1013 {
1014 memset(cmd, 0, sizeof(*cmd));
1015 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1016 }
1017
1018 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1019 {
1020 memset(cmd, 0, sizeof(*cmd));
1021 cmd->data[0] = devid;
1022 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1023 }
1024
1025 /*
1026 * Writes the command to the IOMMUs command buffer and informs the
1027 * hardware about the new command.
1028 */
1029 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1030 struct iommu_cmd *cmd,
1031 bool sync)
1032 {
1033 unsigned int count = 0;
1034 u32 left, next_tail;
1035
1036 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1037 again:
1038 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1039
1040 if (left <= 0x20) {
1041 /* Skip udelay() the first time around */
1042 if (count++) {
1043 if (count == LOOP_TIMEOUT) {
1044 pr_err("Command buffer timeout\n");
1045 return -EIO;
1046 }
1047
1048 udelay(1);
1049 }
1050
1051 /* Update head and recheck remaining space */
1052 iommu->cmd_buf_head = readl(iommu->mmio_base +
1053 MMIO_CMD_HEAD_OFFSET);
1054
1055 goto again;
1056 }
1057
1058 copy_cmd_to_buffer(iommu, cmd);
1059
1060 /* Do we need to make sure all commands are processed? */
1061 iommu->need_sync = sync;
1062
1063 return 0;
1064 }
1065
1066 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1067 struct iommu_cmd *cmd,
1068 bool sync)
1069 {
1070 unsigned long flags;
1071 int ret;
1072
1073 raw_spin_lock_irqsave(&iommu->lock, flags);
1074 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1075 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1076
1077 return ret;
1078 }
1079
1080 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1081 {
1082 return iommu_queue_command_sync(iommu, cmd, true);
1083 }
1084
1085 /*
1086 * This function queues a completion wait command into the command
1087 * buffer of an IOMMU
1088 */
1089 static int iommu_completion_wait(struct amd_iommu *iommu)
1090 {
1091 struct iommu_cmd cmd;
1092 unsigned long flags;
1093 int ret;
1094
1095 if (!iommu->need_sync)
1096 return 0;
1097
1098
1099 build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1100
1101 raw_spin_lock_irqsave(&iommu->lock, flags);
1102
1103 iommu->cmd_sem = 0;
1104
1105 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1106 if (ret)
1107 goto out_unlock;
1108
1109 ret = wait_on_sem(&iommu->cmd_sem);
1110
1111 out_unlock:
1112 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1113
1114 return ret;
1115 }
1116
1117 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1118 {
1119 struct iommu_cmd cmd;
1120
1121 build_inv_dte(&cmd, devid);
1122
1123 return iommu_queue_command(iommu, &cmd);
1124 }
1125
1126 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1127 {
1128 u32 devid;
1129
1130 for (devid = 0; devid <= 0xffff; ++devid)
1131 iommu_flush_dte(iommu, devid);
1132
1133 iommu_completion_wait(iommu);
1134 }
1135
1136 /*
1137 * This function uses heavy locking and may disable irqs for some time. But
1138 * this is no issue because it is only called during resume.
1139 */
1140 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1141 {
1142 u32 dom_id;
1143
1144 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1145 struct iommu_cmd cmd;
1146 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1147 dom_id, 1);
1148 iommu_queue_command(iommu, &cmd);
1149 }
1150
1151 iommu_completion_wait(iommu);
1152 }
1153
1154 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1155 {
1156 struct iommu_cmd cmd;
1157
1158 build_inv_all(&cmd);
1159
1160 iommu_queue_command(iommu, &cmd);
1161 iommu_completion_wait(iommu);
1162 }
1163
1164 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1165 {
1166 struct iommu_cmd cmd;
1167
1168 build_inv_irt(&cmd, devid);
1169
1170 iommu_queue_command(iommu, &cmd);
1171 }
1172
1173 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1174 {
1175 u32 devid;
1176
1177 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1178 iommu_flush_irt(iommu, devid);
1179
1180 iommu_completion_wait(iommu);
1181 }
1182
1183 void iommu_flush_all_caches(struct amd_iommu *iommu)
1184 {
1185 if (iommu_feature(iommu, FEATURE_IA)) {
1186 amd_iommu_flush_all(iommu);
1187 } else {
1188 amd_iommu_flush_dte_all(iommu);
1189 amd_iommu_flush_irt_all(iommu);
1190 amd_iommu_flush_tlb_all(iommu);
1191 }
1192 }
1193
1194 /*
1195 * Command send function for flushing on-device TLB
1196 */
1197 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1198 u64 address, size_t size)
1199 {
1200 struct amd_iommu *iommu;
1201 struct iommu_cmd cmd;
1202 int qdep;
1203
1204 qdep = dev_data->ats.qdep;
1205 iommu = amd_iommu_rlookup_table[dev_data->devid];
1206
1207 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1208
1209 return iommu_queue_command(iommu, &cmd);
1210 }
1211
1212 /*
1213 * Command send function for invalidating a device table entry
1214 */
1215 static int device_flush_dte(struct iommu_dev_data *dev_data)
1216 {
1217 struct amd_iommu *iommu;
1218 u16 alias;
1219 int ret;
1220
1221 iommu = amd_iommu_rlookup_table[dev_data->devid];
1222 alias = dev_data->alias;
1223
1224 ret = iommu_flush_dte(iommu, dev_data->devid);
1225 if (!ret && alias != dev_data->devid)
1226 ret = iommu_flush_dte(iommu, alias);
1227 if (ret)
1228 return ret;
1229
1230 if (dev_data->ats.enabled)
1231 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1232
1233 return ret;
1234 }
1235
1236 /*
1237 * TLB invalidation function which is called from the mapping functions.
1238 * It invalidates a single PTE if the range to flush is within a single
1239 * page. Otherwise it flushes the whole TLB of the IOMMU.
1240 */
1241 static void __domain_flush_pages(struct protection_domain *domain,
1242 u64 address, size_t size, int pde)
1243 {
1244 struct iommu_dev_data *dev_data;
1245 struct iommu_cmd cmd;
1246 int ret = 0, i;
1247
1248 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1249
1250 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1251 if (!domain->dev_iommu[i])
1252 continue;
1253
1254 /*
1255 * Devices of this domain are behind this IOMMU
1256 * We need a TLB flush
1257 */
1258 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1259 }
1260
1261 list_for_each_entry(dev_data, &domain->dev_list, list) {
1262
1263 if (!dev_data->ats.enabled)
1264 continue;
1265
1266 ret |= device_flush_iotlb(dev_data, address, size);
1267 }
1268
1269 WARN_ON(ret);
1270 }
1271
1272 static void domain_flush_pages(struct protection_domain *domain,
1273 u64 address, size_t size)
1274 {
1275 __domain_flush_pages(domain, address, size, 0);
1276 }
1277
1278 /* Flush the whole IO/TLB for a given protection domain */
1279 static void domain_flush_tlb(struct protection_domain *domain)
1280 {
1281 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1282 }
1283
1284 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1285 static void domain_flush_tlb_pde(struct protection_domain *domain)
1286 {
1287 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1288 }
1289
1290 static void domain_flush_complete(struct protection_domain *domain)
1291 {
1292 int i;
1293
1294 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1295 if (domain && !domain->dev_iommu[i])
1296 continue;
1297
1298 /*
1299 * Devices of this domain are behind this IOMMU
1300 * We need to wait for completion of all commands.
1301 */
1302 iommu_completion_wait(amd_iommus[i]);
1303 }
1304 }
1305
1306
1307 /*
1308 * This function flushes the DTEs for all devices in domain
1309 */
1310 static void domain_flush_devices(struct protection_domain *domain)
1311 {
1312 struct iommu_dev_data *dev_data;
1313
1314 list_for_each_entry(dev_data, &domain->dev_list, list)
1315 device_flush_dte(dev_data);
1316 }
1317
1318 /****************************************************************************
1319 *
1320 * The functions below are used the create the page table mappings for
1321 * unity mapped regions.
1322 *
1323 ****************************************************************************/
1324
1325 static void free_page_list(struct page *freelist)
1326 {
1327 while (freelist != NULL) {
1328 unsigned long p = (unsigned long)page_address(freelist);
1329 freelist = freelist->freelist;
1330 free_page(p);
1331 }
1332 }
1333
1334 static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1335 {
1336 struct page *p = virt_to_page((void *)pt);
1337
1338 p->freelist = freelist;
1339
1340 return p;
1341 }
1342
1343 #define DEFINE_FREE_PT_FN(LVL, FN) \
1344 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist) \
1345 { \
1346 unsigned long p; \
1347 u64 *pt; \
1348 int i; \
1349 \
1350 pt = (u64 *)__pt; \
1351 \
1352 for (i = 0; i < 512; ++i) { \
1353 /* PTE present? */ \
1354 if (!IOMMU_PTE_PRESENT(pt[i])) \
1355 continue; \
1356 \
1357 /* Large PTE? */ \
1358 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1359 PM_PTE_LEVEL(pt[i]) == 7) \
1360 continue; \
1361 \
1362 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1363 freelist = FN(p, freelist); \
1364 } \
1365 \
1366 return free_pt_page((unsigned long)pt, freelist); \
1367 }
1368
1369 DEFINE_FREE_PT_FN(l2, free_pt_page)
1370 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1371 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1372 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1373 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1374
1375 static struct page *free_sub_pt(unsigned long root, int mode,
1376 struct page *freelist)
1377 {
1378 switch (mode) {
1379 case PAGE_MODE_NONE:
1380 case PAGE_MODE_7_LEVEL:
1381 break;
1382 case PAGE_MODE_1_LEVEL:
1383 freelist = free_pt_page(root, freelist);
1384 break;
1385 case PAGE_MODE_2_LEVEL:
1386 freelist = free_pt_l2(root, freelist);
1387 break;
1388 case PAGE_MODE_3_LEVEL:
1389 freelist = free_pt_l3(root, freelist);
1390 break;
1391 case PAGE_MODE_4_LEVEL:
1392 freelist = free_pt_l4(root, freelist);
1393 break;
1394 case PAGE_MODE_5_LEVEL:
1395 freelist = free_pt_l5(root, freelist);
1396 break;
1397 case PAGE_MODE_6_LEVEL:
1398 freelist = free_pt_l6(root, freelist);
1399 break;
1400 default:
1401 BUG();
1402 }
1403
1404 return freelist;
1405 }
1406
1407 static void free_pagetable(struct protection_domain *domain)
1408 {
1409 unsigned long root = (unsigned long)domain->pt_root;
1410 struct page *freelist = NULL;
1411
1412 BUG_ON(domain->mode < PAGE_MODE_NONE ||
1413 domain->mode > PAGE_MODE_6_LEVEL);
1414
1415 free_sub_pt(root, domain->mode, freelist);
1416
1417 free_page_list(freelist);
1418 }
1419
1420 /*
1421 * This function is used to add another level to an IO page table. Adding
1422 * another level increases the size of the address space by 9 bits to a size up
1423 * to 64 bits.
1424 */
1425 static bool increase_address_space(struct protection_domain *domain,
1426 gfp_t gfp)
1427 {
1428 u64 *pte;
1429
1430 if (domain->mode == PAGE_MODE_6_LEVEL)
1431 /* address space already 64 bit large */
1432 return false;
1433
1434 pte = (void *)get_zeroed_page(gfp);
1435 if (!pte)
1436 return false;
1437
1438 *pte = PM_LEVEL_PDE(domain->mode,
1439 iommu_virt_to_phys(domain->pt_root));
1440 domain->pt_root = pte;
1441 domain->mode += 1;
1442 domain->updated = true;
1443
1444 return true;
1445 }
1446
1447 static u64 *alloc_pte(struct protection_domain *domain,
1448 unsigned long address,
1449 unsigned long page_size,
1450 u64 **pte_page,
1451 gfp_t gfp)
1452 {
1453 int level, end_lvl;
1454 u64 *pte, *page;
1455
1456 BUG_ON(!is_power_of_2(page_size));
1457
1458 while (address > PM_LEVEL_SIZE(domain->mode))
1459 increase_address_space(domain, gfp);
1460
1461 level = domain->mode - 1;
1462 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1463 address = PAGE_SIZE_ALIGN(address, page_size);
1464 end_lvl = PAGE_SIZE_LEVEL(page_size);
1465
1466 while (level > end_lvl) {
1467 u64 __pte, __npte;
1468 int pte_level;
1469
1470 __pte = *pte;
1471 pte_level = PM_PTE_LEVEL(__pte);
1472
1473 if (!IOMMU_PTE_PRESENT(__pte) ||
1474 pte_level == PAGE_MODE_7_LEVEL) {
1475 page = (u64 *)get_zeroed_page(gfp);
1476 if (!page)
1477 return NULL;
1478
1479 __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1480
1481 /* pte could have been changed somewhere. */
1482 if (cmpxchg64(pte, __pte, __npte) != __pte)
1483 free_page((unsigned long)page);
1484 else if (pte_level == PAGE_MODE_7_LEVEL)
1485 domain->updated = true;
1486
1487 continue;
1488 }
1489
1490 /* No level skipping support yet */
1491 if (pte_level != level)
1492 return NULL;
1493
1494 level -= 1;
1495
1496 pte = IOMMU_PTE_PAGE(__pte);
1497
1498 if (pte_page && level == end_lvl)
1499 *pte_page = pte;
1500
1501 pte = &pte[PM_LEVEL_INDEX(level, address)];
1502 }
1503
1504 return pte;
1505 }
1506
1507 /*
1508 * This function checks if there is a PTE for a given dma address. If
1509 * there is one, it returns the pointer to it.
