]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/iommu/amd_iommu.c
Merge tag 'apparmor-pr-2019-02-01' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / drivers / iommu / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #define pr_fmt(fmt) "AMD-Vi: " fmt
21
22 #include <linux/ratelimit.h>
23 #include <linux/pci.h>
24 #include <linux/acpi.h>
25 #include <linux/amba/bus.h>
26 #include <linux/platform_device.h>
27 #include <linux/pci-ats.h>
28 #include <linux/bitmap.h>
29 #include <linux/slab.h>
30 #include <linux/debugfs.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/dma-direct.h>
34 #include <linux/iommu-helper.h>
35 #include <linux/iommu.h>
36 #include <linux/delay.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/notifier.h>
39 #include <linux/export.h>
40 #include <linux/irq.h>
41 #include <linux/msi.h>
42 #include <linux/dma-contiguous.h>
43 #include <linux/irqdomain.h>
44 #include <linux/percpu.h>
45 #include <linux/iova.h>
46 #include <asm/irq_remapping.h>
47 #include <asm/io_apic.h>
48 #include <asm/apic.h>
49 #include <asm/hw_irq.h>
50 #include <asm/msidef.h>
51 #include <asm/proto.h>
52 #include <asm/iommu.h>
53 #include <asm/gart.h>
54 #include <asm/dma.h>
55
56 #include "amd_iommu_proto.h"
57 #include "amd_iommu_types.h"
58 #include "irq_remapping.h"
59
60 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
61
62 #define LOOP_TIMEOUT 100000
63
64 /* IO virtual address start page frame number */
65 #define IOVA_START_PFN (1)
66 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
67
68 /* Reserved IOVA ranges */
69 #define MSI_RANGE_START (0xfee00000)
70 #define MSI_RANGE_END (0xfeefffff)
71 #define HT_RANGE_START (0xfd00000000ULL)
72 #define HT_RANGE_END (0xffffffffffULL)
73
74 /*
75 * This bitmap is used to advertise the page sizes our hardware support
76 * to the IOMMU core, which will then use this information to split
77 * physically contiguous memory regions it is mapping into page sizes
78 * that we support.
79 *
80 * 512GB Pages are not supported due to a hardware bug
81 */
82 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
83
84 static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
85 static DEFINE_SPINLOCK(pd_bitmap_lock);
86
87 /* List of all available dev_data structures */
88 static LLIST_HEAD(dev_data_list);
89
90 LIST_HEAD(ioapic_map);
91 LIST_HEAD(hpet_map);
92 LIST_HEAD(acpihid_map);
93
94 /*
95 * Domain for untranslated devices - only allocated
96 * if iommu=pt passed on kernel cmd line.
97 */
98 const struct iommu_ops amd_iommu_ops;
99
100 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101 int amd_iommu_max_glx_val = -1;
102
103 static const struct dma_map_ops amd_iommu_dma_ops;
104
105 /*
106 * general struct to manage commands send to an IOMMU
107 */
108 struct iommu_cmd {
109 u32 data[4];
110 };
111
112 struct kmem_cache *amd_iommu_irq_cache;
113
114 static void update_domain(struct protection_domain *domain);
115 static int protection_domain_init(struct protection_domain *domain);
116 static void detach_device(struct device *dev);
117 static void iova_domain_flush_tlb(struct iova_domain *iovad);
118
119 /*
120 * Data container for a dma_ops specific protection domain
121 */
122 struct dma_ops_domain {
123 /* generic protection domain information */
124 struct protection_domain domain;
125
126 /* IOVA RB-Tree */
127 struct iova_domain iovad;
128 };
129
130 static struct iova_domain reserved_iova_ranges;
131 static struct lock_class_key reserved_rbtree_key;
132
133 /****************************************************************************
134 *
135 * Helper functions
136 *
137 ****************************************************************************/
138
139 static inline int match_hid_uid(struct device *dev,
140 struct acpihid_map_entry *entry)
141 {
142 const char *hid, *uid;
143
144 hid = acpi_device_hid(ACPI_COMPANION(dev));
145 uid = acpi_device_uid(ACPI_COMPANION(dev));
146
147 if (!hid || !(*hid))
148 return -ENODEV;
149
150 if (!uid || !(*uid))
151 return strcmp(hid, entry->hid);
152
153 if (!(*entry->uid))
154 return strcmp(hid, entry->hid);
155
156 return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
157 }
158
159 static inline u16 get_pci_device_id(struct device *dev)
160 {
161 struct pci_dev *pdev = to_pci_dev(dev);
162
163 return PCI_DEVID(pdev->bus->number, pdev->devfn);
164 }
165
166 static inline int get_acpihid_device_id(struct device *dev,
167 struct acpihid_map_entry **entry)
168 {
169 struct acpihid_map_entry *p;
170
171 list_for_each_entry(p, &acpihid_map, list) {
172 if (!match_hid_uid(dev, p)) {
173 if (entry)
174 *entry = p;
175 return p->devid;
176 }
177 }
178 return -EINVAL;
179 }
180
181 static inline int get_device_id(struct device *dev)
182 {
183 int devid;
184
185 if (dev_is_pci(dev))
186 devid = get_pci_device_id(dev);
187 else
188 devid = get_acpihid_device_id(dev, NULL);
189
190 return devid;
191 }
192
193 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
194 {
195 return container_of(dom, struct protection_domain, domain);
196 }
197
198 static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
199 {
200 BUG_ON(domain->flags != PD_DMA_OPS_MASK);
201 return container_of(domain, struct dma_ops_domain, domain);
202 }
203
204 static struct iommu_dev_data *alloc_dev_data(u16 devid)
205 {
206 struct iommu_dev_data *dev_data;
207
208 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
209 if (!dev_data)
210 return NULL;
211
212 dev_data->devid = devid;
213 ratelimit_default_init(&dev_data->rs);
214
215 llist_add(&dev_data->dev_data_list, &dev_data_list);
216 return dev_data;
217 }
218
219 static struct iommu_dev_data *search_dev_data(u16 devid)
220 {
221 struct iommu_dev_data *dev_data;
222 struct llist_node *node;
223
224 if (llist_empty(&dev_data_list))
225 return NULL;
226
227 node = dev_data_list.first;
228 llist_for_each_entry(dev_data, node, dev_data_list) {
229 if (dev_data->devid == devid)
230 return dev_data;
231 }
232
233 return NULL;
234 }
235
236 static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
237 {
238 *(u16 *)data = alias;
239 return 0;
240 }
241
242 static u16 get_alias(struct device *dev)
243 {
244 struct pci_dev *pdev = to_pci_dev(dev);
245 u16 devid, ivrs_alias, pci_alias;
246
247 /* The callers make sure that get_device_id() does not fail here */
248 devid = get_device_id(dev);
249
250 /* For ACPI HID devices, we simply return the devid as such */
251 if (!dev_is_pci(dev))
252 return devid;
253
254 ivrs_alias = amd_iommu_alias_table[devid];
255
256 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
257
258 if (ivrs_alias == pci_alias)
259 return ivrs_alias;
260
261 /*
262 * DMA alias showdown
263 *
264 * The IVRS is fairly reliable in telling us about aliases, but it
265 * can't know about every screwy device. If we don't have an IVRS
266 * reported alias, use the PCI reported alias. In that case we may
267 * still need to initialize the rlookup and dev_table entries if the
268 * alias is to a non-existent device.
269 */
270 if (ivrs_alias == devid) {
271 if (!amd_iommu_rlookup_table[pci_alias]) {
272 amd_iommu_rlookup_table[pci_alias] =
273 amd_iommu_rlookup_table[devid];
274 memcpy(amd_iommu_dev_table[pci_alias].data,
275 amd_iommu_dev_table[devid].data,
276 sizeof(amd_iommu_dev_table[pci_alias].data));
277 }
278
279 return pci_alias;
280 }
281
282 pr_info("Using IVRS reported alias %02x:%02x.%d "
283 "for device %s[%04x:%04x], kernel reported alias "
284 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
285 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
286 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
287 PCI_FUNC(pci_alias));
288
289 /*
290 * If we don't have a PCI DMA alias and the IVRS alias is on the same
291 * bus, then the IVRS table may know about a quirk that we don't.
292 */
293 if (pci_alias == devid &&
294 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
295 pci_add_dma_alias(pdev, ivrs_alias & 0xff);
296 pr_info("Added PCI DMA alias %02x.%d for %s\n",
297 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
298 dev_name(dev));
299 }
300
301 return ivrs_alias;
302 }
303
304 static struct iommu_dev_data *find_dev_data(u16 devid)
305 {
306 struct iommu_dev_data *dev_data;
307 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
308
309 dev_data = search_dev_data(devid);
310
311 if (dev_data == NULL) {
312 dev_data = alloc_dev_data(devid);
313 if (!dev_data)
314 return NULL;
315
316 if (translation_pre_enabled(iommu))
317 dev_data->defer_attach = true;
318 }
319
320 return dev_data;
321 }
322
323 struct iommu_dev_data *get_dev_data(struct device *dev)
324 {
325 return dev->archdata.iommu;
326 }
327 EXPORT_SYMBOL(get_dev_data);
328
329 /*
330 * Find or create an IOMMU group for a acpihid device.
331 */
332 static struct iommu_group *acpihid_device_group(struct device *dev)
333 {
334 struct acpihid_map_entry *p, *entry = NULL;
335 int devid;
336
337 devid = get_acpihid_device_id(dev, &entry);
338 if (devid < 0)
339 return ERR_PTR(devid);
340
341 list_for_each_entry(p, &acpihid_map, list) {
342 if ((devid == p->devid) && p->group)
343 entry->group = p->group;
344 }
345
346 if (!entry->group)
347 entry->group = generic_device_group(dev);
348 else
349 iommu_group_ref_get(entry->group);
350
351 return entry->group;
352 }
353
354 static bool pci_iommuv2_capable(struct pci_dev *pdev)
355 {
356 static const int caps[] = {
357 PCI_EXT_CAP_ID_ATS,
358 PCI_EXT_CAP_ID_PRI,
359 PCI_EXT_CAP_ID_PASID,
360 };
361 int i, pos;
362
363 if (pci_ats_disabled())
364 return false;
365
366 for (i = 0; i < 3; ++i) {
367 pos = pci_find_ext_capability(pdev, caps[i]);
368 if (pos == 0)
369 return false;
370 }
371
372 return true;
373 }
374
375 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
376 {
377 struct iommu_dev_data *dev_data;
378
379 dev_data = get_dev_data(&pdev->dev);
380
381 return dev_data->errata & (1 << erratum) ? true : false;
382 }
383
384 /*
385 * This function checks if the driver got a valid device from the caller to
386 * avoid dereferencing invalid pointers.
387 */
388 static bool check_device(struct device *dev)
389 {
390 int devid;
391
392 if (!dev || !dev->dma_mask)
393 return false;
394
395 devid = get_device_id(dev);
396 if (devid < 0)
397 return false;
398
399 /* Out of our scope? */
400 if (devid > amd_iommu_last_bdf)
401 return false;
402
403 if (amd_iommu_rlookup_table[devid] == NULL)
404 return false;
405
406 return true;
407 }
408
409 static void init_iommu_group(struct device *dev)
410 {
411 struct iommu_group *group;
412
413 group = iommu_group_get_for_dev(dev);
414 if (IS_ERR(group))
415 return;
416
417 iommu_group_put(group);
418 }
419
420 static int iommu_init_device(struct device *dev)
421 {
422 struct iommu_dev_data *dev_data;
423 struct amd_iommu *iommu;
424 int devid;
425
426 if (dev->archdata.iommu)
427 return 0;
428
429 devid = get_device_id(dev);
430 if (devid < 0)
431 return devid;
432
433 iommu = amd_iommu_rlookup_table[devid];
434
435 dev_data = find_dev_data(devid);
436 if (!dev_data)
437 return -ENOMEM;
438
439 dev_data->alias = get_alias(dev);
440
441 /*
442 * By default we use passthrough mode for IOMMUv2 capable device.
443 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
444 * invalid address), we ignore the capability for the device so
445 * it'll be forced to go into translation mode.
446 */
447 if ((iommu_pass_through || !amd_iommu_force_isolation) &&
448 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
449 struct amd_iommu *iommu;
450
451 iommu = amd_iommu_rlookup_table[dev_data->devid];
452 dev_data->iommu_v2 = iommu->is_iommu_v2;
453 }
454
455 dev->archdata.iommu = dev_data;
456
457 iommu_device_link(&iommu->iommu, dev);
458
459 return 0;
460 }
461
462 static void iommu_ignore_device(struct device *dev)
463 {
464 u16 alias;
465 int devid;
466
467 devid = get_device_id(dev);
468 if (devid < 0)
469 return;
470
471 alias = get_alias(dev);
472
473 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
474 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
475
476 amd_iommu_rlookup_table[devid] = NULL;
477 amd_iommu_rlookup_table[alias] = NULL;
478 }
479
480 static void iommu_uninit_device(struct device *dev)
481 {
482 struct iommu_dev_data *dev_data;
483 struct amd_iommu *iommu;
484 int devid;
485
486 devid = get_device_id(dev);
487 if (devid < 0)
488 return;
489
490 iommu = amd_iommu_rlookup_table[devid];
491
492 dev_data = search_dev_data(devid);
493 if (!dev_data)
494 return;
495
496 if (dev_data->domain)
497 detach_device(dev);
498
499 iommu_device_unlink(&iommu->iommu, dev);
500
501 iommu_group_remove_device(dev);
502
503 /* Remove dma-ops */
504 dev->dma_ops = NULL;
505
506 /*
507 * We keep dev_data around for unplugged devices and reuse it when the
508 * device is re-plugged - not doing so would introduce a ton of races.