1510 */
1511 static u64 *fetch_pte(struct protection_domain *domain,
1512 unsigned long address,
1513 unsigned long *page_size)
1514 {
1515 int level;
1516 u64 *pte;
1517
1518 *page_size = 0;
1519
1520 if (address > PM_LEVEL_SIZE(domain->mode))
1521 return NULL;
1522
1523 level = domain->mode - 1;
1524 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1525 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1526
1527 while (level > 0) {
1528
1529 /* Not Present */
1530 if (!IOMMU_PTE_PRESENT(*pte))
1531 return NULL;
1532
1533 /* Large PTE */
1534 if (PM_PTE_LEVEL(*pte) == 7 ||
1535 PM_PTE_LEVEL(*pte) == 0)
1536 break;
1537
1538 /* No level skipping support yet */
1539 if (PM_PTE_LEVEL(*pte) != level)
1540 return NULL;
1541
1542 level -= 1;
1543
1544 /* Walk to the next level */
1545 pte = IOMMU_PTE_PAGE(*pte);
1546 pte = &pte[PM_LEVEL_INDEX(level, address)];
1547 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1548 }
1549
1550 if (PM_PTE_LEVEL(*pte) == 0x07) {
1551 unsigned long pte_mask;
1552
1553 /*
1554 * If we have a series of large PTEs, make
1555 * sure to return a pointer to the first one.
1556 */
1557 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1558 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1559 pte = (u64 *)(((unsigned long)pte) & pte_mask);
1560 }
1561
1562 return pte;
1563 }
1564
1565 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1566 {
1567 unsigned long pt;
1568 int mode;
1569
1570 while (cmpxchg64(pte, pteval, 0) != pteval) {
1571 pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1572 pteval = *pte;
1573 }
1574
1575 if (!IOMMU_PTE_PRESENT(pteval))
1576 return freelist;
1577
1578 pt = (unsigned long)IOMMU_PTE_PAGE(pteval);
1579 mode = IOMMU_PTE_MODE(pteval);
1580
1581 return free_sub_pt(pt, mode, freelist);
1582 }
1583
1584 /*
1585 * Generic mapping functions. It maps a physical address into a DMA
1586 * address space. It allocates the page table pages if necessary.
1587 * In the future it can be extended to a generic mapping function
1588 * supporting all features of AMD IOMMU page tables like level skipping
1589 * and full 64 bit address spaces.
1590 */
1591 static int iommu_map_page(struct protection_domain *dom,
1592 unsigned long bus_addr,
1593 unsigned long phys_addr,
1594 unsigned long page_size,
1595 int prot,
1596 gfp_t gfp)
1597 {
1598 struct page *freelist = NULL;
1599 u64 __pte, *pte;
1600 int i, count;
1601
1602 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1603 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1604
1605 if (!(prot & IOMMU_PROT_MASK))
1606 return -EINVAL;
1607
1608 count = PAGE_SIZE_PTE_COUNT(page_size);
1609 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1610
1611 if (!pte)
1612 return -ENOMEM;
1613
1614 for (i = 0; i < count; ++i)
1615 freelist = free_clear_pte(&pte[i], pte[i], freelist);
1616
1617 if (freelist != NULL)
1618 dom->updated = true;
1619
1620 if (count > 1) {
1621 __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1622 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1623 } else
1624 __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1625
1626 if (prot & IOMMU_PROT_IR)
1627 __pte |= IOMMU_PTE_IR;
1628 if (prot & IOMMU_PROT_IW)
1629 __pte |= IOMMU_PTE_IW;
1630
1631 for (i = 0; i < count; ++i)
1632 pte[i] = __pte;
1633
1634 update_domain(dom);
1635
1636 /* Everything flushed out, free pages now */
1637 free_page_list(freelist);
1638
1639 return 0;
1640 }
1641
1642 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1643 unsigned long bus_addr,
1644 unsigned long page_size)
1645 {
1646 unsigned long long unmapped;
1647 unsigned long unmap_size;
1648 u64 *pte;
1649
1650 BUG_ON(!is_power_of_2(page_size));
1651
1652 unmapped = 0;
1653
1654 while (unmapped < page_size) {
1655
1656 pte = fetch_pte(dom, bus_addr, &unmap_size);
1657
1658 if (pte) {
1659 int i, count;
1660
1661 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1662 for (i = 0; i < count; i++)
1663 pte[i] = 0ULL;
1664 }
1665
1666 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1667 unmapped += unmap_size;
1668 }
1669
1670 BUG_ON(unmapped && !is_power_of_2(unmapped));
1671
1672 return unmapped;
1673 }
1674
1675 /****************************************************************************
1676 *
1677 * The next functions belong to the address allocator for the dma_ops
1678 * interface functions.
1679 *
1680 ****************************************************************************/
1681
1682
1683 static unsigned long dma_ops_alloc_iova(struct device *dev,
1684 struct dma_ops_domain *dma_dom,
1685 unsigned int pages, u64 dma_mask)
1686 {
1687 unsigned long pfn = 0;
1688
1689 pages = __roundup_pow_of_two(pages);
1690
1691 if (dma_mask > DMA_BIT_MASK(32))
1692 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1693 IOVA_PFN(DMA_BIT_MASK(32)), false);
1694
1695 if (!pfn)
1696 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1697 IOVA_PFN(dma_mask), true);
1698
1699 return (pfn << PAGE_SHIFT);
1700 }
1701
1702 static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1703 unsigned long address,
1704 unsigned int pages)
1705 {
1706 pages = __roundup_pow_of_two(pages);
1707 address >>= PAGE_SHIFT;
1708
1709 free_iova_fast(&dma_dom->iovad, address, pages);
1710 }
1711
1712 /****************************************************************************
1713 *
1714 * The next functions belong to the domain allocation. A domain is
1715 * allocated for every IOMMU as the default domain. If device isolation
1716 * is enabled, every device get its own domain. The most important thing
1717 * about domains is the page table mapping the DMA address space they
1718 * contain.
1719 *
1720 ****************************************************************************/
1721
1722 /*
1723 * This function adds a protection domain to the global protection domain list
1724 */
1725 static void add_domain_to_list(struct protection_domain *domain)
1726 {
1727 unsigned long flags;
1728
1729 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1730 list_add(&domain->list, &amd_iommu_pd_list);
1731 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1732 }
1733
1734 /*
1735 * This function removes a protection domain to the global
1736 * protection domain list
1737 */
1738 static void del_domain_from_list(struct protection_domain *domain)
1739 {
1740 unsigned long flags;
1741
1742 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1743 list_del(&domain->list);
1744 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1745 }
1746
1747 static u16 domain_id_alloc(void)
1748 {
1749 int id;
1750
1751 spin_lock(&pd_bitmap_lock);
1752 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1753 BUG_ON(id == 0);
1754 if (id > 0 && id < MAX_DOMAIN_ID)
1755 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1756 else
1757 id = 0;
1758 spin_unlock(&pd_bitmap_lock);
1759
1760 return id;
1761 }
1762
1763 static void domain_id_free(int id)
1764 {
1765 spin_lock(&pd_bitmap_lock);
1766 if (id > 0 && id < MAX_DOMAIN_ID)
1767 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1768 spin_unlock(&pd_bitmap_lock);
1769 }
1770
1771 static void free_gcr3_tbl_level1(u64 *tbl)
1772 {
1773 u64 *ptr;
1774 int i;
1775
1776 for (i = 0; i < 512; ++i) {
1777 if (!(tbl[i] & GCR3_VALID))
1778 continue;
1779
1780 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1781
1782 free_page((unsigned long)ptr);
1783 }
1784 }
1785
1786 static void free_gcr3_tbl_level2(u64 *tbl)
1787 {
1788 u64 *ptr;
1789 int i;
1790
1791 for (i = 0; i < 512; ++i) {
1792 if (!(tbl[i] & GCR3_VALID))
1793 continue;
1794
1795 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1796
1797 free_gcr3_tbl_level1(ptr);
1798 }
1799 }
1800
1801 static void free_gcr3_table(struct protection_domain *domain)
1802 {
1803 if (domain->glx == 2)
1804 free_gcr3_tbl_level2(domain->gcr3_tbl);
1805 else if (domain->glx == 1)
1806 free_gcr3_tbl_level1(domain->gcr3_tbl);
1807 else
1808 BUG_ON(domain->glx != 0);
1809
1810 free_page((unsigned long)domain->gcr3_tbl);
1811 }
1812
1813 static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1814 {
1815 domain_flush_tlb(&dom->domain);
1816 domain_flush_complete(&dom->domain);
1817 }
1818
1819 static void iova_domain_flush_tlb(struct iova_domain *iovad)
1820 {
1821 struct dma_ops_domain *dom;
1822
1823 dom = container_of(iovad, struct dma_ops_domain, iovad);
1824
1825 dma_ops_domain_flush_tlb(dom);
1826 }
1827
1828 /*
1829 * Free a domain, only used if something went wrong in the
1830 * allocation path and we need to free an already allocated page table
1831 */
1832 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1833 {
1834 if (!dom)
1835 return;
1836
1837 del_domain_from_list(&dom->domain);
1838
1839 put_iova_domain(&dom->iovad);
1840
1841 free_pagetable(&dom->domain);
1842
1843 if (dom->domain.id)
1844 domain_id_free(dom->domain.id);
1845
1846 kfree(dom);
1847 }
1848
1849 /*
1850 * Allocates a new protection domain usable for the dma_ops functions.