509 */
510 }
511
512 /****************************************************************************
513 *
514 * Interrupt handling functions
515 *
516 ****************************************************************************/
517
518 static void dump_dte_entry(u16 devid)
519 {
520 int i;
521
522 for (i = 0; i < 4; ++i)
523 pr_err("DTE[%d]: %016llx\n", i,
524 amd_iommu_dev_table[devid].data[i]);
525 }
526
527 static void dump_command(unsigned long phys_addr)
528 {
529 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
530 int i;
531
532 for (i = 0; i < 4; ++i)
533 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
534 }
535
536 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
537 u64 address, int flags)
538 {
539 struct iommu_dev_data *dev_data = NULL;
540 struct pci_dev *pdev;
541
542 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
543 devid & 0xff);
544 if (pdev)
545 dev_data = get_dev_data(&pdev->dev);
546
547 if (dev_data && __ratelimit(&dev_data->rs)) {
548 dev_err(&pdev->dev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
549 domain_id, address, flags);
550 } else if (printk_ratelimit()) {
551 pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
552 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
553 domain_id, address, flags);
554 }
555
556 if (pdev)
557 pci_dev_put(pdev);
558 }
559
560 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
561 {
562 struct device *dev = iommu->iommu.dev;
563 int type, devid, pasid, flags, tag;
564 volatile u32 *event = __evt;
565 int count = 0;
566 u64 address;
567
568 retry:
569 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
570 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
571 pasid = PPR_PASID(*(u64 *)&event[0]);
572 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
573 address = (u64)(((u64)event[3]) << 32) | event[2];
574
575 if (type == 0) {
576 /* Did we hit the erratum? */
577 if (++count == LOOP_TIMEOUT) {
578 pr_err("No event written to event log\n");
579 return;
580 }
581 udelay(1);
582 goto retry;
583 }
584
585 if (type == EVENT_TYPE_IO_FAULT) {
586 amd_iommu_report_page_fault(devid, pasid, address, flags);
587 return;
588 }
589
590 switch (type) {
591 case EVENT_TYPE_ILL_DEV:
592 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
593 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
594 pasid, address, flags);
595 dump_dte_entry(devid);
596 break;
597 case EVENT_TYPE_DEV_TAB_ERR:
598 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
599 "address=0x%llx flags=0x%04x]\n",
600 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
601 address, flags);
602 break;
603 case EVENT_TYPE_PAGE_TAB_ERR:
604 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
605 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
606 pasid, address, flags);
607 break;
608 case EVENT_TYPE_ILL_CMD:
609 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
610 dump_command(address);
611 break;
612 case EVENT_TYPE_CMD_HARD_ERR:
613 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
614 address, flags);
615 break;
616 case EVENT_TYPE_IOTLB_INV_TO:
617 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
618 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
619 address);
620 break;
621 case EVENT_TYPE_INV_DEV_REQ:
622 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
623 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
624 pasid, address, flags);
625 break;
626 case EVENT_TYPE_INV_PPR_REQ:
627 pasid = ((event[0] >> 16) & 0xFFFF)
628 | ((event[1] << 6) & 0xF0000);
629 tag = event[1] & 0x03FF;
630 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
631 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
632 pasid, address, flags);
633 break;
634 default:
635 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
636 event[0], event[1], event[2], event[3]);
637 }
638
639 memset(__evt, 0, 4 * sizeof(u32));
640 }
641
642 static void iommu_poll_events(struct amd_iommu *iommu)
643 {
644 u32 head, tail;
645
646 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
647 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
648
649 while (head != tail) {
650 iommu_print_event(iommu, iommu->evt_buf + head);
651 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
652 }
653
654 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
655 }
656
657 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
658 {
659 struct amd_iommu_fault fault;
660
661 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
662 pr_err_ratelimited("Unknown PPR request received\n");
663 return;
664 }
665
666 fault.address = raw[1];
667 fault.pasid = PPR_PASID(raw[0]);
668 fault.device_id = PPR_DEVID(raw[0]);
669 fault.tag = PPR_TAG(raw[0]);
670 fault.flags = PPR_FLAGS(raw[0]);
671
672 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
673 }
674
675 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
676 {
677 u32 head, tail;
678
679 if (iommu->ppr_log == NULL)
680 return;
681
682 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
683 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
684
685 while (head != tail) {
686 volatile u64 *raw;
687 u64 entry[2];
688 int i;
689
690 raw = (u64 *)(iommu->ppr_log + head);
691
692 /*
693 * Hardware bug: Interrupt may arrive before the entry is
694 * written to memory. If this happens we need to wait for the
695 * entry to arrive.
696 */
697 for (i = 0; i < LOOP_TIMEOUT; ++i) {
698 if (PPR_REQ_TYPE(raw[0]) != 0)
699 break;
700 udelay(1);
701 }
702
703 /* Avoid memcpy function-call overhead */
704 entry[0] = raw[0];
705 entry[1] = raw[1];
706
707 /*
708 * To detect the hardware bug we need to clear the entry
709 * back to zero.
710 */
711 raw[0] = raw[1] = 0UL;
712
713 /* Update head pointer of hardware ring-buffer */
714 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
715 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
716
717 /* Handle PPR entry */
718 iommu_handle_ppr_entry(iommu, entry);
719
720 /* Refresh ring-buffer information */
721 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
722 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
723 }
724 }
725
726 #ifdef CONFIG_IRQ_REMAP
727 static int (*iommu_ga_log_notifier)(u32);
728
729 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
730 {
731 iommu_ga_log_notifier = notifier;
732
733 return 0;
734 }
735 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
736
737 static void iommu_poll_ga_log(struct amd_iommu *iommu)
738 {
739 u32 head, tail, cnt = 0;
740
741 if (iommu->ga_log == NULL)
742 return;
743
744 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
745 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
746
747 while (head != tail) {
748 volatile u64 *raw;
749 u64 log_entry;
750
751 raw = (u64 *)(iommu->ga_log + head);
752 cnt++;
753
754 /* Avoid memcpy function-call overhead */
755 log_entry = *raw;
756
757 /* Update head pointer of hardware ring-buffer */
758 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
759 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
760
761 /* Handle GA entry */
762 switch (GA_REQ_TYPE(log_entry)) {
763 case GA_GUEST_NR:
764 if (!iommu_ga_log_notifier)
765 break;
766
767 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
768 __func__, GA_DEVID(log_entry),
769 GA_TAG(log_entry));
770
771 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
772 pr_err("GA log notifier failed.\n");
773 break;
774 default:
775 break;
776 }
777 }
778 }
779 #endif /* CONFIG_IRQ_REMAP */
780
781 #define AMD_IOMMU_INT_MASK \
782 (MMIO_STATUS_EVT_INT_MASK | \
783 MMIO_STATUS_PPR_INT_MASK | \
784 MMIO_STATUS_GALOG_INT_MASK)
785
786 irqreturn_t amd_iommu_int_thread(int irq, void *data)
787 {
788 struct amd_iommu *iommu = (struct amd_iommu *) data;
789 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
790
791 while (status & AMD_IOMMU_INT_MASK) {
792 /* Enable EVT and PPR and GA interrupts again */
793 writel(AMD_IOMMU_INT_MASK,
794 iommu->mmio_base + MMIO_STATUS_OFFSET);
795
796 if (status & MMIO_STATUS_EVT_INT_MASK) {
797 pr_devel("Processing IOMMU Event Log\n");
798 iommu_poll_events(iommu);
799 }
800
801 if (status & MMIO_STATUS_PPR_INT_MASK) {
802 pr_devel("Processing IOMMU PPR Log\n");
803 iommu_poll_ppr_log(iommu);
804 }
805
806 #ifdef CONFIG_IRQ_REMAP
807 if (status & MMIO_STATUS_GALOG_INT_MASK) {
808 pr_devel("Processing IOMMU GA Log\n");
809 iommu_poll_ga_log(iommu);
810 }
811 #endif
812
813 /*
814 * Hardware bug: ERBT1312
815 * When re-enabling interrupt (by writing 1
816 * to clear the bit), the hardware might also try to set
817 * the interrupt bit in the event status register.
818 * In this scenario, the bit will be set, and disable
819 * subsequent interrupts.
820 *
821 * Workaround: The IOMMU driver should read back the
822 * status register and check if the interrupt bits are cleared.
823 * If not, driver will need to go through the interrupt handler
824 * again and re-clear the bits
825 */
826 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
827 }
828 return IRQ_HANDLED;
829 }
830
831 irqreturn_t amd_iommu_int_handler(int irq, void *data)
832 {
833 return IRQ_WAKE_THREAD;
834 }
835
836 /****************************************************************************
837 *
838 * IOMMU command queuing functions
839 *
840 ****************************************************************************/
841
842 static int wait_on_sem(volatile u64 *sem)
843 {
844 int i = 0;
845
846 while (*sem == 0 && i < LOOP_TIMEOUT) {
847 udelay(1);
848 i += 1;
849 }
850
851 if (i == LOOP_TIMEOUT) {
852 pr_alert("Completion-Wait loop timed out\n");
853 return -EIO;
854 }
855
856 return 0;
857 }
858
859 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
860 struct iommu_cmd *cmd)
861 {
862 u8 *target;
863
864 target = iommu->cmd_buf + iommu->cmd_buf_tail;
865
866 iommu->cmd_buf_tail += sizeof(*cmd);
867 iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
868
869 /* Copy command to buffer */
870 memcpy(target, cmd, sizeof(*cmd));
871
872 /* Tell the IOMMU about it */
873 writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
874 }
875
876 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
877 {
878 u64 paddr = iommu_virt_to_phys((void *)address);
879
880 WARN_ON(address & 0x7ULL);
881
882 memset(cmd, 0, sizeof(*cmd));
883 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
884 cmd->data[1] = upper_32_bits(paddr);
885 cmd->data[2] = 1;
886 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
887 }
888
889 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
890 {
891 memset(cmd, 0, sizeof(*cmd));
892 cmd->data[0] = devid;
893 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
894 }
895
896 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
897 size_t size, u16 domid, int pde)
898 {
899 u64 pages;
900 bool s;
901
902 pages = iommu_num_pages(address, size, PAGE_SIZE);
903 s = false;
904
905 if (pages > 1) {
906 /*
907 * If we have to flush more than one page, flush all
908 * TLB entries for this domain
909 */
910 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
911 s = true;
912 }
913
914 address &= PAGE_MASK;
915
916 memset(cmd, 0, sizeof(*cmd));
917 cmd->data[1] |= domid;
918 cmd->data[2] = lower_32_bits(address);
919 cmd->data[3] = upper_32_bits(address);
920 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
921 if (s) /* size bit - we flush more than one 4kb page */
922 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
923 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
924 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
925 }
926
927 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
928 u64 address, size_t size)
929 {
930 u64 pages;
931 bool s;
932
933 pages = iommu_num_pages(address, size, PAGE_SIZE);
934 s = false;
935
936 if (pages > 1) {
937 /*
938 * If we have to flush more than one page, flush all
939 * TLB entries for this domain
940 */
941 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
942 s = true;
943 }
944
945 address &= PAGE_MASK;
946
947 memset(cmd, 0, sizeof(*cmd));
948 cmd->data[0] = devid;
949 cmd->data[0] |= (qdep & 0xff) << 24;
950 cmd->data[1] = devid;
951 cmd->data[2] = lower_32_bits(address);
952 cmd->data[3] = upper_32_bits(address);
953 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
954 if (s)
955 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
956 }
957
958 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
959 u64 address, bool size)
960 {
961 memset(cmd, 0, sizeof(*cmd));
962
963 address &= ~(0xfffULL);
964
965 cmd->data[0] = pasid;
966 cmd->data[1] = domid;
967 cmd->data[2] = lower_32_bits(address);
968 cmd->data[3] = upper_32_bits(address);
969 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
970 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
971 if (size)
972 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
973 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
974 }
975
976 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
977 int qdep, u64 address, bool size)
978 {
979 memset(cmd, 0, sizeof(*cmd));
980
981 address &= ~(0xfffULL);
982
983 cmd->data[0] = devid;
984 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
985 cmd->data[0] |= (qdep & 0xff) << 24;
986 cmd->data[1] = devid;
987 cmd->data[1] |= (pasid & 0xff) << 16;
988 cmd->data[2] = lower_32_bits(address);
989 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
990 cmd->data[3] = upper_32_bits(address);
991 if (size)
992 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
993 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
994 }
995
996 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
997 int status, int tag, bool gn)
998 {
999 memset(cmd, 0, sizeof(*cmd));
1000
1001 cmd->data[0] = devid;
1002 if (gn) {
1003 cmd->data[1] = pasid;
1004 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1005 }
1006 cmd->data[3] = tag & 0x1ff;
1007 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1008
1009 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1010 }
1011
1012 static void build_inv_all(struct iommu_cmd *cmd)
1013 {
1014 memset(cmd, 0, sizeof(*cmd));
1015 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1016 }
1017
1018 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1019 {
1020 memset(cmd, 0, sizeof(*cmd));
1021 cmd->data[0] = devid;
1022 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1023 }
1024
1025 /*
1026 * Writes the command to the IOMMUs command buffer and informs the
1027 * hardware about the new command.
1028 */
1029 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1030 struct iommu_cmd *cmd,
1031 bool sync)
1032 {
1033 unsigned int count = 0;
1034 u32 left, next_tail;
1035
1036 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1037 again:
1038 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1039
1040 if (left <= 0x20) {
1041 /* Skip udelay() the first time around */
1042 if (count++) {
1043 if (count == LOOP_TIMEOUT) {
1044 pr_err("Command buffer timeout\n");
1045 return -EIO;
1046 }
1047
1048 udelay(1);
1049 }
1050
1051 /* Update head and recheck remaining space */
1052 iommu->cmd_buf_head = readl(iommu->mmio_base +
1053 MMIO_CMD_HEAD_OFFSET);
1054
1055 goto again;
1056 }
1057
1058 copy_cmd_to_buffer(iommu, cmd);
1059
1060 /* Do we need to make sure all commands are processed? */
1061 iommu->need_sync = sync;
1062
1063 return 0;
1064 }
1065
1066 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1067 struct iommu_cmd *cmd,
1068 bool sync)
1069 {
1070 unsigned long flags;
1071 int ret;
1072
1073 raw_spin_lock_irqsave(&iommu->lock, flags);
1074 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1075 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1076
1077 return ret;
1078 }
1079
1080 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1081 {
1082 return iommu_queue_command_sync(iommu, cmd, true);
1083 }
1084
1085 /*
1086 * This function queues a completion wait command into the command
1087 * buffer of an IOMMU
1088 */
1089 static int iommu_completion_wait(struct amd_iommu *iommu)
1090 {
1091 struct iommu_cmd cmd;
1092 unsigned long flags;
1093 int ret;
1094
1095 if (!iommu->need_sync)
1096 return 0;
1097
1098
1099 build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1100
1101 raw_spin_lock_irqsave(&iommu->lock, flags);
1102
1103 iommu->cmd_sem = 0;
1104
1105 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1106 if (ret)
1107 goto out_unlock;
1108
1109 ret = wait_on_sem(&iommu->cmd_sem);
1110
1111 out_unlock:
1112 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1113
1114 return ret;
1115 }
1116
1117 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1118 {
1119 struct iommu_cmd cmd;
1120
1121 build_inv_dte(&cmd, devid);
1122
1123 return iommu_queue_command(iommu, &cmd);
1124 }
1125
1126 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1127 {
1128 u32 devid;
1129
1130 for (devid = 0; devid <= 0xffff; ++devid)
1131 iommu_flush_dte(iommu, devid);
1132
1133 iommu_completion_wait(iommu);
1134 }
1135
1136 /*
1137 * This function uses heavy locking and may disable irqs for some time. But
1138 * this is no issue because it is only called during resume.