1851 * It also initializes the page table and the address allocator data
1852 * structures required for the dma_ops interface
1853 */
1854 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1855 {
1856 struct dma_ops_domain *dma_dom;
1857
1858 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1859 if (!dma_dom)
1860 return NULL;
1861
1862 if (protection_domain_init(&dma_dom->domain))
1863 goto free_dma_dom;
1864
1865 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1866 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1867 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1868 if (!dma_dom->domain.pt_root)
1869 goto free_dma_dom;
1870
1871 init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1872
1873 if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1874 goto free_dma_dom;
1875
1876 /* Initialize reserved ranges */
1877 copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1878
1879 add_domain_to_list(&dma_dom->domain);
1880
1881 return dma_dom;
1882
1883 free_dma_dom:
1884 dma_ops_domain_free(dma_dom);
1885
1886 return NULL;
1887 }
1888
1889 /*
1890 * little helper function to check whether a given protection domain is a
1891 * dma_ops domain
1892 */
1893 static bool dma_ops_domain(struct protection_domain *domain)
1894 {
1895 return domain->flags & PD_DMA_OPS_MASK;
1896 }
1897
1898 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1899 bool ats, bool ppr)
1900 {
1901 u64 pte_root = 0;
1902 u64 flags = 0;
1903
1904 if (domain->mode != PAGE_MODE_NONE)
1905 pte_root = iommu_virt_to_phys(domain->pt_root);
1906
1907 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1908 << DEV_ENTRY_MODE_SHIFT;
1909 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1910
1911 flags = amd_iommu_dev_table[devid].data[1];
1912
1913 if (ats)
1914 flags |= DTE_FLAG_IOTLB;
1915
1916 if (ppr) {
1917 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1918
1919 if (iommu_feature(iommu, FEATURE_EPHSUP))
1920 pte_root |= 1ULL << DEV_ENTRY_PPR;
1921 }
1922
1923 if (domain->flags & PD_IOMMUV2_MASK) {
1924 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1925 u64 glx = domain->glx;
1926 u64 tmp;
1927
1928 pte_root |= DTE_FLAG_GV;
1929 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1930
1931 /* First mask out possible old values for GCR3 table */
1932 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1933 flags &= ~tmp;
1934
1935 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1936 flags &= ~tmp;
1937
1938 /* Encode GCR3 table into DTE */
1939 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1940 pte_root |= tmp;
1941
1942 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1943 flags |= tmp;
1944
1945 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1946 flags |= tmp;
1947 }
1948
1949 flags &= ~DEV_DOMID_MASK;
1950 flags |= domain->id;
1951
1952 amd_iommu_dev_table[devid].data[1] = flags;
1953 amd_iommu_dev_table[devid].data[0] = pte_root;
1954 }
1955
1956 static void clear_dte_entry(u16 devid)
1957 {
1958 /* remove entry from the device table seen by the hardware */
1959 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV;
1960 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1961
1962 amd_iommu_apply_erratum_63(devid);
1963 }
1964
1965 static void do_attach(struct iommu_dev_data *dev_data,
1966 struct protection_domain *domain)
1967 {
1968 struct amd_iommu *iommu;
1969 u16 alias;
1970 bool ats;
1971
1972 iommu = amd_iommu_rlookup_table[dev_data->devid];
1973 alias = dev_data->alias;
1974 ats = dev_data->ats.enabled;
1975
1976 /* Update data structures */
1977 dev_data->domain = domain;
1978 list_add(&dev_data->list, &domain->dev_list);
1979
1980 /* Do reference counting */
1981 domain->dev_iommu[iommu->index] += 1;
1982 domain->dev_cnt += 1;
1983
1984 /* Update device table */
1985 set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1986 if (alias != dev_data->devid)
1987 set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1988
1989 device_flush_dte(dev_data);
1990 }
1991
1992 static void do_detach(struct iommu_dev_data *dev_data)
1993 {
1994 struct amd_iommu *iommu;
1995 u16 alias;
1996
1997 iommu = amd_iommu_rlookup_table[dev_data->devid];
1998 alias = dev_data->alias;
1999
2000 /* decrease reference counters */
2001 dev_data->domain->dev_iommu[iommu->index] -= 1;
2002 dev_data->domain->dev_cnt -= 1;
2003
2004 /* Update data structures */
2005 dev_data->domain = NULL;
2006 list_del(&dev_data->list);
2007 clear_dte_entry(dev_data->devid);
2008 if (alias != dev_data->devid)
2009 clear_dte_entry(alias);
2010
2011 /* Flush the DTE entry */
2012 device_flush_dte(dev_data);
2013 }
2014
2015 /*
2016 * If a device is not yet associated with a domain, this function makes the
2017 * device visible in the domain
2018 */
2019 static int __attach_device(struct iommu_dev_data *dev_data,
2020 struct protection_domain *domain)
2021 {
2022 int ret;
2023
2024 /* lock domain */
2025 spin_lock(&domain->lock);
2026
2027 ret = -EBUSY;
2028 if (dev_data->domain != NULL)
2029 goto out_unlock;
2030
2031 /* Attach alias group root */
2032 do_attach(dev_data, domain);
2033
2034 ret = 0;
2035
2036 out_unlock:
2037
2038 /* ready */
2039 spin_unlock(&domain->lock);
2040
2041 return ret;
2042 }
2043
2044
2045 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2046 {
2047 pci_disable_ats(pdev);
2048 pci_disable_pri(pdev);
2049 pci_disable_pasid(pdev);
2050 }
2051
2052 /* FIXME: Change generic reset-function to do the same */
2053 static int pri_reset_while_enabled(struct pci_dev *pdev)
2054 {
2055 u16 control;
2056 int pos;
2057
2058 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2059 if (!pos)
2060 return -EINVAL;
2061
2062 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2063 control |= PCI_PRI_CTRL_RESET;
2064 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2065
2066 return 0;
2067 }
2068
2069 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2070 {
2071 bool reset_enable;
2072 int reqs, ret;
2073
2074 /* FIXME: Hardcode number of outstanding requests for now */
2075 reqs = 32;
2076 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2077 reqs = 1;
2078 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2079
2080 /* Only allow access to user-accessible pages */
2081 ret = pci_enable_pasid(pdev, 0);
2082 if (ret)
2083 goto out_err;
2084
2085 /* First reset the PRI state of the device */
2086 ret = pci_reset_pri(pdev);
2087 if (ret)
2088 goto out_err;
2089
2090 /* Enable PRI */
2091 ret = pci_enable_pri(pdev, reqs);
2092 if (ret)
2093 goto out_err;
2094
2095 if (reset_enable) {
2096 ret = pri_reset_while_enabled(pdev);
2097 if (ret)
2098 goto out_err;
2099 }
2100
2101 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2102 if (ret)
2103 goto out_err;
2104
2105 return 0;
2106
2107 out_err:
2108 pci_disable_pri(pdev);
2109 pci_disable_pasid(pdev);
2110
2111 return ret;
2112 }
2113
2114 /* FIXME: Move this to PCI code */
2115 #define PCI_PRI_TLP_OFF (1 << 15)
2116
2117 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2118 {
2119 u16 status;
2120 int pos;
2121
2122 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2123 if (!pos)
2124 return false;
2125
2126 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2127
2128 return (status & PCI_PRI_TLP_OFF) ? true : false;
2129 }
2130
2131 /*
2132 * If a device is not yet associated with a domain, this function makes the
2133 * device visible in the domain
2134 */
2135 static int attach_device(struct device *dev,
2136 struct protection_domain *domain)
2137 {
2138 struct pci_dev *pdev;
2139 struct iommu_dev_data *dev_data;
2140 unsigned long flags;
2141 int ret;
2142
2143 dev_data = get_dev_data(dev);
2144
2145 if (!dev_is_pci(dev))
2146 goto skip_ats_check;
2147
2148 pdev = to_pci_dev(dev);
2149 if (domain->flags & PD_IOMMUV2_MASK) {
2150 if (!dev_data->passthrough)
2151 return -EINVAL;
2152
2153 if (dev_data->iommu_v2) {
2154 if (pdev_iommuv2_enable(pdev) != 0)
2155 return -EINVAL;
2156
2157 dev_data->ats.enabled = true;
2158 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2159 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2160 }
2161 } else if (amd_iommu_iotlb_sup &&
2162 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2163 dev_data->ats.enabled = true;
2164 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2165 }
2166
2167 skip_ats_check:
2168 spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2169 ret = __attach_device(dev_data, domain);
2170 spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2171
2172 /*
2173 * We might boot into a crash-kernel here. The crashed kernel
2174 * left the caches in the IOMMU dirty. So we have to flush
2175 * here to evict all dirty stuff.
2176 */
2177 domain_flush_tlb_pde(domain);
2178
2179 return ret;
2180 }
2181
2182 /*
2183 * Removes a device from a protection domain (unlocked)
2184 */
2185 static void __detach_device(struct iommu_dev_data *dev_data)
2186 {
2187 struct protection_domain *domain;
2188
2189 domain = dev_data->domain;
2190
2191 spin_lock(&domain->lock);
2192
2193 do_detach(dev_data);
2194
2195 spin_unlock(&domain->lock);
2196 }
2197
2198 /*
2199 * Removes a device from a protection domain (with devtable_lock held)
2200 */
2201 static void detach_device(struct device *dev)
2202 {
2203 struct protection_domain *domain;
2204 struct iommu_dev_data *dev_data;
2205 unsigned long flags;
2206
2207 dev_data = get_dev_data(dev);
2208 domain = dev_data->domain;
2209
2210 /*
2211 * First check if the device is still attached. It might already
2212 * be detached from its domain because the generic
2213 * iommu_detach_group code detached it and we try again here in
2214 * our alias handling.
2215 */
2216 if (WARN_ON(!dev_data->domain))
2217 return;
2218
2219 /* lock device table */
2220 spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2221 __detach_device(dev_data);
2222 spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2223
2224 if (!dev_is_pci(dev))
2225 return;
2226
2227 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2228 pdev_iommuv2_disable(to_pci_dev(dev));
2229 else if (dev_data->ats.enabled)
2230 pci_disable_ats(to_pci_dev(dev));
2231
2232 dev_data->ats.enabled = false;
2233 }
2234
2235 static int amd_iommu_add_device(struct device *dev)
2236 {
2237 struct iommu_dev_data *dev_data;
2238 struct iommu_domain *domain;
2239 struct amd_iommu *iommu;
2240 int ret, devid;
2241
2242 if (!check_device(dev) || get_dev_data(dev))
2243 return 0;
2244
2245 devid = get_device_id(dev);
2246 if (devid < 0)
2247 return devid;
2248
2249 iommu = amd_iommu_rlookup_table[devid];
2250
2251 ret = iommu_init_device(dev);
2252 if (ret) {
2253 if (ret != -ENOTSUPP)
2254 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2255 dev_name(dev));
2256
2257 iommu_ignore_device(dev);
2258 dev->dma_ops = NULL;
2259 goto out;
2260 }
2261 init_iommu_group(dev);
2262
2263 dev_data = get_dev_data(dev);
2264
2265 BUG_ON(!dev_data);
2266
2267 if (iommu_pass_through || dev_data->iommu_v2)
2268 iommu_request_dm_for_dev(dev);
2269
2270 /* Domains are initialized for this device - have a look what we ended up with */
2271 domain = iommu_get_domain_for_dev(dev);
2272 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2273 dev_data->passthrough = true;
2274 else
2275 dev->dma_ops = &amd_iommu_dma_ops;
2276
2277 out:
2278 iommu_completion_wait(iommu);
2279
2280 return 0;
2281 }
2282
2283 static void amd_iommu_remove_device(struct device *dev)
2284 {
2285 struct amd_iommu *iommu;
2286 int devid;
2287
2288 if (!check_device(dev))
2289 return;
2290
2291 devid = get_device_id(dev);
2292 if (devid < 0)
2293 return;
2294
2295 iommu = amd_iommu_rlookup_table[devid];
2296
2297 iommu_uninit_device(dev);
2298 iommu_completion_wait(iommu);
2299 }
2300
2301 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2302 {
2303 if (dev_is_pci(dev))
2304 return pci_device_group(dev);
2305
2306 return acpihid_device_group(dev);
2307 }
2308
2309 /*****************************************************************************
2310 *
2311 * The next functions belong to the dma_ops mapping/unmapping code.
2312 *
2313 *****************************************************************************/
2314
2315 /*
2316 * In the dma_ops path we only have the struct device. This function
2317 * finds the corresponding IOMMU, the protection domain and the
2318 * requestor id for a given device.
2319 * If the device is not yet associated with a domain this is also done
2320 * in this function.
2321 */
2322 static struct protection_domain *get_domain(struct device *dev)
2323 {
2324 struct protection_domain *domain;
2325 struct iommu_domain *io_domain;
2326
2327 if (!check_device(dev))
2328 return ERR_PTR(-EINVAL);
2329
2330 domain = get_dev_data(dev)->domain;
2331 if (domain == NULL && get_dev_data(dev)->defer_attach) {
2332 get_dev_data(dev)->defer_attach = false;
2333 io_domain = iommu_get_domain_for_dev(dev);
2334 domain = to_pdomain(io_domain);
2335 attach_device(dev, domain);
2336 }
2337 if (domain == NULL)
2338 return ERR_PTR(-EBUSY);
2339
2340 if (!dma_ops_domain(domain))
2341 return ERR_PTR(-EBUSY);
2342
2343 return domain;
2344 }
2345
2346 static void update_device_table(struct protection_domain *domain)
2347 {
2348 struct iommu_dev_data *dev_data;
2349
2350 list_for_each_entry(dev_data, &domain->dev_list, list) {
2351 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2352 dev_data->iommu_v2);
2353
2354 if (dev_data->devid == dev_data->alias)
2355 continue;
2356
2357 /* There is an alias, update device table entry for it */
2358 set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
2359 dev_data->iommu_v2);
2360 }
2361 }
2362
2363 static void update_domain(struct protection_domain *domain)
2364 {
2365 if (!domain->updated)
2366 return;
2367
2368 update_device_table(domain);
2369
2370 domain_flush_devices(domain);
2371 domain_flush_tlb_pde(domain);
2372
2373 domain->updated = false;
2374 }
2375
2376 static int dir2prot(enum dma_data_direction direction)
2377 {
2378 if (direction == DMA_TO_DEVICE)
2379 return IOMMU_PROT_IR;
2380 else if (direction == DMA_FROM_DEVICE)
2381 return IOMMU_PROT_IW;
2382 else if (direction == DMA_BIDIRECTIONAL)
2383 return IOMMU_PROT_IW | IOMMU_PROT_IR;
2384 else
2385 return 0;
2386 }
2387
2388 /*
2389 * This function contains common code for mapping of a physically
2390 * contiguous memory region into DMA address space. It is used by all
2391 * mapping functions provided with this IOMMU driver.