1139 */
1140 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1141 {
1142 u32 dom_id;
1143
1144 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1145 struct iommu_cmd cmd;
1146 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1147 dom_id, 1);
1148 iommu_queue_command(iommu, &cmd);
1149 }
1150
1151 iommu_completion_wait(iommu);
1152 }
1153
1154 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1155 {
1156 struct iommu_cmd cmd;
1157
1158 build_inv_all(&cmd);
1159
1160 iommu_queue_command(iommu, &cmd);
1161 iommu_completion_wait(iommu);
1162 }
1163
1164 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1165 {
1166 struct iommu_cmd cmd;
1167
1168 build_inv_irt(&cmd, devid);
1169
1170 iommu_queue_command(iommu, &cmd);
1171 }
1172
1173 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1174 {
1175 u32 devid;
1176
1177 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1178 iommu_flush_irt(iommu, devid);
1179
1180 iommu_completion_wait(iommu);
1181 }
1182
1183 void iommu_flush_all_caches(struct amd_iommu *iommu)
1184 {
1185 if (iommu_feature(iommu, FEATURE_IA)) {
1186 amd_iommu_flush_all(iommu);
1187 } else {
1188 amd_iommu_flush_dte_all(iommu);
1189 amd_iommu_flush_irt_all(iommu);
1190 amd_iommu_flush_tlb_all(iommu);
1191 }
1192 }
1193
1194 /*
1195 * Command send function for flushing on-device TLB
1196 */
1197 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1198 u64 address, size_t size)
1199 {
1200 struct amd_iommu *iommu;
1201 struct iommu_cmd cmd;
1202 int qdep;
1203
1204 qdep = dev_data->ats.qdep;
1205 iommu = amd_iommu_rlookup_table[dev_data->devid];
1206
1207 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1208
1209 return iommu_queue_command(iommu, &cmd);
1210 }
1211
1212 /*
1213 * Command send function for invalidating a device table entry
1214 */
1215 static int device_flush_dte(struct iommu_dev_data *dev_data)
1216 {
1217 struct amd_iommu *iommu;
1218 u16 alias;
1219 int ret;
1220
1221 iommu = amd_iommu_rlookup_table[dev_data->devid];
1222 alias = dev_data->alias;
1223
1224 ret = iommu_flush_dte(iommu, dev_data->devid);
1225 if (!ret && alias != dev_data->devid)
1226 ret = iommu_flush_dte(iommu, alias);
1227 if (ret)
1228 return ret;
1229
1230 if (dev_data->ats.enabled)
1231 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1232
1233 return ret;
1234 }
1235
1236 /*
1237 * TLB invalidation function which is called from the mapping functions.
1238 * It invalidates a single PTE if the range to flush is within a single
1239 * page. Otherwise it flushes the whole TLB of the IOMMU.
1240 */
1241 static void __domain_flush_pages(struct protection_domain *domain,
1242 u64 address, size_t size, int pde)
1243 {
1244 struct iommu_dev_data *dev_data;
1245 struct iommu_cmd cmd;
1246 int ret = 0, i;
1247
1248 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1249
1250 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1251 if (!domain->dev_iommu[i])
1252 continue;
1253
1254 /*
1255 * Devices of this domain are behind this IOMMU
1256 * We need a TLB flush
1257 */
1258 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1259 }
1260
1261 list_for_each_entry(dev_data, &domain->dev_list, list) {
1262
1263 if (!dev_data->ats.enabled)
1264 continue;
1265
1266 ret |= device_flush_iotlb(dev_data, address, size);
1267 }
1268
1269 WARN_ON(ret);
1270 }
1271
1272 static void domain_flush_pages(struct protection_domain *domain,
1273 u64 address, size_t size)
1274 {
1275 __domain_flush_pages(domain, address, size, 0);
1276 }
1277
1278 /* Flush the whole IO/TLB for a given protection domain */
1279 static void domain_flush_tlb(struct protection_domain *domain)
1280 {
1281 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1282 }
1283
1284 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1285 static void domain_flush_tlb_pde(struct protection_domain *domain)
1286 {
1287 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1288 }
1289
1290 static void domain_flush_complete(struct protection_domain *domain)
1291 {
1292 int i;
1293
1294 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1295 if (domain && !domain->dev_iommu[i])
1296 continue;
1297
1298 /*
1299 * Devices of this domain are behind this IOMMU
1300 * We need to wait for completion of all commands.
1301 */
1302 iommu_completion_wait(amd_iommus[i]);
1303 }
1304 }
1305
1306
1307 /*
1308 * This function flushes the DTEs for all devices in domain
1309 */
1310 static void domain_flush_devices(struct protection_domain *domain)
1311 {
1312 struct iommu_dev_data *dev_data;
1313
1314 list_for_each_entry(dev_data, &domain->dev_list, list)
1315 device_flush_dte(dev_data);
1316 }
1317
1318 /****************************************************************************
1319 *
1320 * The functions below are used the create the page table mappings for
1321 * unity mapped regions.
1322 *
1323 ****************************************************************************/
1324
1325 static void free_page_list(struct page *freelist)
1326 {
1327 while (freelist != NULL) {
1328 unsigned long p = (unsigned long)page_address(freelist);
1329 freelist = freelist->freelist;
1330 free_page(p);
1331 }
1332 }
1333
1334 static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1335 {
1336 struct page *p = virt_to_page((void *)pt);
1337
1338 p->freelist = freelist;
1339
1340 return p;
1341 }
1342
1343 #define DEFINE_FREE_PT_FN(LVL, FN) \
1344 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist) \
1345 { \
1346 unsigned long p; \
1347 u64 *pt; \
1348 int i; \
1349 \
1350 pt = (u64 *)__pt; \
1351 \
1352 for (i = 0; i < 512; ++i) { \
1353 /* PTE present? */ \
1354 if (!IOMMU_PTE_PRESENT(pt[i])) \
1355 continue; \
1356 \
1357 /* Large PTE? */ \
1358 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1359 PM_PTE_LEVEL(pt[i]) == 7) \
1360 continue; \
1361 \
1362 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1363 freelist = FN(p, freelist); \
1364 } \
1365 \
1366 return free_pt_page((unsigned long)pt, freelist); \
1367 }
1368
1369 DEFINE_FREE_PT_FN(l2, free_pt_page)
1370 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1371 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1372 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1373 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1374
1375 static struct page *free_sub_pt(unsigned long root, int mode,
1376 struct page *freelist)
1377 {
1378 switch (mode) {
1379 case PAGE_MODE_NONE:
1380 case PAGE_MODE_7_LEVEL:
1381 break;
1382 case PAGE_MODE_1_LEVEL:
1383 freelist = free_pt_page(root, freelist);
1384 break;
1385 case PAGE_MODE_2_LEVEL:
1386 freelist = free_pt_l2(root, freelist);
1387 break;
1388 case PAGE_MODE_3_LEVEL:
1389 freelist = free_pt_l3(root, freelist);
1390 break;
1391 case PAGE_MODE_4_LEVEL:
1392 freelist = free_pt_l4(root, freelist);
1393 break;
1394 case PAGE_MODE_5_LEVEL:
1395 freelist = free_pt_l5(root, freelist);
1396 break;
1397 case PAGE_MODE_6_LEVEL:
1398 freelist = free_pt_l6(root, freelist);
1399 break;
1400 default:
1401 BUG();
1402 }
1403
1404 return freelist;
1405 }
1406
1407 static void free_pagetable(struct protection_domain *domain)
1408 {
1409 unsigned long root = (unsigned long)domain->pt_root;
1410 struct page *freelist = NULL;
1411
1412 BUG_ON(domain->mode < PAGE_MODE_NONE ||
1413 domain->mode > PAGE_MODE_6_LEVEL);
1414
1415 free_sub_pt(root, domain->mode, freelist);
1416
1417 free_page_list(freelist);
1418 }
1419
1420 /*
1421 * This function is used to add another level to an IO page table. Adding
1422 * another level increases the size of the address space by 9 bits to a size up
1423 * to 64 bits.
1424 */
1425 static bool increase_address_space(struct protection_domain *domain,
1426 gfp_t gfp)
1427 {
1428 u64 *pte;
1429
1430 if (domain->mode == PAGE_MODE_6_LEVEL)
1431 /* address space already 64 bit large */
1432 return false;
1433
1434 pte = (void *)get_zeroed_page(gfp);
1435 if (!pte)
1436 return false;
1437
1438 *pte = PM_LEVEL_PDE(domain->mode,
1439 iommu_virt_to_phys(domain->pt_root));
1440 domain->pt_root = pte;
1441 domain->mode += 1;
1442 domain->updated = true;
1443
1444 return true;
1445 }
1446
1447 static u64 *alloc_pte(struct protection_domain *domain,
1448 unsigned long address,
1449 unsigned long page_size,
1450 u64 **pte_page,
1451 gfp_t gfp)
1452 {
1453 int level, end_lvl;
1454 u64 *pte, *page;
1455
1456 BUG_ON(!is_power_of_2(page_size));
1457
1458 while (address > PM_LEVEL_SIZE(domain->mode))
1459 increase_address_space(domain, gfp);
1460
1461 level = domain->mode - 1;
1462 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1463 address = PAGE_SIZE_ALIGN(address, page_size);
1464 end_lvl = PAGE_SIZE_LEVEL(page_size);
1465
1466 while (level > end_lvl) {
1467 u64 __pte, __npte;
1468 int pte_level;
1469
1470 __pte = *pte;
1471 pte_level = PM_PTE_LEVEL(__pte);
1472
1473 if (!IOMMU_PTE_PRESENT(__pte) ||
1474 pte_level == PAGE_MODE_7_LEVEL) {
1475 page = (u64 *)get_zeroed_page(gfp);
1476 if (!page)
1477 return NULL;
1478
1479 __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1480
1481 /* pte could have been changed somewhere. */
1482 if (cmpxchg64(pte, __pte, __npte) != __pte)
1483 free_page((unsigned long)page);
1484 else if (pte_level == PAGE_MODE_7_LEVEL)
1485 domain->updated = true;
1486
1487 continue;
1488 }
1489
1490 /* No level skipping support yet */
1491 if (pte_level != level)
1492 return NULL;
1493
1494 level -= 1;
1495
1496 pte = IOMMU_PTE_PAGE(__pte);
1497
1498 if (pte_page && level == end_lvl)
1499 *pte_page = pte;
1500
1501 pte = &pte[PM_LEVEL_INDEX(level, address)];
1502 }
1503
1504 return pte;
1505 }
1506
1507 /*
1508 * This function checks if there is a PTE for a given dma address. If
1509 * there is one, it returns the pointer to it.
1510 */
1511 static u64 *fetch_pte(struct protection_domain *domain,
1512 unsigned long address,
1513 unsigned long *page_size)
1514 {
1515 int level;
1516 u64 *pte;
1517
1518 *page_size = 0;
1519
1520 if (address > PM_LEVEL_SIZE(domain->mode))
1521 return NULL;
1522
1523 level = domain->mode - 1;
1524 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1525 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1526
1527 while (level > 0) {
1528
1529 /* Not Present */
1530 if (!IOMMU_PTE_PRESENT(*pte))
1531 return NULL;
1532
1533 /* Large PTE */
1534 if (PM_PTE_LEVEL(*pte) == 7 ||
1535 PM_PTE_LEVEL(*pte) == 0)
1536 break;
1537
1538 /* No level skipping support yet */
1539 if (PM_PTE_LEVEL(*pte) != level)
1540 return NULL;
1541
1542 level -= 1;
1543
1544 /* Walk to the next level */
1545 pte = IOMMU_PTE_PAGE(*pte);
1546 pte = &pte[PM_LEVEL_INDEX(level, address)];
1547 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1548 }
1549
1550 if (PM_PTE_LEVEL(*pte) == 0x07) {
1551 unsigned long pte_mask;
1552
1553 /*
1554 * If we have a series of large PTEs, make
1555 * sure to return a pointer to the first one.
1556 */
1557 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1558 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1559 pte = (u64 *)(((unsigned long)pte) & pte_mask);
1560 }
1561
1562 return pte;
1563 }
1564
1565 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1566 {
1567 unsigned long pt;
1568 int mode;
1569
1570 while (cmpxchg64(pte, pteval, 0) != pteval) {
1571 pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1572 pteval = *pte;
1573 }
1574
1575 if (!IOMMU_PTE_PRESENT(pteval))
1576 return freelist;
1577
1578 pt = (unsigned long)IOMMU_PTE_PAGE(pteval);
1579 mode = IOMMU_PTE_MODE(pteval);
1580
1581 return free_sub_pt(pt, mode, freelist);
1582 }
1583
1584 /*
1585 * Generic mapping functions. It maps a physical address into a DMA
1586 * address space. It allocates the page table pages if necessary.
1587 * In the future it can be extended to a generic mapping function
1588 * supporting all features of AMD IOMMU page tables like level skipping
1589 * and full 64 bit address spaces.
1590 */
1591 static int iommu_map_page(struct protection_domain *dom,
1592 unsigned long bus_addr,
1593 unsigned long phys_addr,
1594 unsigned long page_size,
1595 int prot,
1596 gfp_t gfp)
1597 {
1598 struct page *freelist = NULL;
1599 u64 __pte, *pte;
1600 int i, count;
1601
1602 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1603 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1604
1605 if (!(prot & IOMMU_PROT_MASK))
1606 return -EINVAL;
1607
1608 count = PAGE_SIZE_PTE_COUNT(page_size);
1609 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1610
1611 if (!pte)
1612 return -ENOMEM;
1613
1614 for (i = 0; i < count; ++i)
1615 freelist = free_clear_pte(&pte[i], pte[i], freelist);
1616
1617 if (freelist != NULL)
1618 dom->updated = true;
1619
1620 if (count > 1) {
1621 __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1622 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1623 } else
1624 __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1625
1626 if (prot & IOMMU_PROT_IR)
1627 __pte |= IOMMU_PTE_IR;
1628 if (prot & IOMMU_PROT_IW)
1629 __pte |= IOMMU_PTE_IW;
1630
1631 for (i = 0; i < count; ++i)
1632 pte[i] = __pte;
1633
1634 update_domain(dom);
1635
1636 /* Everything flushed out, free pages now */
1637 free_page_list(freelist);
1638
1639 return 0;
1640 }
1641
1642 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1643 unsigned long bus_addr,
1644 unsigned long page_size)
1645 {
1646 unsigned long long unmapped;
1647 unsigned long unmap_size;
1648 u64 *pte;
1649
1650 BUG_ON(!is_power_of_2(page_size));
1651
1652 unmapped = 0;
1653
1654 while (unmapped < page_size) {
1655
1656 pte = fetch_pte(dom, bus_addr, &unmap_size);
1657
1658 if (pte) {
1659 int i, count;
1660
1661 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1662 for (i = 0; i < count; i++)
1663 pte[i] = 0ULL;
1664 }
1665
1666 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1667 unmapped += unmap_size;
1668 }
1669
1670 BUG_ON(unmapped && !is_power_of_2(unmapped));
1671
1672 return unmapped;
1673 }
1674
1675 /****************************************************************************
1676 *
1677 * The next functions belong to the address allocator for the dma_ops
1678 * interface functions.