2392 * Must be called with the domain lock held.
2393 */
2394 static dma_addr_t __map_single(struct device *dev,
2395 struct dma_ops_domain *dma_dom,
2396 phys_addr_t paddr,
2397 size_t size,
2398 enum dma_data_direction direction,
2399 u64 dma_mask)
2400 {
2401 dma_addr_t offset = paddr & ~PAGE_MASK;
2402 dma_addr_t address, start, ret;
2403 unsigned int pages;
2404 int prot = 0;
2405 int i;
2406
2407 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2408 paddr &= PAGE_MASK;
2409
2410 address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2411 if (!address)
2412 goto out;
2413
2414 prot = dir2prot(direction);
2415
2416 start = address;
2417 for (i = 0; i < pages; ++i) {
2418 ret = iommu_map_page(&dma_dom->domain, start, paddr,
2419 PAGE_SIZE, prot, GFP_ATOMIC);
2420 if (ret)
2421 goto out_unmap;
2422
2423 paddr += PAGE_SIZE;
2424 start += PAGE_SIZE;
2425 }
2426 address += offset;
2427
2428 if (unlikely(amd_iommu_np_cache)) {
2429 domain_flush_pages(&dma_dom->domain, address, size);
2430 domain_flush_complete(&dma_dom->domain);
2431 }
2432
2433 out:
2434 return address;
2435
2436 out_unmap:
2437
2438 for (--i; i >= 0; --i) {
2439 start -= PAGE_SIZE;
2440 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2441 }
2442
2443 domain_flush_tlb(&dma_dom->domain);
2444 domain_flush_complete(&dma_dom->domain);
2445
2446 dma_ops_free_iova(dma_dom, address, pages);
2447
2448 return DMA_MAPPING_ERROR;
2449 }
2450
2451 /*
2452 * Does the reverse of the __map_single function. Must be called with
2453 * the domain lock held too
2454 */
2455 static void __unmap_single(struct dma_ops_domain *dma_dom,
2456 dma_addr_t dma_addr,
2457 size_t size,
2458 int dir)
2459 {
2460 dma_addr_t i, start;
2461 unsigned int pages;
2462
2463 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2464 dma_addr &= PAGE_MASK;
2465 start = dma_addr;
2466
2467 for (i = 0; i < pages; ++i) {
2468 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2469 start += PAGE_SIZE;
2470 }
2471
2472 if (amd_iommu_unmap_flush) {
2473 domain_flush_tlb(&dma_dom->domain);
2474 domain_flush_complete(&dma_dom->domain);
2475 dma_ops_free_iova(dma_dom, dma_addr, pages);
2476 } else {
2477 pages = __roundup_pow_of_two(pages);
2478 queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2479 }
2480 }
2481
2482 /*
2483 * The exported map_single function for dma_ops.
2484 */
2485 static dma_addr_t map_page(struct device *dev, struct page *page,
2486 unsigned long offset, size_t size,
2487 enum dma_data_direction dir,
2488 unsigned long attrs)
2489 {
2490 phys_addr_t paddr = page_to_phys(page) + offset;
2491 struct protection_domain *domain;
2492 struct dma_ops_domain *dma_dom;
2493 u64 dma_mask;
2494
2495 domain = get_domain(dev);
2496 if (PTR_ERR(domain) == -EINVAL)
2497 return (dma_addr_t)paddr;
2498 else if (IS_ERR(domain))
2499 return DMA_MAPPING_ERROR;
2500
2501 dma_mask = *dev->dma_mask;
2502 dma_dom = to_dma_ops_domain(domain);
2503
2504 return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2505 }
2506
2507 /*
2508 * The exported unmap_single function for dma_ops.
2509 */
2510 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2511 enum dma_data_direction dir, unsigned long attrs)
2512 {
2513 struct protection_domain *domain;
2514 struct dma_ops_domain *dma_dom;
2515
2516 domain = get_domain(dev);
2517 if (IS_ERR(domain))
2518 return;
2519
2520 dma_dom = to_dma_ops_domain(domain);
2521
2522 __unmap_single(dma_dom, dma_addr, size, dir);
2523 }
2524
2525 static int sg_num_pages(struct device *dev,
2526 struct scatterlist *sglist,
2527 int nelems)
2528 {
2529 unsigned long mask, boundary_size;
2530 struct scatterlist *s;
2531 int i, npages = 0;
2532
2533 mask = dma_get_seg_boundary(dev);
2534 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2535 1UL << (BITS_PER_LONG - PAGE_SHIFT);
2536
2537 for_each_sg(sglist, s, nelems, i) {
2538 int p, n;
2539
2540 s->dma_address = npages << PAGE_SHIFT;
2541 p = npages % boundary_size;
2542 n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2543 if (p + n > boundary_size)
2544 npages += boundary_size - p;
2545 npages += n;
2546 }
2547
2548 return npages;
2549 }
2550
2551 /*
2552 * The exported map_sg function for dma_ops (handles scatter-gather
2553 * lists).
2554 */
2555 static int map_sg(struct device *dev, struct scatterlist *sglist,
2556 int nelems, enum dma_data_direction direction,
2557 unsigned long attrs)
2558 {
2559 int mapped_pages = 0, npages = 0, prot = 0, i;
2560 struct protection_domain *domain;
2561 struct dma_ops_domain *dma_dom;
2562 struct scatterlist *s;
2563 unsigned long address;
2564 u64 dma_mask;
2565
2566 domain = get_domain(dev);
2567 if (IS_ERR(domain))
2568 return 0;
2569
2570 dma_dom = to_dma_ops_domain(domain);
2571 dma_mask = *dev->dma_mask;
2572
2573 npages = sg_num_pages(dev, sglist, nelems);
2574
2575 address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2576 if (address == DMA_MAPPING_ERROR)
2577 goto out_err;
2578
2579 prot = dir2prot(direction);
2580
2581 /* Map all sg entries */
2582 for_each_sg(sglist, s, nelems, i) {
2583 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2584
2585 for (j = 0; j < pages; ++j) {
2586 unsigned long bus_addr, phys_addr;
2587 int ret;
2588
2589 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2590 phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2591 ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
2592 if (ret)
2593 goto out_unmap;
2594
2595 mapped_pages += 1;
2596 }
2597 }
2598
2599 /* Everything is mapped - write the right values into s->dma_address */
2600 for_each_sg(sglist, s, nelems, i) {
2601 s->dma_address += address + s->offset;
2602 s->dma_length = s->length;
2603 }
2604
2605 return nelems;
2606
2607 out_unmap:
2608 pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2609 dev_name(dev), npages);
2610
2611 for_each_sg(sglist, s, nelems, i) {
2612 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2613
2614 for (j = 0; j < pages; ++j) {
2615 unsigned long bus_addr;
2616
2617 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2618 iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2619
2620 if (--mapped_pages)
2621 goto out_free_iova;
2622 }
2623 }
2624
2625 out_free_iova:
2626 free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2627
2628 out_err:
2629 return 0;
2630 }
2631
2632 /*
2633 * The exported map_sg function for dma_ops (handles scatter-gather
2634 * lists).
2635 */
2636 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2637 int nelems, enum dma_data_direction dir,
2638 unsigned long attrs)
2639 {
2640 struct protection_domain *domain;
2641 struct dma_ops_domain *dma_dom;
2642 unsigned long startaddr;
2643 int npages = 2;
2644
2645 domain = get_domain(dev);
2646 if (IS_ERR(domain))
2647 return;
2648
2649 startaddr = sg_dma_address(sglist) & PAGE_MASK;
2650 dma_dom = to_dma_ops_domain(domain);
2651 npages = sg_num_pages(dev, sglist, nelems);
2652
2653 __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2654 }
2655
2656 /*
2657 * The exported alloc_coherent function for dma_ops.
2658 */
2659 static void *alloc_coherent(struct device *dev, size_t size,
2660 dma_addr_t *dma_addr, gfp_t flag,
2661 unsigned long attrs)
2662 {
2663 u64 dma_mask = dev->coherent_dma_mask;
2664 struct protection_domain *domain;
2665 struct dma_ops_domain *dma_dom;
2666 struct page *page;
2667
2668 domain = get_domain(dev);
2669 if (PTR_ERR(domain) == -EINVAL) {
2670 page = alloc_pages(flag, get_order(size));
2671 *dma_addr = page_to_phys(page);
2672 return page_address(page);
2673 } else if (IS_ERR(domain))
2674 return NULL;
2675
2676 dma_dom = to_dma_ops_domain(domain);
2677 size = PAGE_ALIGN(size);
2678 dma_mask = dev->coherent_dma_mask;
2679 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2680 flag |= __GFP_ZERO;
2681
2682 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2683 if (!page) {
2684 if (!gfpflags_allow_blocking(flag))
2685 return NULL;
2686
2687 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2688 get_order(size), flag & __GFP_NOWARN);
2689 if (!page)
2690 return NULL;
2691 }
2692
2693 if (!dma_mask)
2694 dma_mask = *dev->dma_mask;
2695
2696 *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2697 size, DMA_BIDIRECTIONAL, dma_mask);
2698
2699 if (*dma_addr == DMA_MAPPING_ERROR)
2700 goto out_free;
2701
2702 return page_address(page);
2703
2704 out_free:
2705
2706 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2707 __free_pages(page, get_order(size));
2708
2709 return NULL;
2710 }
2711
2712 /*
2713 * The exported free_coherent function for dma_ops.
2714 */
2715 static void free_coherent(struct device *dev, size_t size,
2716 void *virt_addr, dma_addr_t dma_addr,
2717 unsigned long attrs)
2718 {
2719 struct protection_domain *domain;
2720 struct dma_ops_domain *dma_dom;
2721 struct page *page;
2722
2723 page = virt_to_page(virt_addr);
2724 size = PAGE_ALIGN(size);
2725
2726 domain = get_domain(dev);
2727 if (IS_ERR(domain))
2728 goto free_mem;
2729
2730 dma_dom = to_dma_ops_domain(domain);
2731
2732 __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2733
2734 free_mem:
2735 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2736 __free_pages(page, get_order(size));
2737 }
2738
2739 /*
2740 * This function is called by the DMA layer to find out if we can handle a
2741 * particular device. It is part of the dma_ops.
2742 */
2743 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2744 {
2745 if (!dma_direct_supported(dev, mask))
2746 return 0;
2747 return check_device(dev);
2748 }
2749
2750 static const struct dma_map_ops amd_iommu_dma_ops = {
2751 .alloc = alloc_coherent,
2752 .free = free_coherent,
2753 .map_page = map_page,
2754 .unmap_page = unmap_page,
2755 .map_sg = map_sg,
2756 .unmap_sg = unmap_sg,
2757 .dma_supported = amd_iommu_dma_supported,
2758 };
2759
2760 static int init_reserved_iova_ranges(void)
2761 {
2762 struct pci_dev *pdev = NULL;
2763 struct iova *val;
2764
2765 init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2766
2767 lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2768 &reserved_rbtree_key);
2769
2770 /* MSI memory range */
2771 val = reserve_iova(&reserved_iova_ranges,
2772 IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2773 if (!val) {
2774 pr_err("Reserving MSI range failed\n");
2775 return -ENOMEM;
2776 }
2777
2778 /* HT memory range */
2779 val = reserve_iova(&reserved_iova_ranges,
2780 IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2781 if (!val) {
2782 pr_err("Reserving HT range failed\n");
2783 return -ENOMEM;
2784 }
2785
2786 /*
2787 * Memory used for PCI resources
2788 * FIXME: Check whether we can reserve the PCI-hole completly
2789 */
2790 for_each_pci_dev(pdev) {
2791 int i;
2792
2793 for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2794 struct resource *r = &pdev->resource[i];
2795
2796 if (!(r->flags & IORESOURCE_MEM))
2797 continue;
2798
2799 val = reserve_iova(&reserved_iova_ranges,
2800 IOVA_PFN(r->start),
2801 IOVA_PFN(r->end));
2802 if (!val) {
2803 pr_err("Reserve pci-resource range failed\n");
2804 return -ENOMEM;
2805 }
2806 }
2807 }
2808
2809 return 0;
2810 }
2811
2812 int __init amd_iommu_init_api(void)
2813 {
2814 int ret, err = 0;
2815
2816 ret = iova_cache_get();
2817 if (ret)
2818 return ret;
2819
2820 ret = init_reserved_iova_ranges();
2821 if (ret)
2822 return ret;
2823
2824 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2825 if (err)
2826 return err;
2827 #ifdef CONFIG_ARM_AMBA
2828 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2829 if (err)
2830 return err;
2831 #endif
2832 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2833 if (err)
2834 return err;
2835
2836 return 0;
2837 }
2838
2839 int __init amd_iommu_init_dma_ops(void)
2840 {
2841 swiotlb = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2842 iommu_detected = 1;
2843
2844 if (amd_iommu_unmap_flush)
2845 pr_info("IO/TLB flush on unmap enabled\n");
2846 else
2847 pr_info("Lazy IO/TLB flushing enabled\n");
2848
2849 return 0;
2850
2851 }
2852
2853 /*****************************************************************************
2854 *
2855 * The following functions belong to the exported interface of AMD IOMMU
2856 *
2857 * This interface allows access to lower level functions of the IOMMU
2858 * like protection domain handling and assignement of devices to domains
2859 * which is not possible with the dma_ops interface.
2860 *
2861 *****************************************************************************/
2862
2863 static void cleanup_domain(struct protection_domain *domain)
2864 {
2865 struct iommu_dev_data *entry;
2866 unsigned long flags;
2867
2868 spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2869
2870 while (!list_empty(&domain->dev_list)) {
2871 entry = list_first_entry(&domain->dev_list,
2872 struct iommu_dev_data, list);
2873 BUG_ON(!entry->domain);
2874 __detach_device(entry);
2875 }
2876
2877 spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2878 }
2879
2880 static void protection_domain_free(struct protection_domain *domain)
2881 {
2882 if (!domain)
2883 return;
2884
2885 del_domain_from_list(domain);
2886
2887 if (domain->id)
2888 domain_id_free(domain->id);
2889
2890 kfree(domain);
2891 }
2892
2893 static int protection_domain_init(struct protection_domain *domain)
2894 {
2895 spin_lock_init(&domain->lock);
2896 mutex_init(&domain->api_lock);
2897 domain->id = domain_id_alloc();
2898 if (!domain->id)
2899 return -ENOMEM;
2900 INIT_LIST_HEAD(&domain->dev_list);
2901
2902 return 0;
2903 }
2904
2905 static struct protection_domain *protection_domain_alloc(void)
2906 {
2907 struct protection_domain *domain;
2908
2909 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2910 if (!domain)
2911 return NULL;
2912
2913 if (protection_domain_init(domain))
2914 goto out_err;
2915
2916 add_domain_to_list(domain);
2917
2918 return domain;
2919
2920 out_err:
2921 kfree(domain);
2922
2923 return NULL;
2924 }
2925
2926 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2927 {
2928 struct protection_domain *pdomain;
2929 struct dma_ops_domain *dma_domain;
2930
2931 switch (type) {
2932 case IOMMU_DOMAIN_UNMANAGED:
2933 pdomain = protection_domain_alloc();
2934 if (!pdomain)
2935 return NULL;
2936
2937 pdomain->mode = PAGE_MODE_3_LEVEL;
2938 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2939 if (!pdomain->pt_root) {
2940 protection_domain_free(pdomain);
2941 return NULL;
2942 }
2943
2944 pdomain->domain.geometry.aperture_start = 0;
2945 pdomain->domain.geometry.aperture_end = ~0ULL;
2946 pdomain->domain.geometry.force_aperture = true;
2947
2948 break;
2949 case IOMMU_DOMAIN_DMA:
2950 dma_domain = dma_ops_domain_alloc();
2951 if (!dma_domain) {
2952 pr_err("Failed to allocate\n");
2953 return NULL;
2954 }
2955 pdomain = &dma_domain->domain;
2956 break;
2957 case IOMMU_DOMAIN_IDENTITY:
2958 pdomain = protection_domain_alloc();
2959 if (!pdomain)
2960 return NULL;
2961
2962 pdomain->mode = PAGE_MODE_NONE;
2963 break;
2964 default:
2965 return NULL;
2966 }
2967
2968 return &pdomain->domain;
2969 }
2970
2971 static void amd_iommu_domain_free(struct iommu_domain *dom)
2972 {
2973 struct protection_domain *domain;
2974 struct dma_ops_domain *dma_dom;
2975
2976 domain = to_pdomain(dom);
2977
2978 if (domain->dev_cnt > 0)
2979 cleanup_domain(domain);
2980
2981 BUG_ON(domain->dev_cnt != 0);
2982
2983 if (!dom)
2984 return;
2985
2986 switch (dom->type) {
2987 case IOMMU_DOMAIN_DMA:
2988 /* Now release the domain */
2989 dma_dom = to_dma_ops_domain(domain);
2990 dma_ops_domain_free(dma_dom);
2991 break;
2992 default:
2993 if (domain->mode != PAGE_MODE_NONE)
2994 free_pagetable(domain);
2995
2996 if (domain->flags & PD_IOMMUV2_MASK)
2997 free_gcr3_table(domain);
2998
2999 protection_domain_free(domain);
3000 break;
3001 }
3002 }
3003
3004 static void amd_iommu_detach_device(struct iommu_domain *dom,
3005 struct device *dev)
3006 {
3007 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3008 struct amd_iommu *iommu;
3009 int devid;
3010
3011 if (!check_device(dev))
3012 return;
3013
3014 devid = get_device_id(dev);
3015 if (devid < 0)
3016 return;
3017
3018 if (dev_data->domain != NULL)
3019 detach_device(dev);
3020
3021 iommu = amd_iommu_rlookup_table[devid];
3022 if (!iommu)
3023 return;
3024
3025 #ifdef CONFIG_IRQ_REMAP
3026 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
3027 (dom->type == IOMMU_DOMAIN_UNMANAGED))
3028 dev_data->use_vapic = 0;
3029 #endif
3030
3031 iommu_completion_wait(iommu);
3032 }
3033
3034 static int amd_iommu_attach_device(struct iommu_domain *dom,
3035 struct device *dev)
3036 {
3037 struct protection_domain *domain = to_pdomain(dom);
3038 struct iommu_dev_data *dev_data;
3039 struct amd_iommu *iommu;
3040 int ret;
3041
3042 if (!check_device(dev))
3043 return -EINVAL;
3044
3045 dev_data = dev->archdata.iommu;
3046
3047 iommu = amd_iommu_rlookup_table[dev_data->devid];
3048 if (!iommu)
3049 return -EINVAL;
3050
3051 if (dev_data->domain)
3052 detach_device(dev);
3053
3054 ret = attach_device(dev, domain);
3055
3056 #ifdef CONFIG_IRQ_REMAP
3057 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3058 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3059 dev_data->use_vapic = 1;
3060 else
3061 dev_data->use_vapic = 0;
3062 }
3063 #endif
3064
3065 iommu_completion_wait(iommu);
3066
3067 return ret;
3068 }
3069
3070 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3071 phys_addr_t paddr, size_t page_size, int iommu_prot)
3072 {
3073 struct protection_domain *domain = to_pdomain(dom);
3074 int prot = 0;
3075 int ret;
3076
3077 if (domain->mode == PAGE_MODE_NONE)
3078 return -EINVAL;
3079
3080 if (iommu_prot & IOMMU_READ)
3081 prot |= IOMMU_PROT_IR;
3082 if (iommu_prot & IOMMU_WRITE)
3083 prot |= IOMMU_PROT_IW;
3084
3085 mutex_lock(&domain->api_lock);
3086 ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3087 mutex_unlock(&domain->api_lock);
3088
3089 return ret;
3090 }
3091
3092 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3093 size_t page_size)
3094 {
3095 struct protection_domain *domain = to_pdomain(dom);
3096 size_t unmap_size;
3097
3098 if (domain->mode == PAGE_MODE_NONE)
3099 return 0;
3100
3101 mutex_lock(&domain->api_lock);
3102 unmap_size = iommu_unmap_page(domain, iova, page_size);
3103 mutex_unlock(&domain->api_lock);
3104
3105 return unmap_size;
3106 }
3107
3108 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3109 dma_addr_t iova)
3110 {
3111 struct protection_domain *domain = to_pdomain(dom);
3112 unsigned long offset_mask, pte_pgsize;
3113 u64 *pte, __pte;
3114
3115 if (domain->mode == PAGE_MODE_NONE)
3116 return iova;
3117
3118 pte = fetch_pte(domain, iova, &pte_pgsize);
3119
3120 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3121 return 0;
3122
3123 offset_mask = pte_pgsize - 1;
3124 __pte = __sme_clr(*pte & PM_ADDR_MASK);
3125
3126 return (__pte & ~offset_mask) | (iova & offset_mask);
3127 }
3128
3129 static bool amd_iommu_capable(enum iommu_cap cap)
3130 {
3131 switch (cap) {
3132 case IOMMU_CAP_CACHE_COHERENCY:
3133 return true;
3134 case IOMMU_CAP_INTR_REMAP:
3135 return (irq_remapping_enabled == 1);
3136 case IOMMU_CAP_NOEXEC:
3137 return false;
3138 default:
3139 break;
3140 }
3141
3142 return false;
3143 }
3144
3145 static void amd_iommu_get_resv_regions(struct device *dev,
3146 struct list_head *head)
3147 {
3148 struct iommu_resv_region *region;
3149 struct unity_map_entry *entry;
3150 int devid;
3151
3152 devid = get_device_id(dev);
3153 if (devid < 0)
3154 return;
3155
3156 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3157 size_t length;
3158 int prot = 0;
3159
3160 if (devid < entry->devid_start || devid > entry->devid_end)
3161 continue;
3162
3163 length = entry->address_end - entry->address_start;
3164 if (entry->prot & IOMMU_PROT_IR)
3165 prot |= IOMMU_READ;
3166 if (entry->prot & IOMMU_PROT_IW)
3167 prot |= IOMMU_WRITE;
3168
3169 region = iommu_alloc_resv_region(entry->address_start,
3170 length, prot,
3171 IOMMU_RESV_DIRECT);
3172 if (!region) {
3173 pr_err("Out of memory allocating dm-regions for %s\n",
3174 dev_name(dev));
3175 return;
3176 }
3177 list_add_tail(&region->list, head);
3178 }
3179
3180 region = iommu_alloc_resv_region(MSI_RANGE_START,
3181 MSI_RANGE_END - MSI_RANGE_START + 1,
3182 0, IOMMU_RESV_MSI);
3183 if (!region)
3184 return;
3185 list_add_tail(&region->list, head);
3186
3187 region = iommu_alloc_resv_region(HT_RANGE_START,
3188 HT_RANGE_END - HT_RANGE_START + 1,
3189 0, IOMMU_RESV_RESERVED);
3190 if (!region)
3191 return;
3192 list_add_tail(&region->list, head);
3193 }
3194
3195 static void amd_iommu_put_resv_regions(struct device *dev,
3196 struct list_head *head)
3197 {
3198 struct iommu_resv_region *entry, *next;
3199
3200 list_for_each_entry_safe(entry, next, head, list)
3201 kfree(entry);
3202 }
3203
3204 static void amd_iommu_apply_resv_region(struct device *dev,
3205 struct iommu_domain *domain,
3206 struct iommu_resv_region *region)
3207 {
3208 struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3209 unsigned long start, end;
3210
3211 start = IOVA_PFN(region->start);
3212 end = IOVA_PFN(region->start + region->length - 1);
3213
3214 WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3215 }
3216
3217 static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3218 struct device *dev)
3219 {
3220 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3221 return dev_data->defer_attach;
3222 }
3223
3224 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3225 {
3226 struct protection_domain *dom = to_pdomain(domain);
3227
3228 domain_flush_tlb_pde(dom);
3229 domain_flush_complete(dom);
3230 }
3231
3232 static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
3233 unsigned long iova, size_t size)
3234 {
3235 }
3236
3237 const struct iommu_ops amd_iommu_ops = {
3238 .capable = amd_iommu_capable,
3239 .domain_alloc = amd_iommu_domain_alloc,
3240 .domain_free = amd_iommu_domain_free,
3241 .attach_dev = amd_iommu_attach_device,
3242 .detach_dev = amd_iommu_detach_device,
3243 .map = amd_iommu_map,
3244 .unmap = amd_iommu_unmap,
3245 .iova_to_phys = amd_iommu_iova_to_phys,
3246 .add_device = amd_iommu_add_device,
3247 .remove_device = amd_iommu_remove_device,
3248 .device_group = amd_iommu_device_group,
3249 .get_resv_regions = amd_iommu_get_resv_regions,
3250 .put_resv_regions = amd_iommu_put_resv_regions,
3251 .apply_resv_region = amd_iommu_apply_resv_region,
3252 .is_attach_deferred = amd_iommu_is_attach_deferred,
3253 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3254 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
3255 .iotlb_range_add = amd_iommu_iotlb_range_add,
3256 .iotlb_sync = amd_iommu_flush_iotlb_all,
3257 };
3258
3259 /*****************************************************************************
3260 *
3261 * The next functions do a basic initialization of IOMMU for pass through
3262 * mode
3263 *
3264 * In passthrough mode the IOMMU is initialized and enabled but not used for
3265 * DMA-API translation.