1679 *
1680 ****************************************************************************/
1681
1682
1683 static unsigned long dma_ops_alloc_iova(struct device *dev,
1684 struct dma_ops_domain *dma_dom,
1685 unsigned int pages, u64 dma_mask)
1686 {
1687 unsigned long pfn = 0;
1688
1689 pages = __roundup_pow_of_two(pages);
1690
1691 if (dma_mask > DMA_BIT_MASK(32))
1692 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1693 IOVA_PFN(DMA_BIT_MASK(32)), false);
1694
1695 if (!pfn)
1696 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1697 IOVA_PFN(dma_mask), true);
1698
1699 return (pfn << PAGE_SHIFT);
1700 }
1701
1702 static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1703 unsigned long address,
1704 unsigned int pages)
1705 {
1706 pages = __roundup_pow_of_two(pages);
1707 address >>= PAGE_SHIFT;
1708
1709 free_iova_fast(&dma_dom->iovad, address, pages);
1710 }
1711
1712 /****************************************************************************
1713 *
1714 * The next functions belong to the domain allocation. A domain is
1715 * allocated for every IOMMU as the default domain. If device isolation
1716 * is enabled, every device get its own domain. The most important thing
1717 * about domains is the page table mapping the DMA address space they
1718 * contain.
1719 *
1720 ****************************************************************************/
1721
1722 /*
1723 * This function adds a protection domain to the global protection domain list
1724 */
1725 static void add_domain_to_list(struct protection_domain *domain)
1726 {
1727 unsigned long flags;
1728
1729 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1730 list_add(&domain->list, &amd_iommu_pd_list);
1731 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1732 }
1733
1734 /*
1735 * This function removes a protection domain to the global
1736 * protection domain list
1737 */
1738 static void del_domain_from_list(struct protection_domain *domain)
1739 {
1740 unsigned long flags;
1741
1742 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1743 list_del(&domain->list);
1744 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1745 }
1746
1747 static u16 domain_id_alloc(void)
1748 {
1749 int id;
1750
1751 spin_lock(&pd_bitmap_lock);
1752 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1753 BUG_ON(id == 0);
1754 if (id > 0 && id < MAX_DOMAIN_ID)
1755 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1756 else
1757 id = 0;
1758 spin_unlock(&pd_bitmap_lock);
1759
1760 return id;
1761 }
1762
1763 static void domain_id_free(int id)
1764 {
1765 spin_lock(&pd_bitmap_lock);
1766 if (id > 0 && id < MAX_DOMAIN_ID)
1767 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1768 spin_unlock(&pd_bitmap_lock);
1769 }
1770
1771 static void free_gcr3_tbl_level1(u64 *tbl)
1772 {
1773 u64 *ptr;
1774 int i;
1775
1776 for (i = 0; i < 512; ++i) {
1777 if (!(tbl[i] & GCR3_VALID))
1778 continue;
1779
1780 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1781
1782 free_page((unsigned long)ptr);
1783 }
1784 }
1785
1786 static void free_gcr3_tbl_level2(u64 *tbl)
1787 {
1788 u64 *ptr;
1789 int i;
1790
1791 for (i = 0; i < 512; ++i) {
1792 if (!(tbl[i] & GCR3_VALID))
1793 continue;
1794
1795 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1796
1797 free_gcr3_tbl_level1(ptr);
1798 }
1799 }
1800
1801 static void free_gcr3_table(struct protection_domain *domain)
1802 {
1803 if (domain->glx == 2)
1804 free_gcr3_tbl_level2(domain->gcr3_tbl);
1805 else if (domain->glx == 1)
1806 free_gcr3_tbl_level1(domain->gcr3_tbl);
1807 else
1808 BUG_ON(domain->glx != 0);
1809
1810 free_page((unsigned long)domain->gcr3_tbl);
1811 }
1812
1813 static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1814 {
1815 domain_flush_tlb(&dom->domain);
1816 domain_flush_complete(&dom->domain);
1817 }
1818
1819 static void iova_domain_flush_tlb(struct iova_domain *iovad)
1820 {
1821 struct dma_ops_domain *dom;
1822
1823 dom = container_of(iovad, struct dma_ops_domain, iovad);
1824
1825 dma_ops_domain_flush_tlb(dom);
1826 }
1827
1828 /*
1829 * Free a domain, only used if something went wrong in the
1830 * allocation path and we need to free an already allocated page table
1831 */
1832 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1833 {
1834 if (!dom)
1835 return;
1836
1837 del_domain_from_list(&dom->domain);
1838
1839 put_iova_domain(&dom->iovad);
1840
1841 free_pagetable(&dom->domain);
1842
1843 if (dom->domain.id)
1844 domain_id_free(dom->domain.id);
1845
1846 kfree(dom);
1847 }
1848
1849 /*
1850 * Allocates a new protection domain usable for the dma_ops functions.
1851 * It also initializes the page table and the address allocator data
1852 * structures required for the dma_ops interface
1853 */
1854 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1855 {
1856 struct dma_ops_domain *dma_dom;
1857
1858 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1859 if (!dma_dom)
1860 return NULL;
1861
1862 if (protection_domain_init(&dma_dom->domain))
1863 goto free_dma_dom;
1864
1865 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1866 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1867 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1868 if (!dma_dom->domain.pt_root)
1869 goto free_dma_dom;
1870
1871 init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1872
1873 if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1874 goto free_dma_dom;
1875
1876 /* Initialize reserved ranges */
1877 copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1878
1879 add_domain_to_list(&dma_dom->domain);
1880
1881 return dma_dom;
1882
1883 free_dma_dom:
1884 dma_ops_domain_free(dma_dom);
1885
1886 return NULL;
1887 }
1888
1889 /*
1890 * little helper function to check whether a given protection domain is a
1891 * dma_ops domain
1892 */
1893 static bool dma_ops_domain(struct protection_domain *domain)
1894 {
1895 return domain->flags & PD_DMA_OPS_MASK;
1896 }
1897
1898 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1899 bool ats, bool ppr)
1900 {
1901 u64 pte_root = 0;
1902 u64 flags = 0;
1903
1904 if (domain->mode != PAGE_MODE_NONE)
1905 pte_root = iommu_virt_to_phys(domain->pt_root);
1906
1907 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1908 << DEV_ENTRY_MODE_SHIFT;
1909 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1910
1911 flags = amd_iommu_dev_table[devid].data[1];
1912
1913 if (ats)
1914 flags |= DTE_FLAG_IOTLB;
1915
1916 if (ppr) {
1917 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1918
1919 if (iommu_feature(iommu, FEATURE_EPHSUP))
1920 pte_root |= 1ULL << DEV_ENTRY_PPR;
1921 }
1922
1923 if (domain->flags & PD_IOMMUV2_MASK) {
1924 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1925 u64 glx = domain->glx;
1926 u64 tmp;
1927
1928 pte_root |= DTE_FLAG_GV;
1929 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1930
1931 /* First mask out possible old values for GCR3 table */
1932 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1933 flags &= ~tmp;
1934
1935 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1936 flags &= ~tmp;
1937
1938 /* Encode GCR3 table into DTE */
1939 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1940 pte_root |= tmp;
1941
1942 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1943 flags |= tmp;
1944
1945 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1946 flags |= tmp;
1947 }
1948
1949 flags &= ~DEV_DOMID_MASK;
1950 flags |= domain->id;
1951
1952 amd_iommu_dev_table[devid].data[1] = flags;
1953 amd_iommu_dev_table[devid].data[0] = pte_root;
1954 }
1955
1956 static void clear_dte_entry(u16 devid)
1957 {
1958 /* remove entry from the device table seen by the hardware */
1959 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV;
1960 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1961
1962 amd_iommu_apply_erratum_63(devid);
1963 }
1964
1965 static void do_attach(struct iommu_dev_data *dev_data,
1966 struct protection_domain *domain)
1967 {
1968 struct amd_iommu *iommu;
1969 u16 alias;
1970 bool ats;
1971
1972 iommu = amd_iommu_rlookup_table[dev_data->devid];
1973 alias = dev_data->alias;
1974 ats = dev_data->ats.enabled;
1975
1976 /* Update data structures */
1977 dev_data->domain = domain;
1978 list_add(&dev_data->list, &domain->dev_list);
1979
1980 /* Do reference counting */
1981 domain->dev_iommu[iommu->index] += 1;
1982 domain->dev_cnt += 1;
1983
1984 /* Update device table */
1985 set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1986 if (alias != dev_data->devid)
1987 set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1988
1989 device_flush_dte(dev_data);
1990 }
1991
1992 static void do_detach(struct iommu_dev_data *dev_data)
1993 {
1994 struct protection_domain *domain = dev_data->domain;
1995 struct amd_iommu *iommu;
1996 u16 alias;
1997
1998 iommu = amd_iommu_rlookup_table[dev_data->devid];
1999 alias = dev_data->alias;
2000
2001 /* Update data structures */
2002 dev_data->domain = NULL;
2003 list_del(&dev_data->list);
2004 clear_dte_entry(dev_data->devid);
2005 if (alias != dev_data->devid)
2006 clear_dte_entry(alias);
2007
2008 /* Flush the DTE entry */
2009 device_flush_dte(dev_data);
2010
2011 /* Flush IOTLB */
2012 domain_flush_tlb_pde(domain);
2013
2014 /* Wait for the flushes to finish */
2015 domain_flush_complete(domain);
2016
2017 /* decrease reference counters - needs to happen after the flushes */
2018 domain->dev_iommu[iommu->index] -= 1;
2019 domain->dev_cnt -= 1;
2020 }
2021
2022 /*
2023 * If a device is not yet associated with a domain, this function makes the
2024 * device visible in the domain
2025 */
2026 static int __attach_device(struct iommu_dev_data *dev_data,
2027 struct protection_domain *domain)
2028 {
2029 int ret;
2030
2031 /* lock domain */
2032 spin_lock(&domain->lock);
2033
2034 ret = -EBUSY;
2035 if (dev_data->domain != NULL)
2036 goto out_unlock;
2037
2038 /* Attach alias group root */
2039 do_attach(dev_data, domain);
2040
2041 ret = 0;
2042
2043 out_unlock:
2044
2045 /* ready */
2046 spin_unlock(&domain->lock);
2047
2048 return ret;
2049 }
2050
2051
2052 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2053 {
2054 pci_disable_ats(pdev);
2055 pci_disable_pri(pdev);
2056 pci_disable_pasid(pdev);
2057 }
2058
2059 /* FIXME: Change generic reset-function to do the same */
2060 static int pri_reset_while_enabled(struct pci_dev *pdev)
2061 {
2062 u16 control;
2063 int pos;
2064
2065 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2066 if (!pos)
2067 return -EINVAL;
2068
2069 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2070 control |= PCI_PRI_CTRL_RESET;
2071 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2072
2073 return 0;
2074 }
2075
2076 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2077 {
2078 bool reset_enable;
2079 int reqs, ret;
2080
2081 /* FIXME: Hardcode number of outstanding requests for now */
2082 reqs = 32;
2083 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2084 reqs = 1;
2085 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2086
2087 /* Only allow access to user-accessible pages */
2088 ret = pci_enable_pasid(pdev, 0);
2089 if (ret)
2090 goto out_err;
2091
2092 /* First reset the PRI state of the device */
2093 ret = pci_reset_pri(pdev);
2094 if (ret)
2095 goto out_err;
2096
2097 /* Enable PRI */
2098 ret = pci_enable_pri(pdev, reqs);
2099 if (ret)
2100 goto out_err;
2101
2102 if (reset_enable) {
2103 ret = pri_reset_while_enabled(pdev);
2104 if (ret)
2105 goto out_err;
2106 }
2107
2108 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2109 if (ret)
2110 goto out_err;
2111
2112 return 0;
2113
2114 out_err:
2115 pci_disable_pri(pdev);
2116 pci_disable_pasid(pdev);
2117
2118 return ret;
2119 }
2120
2121 /* FIXME: Move this to PCI code */
2122 #define PCI_PRI_TLP_OFF (1 << 15)
2123
2124 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2125 {
2126 u16 status;
2127 int pos;
2128
2129 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2130 if (!pos)
2131 return false;
2132
2133 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2134
2135 return (status & PCI_PRI_TLP_OFF) ? true : false;
2136 }
2137
2138 /*
2139 * If a device is not yet associated with a domain, this function makes the
2140 * device visible in the domain
2141 */
2142 static int attach_device(struct device *dev,
2143 struct protection_domain *domain)
2144 {
2145 struct pci_dev *pdev;
2146 struct iommu_dev_data *dev_data;
2147 unsigned long flags;
2148 int ret;
2149
2150 dev_data = get_dev_data(dev);
2151
2152 if (!dev_is_pci(dev))
2153 goto skip_ats_check;
2154
2155 pdev = to_pci_dev(dev);
2156 if (domain->flags & PD_IOMMUV2_MASK) {
2157 if (!dev_data->passthrough)
2158 return -EINVAL;
2159
2160 if (dev_data->iommu_v2) {
2161 if (pdev_iommuv2_enable(pdev) != 0)
2162 return -EINVAL;
2163
2164 dev_data->ats.enabled = true;
2165 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2166 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2167 }
2168 } else if (amd_iommu_iotlb_sup &&
2169 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2170 dev_data->ats.enabled = true;
2171 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2172 }
2173
2174 skip_ats_check:
2175 spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2176 ret = __attach_device(dev_data, domain);
2177 spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2178
2179 /*
2180 * We might boot into a crash-kernel here. The crashed kernel
2181 * left the caches in the IOMMU dirty. So we have to flush
2182 * here to evict all dirty stuff.