3266 *
3267 *****************************************************************************/
3268
3269 /* IOMMUv2 specific functions */
3270 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3271 {
3272 return atomic_notifier_chain_register(&ppr_notifier, nb);
3273 }
3274 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3275
3276 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3277 {
3278 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3279 }
3280 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3281
3282 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3283 {
3284 struct protection_domain *domain = to_pdomain(dom);
3285 unsigned long flags;
3286
3287 spin_lock_irqsave(&domain->lock, flags);
3288
3289 /* Update data structure */
3290 domain->mode = PAGE_MODE_NONE;
3291 domain->updated = true;
3292
3293 /* Make changes visible to IOMMUs */
3294 update_domain(domain);
3295
3296 /* Page-table is not visible to IOMMU anymore, so free it */
3297 free_pagetable(domain);
3298
3299 spin_unlock_irqrestore(&domain->lock, flags);
3300 }
3301 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3302
3303 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3304 {
3305 struct protection_domain *domain = to_pdomain(dom);
3306 unsigned long flags;
3307 int levels, ret;
3308
3309 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3310 return -EINVAL;
3311
3312 /* Number of GCR3 table levels required */
3313 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3314 levels += 1;
3315
3316 if (levels > amd_iommu_max_glx_val)
3317 return -EINVAL;
3318
3319 spin_lock_irqsave(&domain->lock, flags);
3320
3321 /*
3322 * Save us all sanity checks whether devices already in the
3323 * domain support IOMMUv2. Just force that the domain has no
3324 * devices attached when it is switched into IOMMUv2 mode.
3325 */
3326 ret = -EBUSY;
3327 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3328 goto out;
3329
3330 ret = -ENOMEM;
3331 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3332 if (domain->gcr3_tbl == NULL)
3333 goto out;
3334
3335 domain->glx = levels;
3336 domain->flags |= PD_IOMMUV2_MASK;
3337 domain->updated = true;
3338
3339 update_domain(domain);
3340
3341 ret = 0;
3342
3343 out:
3344 spin_unlock_irqrestore(&domain->lock, flags);
3345
3346 return ret;
3347 }
3348 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3349
3350 static int __flush_pasid(struct protection_domain *domain, int pasid,
3351 u64 address, bool size)
3352 {
3353 struct iommu_dev_data *dev_data;
3354 struct iommu_cmd cmd;
3355 int i, ret;
3356
3357 if (!(domain->flags & PD_IOMMUV2_MASK))
3358 return -EINVAL;
3359
3360 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3361
3362 /*
3363 * IOMMU TLB needs to be flushed before Device TLB to
3364 * prevent device TLB refill from IOMMU TLB
3365 */
3366 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3367 if (domain->dev_iommu[i] == 0)
3368 continue;
3369
3370 ret = iommu_queue_command(amd_iommus[i], &cmd);
3371 if (ret != 0)
3372 goto out;
3373 }
3374
3375 /* Wait until IOMMU TLB flushes are complete */
3376 domain_flush_complete(domain);
3377
3378 /* Now flush device TLBs */
3379 list_for_each_entry(dev_data, &domain->dev_list, list) {
3380 struct amd_iommu *iommu;
3381 int qdep;
3382
3383 /*
3384 There might be non-IOMMUv2 capable devices in an IOMMUv2
3385 * domain.
3386 */
3387 if (!dev_data->ats.enabled)
3388 continue;
3389
3390 qdep = dev_data->ats.qdep;
3391 iommu = amd_iommu_rlookup_table[dev_data->devid];
3392
3393 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3394 qdep, address, size);
3395
3396 ret = iommu_queue_command(iommu, &cmd);
3397 if (ret != 0)
3398 goto out;
3399 }
3400
3401 /* Wait until all device TLBs are flushed */
3402 domain_flush_complete(domain);
3403
3404 ret = 0;
3405
3406 out:
3407
3408 return ret;
3409 }
3410
3411 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3412 u64 address)
3413 {
3414 return __flush_pasid(domain, pasid, address, false);
3415 }
3416
3417 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3418 u64 address)
3419 {
3420 struct protection_domain *domain = to_pdomain(dom);
3421 unsigned long flags;
3422 int ret;
3423
3424 spin_lock_irqsave(&domain->lock, flags);
3425 ret = __amd_iommu_flush_page(domain, pasid, address);
3426 spin_unlock_irqrestore(&domain->lock, flags);
3427
3428 return ret;
3429 }
3430 EXPORT_SYMBOL(amd_iommu_flush_page);
3431
3432 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3433 {
3434 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3435 true);
3436 }
3437
3438 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3439 {
3440 struct protection_domain *domain = to_pdomain(dom);
3441 unsigned long flags;
3442 int ret;
3443
3444 spin_lock_irqsave(&domain->lock, flags);
3445 ret = __amd_iommu_flush_tlb(domain, pasid);
3446 spin_unlock_irqrestore(&domain->lock, flags);
3447
3448 return ret;
3449 }
3450 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3451
3452 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3453 {
3454 int index;
3455 u64 *pte;
3456
3457 while (true) {
3458
3459 index = (pasid >> (9 * level)) & 0x1ff;
3460 pte = &root[index];
3461
3462 if (level == 0)
3463 break;
3464
3465 if (!(*pte & GCR3_VALID)) {
3466 if (!alloc)
3467 return NULL;
3468
3469 root = (void *)get_zeroed_page(GFP_ATOMIC);
3470 if (root == NULL)
3471 return NULL;
3472
3473 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
3474 }
3475
3476 root = iommu_phys_to_virt(*pte & PAGE_MASK);
3477
3478 level -= 1;
3479 }
3480
3481 return pte;
3482 }
3483
3484 static int __set_gcr3(struct protection_domain *domain, int pasid,
3485 unsigned long cr3)
3486 {
3487 u64 *pte;
3488
3489 if (domain->mode != PAGE_MODE_NONE)
3490 return -EINVAL;
3491
3492 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3493 if (pte == NULL)
3494 return -ENOMEM;
3495
3496 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3497
3498 return __amd_iommu_flush_tlb(domain, pasid);
3499 }
3500
3501 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3502 {
3503 u64 *pte;
3504
3505 if (domain->mode != PAGE_MODE_NONE)
3506 return -EINVAL;
3507
3508 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3509 if (pte == NULL)
3510 return 0;
3511
3512 *pte = 0;
3513
3514 return __amd_iommu_flush_tlb(domain, pasid);
3515 }
3516
3517 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3518 unsigned long cr3)
3519 {
3520 struct protection_domain *domain = to_pdomain(dom);
3521 unsigned long flags;
3522 int ret;
3523
3524 spin_lock_irqsave(&domain->lock, flags);
3525 ret = __set_gcr3(domain, pasid, cr3);
3526 spin_unlock_irqrestore(&domain->lock, flags);
3527
3528 return ret;
3529 }
3530 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3531
3532 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3533 {
3534 struct protection_domain *domain = to_pdomain(dom);
3535 unsigned long flags;
3536 int ret;
3537
3538 spin_lock_irqsave(&domain->lock, flags);
3539 ret = __clear_gcr3(domain, pasid);
3540 spin_unlock_irqrestore(&domain->lock, flags);
3541
3542 return ret;
3543 }
3544 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3545
3546 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3547 int status, int tag)
3548 {
3549 struct iommu_dev_data *dev_data;
3550 struct amd_iommu *iommu;
3551 struct iommu_cmd cmd;
3552
3553 dev_data = get_dev_data(&pdev->dev);
3554 iommu = amd_iommu_rlookup_table[dev_data->devid];
3555
3556 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3557 tag, dev_data->pri_tlp);
3558
3559 return iommu_queue_command(iommu, &cmd);
3560 }
3561 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3562
3563 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3564 {
3565 struct protection_domain *pdomain;
3566
3567 pdomain = get_domain(&pdev->dev);
3568 if (IS_ERR(pdomain))
3569 return NULL;
3570
3571 /* Only return IOMMUv2 domains */
3572 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3573 return NULL;
3574
3575 return &pdomain->domain;
3576 }
3577 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3578
3579 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3580 {
3581 struct iommu_dev_data *dev_data;
3582
3583 if (!amd_iommu_v2_supported())
3584 return;
3585
3586 dev_data = get_dev_data(&pdev->dev);
3587 dev_data->errata |= (1 << erratum);
3588 }
3589 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3590
3591 int amd_iommu_device_info(struct pci_dev *pdev,
3592 struct amd_iommu_device_info *info)
3593 {
3594 int max_pasids;
3595 int pos;
3596
3597 if (pdev == NULL || info == NULL)
3598 return -EINVAL;
3599
3600 if (!amd_iommu_v2_supported())
3601 return -EINVAL;
3602
3603 memset(info, 0, sizeof(*info));
3604
3605 if (!pci_ats_disabled()) {
3606 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3607 if (pos)
3608 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3609 }
3610
3611 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3612 if (pos)
3613 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3614
3615 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3616 if (pos) {
3617 int features;
3618
3619 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3620 max_pasids = min(max_pasids, (1 << 20));
3621
3622 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3623 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3624
3625 features = pci_pasid_features(pdev);
3626 if (features & PCI_PASID_CAP_EXEC)
3627 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3628 if (features & PCI_PASID_CAP_PRIV)
3629 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3630 }
3631
3632 return 0;
3633 }
3634 EXPORT_SYMBOL(amd_iommu_device_info);
3635
3636 #ifdef CONFIG_IRQ_REMAP
3637
3638 /*****************************************************************************
3639 *
3640 * Interrupt Remapping Implementation
3641 *
3642 *****************************************************************************/
3643
3644 static struct irq_chip amd_ir_chip;
3645 static DEFINE_SPINLOCK(iommu_table_lock);
3646
3647 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3648 {
3649 u64 dte;
3650
3651 dte = amd_iommu_dev_table[devid].data[2];
3652 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3653 dte |= iommu_virt_to_phys(table->table);
3654 dte |= DTE_IRQ_REMAP_INTCTL;
3655 dte |= DTE_IRQ_TABLE_LEN;
3656 dte |= DTE_IRQ_REMAP_ENABLE;
3657
3658 amd_iommu_dev_table[devid].data[2] = dte;
3659 }
3660
3661 static struct irq_remap_table *get_irq_table(u16 devid)
3662 {
3663 struct irq_remap_table *table;
3664
3665 if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3666 "%s: no iommu for devid %x\n", __func__, devid))
3667 return NULL;
3668
3669 table = irq_lookup_table[devid];
3670 if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3671 return NULL;
3672
3673 return table;
3674 }
3675
3676 static struct irq_remap_table *__alloc_irq_table(void)
3677 {
3678 struct irq_remap_table *table;
3679
3680 table = kzalloc(sizeof(*table), GFP_KERNEL);
3681 if (!table)
3682 return NULL;
3683
3684 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3685 if (!table->table) {
3686 kfree(table);
3687 return NULL;
3688 }
3689 raw_spin_lock_init(&table->lock);
3690
3691 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3692 memset(table->table, 0,
3693 MAX_IRQS_PER_TABLE * sizeof(u32));
3694 else
3695 memset(table->table, 0,
3696 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3697 return table;
3698 }
3699
3700 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3701 struct irq_remap_table *table)
3702 {
3703 irq_lookup_table[devid] = table;
3704 set_dte_irq_entry(devid, table);
3705 iommu_flush_dte(iommu, devid);
3706 }
3707
3708 static struct irq_remap_table *alloc_irq_table(u16 devid)
3709 {
3710 struct irq_remap_table *table = NULL;
3711 struct irq_remap_table *new_table = NULL;
3712 struct amd_iommu *iommu;
3713 unsigned long flags;
3714 u16 alias;
3715
3716 spin_lock_irqsave(&iommu_table_lock, flags);
3717
3718 iommu = amd_iommu_rlookup_table[devid];
3719 if (!iommu)
3720 goto out_unlock;
3721
3722 table = irq_lookup_table[devid];
3723 if (table)
3724 goto out_unlock;
3725
3726 alias = amd_iommu_alias_table[devid];
3727 table = irq_lookup_table[alias];
3728 if (table) {
3729 set_remap_table_entry(iommu, devid, table);
3730 goto out_wait;
3731 }