2183 */
2184 domain_flush_tlb_pde(domain);
2185
2186 return ret;
2187 }
2188
2189 /*
2190 * Removes a device from a protection domain (unlocked)
2191 */
2192 static void __detach_device(struct iommu_dev_data *dev_data)
2193 {
2194 struct protection_domain *domain;
2195
2196 domain = dev_data->domain;
2197
2198 spin_lock(&domain->lock);
2199
2200 do_detach(dev_data);
2201
2202 spin_unlock(&domain->lock);
2203 }
2204
2205 /*
2206 * Removes a device from a protection domain (with devtable_lock held)
2207 */
2208 static void detach_device(struct device *dev)
2209 {
2210 struct protection_domain *domain;
2211 struct iommu_dev_data *dev_data;
2212 unsigned long flags;
2213
2214 dev_data = get_dev_data(dev);
2215 domain = dev_data->domain;
2216
2217 /*
2218 * First check if the device is still attached. It might already
2219 * be detached from its domain because the generic
2220 * iommu_detach_group code detached it and we try again here in
2221 * our alias handling.
2222 */
2223 if (WARN_ON(!dev_data->domain))
2224 return;
2225
2226 /* lock device table */
2227 spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2228 __detach_device(dev_data);
2229 spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2230
2231 if (!dev_is_pci(dev))
2232 return;
2233
2234 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2235 pdev_iommuv2_disable(to_pci_dev(dev));
2236 else if (dev_data->ats.enabled)
2237 pci_disable_ats(to_pci_dev(dev));
2238
2239 dev_data->ats.enabled = false;
2240 }
2241
2242 static int amd_iommu_add_device(struct device *dev)
2243 {
2244 struct iommu_dev_data *dev_data;
2245 struct iommu_domain *domain;
2246 struct amd_iommu *iommu;
2247 int ret, devid;
2248
2249 if (!check_device(dev) || get_dev_data(dev))
2250 return 0;
2251
2252 devid = get_device_id(dev);
2253 if (devid < 0)
2254 return devid;
2255
2256 iommu = amd_iommu_rlookup_table[devid];
2257
2258 ret = iommu_init_device(dev);
2259 if (ret) {
2260 if (ret != -ENOTSUPP)
2261 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2262 dev_name(dev));
2263
2264 iommu_ignore_device(dev);
2265 dev->dma_ops = NULL;
2266 goto out;
2267 }
2268 init_iommu_group(dev);
2269
2270 dev_data = get_dev_data(dev);
2271
2272 BUG_ON(!dev_data);
2273
2274 if (iommu_pass_through || dev_data->iommu_v2)
2275 iommu_request_dm_for_dev(dev);
2276
2277 /* Domains are initialized for this device - have a look what we ended up with */
2278 domain = iommu_get_domain_for_dev(dev);
2279 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2280 dev_data->passthrough = true;
2281 else
2282 dev->dma_ops = &amd_iommu_dma_ops;
2283
2284 out:
2285 iommu_completion_wait(iommu);
2286
2287 return 0;
2288 }
2289
2290 static void amd_iommu_remove_device(struct device *dev)
2291 {
2292 struct amd_iommu *iommu;
2293 int devid;
2294
2295 if (!check_device(dev))
2296 return;
2297
2298 devid = get_device_id(dev);
2299 if (devid < 0)
2300 return;
2301
2302 iommu = amd_iommu_rlookup_table[devid];
2303
2304 iommu_uninit_device(dev);
2305 iommu_completion_wait(iommu);
2306 }
2307
2308 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2309 {
2310 if (dev_is_pci(dev))
2311 return pci_device_group(dev);
2312
2313 return acpihid_device_group(dev);
2314 }
2315
2316 /*****************************************************************************
2317 *
2318 * The next functions belong to the dma_ops mapping/unmapping code.
2319 *
2320 *****************************************************************************/
2321
2322 /*
2323 * In the dma_ops path we only have the struct device. This function
2324 * finds the corresponding IOMMU, the protection domain and the
2325 * requestor id for a given device.
2326 * If the device is not yet associated with a domain this is also done
2327 * in this function.
2328 */
2329 static struct protection_domain *get_domain(struct device *dev)
2330 {
2331 struct protection_domain *domain;
2332 struct iommu_domain *io_domain;
2333
2334 if (!check_device(dev))
2335 return ERR_PTR(-EINVAL);
2336
2337 domain = get_dev_data(dev)->domain;
2338 if (domain == NULL && get_dev_data(dev)->defer_attach) {
2339 get_dev_data(dev)->defer_attach = false;
2340 io_domain = iommu_get_domain_for_dev(dev);
2341 domain = to_pdomain(io_domain);
2342 attach_device(dev, domain);
2343 }
2344 if (domain == NULL)
2345 return ERR_PTR(-EBUSY);
2346
2347 if (!dma_ops_domain(domain))
2348 return ERR_PTR(-EBUSY);
2349
2350 return domain;
2351 }
2352
2353 static void update_device_table(struct protection_domain *domain)
2354 {
2355 struct iommu_dev_data *dev_data;
2356
2357 list_for_each_entry(dev_data, &domain->dev_list, list) {
2358 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2359 dev_data->iommu_v2);
2360
2361 if (dev_data->devid == dev_data->alias)
2362 continue;
2363
2364 /* There is an alias, update device table entry for it */
2365 set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
2366 dev_data->iommu_v2);
2367 }
2368 }
2369
2370 static void update_domain(struct protection_domain *domain)
2371 {
2372 if (!domain->updated)
2373 return;
2374
2375 update_device_table(domain);
2376
2377 domain_flush_devices(domain);
2378 domain_flush_tlb_pde(domain);
2379
2380 domain->updated = false;
2381 }
2382
2383 static int dir2prot(enum dma_data_direction direction)
2384 {
2385 if (direction == DMA_TO_DEVICE)
2386 return IOMMU_PROT_IR;
2387 else if (direction == DMA_FROM_DEVICE)
2388 return IOMMU_PROT_IW;
2389 else if (direction == DMA_BIDIRECTIONAL)
2390 return IOMMU_PROT_IW | IOMMU_PROT_IR;
2391 else
2392 return 0;
2393 }
2394
2395 /*
2396 * This function contains common code for mapping of a physically
2397 * contiguous memory region into DMA address space. It is used by all
2398 * mapping functions provided with this IOMMU driver.
2399 * Must be called with the domain lock held.
2400 */
2401 static dma_addr_t __map_single(struct device *dev,
2402 struct dma_ops_domain *dma_dom,
2403 phys_addr_t paddr,
2404 size_t size,
2405 enum dma_data_direction direction,
2406 u64 dma_mask)
2407 {
2408 dma_addr_t offset = paddr & ~PAGE_MASK;
2409 dma_addr_t address, start, ret;
2410 unsigned int pages;
2411 int prot = 0;
2412 int i;
2413
2414 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2415 paddr &= PAGE_MASK;
2416
2417 address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2418 if (!address)
2419 goto out;
2420
2421 prot = dir2prot(direction);
2422
2423 start = address;
2424 for (i = 0; i < pages; ++i) {
2425 ret = iommu_map_page(&dma_dom->domain, start, paddr,
2426 PAGE_SIZE, prot, GFP_ATOMIC);
2427 if (ret)
2428 goto out_unmap;
2429
2430 paddr += PAGE_SIZE;
2431 start += PAGE_SIZE;
2432 }
2433 address += offset;
2434
2435 if (unlikely(amd_iommu_np_cache)) {
2436 domain_flush_pages(&dma_dom->domain, address, size);
2437 domain_flush_complete(&dma_dom->domain);
2438 }
2439
2440 out:
2441 return address;
2442
2443 out_unmap:
2444
2445 for (--i; i >= 0; --i) {
2446 start -= PAGE_SIZE;
2447 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2448 }
2449
2450 domain_flush_tlb(&dma_dom->domain);
2451 domain_flush_complete(&dma_dom->domain);
2452
2453 dma_ops_free_iova(dma_dom, address, pages);
2454
2455 return DMA_MAPPING_ERROR;
2456 }
2457
2458 /*
2459 * Does the reverse of the __map_single function. Must be called with
2460 * the domain lock held too
2461 */
2462 static void __unmap_single(struct dma_ops_domain *dma_dom,
2463 dma_addr_t dma_addr,
2464 size_t size,
2465 int dir)
2466 {
2467 dma_addr_t i, start;
2468 unsigned int pages;
2469
2470 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2471 dma_addr &= PAGE_MASK;
2472 start = dma_addr;
2473
2474 for (i = 0; i < pages; ++i) {
2475 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2476 start += PAGE_SIZE;
2477 }
2478
2479 if (amd_iommu_unmap_flush) {
2480 domain_flush_tlb(&dma_dom->domain);
2481 domain_flush_complete(&dma_dom->domain);
2482 dma_ops_free_iova(dma_dom, dma_addr, pages);
2483 } else {
2484 pages = __roundup_pow_of_two(pages);
2485 queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2486 }
2487 }
2488
2489 /*
2490 * The exported map_single function for dma_ops.
2491 */
2492 static dma_addr_t map_page(struct device *dev, struct page *page,
2493 unsigned long offset, size_t size,
2494 enum dma_data_direction dir,
2495 unsigned long attrs)
2496 {
2497 phys_addr_t paddr = page_to_phys(page) + offset;
2498 struct protection_domain *domain;
2499 struct dma_ops_domain *dma_dom;
2500 u64 dma_mask;
2501
2502 domain = get_domain(dev);
2503 if (PTR_ERR(domain) == -EINVAL)
2504 return (dma_addr_t)paddr;
2505 else if (IS_ERR(domain))
2506 return DMA_MAPPING_ERROR;
2507
2508 dma_mask = *dev->dma_mask;
2509 dma_dom = to_dma_ops_domain(domain);
2510
2511 return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2512 }
2513
2514 /*
2515 * The exported unmap_single function for dma_ops.
2516 */
2517 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2518 enum dma_data_direction dir, unsigned long attrs)
2519 {
2520 struct protection_domain *domain;
2521 struct dma_ops_domain *dma_dom;
2522
2523 domain = get_domain(dev);
2524 if (IS_ERR(domain))
2525 return;
2526
2527 dma_dom = to_dma_ops_domain(domain);
2528
2529 __unmap_single(dma_dom, dma_addr, size, dir);
2530 }
2531
2532 static int sg_num_pages(struct device *dev,
2533 struct scatterlist *sglist,
2534 int nelems)
2535 {
2536 unsigned long mask, boundary_size;
2537 struct scatterlist *s;
2538 int i, npages = 0;
2539
2540 mask = dma_get_seg_boundary(dev);
2541 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2542 1UL << (BITS_PER_LONG - PAGE_SHIFT);
2543
2544 for_each_sg(sglist, s, nelems, i) {
2545 int p, n;
2546
2547 s->dma_address = npages << PAGE_SHIFT;
2548 p = npages % boundary_size;
2549 n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2550 if (p + n > boundary_size)
2551 npages += boundary_size - p;
2552 npages += n;
2553 }
2554
2555 return npages;
2556 }
2557
2558 /*
2559 * The exported map_sg function for dma_ops (handles scatter-gather
2560 * lists).
2561 */
2562 static int map_sg(struct device *dev, struct scatterlist *sglist,
2563 int nelems, enum dma_data_direction direction,
2564 unsigned long attrs)
2565 {
2566 int mapped_pages = 0, npages = 0, prot = 0, i;
2567 struct protection_domain *domain;
2568 struct dma_ops_domain *dma_dom;
2569 struct scatterlist *s;
2570 unsigned long address;
2571 u64 dma_mask;
2572
2573 domain = get_domain(dev);
2574 if (IS_ERR(domain))
2575 return 0;
2576
2577 dma_dom = to_dma_ops_domain(domain);
2578 dma_mask = *dev->dma_mask;
2579
2580 npages = sg_num_pages(dev, sglist, nelems);
2581
2582 address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2583 if (address == DMA_MAPPING_ERROR)
2584 goto out_err;
2585
2586 prot = dir2prot(direction);
2587
2588 /* Map all sg entries */
2589 for_each_sg(sglist, s, nelems, i) {
2590 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2591
2592 for (j = 0; j < pages; ++j) {
2593 unsigned long bus_addr, phys_addr;
2594 int ret;
2595
2596 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2597 phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2598 ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
2599 if (ret)
2600 goto out_unmap;
2601
2602 mapped_pages += 1;
2603 }
2604 }
2605
2606 /* Everything is mapped - write the right values into s->dma_address */
2607 for_each_sg(sglist, s, nelems, i) {
2608 s->dma_address += address + s->offset;
2609 s->dma_length = s->length;
2610 }
2611
2612 return nelems;
2613
2614 out_unmap:
2615 pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2616 dev_name(dev), npages);
2617
2618 for_each_sg(sglist, s, nelems, i) {
2619 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2620
2621 for (j = 0; j < pages; ++j) {
2622 unsigned long bus_addr;
2623
2624 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2625 iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2626
2627 if (--mapped_pages == 0)
2628 goto out_free_iova;
2629 }
2630 }
2631
2632 out_free_iova:
2633 free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2634
2635 out_err:
2636 return 0;
2637 }
2638
2639 /*
2640 * The exported map_sg function for dma_ops (handles scatter-gather
2641 * lists).
2642 */
2643 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2644 int nelems, enum dma_data_direction dir,
2645 unsigned long attrs)
2646 {
2647 struct protection_domain *domain;
2648 struct dma_ops_domain *dma_dom;
2649 unsigned long startaddr;
2650 int npages = 2;
2651
2652 domain = get_domain(dev);
2653 if (IS_ERR(domain))
2654 return;
2655
2656 startaddr = sg_dma_address(sglist) & PAGE_MASK;
2657 dma_dom = to_dma_ops_domain(domain);
2658 npages = sg_num_pages(dev, sglist, nelems);
2659
2660 __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2661 }
2662
2663 /*
2664 * The exported alloc_coherent function for dma_ops.
2665 */
2666 static void *alloc_coherent(struct device *dev, size_t size,
2667 dma_addr_t *dma_addr, gfp_t flag,
2668 unsigned long attrs)
2669 {
2670 u64 dma_mask = dev->coherent_dma_mask;
2671 struct protection_domain *domain;
2672 struct dma_ops_domain *dma_dom;
2673 struct page *page;
2674
2675 domain = get_domain(dev);
2676 if (PTR_ERR(domain) == -EINVAL) {
2677 page = alloc_pages(flag, get_order(size));
2678 *dma_addr = page_to_phys(page);
2679 return page_address(page);
2680 } else if (IS_ERR(domain))
2681 return NULL;
2682
2683 dma_dom = to_dma_ops_domain(domain);
2684 size = PAGE_ALIGN(size);
2685 dma_mask = dev->coherent_dma_mask;
2686 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2687 flag |= __GFP_ZERO;
2688
2689 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2690 if (!page) {
2691 if (!gfpflags_allow_blocking(flag))
2692 return NULL;
2693
2694 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2695 get_order(size), flag & __GFP_NOWARN);
2696 if (!page)
2697 return NULL;
2698 }
2699
2700 if (!dma_mask)
2701 dma_mask = *dev->dma_mask;
2702
2703 *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2704 size, DMA_BIDIRECTIONAL, dma_mask);
2705
2706 if (*dma_addr == DMA_MAPPING_ERROR)
2707 goto out_free;
2708
2709 return page_address(page);
2710
2711 out_free:
2712
2713 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2714 __free_pages(page, get_order(size));
2715
2716 return NULL;
2717 }
2718
2719 /*
2720 * The exported free_coherent function for dma_ops.
2721 */
2722 static void free_coherent(struct device *dev, size_t size,
2723 void *virt_addr, dma_addr_t dma_addr,
2724 unsigned long attrs)
2725 {
2726 struct protection_domain *domain;
2727 struct dma_ops_domain *dma_dom;
2728 struct page *page;
2729
2730 page = virt_to_page(virt_addr);
2731 size = PAGE_ALIGN(size);
2732
2733 domain = get_domain(dev);
2734 if (IS_ERR(domain))
2735 goto free_mem;
2736
2737 dma_dom = to_dma_ops_domain(domain);
2738
2739 __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2740
2741 free_mem:
2742 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2743 __free_pages(page, get_order(size));
2744 }
2745
2746 /*
2747 * This function is called by the DMA layer to find out if we can handle a
2748 * particular device. It is part of the dma_ops.
2749 */
2750 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2751 {
2752 if (!dma_direct_supported(dev, mask))
2753 return 0;
2754 return check_device(dev);
2755 }
2756
2757 static const struct dma_map_ops amd_iommu_dma_ops = {
2758 .alloc = alloc_coherent,
2759 .free = free_coherent,
2760 .map_page = map_page,
2761 .unmap_page = unmap_page,
2762 .map_sg = map_sg,
2763 .unmap_sg = unmap_sg,
2764 .dma_supported = amd_iommu_dma_supported,
2765 };
2766
2767 static int init_reserved_iova_ranges(void)
2768 {
2769 struct pci_dev *pdev = NULL;
2770 struct iova *val;
2771
2772 init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2773
2774 lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2775 &reserved_rbtree_key);
2776
2777 /* MSI memory range */
2778 val = reserve_iova(&reserved_iova_ranges,
2779 IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2780 if (!val) {
2781 pr_err("Reserving MSI range failed\n");
2782 return -ENOMEM;
2783 }
2784
2785 /* HT memory range */
2786 val = reserve_iova(&reserved_iova_ranges,
2787 IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2788 if (!val) {
2789 pr_err("Reserving HT range failed\n");
2790 return -ENOMEM;
2791 }
2792
2793 /*
2794 * Memory used for PCI resources
2795 * FIXME: Check whether we can reserve the PCI-hole completly
2796 */
2797 for_each_pci_dev(pdev) {
2798 int i;
2799
2800 for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2801 struct resource *r = &pdev->resource[i];
2802
2803 if (!(r->flags & IORESOURCE_MEM))
2804 continue;
2805
2806 val = reserve_iova(&reserved_iova_ranges,
2807 IOVA_PFN(r->start),
2808 IOVA_PFN(r->end));
2809 if (!val) {
2810 pr_err("Reserve pci-resource range failed\n");
2811 return -ENOMEM;
2812 }
2813 }
2814 }
2815
2816 return 0;
2817 }
2818
2819 int __init amd_iommu_init_api(void)
2820 {
2821 int ret, err = 0;
2822
2823 ret = iova_cache_get();
2824 if (ret)
2825 return ret;
2826
2827 ret = init_reserved_iova_ranges();
2828 if (ret)
2829 return ret;
2830
2831 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2832 if (err)
2833 return err;
2834 #ifdef CONFIG_ARM_AMBA
2835 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2836 if (err)
2837 return err;
2838 #endif
2839 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2840 if (err)
2841 return err;
2842
2843 return 0;
2844 }
2845
2846 int __init amd_iommu_init_dma_ops(void)
2847 {
2848 swiotlb = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2849 iommu_detected = 1;
2850
2851 if (amd_iommu_unmap_flush)
2852 pr_info("IO/TLB flush on unmap enabled\n");
2853 else
2854 pr_info("Lazy IO/TLB flushing enabled\n");
2855
2856 return 0;
2857
2858 }
2859
2860 /*****************************************************************************
2861 *
2862 * The following functions belong to the exported interface of AMD IOMMU
2863 *
2864 * This interface allows access to lower level functions of the IOMMU
2865 * like protection domain handling and assignement of devices to domains
2866 * which is not possible with the dma_ops interface.
2867 *
2868 *****************************************************************************/
2869
2870 static void cleanup_domain(struct protection_domain *domain)
2871 {
2872 struct iommu_dev_data *entry;
2873 unsigned long flags;
2874
2875 spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2876
2877 while (!list_empty(&domain->dev_list)) {
2878 entry = list_first_entry(&domain->dev_list,
2879 struct iommu_dev_data, list);
2880 BUG_ON(!entry->domain);
2881 __detach_device(entry);
2882 }
2883
2884 spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2885 }
2886
2887 static void protection_domain_free(struct protection_domain *domain)
2888 {
2889 if (!domain)
2890 return;
2891
2892 del_domain_from_list(domain);
2893
2894 if (domain->id)
2895 domain_id_free(domain->id);
2896
2897 kfree(domain);
2898 }
2899
2900 static int protection_domain_init(struct protection_domain *domain)
2901 {
2902 spin_lock_init(&domain->lock);
2903 mutex_init(&domain->api_lock);
2904 domain->id = domain_id_alloc();
2905 if (!domain->id)
2906 return -ENOMEM;
2907 INIT_LIST_HEAD(&domain->dev_list);
2908
2909 return 0;
2910 }
2911
2912 static struct protection_domain *protection_domain_alloc(void)
2913 {
2914 struct protection_domain *domain;
2915
2916 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2917 if (!domain)
2918 return NULL;
2919
2920 if (protection_domain_init(domain))
2921 goto out_err;
2922
2923 add_domain_to_list(domain);
2924
2925 return domain;
2926
2927 out_err:
2928 kfree(domain);
2929
2930 return NULL;
2931 }
2932
2933 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2934 {
2935 struct protection_domain *pdomain;
2936 struct dma_ops_domain *dma_domain;
2937
2938 switch (type) {
2939 case IOMMU_DOMAIN_UNMANAGED:
2940 pdomain = protection_domain_alloc();
2941 if (!pdomain)
2942 return NULL;
2943
2944 pdomain->mode = PAGE_MODE_3_LEVEL;
2945 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2946 if (!pdomain->pt_root) {
2947 protection_domain_free(pdomain);
2948 return NULL;
2949 }
2950
2951 pdomain->domain.geometry.aperture_start = 0;
2952 pdomain->domain.geometry.aperture_end = ~0ULL;
2953 pdomain->domain.geometry.force_aperture = true;
2954
2955 break;
2956 case IOMMU_DOMAIN_DMA:
2957 dma_domain = dma_ops_domain_alloc();
2958 if (!dma_domain) {
2959 pr_err("Failed to allocate\n");
2960 return NULL;
2961 }
2962 pdomain = &dma_domain->domain;
2963 break;
2964 case IOMMU_DOMAIN_IDENTITY:
2965 pdomain = protection_domain_alloc();
2966 if (!pdomain)
2967 return NULL;
2968
2969 pdomain->mode = PAGE_MODE_NONE;
2970 break;
2971 default:
2972 return NULL;
2973 }
2974
2975 return &pdomain->domain;
2976 }
2977
2978 static void amd_iommu_domain_free(struct iommu_domain *dom)
2979 {
2980 struct protection_domain *domain;
2981 struct dma_ops_domain *dma_dom;
2982
2983 domain = to_pdomain(dom);
2984
2985 if (domain->dev_cnt > 0)
2986 cleanup_domain(domain);
2987
2988 BUG_ON(domain->dev_cnt != 0);
2989
2990 if (!dom)
2991 return;
2992
2993 switch (dom->type) {
2994 case IOMMU_DOMAIN_DMA:
2995 /* Now release the domain */
2996 dma_dom = to_dma_ops_domain(domain);
2997 dma_ops_domain_free(dma_dom);
2998 break;
2999 default:
3000 if (domain->mode != PAGE_MODE_NONE)
3001 free_pagetable(domain);
3002
3003 if (domain->flags & PD_IOMMUV2_MASK)
3004 free_gcr3_table(domain);
3005
3006 protection_domain_free(domain);
3007 break;
3008 }
3009 }
3010
3011 static void amd_iommu_detach_device(struct iommu_domain *dom,
3012 struct device *dev)
3013 {
3014 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3015 struct amd_iommu *iommu;
3016 int devid;
3017
3018 if (!check_device(dev))
3019 return;
3020
3021 devid = get_device_id(dev);
3022 if (devid < 0)
3023 return;
3024
3025 if (dev_data->domain != NULL)
3026 detach_device(dev);
3027
3028 iommu = amd_iommu_rlookup_table[devid];
3029 if (!iommu)
3030 return;
3031
3032 #ifdef CONFIG_IRQ_REMAP
3033 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
3034 (dom->type == IOMMU_DOMAIN_UNMANAGED))
3035 dev_data->use_vapic = 0;
3036 #endif
3037
3038 iommu_completion_wait(iommu);
3039 }
3040
3041 static int amd_iommu_attach_device(struct iommu_domain *dom,
3042 struct device *dev)
3043 {
3044 struct protection_domain *domain = to_pdomain(dom);
3045 struct iommu_dev_data *dev_data;
3046 struct amd_iommu *iommu;
3047 int ret;
3048
3049 if (!check_device(dev))
3050 return -EINVAL;
3051
3052 dev_data = dev->archdata.iommu;
3053
3054 iommu = amd_iommu_rlookup_table[dev_data->devid];
3055 if (!iommu)
3056 return -EINVAL;
3057
3058 if (dev_data->domain)
3059 detach_device(dev);
3060
3061 ret = attach_device(dev, domain);
3062
3063 #ifdef CONFIG_IRQ_REMAP
3064 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3065 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3066 dev_data->use_vapic = 1;
3067 else
3068 dev_data->use_vapic = 0;
3069 }
3070 #endif
3071
3072 iommu_completion_wait(iommu);
3073
3074 return ret;
3075 }
3076
3077 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3078 phys_addr_t paddr, size_t page_size, int iommu_prot)
3079 {
3080 struct protection_domain *domain = to_pdomain(dom);
3081 int prot = 0;
3082 int ret;
3083
3084 if (domain->mode == PAGE_MODE_NONE)
3085 return -EINVAL;
3086
3087 if (iommu_prot & IOMMU_READ)
3088 prot |= IOMMU_PROT_IR;
3089 if (iommu_prot & IOMMU_WRITE)
3090 prot |= IOMMU_PROT_IW;
3091
3092 mutex_lock(&domain->api_lock);
3093 ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3094 mutex_unlock(&domain->api_lock);
3095
3096 return ret;
3097 }
3098
3099 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3100 size_t page_size)
3101 {
3102 struct protection_domain *domain = to_pdomain(dom);
3103 size_t unmap_size;
3104
3105 if (domain->mode == PAGE_MODE_NONE)
3106 return 0;
3107
3108 mutex_lock(&domain->api_lock);
3109 unmap_size = iommu_unmap_page(domain, iova, page_size);
3110 mutex_unlock(&domain->api_lock);
3111
3112 return unmap_size;
3113 }
3114
3115 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3116 dma_addr_t iova)
3117 {
3118 struct protection_domain *domain = to_pdomain(dom);
3119 unsigned long offset_mask, pte_pgsize;
3120 u64 *pte, __pte;
3121
3122 if (domain->mode == PAGE_MODE_NONE)
3123 return iova;
3124
3125 pte = fetch_pte(domain, iova, &pte_pgsize);
3126
3127 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3128 return 0;
3129
3130 offset_mask = pte_pgsize - 1;
3131 __pte = __sme_clr(*pte & PM_ADDR_MASK);
3132
3133 return (__pte & ~offset_mask) | (iova & offset_mask);
3134 }
3135
3136 static bool amd_iommu_capable(enum iommu_cap cap)
3137 {
3138 switch (cap) {
3139 case IOMMU_CAP_CACHE_COHERENCY:
3140 return true;
3141 case IOMMU_CAP_INTR_REMAP:
3142 return (irq_remapping_enabled == 1);
3143 case IOMMU_CAP_NOEXEC:
3144 return false;
3145 default:
3146 break;
3147 }
3148
3149 return false;
3150 }
3151
3152 static void amd_iommu_get_resv_regions(struct device *dev,
3153 struct list_head *head)
3154 {
3155 struct iommu_resv_region *region;
3156 struct unity_map_entry *entry;
3157 int devid;
3158
3159 devid = get_device_id(dev);
3160 if (devid < 0)
3161 return;
3162
3163 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3164 size_t length;
3165 int prot = 0;
3166
3167 if (devid < entry->devid_start || devid > entry->devid_end)
3168 continue;
3169
3170 length = entry->address_end - entry->address_start;
3171 if (entry->prot & IOMMU_PROT_IR)
3172 prot |= IOMMU_READ;
3173 if (entry->prot & IOMMU_PROT_IW)
3174 prot |= IOMMU_WRITE;
3175
3176 region = iommu_alloc_resv_region(entry->address_start,
3177 length, prot,
3178 IOMMU_RESV_DIRECT);
3179 if (!region) {
3180 pr_err("Out of memory allocating dm-regions for %s\n",
3181 dev_name(dev));
3182 return;
3183 }
3184 list_add_tail(&region->list, head);
3185 }
3186
3187 region = iommu_alloc_resv_region(MSI_RANGE_START,
3188 MSI_RANGE_END - MSI_RANGE_START + 1,
3189 0, IOMMU_RESV_MSI);
3190 if (!region)
3191 return;
3192 list_add_tail(&region->list, head);
3193
3194 region = iommu_alloc_resv_region(HT_RANGE_START,
3195 HT_RANGE_END - HT_RANGE_START + 1,
3196 0, IOMMU_RESV_RESERVED);
3197 if (!region)
3198 return;
3199 list_add_tail(&region->list, head);
3200 }
3201
3202 static void amd_iommu_put_resv_regions(struct device *dev,
3203 struct list_head *head)
3204 {
3205 struct iommu_resv_region *entry, *next;
3206
3207 list_for_each_entry_safe(entry, next, head, list)
3208 kfree(entry);
3209 }
3210
3211 static void amd_iommu_apply_resv_region(struct device *dev,
3212 struct iommu_domain *domain,
3213 struct iommu_resv_region *region)
3214 {
3215 struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3216 unsigned long start, end;
3217
3218 start = IOVA_PFN(region->start);
3219 end = IOVA_PFN(region->start + region->length - 1);
3220
3221 WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3222 }
3223
3224 static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3225 struct device *dev)
3226 {
3227 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3228 return dev_data->defer_attach;
3229 }
3230
3231 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3232 {
3233 struct protection_domain *dom = to_pdomain(domain);
3234
3235 domain_flush_tlb_pde(dom);
3236 domain_flush_complete(dom);
3237 }
3238
3239 static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
3240 unsigned long iova, size_t size)
3241 {
3242 }
3243
3244 const struct iommu_ops amd_iommu_ops = {
3245 .capable = amd_iommu_capable,
3246 .domain_alloc = amd_iommu_domain_alloc,
3247 .domain_free = amd_iommu_domain_free,
3248 .attach_dev = amd_iommu_attach_device,
3249 .detach_dev = amd_iommu_detach_device,
3250 .map = amd_iommu_map,
3251 .unmap = amd_iommu_unmap,
3252 .iova_to_phys = amd_iommu_iova_to_phys,
3253 .add_device = amd_iommu_add_device,
3254 .remove_device = amd_iommu_remove_device,
3255 .device_group = amd_iommu_device_group,
3256 .get_resv_regions = amd_iommu_get_resv_regions,
3257 .put_resv_regions = amd_iommu_put_resv_regions,
3258 .apply_resv_region = amd_iommu_apply_resv_region,
3259 .is_attach_deferred = amd_iommu_is_attach_deferred,
3260 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3261 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
3262 .iotlb_range_add = amd_iommu_iotlb_range_add,
3263 .iotlb_sync = amd_iommu_flush_iotlb_all,
3264 };
3265
3266 /*****************************************************************************
3267 *
3268 * The next functions do a basic initialization of IOMMU for pass through
3269 * mode
3270 *
3271 * In passthrough mode the IOMMU is initialized and enabled but not used for
3272 * DMA-API translation.