3732 spin_unlock_irqrestore(&iommu_table_lock, flags);
3733
3734 /* Nothing there yet, allocate new irq remapping table */
3735 new_table = __alloc_irq_table();
3736 if (!new_table)
3737 return NULL;
3738
3739 spin_lock_irqsave(&iommu_table_lock, flags);
3740
3741 table = irq_lookup_table[devid];
3742 if (table)
3743 goto out_unlock;
3744
3745 table = irq_lookup_table[alias];
3746 if (table) {
3747 set_remap_table_entry(iommu, devid, table);
3748 goto out_wait;
3749 }
3750
3751 table = new_table;
3752 new_table = NULL;
3753
3754 set_remap_table_entry(iommu, devid, table);
3755 if (devid != alias)
3756 set_remap_table_entry(iommu, alias, table);
3757
3758 out_wait:
3759 iommu_completion_wait(iommu);
3760
3761 out_unlock:
3762 spin_unlock_irqrestore(&iommu_table_lock, flags);
3763
3764 if (new_table) {
3765 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3766 kfree(new_table);
3767 }
3768 return table;
3769 }
3770
3771 static int alloc_irq_index(u16 devid, int count, bool align)
3772 {
3773 struct irq_remap_table *table;
3774 int index, c, alignment = 1;
3775 unsigned long flags;
3776 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3777
3778 if (!iommu)
3779 return -ENODEV;
3780
3781 table = alloc_irq_table(devid);
3782 if (!table)
3783 return -ENODEV;
3784
3785 if (align)
3786 alignment = roundup_pow_of_two(count);
3787
3788 raw_spin_lock_irqsave(&table->lock, flags);
3789
3790 /* Scan table for free entries */
3791 for (index = ALIGN(table->min_index, alignment), c = 0;
3792 index < MAX_IRQS_PER_TABLE;) {
3793 if (!iommu->irte_ops->is_allocated(table, index)) {
3794 c += 1;
3795 } else {
3796 c = 0;
3797 index = ALIGN(index + 1, alignment);
3798 continue;
3799 }
3800
3801 if (c == count) {
3802 for (; c != 0; --c)
3803 iommu->irte_ops->set_allocated(table, index - c + 1);
3804
3805 index -= count - 1;
3806 goto out;
3807 }
3808
3809 index++;
3810 }
3811
3812 index = -ENOSPC;
3813
3814 out:
3815 raw_spin_unlock_irqrestore(&table->lock, flags);
3816
3817 return index;
3818 }
3819
3820 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3821 struct amd_ir_data *data)
3822 {
3823 struct irq_remap_table *table;
3824 struct amd_iommu *iommu;
3825 unsigned long flags;
3826 struct irte_ga *entry;
3827
3828 iommu = amd_iommu_rlookup_table[devid];
3829 if (iommu == NULL)
3830 return -EINVAL;
3831
3832 table = get_irq_table(devid);
3833 if (!table)
3834 return -ENOMEM;
3835
3836 raw_spin_lock_irqsave(&table->lock, flags);
3837
3838 entry = (struct irte_ga *)table->table;
3839 entry = &entry[index];
3840 entry->lo.fields_remap.valid = 0;
3841 entry->hi.val = irte->hi.val;
3842 entry->lo.val = irte->lo.val;
3843 entry->lo.fields_remap.valid = 1;
3844 if (data)
3845 data->ref = entry;
3846
3847 raw_spin_unlock_irqrestore(&table->lock, flags);
3848
3849 iommu_flush_irt(iommu, devid);
3850 iommu_completion_wait(iommu);
3851
3852 return 0;
3853 }
3854
3855 static int modify_irte(u16 devid, int index, union irte *irte)
3856 {
3857 struct irq_remap_table *table;
3858 struct amd_iommu *iommu;
3859 unsigned long flags;
3860
3861 iommu = amd_iommu_rlookup_table[devid];
3862 if (iommu == NULL)
3863 return -EINVAL;
3864
3865 table = get_irq_table(devid);
3866 if (!table)
3867 return -ENOMEM;
3868
3869 raw_spin_lock_irqsave(&table->lock, flags);
3870 table->table[index] = irte->val;
3871 raw_spin_unlock_irqrestore(&table->lock, flags);
3872
3873 iommu_flush_irt(iommu, devid);
3874 iommu_completion_wait(iommu);
3875
3876 return 0;
3877 }
3878
3879 static void free_irte(u16 devid, int index)
3880 {
3881 struct irq_remap_table *table;
3882 struct amd_iommu *iommu;
3883 unsigned long flags;
3884
3885 iommu = amd_iommu_rlookup_table[devid];
3886 if (iommu == NULL)
3887 return;
3888
3889 table = get_irq_table(devid);
3890 if (!table)
3891 return;
3892
3893 raw_spin_lock_irqsave(&table->lock, flags);
3894 iommu->irte_ops->clear_allocated(table, index);
3895 raw_spin_unlock_irqrestore(&table->lock, flags);
3896
3897 iommu_flush_irt(iommu, devid);
3898 iommu_completion_wait(iommu);
3899 }
3900
3901 static void irte_prepare(void *entry,
3902 u32 delivery_mode, u32 dest_mode,
3903 u8 vector, u32 dest_apicid, int devid)
3904 {
3905 union irte *irte = (union irte *) entry;
3906
3907 irte->val = 0;
3908 irte->fields.vector = vector;
3909 irte->fields.int_type = delivery_mode;
3910 irte->fields.destination = dest_apicid;
3911 irte->fields.dm = dest_mode;
3912 irte->fields.valid = 1;
3913 }
3914
3915 static void irte_ga_prepare(void *entry,
3916 u32 delivery_mode, u32 dest_mode,
3917 u8 vector, u32 dest_apicid, int devid)
3918 {
3919 struct irte_ga *irte = (struct irte_ga *) entry;
3920
3921 irte->lo.val = 0;
3922 irte->hi.val = 0;
3923 irte->lo.fields_remap.int_type = delivery_mode;
3924 irte->lo.fields_remap.dm = dest_mode;
3925 irte->hi.fields.vector = vector;
3926 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3927 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3928 irte->lo.fields_remap.valid = 1;
3929 }
3930
3931 static void irte_activate(void *entry, u16 devid, u16 index)
3932 {
3933 union irte *irte = (union irte *) entry;
3934
3935 irte->fields.valid = 1;
3936 modify_irte(devid, index, irte);
3937 }
3938
3939 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3940 {
3941 struct irte_ga *irte = (struct irte_ga *) entry;
3942
3943 irte->lo.fields_remap.valid = 1;
3944 modify_irte_ga(devid, index, irte, NULL);
3945 }
3946
3947 static void irte_deactivate(void *entry, u16 devid, u16 index)
3948 {
3949 union irte *irte = (union irte *) entry;
3950
3951 irte->fields.valid = 0;
3952 modify_irte(devid, index, irte);
3953 }
3954
3955 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3956 {
3957 struct irte_ga *irte = (struct irte_ga *) entry;
3958
3959 irte->lo.fields_remap.valid = 0;
3960 modify_irte_ga(devid, index, irte, NULL);
3961 }
3962
3963 static void irte_set_affinity(void *entry, u16 devid, u16 index,
3964 u8 vector, u32 dest_apicid)
3965 {
3966 union irte *irte = (union irte *) entry;
3967
3968 irte->fields.vector = vector;
3969 irte->fields.destination = dest_apicid;
3970 modify_irte(devid, index, irte);
3971 }
3972
3973 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3974 u8 vector, u32 dest_apicid)
3975 {
3976 struct irte_ga *irte = (struct irte_ga *) entry;
3977
3978 if (!irte->lo.fields_remap.guest_mode) {
3979 irte->hi.fields.vector = vector;
3980 irte->lo.fields_remap.destination =
3981 APICID_TO_IRTE_DEST_LO(dest_apicid);
3982 irte->hi.fields.destination =
3983 APICID_TO_IRTE_DEST_HI(dest_apicid);
3984 modify_irte_ga(devid, index, irte, NULL);
3985 }
3986 }
3987
3988 #define IRTE_ALLOCATED (~1U)
3989 static void irte_set_allocated(struct irq_remap_table *table, int index)
3990 {
3991 table->table[index] = IRTE_ALLOCATED;
3992 }
3993
3994 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3995 {
3996 struct irte_ga *ptr = (struct irte_ga *)table->table;
3997 struct irte_ga *irte = &ptr[index];
3998
3999 memset(&irte->lo.val, 0, sizeof(u64));
4000 memset(&irte->hi.val, 0, sizeof(u64));
4001 irte->hi.fields.vector = 0xff;
4002 }
4003
4004 static bool irte_is_allocated(struct irq_remap_table *table, int index)
4005 {
4006 union irte *ptr = (union irte *)table->table;
4007 union irte *irte = &ptr[index];
4008
4009 return irte->val != 0;
4010 }
4011
4012 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
4013 {
4014 struct irte_ga *ptr = (struct irte_ga *)table->table;
4015 struct irte_ga *irte = &ptr[index];
4016
4017 return irte->hi.fields.vector != 0;
4018 }
4019
4020 static void irte_clear_allocated(struct irq_remap_table *table, int index)
4021 {
4022 table->table[index] = 0;
4023 }
4024
4025 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
4026 {
4027 struct irte_ga *ptr = (struct irte_ga *)table->table;
4028 struct irte_ga *irte = &ptr[index];
4029
4030 memset(&irte->lo.val, 0, sizeof(u64));
4031 memset(&irte->hi.val, 0, sizeof(u64));
4032 }
4033
4034 static int get_devid(struct irq_alloc_info *info)
4035 {
4036 int devid = -1;
4037
4038 switch (info->type) {
4039 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4040 devid = get_ioapic_devid(info->ioapic_id);
4041 break;
4042 case X86_IRQ_ALLOC_TYPE_HPET:
4043 devid = get_hpet_devid(info->hpet_id);
4044 break;
4045 case X86_IRQ_ALLOC_TYPE_MSI:
4046 case X86_IRQ_ALLOC_TYPE_MSIX:
4047 devid = get_device_id(&info->msi_dev->dev);
4048 break;
4049 default:
4050 BUG_ON(1);
4051 break;
4052 }
4053
4054 return devid;
4055 }
4056
4057 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4058 {
4059 struct amd_iommu *iommu;
4060 int devid;
4061
4062 if (!info)
4063 return NULL;
4064
4065 devid = get_devid(info);
4066 if (devid >= 0) {
4067 iommu = amd_iommu_rlookup_table[devid];
4068 if (iommu)
4069 return iommu->ir_domain;
4070 }
4071
4072 return NULL;
4073 }
4074
4075 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4076 {
4077 struct amd_iommu *iommu;
4078 int devid;
4079
4080 if (!info)
4081 return NULL;
4082
4083 switch (info->type) {
4084 case X86_IRQ_ALLOC_TYPE_MSI:
4085 case X86_IRQ_ALLOC_TYPE_MSIX:
4086 devid = get_device_id(&info->msi_dev->dev);
4087 if (devid < 0)
4088 return NULL;
4089
4090 iommu = amd_iommu_rlookup_table[devid];
4091 if (iommu)
4092 return iommu->msi_domain;
4093 break;
4094 default:
4095 break;
4096 }
4097
4098 return NULL;
4099 }
4100
4101 struct irq_remap_ops amd_iommu_irq_ops = {
4102 .prepare = amd_iommu_prepare,
4103 .enable = amd_iommu_enable,
4104 .disable = amd_iommu_disable,
4105 .reenable = amd_iommu_reenable,
4106 .enable_faulting = amd_iommu_enable_faulting,
4107 .get_ir_irq_domain = get_ir_irq_domain,
4108 .get_irq_domain = get_irq_domain,
4109 };
4110
4111 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4112 struct irq_cfg *irq_cfg,
4113 struct irq_alloc_info *info,
4114 int devid, int index, int sub_handle)
4115 {
4116 struct irq_2_irte *irte_info = &data->irq_2_irte;
4117 struct msi_msg *msg = &data->msi_entry;
4118 struct IO_APIC_route_entry *entry;
4119 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4120
4121 if (!iommu)
4122 return;
4123
4124 data->irq_2_irte.devid = devid;
4125 data->irq_2_irte.index = index + sub_handle;
4126 iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4127 apic->irq_dest_mode, irq_cfg->vector,
4128 irq_cfg->dest_apicid, devid);
4129
4130 switch (info->type) {
4131 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4132 /* Setup IOAPIC entry */
4133 entry = info->ioapic_entry;
4134 info->ioapic_entry = NULL;
4135 memset(entry, 0, sizeof(*entry));
4136 entry->vector = index;
4137 entry->mask = 0;
4138 entry->trigger = info->ioapic_trigger;
4139 entry->polarity = info->ioapic_polarity;
4140 /* Mask level triggered irqs. */
4141 if (info->ioapic_trigger)
4142 entry->mask = 1;
4143 break;
4144
4145 case X86_IRQ_ALLOC_TYPE_HPET:
4146 case X86_IRQ_ALLOC_TYPE_MSI:
4147 case X86_IRQ_ALLOC_TYPE_MSIX:
4148 msg->address_hi = MSI_ADDR_BASE_HI;
4149 msg->address_lo = MSI_ADDR_BASE_LO;
4150 msg->data = irte_info->index;
4151 break;
4152
4153 default:
4154 BUG_ON(1);
4155 break;
4156 }
4157 }
4158
4159 struct amd_irte_ops irte_32_ops = {
4160 .prepare = irte_prepare,
4161 .activate = irte_activate,
4162 .deactivate = irte_deactivate,
4163 .set_affinity = irte_set_affinity,
4164 .set_allocated = irte_set_allocated,
4165 .is_allocated = irte_is_allocated,
4166 .clear_allocated = irte_clear_allocated,
4167 };
4168
4169 struct amd_irte_ops irte_128_ops = {
4170 .prepare = irte_ga_prepare,
4171 .activate = irte_ga_activate,
4172 .deactivate = irte_ga_deactivate,
4173 .set_affinity = irte_ga_set_affinity,
4174 .set_allocated = irte_ga_set_allocated,
4175 .is_allocated = irte_ga_is_allocated,
4176 .clear_allocated = irte_ga_clear_allocated,
4177 };
4178
4179 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4180 unsigned int nr_irqs, void *arg)
4181 {
4182 struct irq_alloc_info *info = arg;
4183 struct irq_data *irq_data;
4184 struct amd_ir_data *data = NULL;
4185 struct irq_cfg *cfg;
4186 int i, ret, devid;
4187 int index;
4188
4189 if (!info)
4190 return -EINVAL;
4191 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4192 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4193 return -EINVAL;
4194
4195 /*
4196 * With IRQ remapping enabled, don't need contiguous CPU vectors
4197 * to support multiple MSI interrupts.