3273 *
3274 *****************************************************************************/
3275
3276 /* IOMMUv2 specific functions */
3277 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3278 {
3279 return atomic_notifier_chain_register(&ppr_notifier, nb);
3280 }
3281 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3282
3283 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3284 {
3285 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3286 }
3287 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3288
3289 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3290 {
3291 struct protection_domain *domain = to_pdomain(dom);
3292 unsigned long flags;
3293
3294 spin_lock_irqsave(&domain->lock, flags);
3295
3296 /* Update data structure */
3297 domain->mode = PAGE_MODE_NONE;
3298 domain->updated = true;
3299
3300 /* Make changes visible to IOMMUs */
3301 update_domain(domain);
3302
3303 /* Page-table is not visible to IOMMU anymore, so free it */
3304 free_pagetable(domain);
3305
3306 spin_unlock_irqrestore(&domain->lock, flags);
3307 }
3308 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3309
3310 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3311 {
3312 struct protection_domain *domain = to_pdomain(dom);
3313 unsigned long flags;
3314 int levels, ret;
3315
3316 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3317 return -EINVAL;
3318
3319 /* Number of GCR3 table levels required */
3320 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3321 levels += 1;
3322
3323 if (levels > amd_iommu_max_glx_val)
3324 return -EINVAL;
3325
3326 spin_lock_irqsave(&domain->lock, flags);
3327
3328 /*
3329 * Save us all sanity checks whether devices already in the
3330 * domain support IOMMUv2. Just force that the domain has no
3331 * devices attached when it is switched into IOMMUv2 mode.
3332 */
3333 ret = -EBUSY;
3334 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3335 goto out;
3336
3337 ret = -ENOMEM;
3338 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3339 if (domain->gcr3_tbl == NULL)
3340 goto out;
3341
3342 domain->glx = levels;
3343 domain->flags |= PD_IOMMUV2_MASK;
3344 domain->updated = true;
3345
3346 update_domain(domain);
3347
3348 ret = 0;
3349
3350 out:
3351 spin_unlock_irqrestore(&domain->lock, flags);
3352
3353 return ret;
3354 }
3355 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3356
3357 static int __flush_pasid(struct protection_domain *domain, int pasid,
3358 u64 address, bool size)
3359 {
3360 struct iommu_dev_data *dev_data;
3361 struct iommu_cmd cmd;
3362 int i, ret;
3363
3364 if (!(domain->flags & PD_IOMMUV2_MASK))
3365 return -EINVAL;
3366
3367 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3368
3369 /*
3370 * IOMMU TLB needs to be flushed before Device TLB to
3371 * prevent device TLB refill from IOMMU TLB
3372 */
3373 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3374 if (domain->dev_iommu[i] == 0)
3375 continue;
3376
3377 ret = iommu_queue_command(amd_iommus[i], &cmd);
3378 if (ret != 0)
3379 goto out;
3380 }
3381
3382 /* Wait until IOMMU TLB flushes are complete */
3383 domain_flush_complete(domain);
3384
3385 /* Now flush device TLBs */
3386 list_for_each_entry(dev_data, &domain->dev_list, list) {
3387 struct amd_iommu *iommu;
3388 int qdep;
3389
3390 /*
3391 There might be non-IOMMUv2 capable devices in an IOMMUv2
3392 * domain.
3393 */
3394 if (!dev_data->ats.enabled)
3395 continue;
3396
3397 qdep = dev_data->ats.qdep;
3398 iommu = amd_iommu_rlookup_table[dev_data->devid];
3399
3400 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3401 qdep, address, size);
3402
3403 ret = iommu_queue_command(iommu, &cmd);
3404 if (ret != 0)
3405 goto out;
3406 }
3407
3408 /* Wait until all device TLBs are flushed */
3409 domain_flush_complete(domain);
3410
3411 ret = 0;
3412
3413 out:
3414
3415 return ret;
3416 }
3417
3418 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3419 u64 address)
3420 {
3421 return __flush_pasid(domain, pasid, address, false);
3422 }
3423
3424 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3425 u64 address)
3426 {
3427 struct protection_domain *domain = to_pdomain(dom);
3428 unsigned long flags;
3429 int ret;
3430
3431 spin_lock_irqsave(&domain->lock, flags);
3432 ret = __amd_iommu_flush_page(domain, pasid, address);
3433 spin_unlock_irqrestore(&domain->lock, flags);
3434
3435 return ret;
3436 }
3437 EXPORT_SYMBOL(amd_iommu_flush_page);
3438
3439 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3440 {
3441 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3442 true);
3443 }
3444
3445 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3446 {
3447 struct protection_domain *domain = to_pdomain(dom);
3448 unsigned long flags;
3449 int ret;
3450
3451 spin_lock_irqsave(&domain->lock, flags);
3452 ret = __amd_iommu_flush_tlb(domain, pasid);
3453 spin_unlock_irqrestore(&domain->lock, flags);
3454
3455 return ret;
3456 }
3457 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3458
3459 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3460 {
3461 int index;
3462 u64 *pte;
3463
3464 while (true) {
3465
3466 index = (pasid >> (9 * level)) & 0x1ff;
3467 pte = &root[index];
3468
3469 if (level == 0)
3470 break;
3471
3472 if (!(*pte & GCR3_VALID)) {
3473 if (!alloc)
3474 return NULL;
3475
3476 root = (void *)get_zeroed_page(GFP_ATOMIC);
3477 if (root == NULL)
3478 return NULL;
3479
3480 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
3481 }
3482
3483 root = iommu_phys_to_virt(*pte & PAGE_MASK);
3484
3485 level -= 1;
3486 }
3487
3488 return pte;
3489 }
3490
3491 static int __set_gcr3(struct protection_domain *domain, int pasid,
3492 unsigned long cr3)
3493 {
3494 u64 *pte;
3495
3496 if (domain->mode != PAGE_MODE_NONE)
3497 return -EINVAL;
3498
3499 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3500 if (pte == NULL)
3501 return -ENOMEM;
3502
3503 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3504
3505 return __amd_iommu_flush_tlb(domain, pasid);
3506 }
3507
3508 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3509 {
3510 u64 *pte;
3511
3512 if (domain->mode != PAGE_MODE_NONE)
3513 return -EINVAL;
3514
3515 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3516 if (pte == NULL)
3517 return 0;
3518
3519 *pte = 0;
3520
3521 return __amd_iommu_flush_tlb(domain, pasid);
3522 }
3523
3524 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3525 unsigned long cr3)
3526 {
3527 struct protection_domain *domain = to_pdomain(dom);
3528 unsigned long flags;
3529 int ret;
3530
3531 spin_lock_irqsave(&domain->lock, flags);
3532 ret = __set_gcr3(domain, pasid, cr3);
3533 spin_unlock_irqrestore(&domain->lock, flags);
3534
3535 return ret;
3536 }
3537 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3538
3539 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3540 {
3541 struct protection_domain *domain = to_pdomain(dom);
3542 unsigned long flags;
3543 int ret;
3544
3545 spin_lock_irqsave(&domain->lock, flags);
3546 ret = __clear_gcr3(domain, pasid);
3547 spin_unlock_irqrestore(&domain->lock, flags);
3548
3549 return ret;
3550 }
3551 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3552
3553 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3554 int status, int tag)
3555 {
3556 struct iommu_dev_data *dev_data;
3557 struct amd_iommu *iommu;
3558 struct iommu_cmd cmd;
3559
3560 dev_data = get_dev_data(&pdev->dev);
3561 iommu = amd_iommu_rlookup_table[dev_data->devid];
3562
3563 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3564 tag, dev_data->pri_tlp);
3565
3566 return iommu_queue_command(iommu, &cmd);
3567 }
3568 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3569
3570 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3571 {
3572 struct protection_domain *pdomain;
3573
3574 pdomain = get_domain(&pdev->dev);
3575 if (IS_ERR(pdomain))
3576 return NULL;
3577
3578 /* Only return IOMMUv2 domains */
3579 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3580 return NULL;
3581
3582 return &pdomain->domain;
3583 }
3584 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3585
3586 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3587 {
3588 struct iommu_dev_data *dev_data;
3589
3590 if (!amd_iommu_v2_supported())
3591 return;
3592
3593 dev_data = get_dev_data(&pdev->dev);
3594 dev_data->errata |= (1 << erratum);
3595 }
3596 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3597
3598 int amd_iommu_device_info(struct pci_dev *pdev,
3599 struct amd_iommu_device_info *info)
3600 {
3601 int max_pasids;
3602 int pos;
3603
3604 if (pdev == NULL || info == NULL)
3605 return -EINVAL;
3606
3607 if (!amd_iommu_v2_supported())
3608 return -EINVAL;
3609
3610 memset(info, 0, sizeof(*info));
3611
3612 if (!pci_ats_disabled()) {
3613 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3614 if (pos)
3615 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3616 }
3617
3618 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3619 if (pos)
3620 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3621
3622 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3623 if (pos) {
3624 int features;
3625
3626 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3627 max_pasids = min(max_pasids, (1 << 20));
3628
3629 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3630 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3631
3632 features = pci_pasid_features(pdev);
3633 if (features & PCI_PASID_CAP_EXEC)
3634 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3635 if (features & PCI_PASID_CAP_PRIV)
3636 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3637 }
3638
3639 return 0;
3640 }
3641 EXPORT_SYMBOL(amd_iommu_device_info);
3642
3643 #ifdef CONFIG_IRQ_REMAP
3644
3645 /*****************************************************************************
3646 *
3647 * Interrupt Remapping Implementation
3648 *
3649 *****************************************************************************/
3650
3651 static struct irq_chip amd_ir_chip;
3652 static DEFINE_SPINLOCK(iommu_table_lock);
3653
3654 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3655 {
3656 u64 dte;
3657
3658 dte = amd_iommu_dev_table[devid].data[2];
3659 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3660 dte |= iommu_virt_to_phys(table->table);
3661 dte |= DTE_IRQ_REMAP_INTCTL;
3662 dte |= DTE_IRQ_TABLE_LEN;
3663 dte |= DTE_IRQ_REMAP_ENABLE;
3664
3665 amd_iommu_dev_table[devid].data[2] = dte;
3666 }
3667
3668 static struct irq_remap_table *get_irq_table(u16 devid)
3669 {
3670 struct irq_remap_table *table;
3671
3672 if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3673 "%s: no iommu for devid %x\n", __func__, devid))
3674 return NULL;
3675
3676 table = irq_lookup_table[devid];
3677 if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3678 return NULL;
3679
3680 return table;
3681 }
3682
3683 static struct irq_remap_table *__alloc_irq_table(void)
3684 {
3685 struct irq_remap_table *table;
3686
3687 table = kzalloc(sizeof(*table), GFP_KERNEL);
3688 if (!table)
3689 return NULL;
3690
3691 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3692 if (!table->table) {
3693 kfree(table);
3694 return NULL;
3695 }
3696 raw_spin_lock_init(&table->lock);
3697
3698 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3699 memset(table->table, 0,
3700 MAX_IRQS_PER_TABLE * sizeof(u32));
3701 else
3702 memset(table->table, 0,
3703 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3704 return table;
3705 }
3706
3707 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3708 struct irq_remap_table *table)
3709 {
3710 irq_lookup_table[devid] = table;
3711 set_dte_irq_entry(devid, table);
3712 iommu_flush_dte(iommu, devid);
3713 }
3714
3715 static struct irq_remap_table *alloc_irq_table(u16 devid)
3716 {
3717 struct irq_remap_table *table = NULL;
3718 struct irq_remap_table *new_table = NULL;
3719 struct amd_iommu *iommu;
3720 unsigned long flags;
3721 u16 alias;
3722
3723 spin_lock_irqsave(&iommu_table_lock, flags);
3724
3725 iommu = amd_iommu_rlookup_table[devid];
3726 if (!iommu)
3727 goto out_unlock;
3728
3729 table = irq_lookup_table[devid];
3730 if (table)
3731 goto out_unlock;
3732
3733 alias = amd_iommu_alias_table[devid];
3734 table = irq_lookup_table[alias];
3735 if (table) {
3736 set_remap_table_entry(iommu, devid, table);
3737 goto out_wait;
3738 }
3739 spin_unlock_irqrestore(&iommu_table_lock, flags);
3740
3741 /* Nothing there yet, allocate new irq remapping table */
3742 new_table = __alloc_irq_table();
3743 if (!new_table)
3744 return NULL;
3745
3746 spin_lock_irqsave(&iommu_table_lock, flags);
3747
3748 table = irq_lookup_table[devid];
3749 if (table)
3750 goto out_unlock;