4198 */
4199 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4200 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4201
4202 devid = get_devid(info);
4203 if (devid < 0)
4204 return -EINVAL;
4205
4206 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4207 if (ret < 0)
4208 return ret;
4209
4210 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4211 struct irq_remap_table *table;
4212 struct amd_iommu *iommu;
4213
4214 table = alloc_irq_table(devid);
4215 if (table) {
4216 if (!table->min_index) {
4217 /*
4218 * Keep the first 32 indexes free for IOAPIC
4219 * interrupts.
4220 */
4221 table->min_index = 32;
4222 iommu = amd_iommu_rlookup_table[devid];
4223 for (i = 0; i < 32; ++i)
4224 iommu->irte_ops->set_allocated(table, i);
4225 }
4226 WARN_ON(table->min_index != 32);
4227 index = info->ioapic_pin;
4228 } else {
4229 index = -ENOMEM;
4230 }
4231 } else {
4232 bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4233
4234 index = alloc_irq_index(devid, nr_irqs, align);
4235 }
4236 if (index < 0) {
4237 pr_warn("Failed to allocate IRTE\n");
4238 ret = index;
4239 goto out_free_parent;
4240 }
4241
4242 for (i = 0; i < nr_irqs; i++) {
4243 irq_data = irq_domain_get_irq_data(domain, virq + i);
4244 cfg = irqd_cfg(irq_data);
4245 if (!irq_data || !cfg) {
4246 ret = -EINVAL;
4247 goto out_free_data;
4248 }
4249
4250 ret = -ENOMEM;
4251 data = kzalloc(sizeof(*data), GFP_KERNEL);
4252 if (!data)
4253 goto out_free_data;
4254
4255 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4256 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4257 else
4258 data->entry = kzalloc(sizeof(struct irte_ga),
4259 GFP_KERNEL);
4260 if (!data->entry) {
4261 kfree(data);
4262 goto out_free_data;
4263 }
4264
4265 irq_data->hwirq = (devid << 16) + i;
4266 irq_data->chip_data = data;
4267 irq_data->chip = &amd_ir_chip;
4268 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4269 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4270 }
4271
4272 return 0;
4273
4274 out_free_data:
4275 for (i--; i >= 0; i--) {
4276 irq_data = irq_domain_get_irq_data(domain, virq + i);
4277 if (irq_data)
4278 kfree(irq_data->chip_data);
4279 }
4280 for (i = 0; i < nr_irqs; i++)
4281 free_irte(devid, index + i);
4282 out_free_parent:
4283 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4284 return ret;
4285 }
4286
4287 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4288 unsigned int nr_irqs)
4289 {
4290 struct irq_2_irte *irte_info;
4291 struct irq_data *irq_data;
4292 struct amd_ir_data *data;
4293 int i;
4294
4295 for (i = 0; i < nr_irqs; i++) {
4296 irq_data = irq_domain_get_irq_data(domain, virq + i);
4297 if (irq_data && irq_data->chip_data) {
4298 data = irq_data->chip_data;
4299 irte_info = &data->irq_2_irte;
4300 free_irte(irte_info->devid, irte_info->index);
4301 kfree(data->entry);
4302 kfree(data);
4303 }
4304 }
4305 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4306 }
4307
4308 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4309 struct amd_ir_data *ir_data,
4310 struct irq_2_irte *irte_info,
4311 struct irq_cfg *cfg);
4312
4313 static int irq_remapping_activate(struct irq_domain *domain,
4314 struct irq_data *irq_data, bool reserve)
4315 {
4316 struct amd_ir_data *data = irq_data->chip_data;
4317 struct irq_2_irte *irte_info = &data->irq_2_irte;
4318 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4319 struct irq_cfg *cfg = irqd_cfg(irq_data);
4320
4321 if (!iommu)
4322 return 0;
4323
4324 iommu->irte_ops->activate(data->entry, irte_info->devid,
4325 irte_info->index);
4326 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4327 return 0;
4328 }
4329
4330 static void irq_remapping_deactivate(struct irq_domain *domain,
4331 struct irq_data *irq_data)
4332 {
4333 struct amd_ir_data *data = irq_data->chip_data;
4334 struct irq_2_irte *irte_info = &data->irq_2_irte;
4335 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4336
4337 if (iommu)
4338 iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4339 irte_info->index);
4340 }
4341
4342 static const struct irq_domain_ops amd_ir_domain_ops = {
4343 .alloc = irq_remapping_alloc,
4344 .free = irq_remapping_free,
4345 .activate = irq_remapping_activate,
4346 .deactivate = irq_remapping_deactivate,
4347 };
4348
4349 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4350 {
4351 struct amd_iommu *iommu;
4352 struct amd_iommu_pi_data *pi_data = vcpu_info;
4353 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4354 struct amd_ir_data *ir_data = data->chip_data;
4355 struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
4356 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4357 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4358
4359 /* Note:
4360 * This device has never been set up for guest mode.
4361 * we should not modify the IRTE
4362 */
4363 if (!dev_data || !dev_data->use_vapic)
4364 return 0;
4365
4366 pi_data->ir_data = ir_data;
4367
4368 /* Note:
4369 * SVM tries to set up for VAPIC mode, but we are in
4370 * legacy mode. So, we force legacy mode instead.
4371 */
4372 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4373 pr_debug("%s: Fall back to using intr legacy remap\n",
4374 __func__);
4375 pi_data->is_guest_mode = false;
4376 }
4377
4378 iommu = amd_iommu_rlookup_table[irte_info->devid];
4379 if (iommu == NULL)
4380 return -EINVAL;
4381
4382 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4383 if (pi_data->is_guest_mode) {
4384 /* Setting */
4385 irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
4386 irte->hi.fields.vector = vcpu_pi_info->vector;
4387 irte->lo.fields_vapic.ga_log_intr = 1;
4388 irte->lo.fields_vapic.guest_mode = 1;
4389 irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
4390
4391 ir_data->cached_ga_tag = pi_data->ga_tag;
4392 } else {
4393 /* Un-Setting */
4394 struct irq_cfg *cfg = irqd_cfg(data);
4395
4396 irte->hi.val = 0;
4397 irte->lo.val = 0;
4398 irte->hi.fields.vector = cfg->vector;
4399 irte->lo.fields_remap.guest_mode = 0;
4400 irte->lo.fields_remap.destination =
4401 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
4402 irte->hi.fields.destination =
4403 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4404 irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
4405 irte->lo.fields_remap.dm = apic->irq_dest_mode;
4406
4407 /*
4408 * This communicates the ga_tag back to the caller
4409 * so that it can do all the necessary clean up.
4410 */
4411 ir_data->cached_ga_tag = 0;
4412 }
4413
4414 return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
4415 }
4416
4417
4418 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4419 struct amd_ir_data *ir_data,
4420 struct irq_2_irte *irte_info,
4421 struct irq_cfg *cfg)
4422 {
4423
4424 /*
4425 * Atomically updates the IRTE with the new destination, vector
4426 * and flushes the interrupt entry cache.
4427 */
4428 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4429 irte_info->index, cfg->vector,
4430 cfg->dest_apicid);
4431 }
4432
4433 static int amd_ir_set_affinity(struct irq_data *data,
4434 const struct cpumask *mask, bool force)
4435 {
4436 struct amd_ir_data *ir_data = data->chip_data;
4437 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4438 struct irq_cfg *cfg = irqd_cfg(data);
4439 struct irq_data *parent = data->parent_data;
4440 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4441 int ret;
4442
4443 if (!iommu)
4444 return -ENODEV;
4445
4446 ret = parent->chip->irq_set_affinity(parent, mask, force);
4447 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4448 return ret;
4449
4450 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4451 /*
4452 * After this point, all the interrupts will start arriving
4453 * at the new destination. So, time to cleanup the previous
4454 * vector allocation.
4455 */
4456 send_cleanup_vector(cfg);
4457
4458 return IRQ_SET_MASK_OK_DONE;
4459 }
4460
4461 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4462 {
4463 struct amd_ir_data *ir_data = irq_data->chip_data;
4464
4465 *msg = ir_data->msi_entry;
4466 }
4467
4468 static struct irq_chip amd_ir_chip = {
4469 .name = "AMD-IR",
4470 .irq_ack = apic_ack_irq,
4471 .irq_set_affinity = amd_ir_set_affinity,
4472 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4473 .irq_compose_msi_msg = ir_compose_msi_msg,
4474 };
4475
4476 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4477 {
4478 struct fwnode_handle *fn;
4479
4480 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4481 if (!fn)
4482 return -ENOMEM;
4483 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4484 irq_domain_free_fwnode(fn);
4485 if (!iommu->ir_domain)
4486 return -ENOMEM;
4487
4488 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4489 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4490 "AMD-IR-MSI",
4491 iommu->index);
4492 return 0;
4493 }
4494
4495 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4496 {
4497 unsigned long flags;
4498 struct amd_iommu *iommu;
4499 struct irq_remap_table *table;
4500 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4501 int devid = ir_data->irq_2_irte.devid;
4502 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4503 struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4504
4505 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4506 !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4507 return 0;
4508
4509 iommu = amd_iommu_rlookup_table[devid];
4510 if (!iommu)
4511 return -ENODEV;
4512
4513 table = get_irq_table(devid);
4514 if (!table)
4515 return -ENODEV;
4516
4517 raw_spin_lock_irqsave(&table->lock, flags);
4518
4519 if (ref->lo.fields_vapic.guest_mode) {
4520 if (cpu >= 0) {
4521 ref->lo.fields_vapic.destination =
4522 APICID_TO_IRTE_DEST_LO(cpu);
4523 ref->hi.fields.destination =
4524 APICID_TO_IRTE_DEST_HI(cpu);
4525 }
4526 ref->lo.fields_vapic.is_run = is_run;
4527 barrier();
4528 }
4529
4530 raw_spin_unlock_irqrestore(&table->lock, flags);
4531
4532 iommu_flush_irt(iommu, devid);
4533 iommu_completion_wait(iommu);
4534 return 0;
4535 }
4536 EXPORT_SYMBOL(amd_iommu_update_ga);
4537 #endif