3751
3752 table = irq_lookup_table[alias];
3753 if (table) {
3754 set_remap_table_entry(iommu, devid, table);
3755 goto out_wait;
3756 }
3757
3758 table = new_table;
3759 new_table = NULL;
3760
3761 set_remap_table_entry(iommu, devid, table);
3762 if (devid != alias)
3763 set_remap_table_entry(iommu, alias, table);
3764
3765 out_wait:
3766 iommu_completion_wait(iommu);
3767
3768 out_unlock:
3769 spin_unlock_irqrestore(&iommu_table_lock, flags);
3770
3771 if (new_table) {
3772 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3773 kfree(new_table);
3774 }
3775 return table;
3776 }
3777
3778 static int alloc_irq_index(u16 devid, int count, bool align)
3779 {
3780 struct irq_remap_table *table;
3781 int index, c, alignment = 1;
3782 unsigned long flags;
3783 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3784
3785 if (!iommu)
3786 return -ENODEV;
3787
3788 table = alloc_irq_table(devid);
3789 if (!table)
3790 return -ENODEV;
3791
3792 if (align)
3793 alignment = roundup_pow_of_two(count);
3794
3795 raw_spin_lock_irqsave(&table->lock, flags);
3796
3797 /* Scan table for free entries */
3798 for (index = ALIGN(table->min_index, alignment), c = 0;
3799 index < MAX_IRQS_PER_TABLE;) {
3800 if (!iommu->irte_ops->is_allocated(table, index)) {
3801 c += 1;
3802 } else {
3803 c = 0;
3804 index = ALIGN(index + 1, alignment);
3805 continue;
3806 }
3807
3808 if (c == count) {
3809 for (; c != 0; --c)
3810 iommu->irte_ops->set_allocated(table, index - c + 1);
3811
3812 index -= count - 1;
3813 goto out;
3814 }
3815
3816 index++;
3817 }
3818
3819 index = -ENOSPC;
3820
3821 out:
3822 raw_spin_unlock_irqrestore(&table->lock, flags);
3823
3824 return index;
3825 }
3826
3827 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3828 struct amd_ir_data *data)
3829 {
3830 struct irq_remap_table *table;
3831 struct amd_iommu *iommu;
3832 unsigned long flags;
3833 struct irte_ga *entry;
3834
3835 iommu = amd_iommu_rlookup_table[devid];
3836 if (iommu == NULL)
3837 return -EINVAL;
3838
3839 table = get_irq_table(devid);
3840 if (!table)
3841 return -ENOMEM;
3842
3843 raw_spin_lock_irqsave(&table->lock, flags);
3844
3845 entry = (struct irte_ga *)table->table;
3846 entry = &entry[index];
3847 entry->lo.fields_remap.valid = 0;
3848 entry->hi.val = irte->hi.val;
3849 entry->lo.val = irte->lo.val;
3850 entry->lo.fields_remap.valid = 1;
3851 if (data)
3852 data->ref = entry;
3853
3854 raw_spin_unlock_irqrestore(&table->lock, flags);
3855
3856 iommu_flush_irt(iommu, devid);
3857 iommu_completion_wait(iommu);
3858
3859 return 0;
3860 }
3861
3862 static int modify_irte(u16 devid, int index, union irte *irte)
3863 {
3864 struct irq_remap_table *table;
3865 struct amd_iommu *iommu;
3866 unsigned long flags;
3867
3868 iommu = amd_iommu_rlookup_table[devid];
3869 if (iommu == NULL)
3870 return -EINVAL;
3871
3872 table = get_irq_table(devid);
3873 if (!table)
3874 return -ENOMEM;
3875
3876 raw_spin_lock_irqsave(&table->lock, flags);
3877 table->table[index] = irte->val;
3878 raw_spin_unlock_irqrestore(&table->lock, flags);
3879
3880 iommu_flush_irt(iommu, devid);
3881 iommu_completion_wait(iommu);
3882
3883 return 0;
3884 }
3885
3886 static void free_irte(u16 devid, int index)
3887 {
3888 struct irq_remap_table *table;
3889 struct amd_iommu *iommu;
3890 unsigned long flags;
3891
3892 iommu = amd_iommu_rlookup_table[devid];
3893 if (iommu == NULL)
3894 return;
3895
3896 table = get_irq_table(devid);
3897 if (!table)
3898 return;
3899
3900 raw_spin_lock_irqsave(&table->lock, flags);
3901 iommu->irte_ops->clear_allocated(table, index);
3902 raw_spin_unlock_irqrestore(&table->lock, flags);
3903
3904 iommu_flush_irt(iommu, devid);
3905 iommu_completion_wait(iommu);
3906 }
3907
3908 static void irte_prepare(void *entry,
3909 u32 delivery_mode, u32 dest_mode,
3910 u8 vector, u32 dest_apicid, int devid)
3911 {
3912 union irte *irte = (union irte *) entry;
3913
3914 irte->val = 0;
3915 irte->fields.vector = vector;
3916 irte->fields.int_type = delivery_mode;
3917 irte->fields.destination = dest_apicid;
3918 irte->fields.dm = dest_mode;
3919 irte->fields.valid = 1;
3920 }
3921
3922 static void irte_ga_prepare(void *entry,
3923 u32 delivery_mode, u32 dest_mode,
3924 u8 vector, u32 dest_apicid, int devid)
3925 {
3926 struct irte_ga *irte = (struct irte_ga *) entry;
3927
3928 irte->lo.val = 0;
3929 irte->hi.val = 0;
3930 irte->lo.fields_remap.int_type = delivery_mode;
3931 irte->lo.fields_remap.dm = dest_mode;
3932 irte->hi.fields.vector = vector;
3933 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3934 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3935 irte->lo.fields_remap.valid = 1;
3936 }
3937
3938 static void irte_activate(void *entry, u16 devid, u16 index)
3939 {
3940 union irte *irte = (union irte *) entry;
3941
3942 irte->fields.valid = 1;
3943 modify_irte(devid, index, irte);
3944 }
3945
3946 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3947 {
3948 struct irte_ga *irte = (struct irte_ga *) entry;
3949
3950 irte->lo.fields_remap.valid = 1;
3951 modify_irte_ga(devid, index, irte, NULL);
3952 }
3953
3954 static void irte_deactivate(void *entry, u16 devid, u16 index)
3955 {
3956 union irte *irte = (union irte *) entry;
3957
3958 irte->fields.valid = 0;
3959 modify_irte(devid, index, irte);
3960 }
3961
3962 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3963 {
3964 struct irte_ga *irte = (struct irte_ga *) entry;
3965
3966 irte->lo.fields_remap.valid = 0;
3967 modify_irte_ga(devid, index, irte, NULL);
3968 }
3969
3970 static void irte_set_affinity(void *entry, u16 devid, u16 index,
3971 u8 vector, u32 dest_apicid)
3972 {
3973 union irte *irte = (union irte *) entry;
3974
3975 irte->fields.vector = vector;
3976 irte->fields.destination = dest_apicid;
3977 modify_irte(devid, index, irte);
3978 }
3979
3980 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3981 u8 vector, u32 dest_apicid)
3982 {
3983 struct irte_ga *irte = (struct irte_ga *) entry;
3984
3985 if (!irte->lo.fields_remap.guest_mode) {
3986 irte->hi.fields.vector = vector;
3987 irte->lo.fields_remap.destination =
3988 APICID_TO_IRTE_DEST_LO(dest_apicid);
3989 irte->hi.fields.destination =
3990 APICID_TO_IRTE_DEST_HI(dest_apicid);
3991 modify_irte_ga(devid, index, irte, NULL);
3992 }
3993 }
3994
3995 #define IRTE_ALLOCATED (~1U)
3996 static void irte_set_allocated(struct irq_remap_table *table, int index)
3997 {
3998 table->table[index] = IRTE_ALLOCATED;
3999 }
4000
4001 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
4002 {
4003 struct irte_ga *ptr = (struct irte_ga *)table->table;
4004 struct irte_ga *irte = &ptr[index];
4005
4006 memset(&irte->lo.val, 0, sizeof(u64));
4007 memset(&irte->hi.val, 0, sizeof(u64));
4008 irte->hi.fields.vector = 0xff;
4009 }
4010
4011 static bool irte_is_allocated(struct irq_remap_table *table, int index)
4012 {
4013 union irte *ptr = (union irte *)table->table;
4014 union irte *irte = &ptr[index];
4015
4016 return irte->val != 0;
4017 }
4018
4019 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
4020 {
4021 struct irte_ga *ptr = (struct irte_ga *)table->table;
4022 struct irte_ga *irte = &ptr[index];
4023
4024 return irte->hi.fields.vector != 0;
4025 }
4026
4027 static void irte_clear_allocated(struct irq_remap_table *table, int index)
4028 {
4029 table->table[index] = 0;
4030 }
4031
4032 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
4033 {
4034 struct irte_ga *ptr = (struct irte_ga *)table->table;
4035 struct irte_ga *irte = &ptr[index];
4036
4037 memset(&irte->lo.val, 0, sizeof(u64));
4038 memset(&irte->hi.val, 0, sizeof(u64));
4039 }
4040
4041 static int get_devid(struct irq_alloc_info *info)
4042 {
4043 int devid = -1;
4044
4045 switch (info->type) {
4046 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4047 devid = get_ioapic_devid(info->ioapic_id);
4048 break;
4049 case X86_IRQ_ALLOC_TYPE_HPET:
4050 devid = get_hpet_devid(info->hpet_id);
4051 break;
4052 case X86_IRQ_ALLOC_TYPE_MSI:
4053 case X86_IRQ_ALLOC_TYPE_MSIX:
4054 devid = get_device_id(&info->msi_dev->dev);
4055 break;
4056 default:
4057 BUG_ON(1);
4058 break;
4059 }
4060
4061 return devid;
4062 }
4063
4064 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4065 {
4066 struct amd_iommu *iommu;
4067 int devid;
4068
4069 if (!info)
4070 return NULL;
4071
4072 devid = get_devid(info);
4073 if (devid >= 0) {
4074 iommu = amd_iommu_rlookup_table[devid];
4075 if (iommu)
4076 return iommu->ir_domain;
4077 }
4078
4079 return NULL;
4080 }
4081
4082 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4083 {
4084 struct amd_iommu *iommu;
4085 int devid;
4086
4087 if (!info)
4088 return NULL;
4089
4090 switch (info->type) {
4091 case X86_IRQ_ALLOC_TYPE_MSI:
4092 case X86_IRQ_ALLOC_TYPE_MSIX:
4093 devid = get_device_id(&info->msi_dev->dev);
4094 if (devid < 0)
4095 return NULL;
4096
4097 iommu = amd_iommu_rlookup_table[devid];
4098 if (iommu)
4099 return iommu->msi_domain;
4100 break;
4101 default:
4102 break;
4103 }
4104
4105 return NULL;
4106 }
4107
4108 struct irq_remap_ops amd_iommu_irq_ops = {
4109 .prepare = amd_iommu_prepare,
4110 .enable = amd_iommu_enable,
4111 .disable = amd_iommu_disable,
4112 .reenable = amd_iommu_reenable,
4113 .enable_faulting = amd_iommu_enable_faulting,
4114 .get_ir_irq_domain = get_ir_irq_domain,
4115 .get_irq_domain = get_irq_domain,
4116 };
4117
4118 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4119 struct irq_cfg *irq_cfg,
4120 struct irq_alloc_info *info,
4121 int devid, int index, int sub_handle)
4122 {
4123 struct irq_2_irte *irte_info = &data->irq_2_irte;
4124 struct msi_msg *msg = &data->msi_entry;
4125 struct IO_APIC_route_entry *entry;
4126 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4127
4128 if (!iommu)
4129 return;
4130
4131 data->irq_2_irte.devid = devid;
4132 data->irq_2_irte.index = index + sub_handle;
4133 iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4134 apic->irq_dest_mode, irq_cfg->vector,
4135 irq_cfg->dest_apicid, devid);
4136
4137 switch (info->type) {
4138 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4139 /* Setup IOAPIC entry */
4140 entry = info->ioapic_entry;
4141 info->ioapic_entry = NULL;
4142 memset(entry, 0, sizeof(*entry));
4143 entry->vector = index;
4144 entry->mask = 0;
4145 entry->trigger = info->ioapic_trigger;
4146 entry->polarity = info->ioapic_polarity;
4147 /* Mask level triggered irqs. */
4148 if (info->ioapic_trigger)
4149 entry->mask = 1;
4150 break;
4151
4152 case X86_IRQ_ALLOC_TYPE_HPET:
4153 case X86_IRQ_ALLOC_TYPE_MSI:
4154 case X86_IRQ_ALLOC_TYPE_MSIX:
4155 msg->address_hi = MSI_ADDR_BASE_HI;
4156 msg->address_lo = MSI_ADDR_BASE_LO;
4157 msg->data = irte_info->index;
4158 break;
4159
4160 default:
4161 BUG_ON(1);
4162 break;
4163 }
4164 }
4165
4166 struct amd_irte_ops irte_32_ops = {
4167 .prepare = irte_prepare,
4168 .activate = irte_activate,
4169 .deactivate = irte_deactivate,
4170 .set_affinity = irte_set_affinity,
4171 .set_allocated = irte_set_allocated,
4172 .is_allocated = irte_is_allocated,
4173 .clear_allocated = irte_clear_allocated,
4174 };
4175
4176 struct amd_irte_ops irte_128_ops = {
4177 .prepare = irte_ga_prepare,
4178 .activate = irte_ga_activate,
4179 .deactivate = irte_ga_deactivate,
4180 .set_affinity = irte_ga_set_affinity,
4181 .set_allocated = irte_ga_set_allocated,
4182 .is_allocated = irte_ga_is_allocated,
4183 .clear_allocated = irte_ga_clear_allocated,
4184 };
4185
4186 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4187 unsigned int nr_irqs, void *arg)
4188 {
4189 struct irq_alloc_info *info = arg;
4190 struct irq_data *irq_data;
4191 struct amd_ir_data *data = NULL;
4192 struct irq_cfg *cfg;
4193 int i, ret, devid;
4194 int index;
4195
4196 if (!info)
4197 return -EINVAL;
4198 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4199 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4200 return -EINVAL;
4201
4202 /*
4203 * With IRQ remapping enabled, don't need contiguous CPU vectors
4204 * to support multiple MSI interrupts.
4205 */
4206 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4207 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4208
4209 devid = get_devid(info);
4210 if (devid < 0)
4211 return -EINVAL;
4212
4213 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4214 if (ret < 0)
4215 return ret;
4216
4217 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4218 struct irq_remap_table *table;
4219 struct amd_iommu *iommu;
4220
4221 table = alloc_irq_table(devid);
4222 if (table) {
4223 if (!table->min_index) {
4224 /*
4225 * Keep the first 32 indexes free for IOAPIC
4226 * interrupts.
4227 */
4228 table->min_index = 32;
4229 iommu = amd_iommu_rlookup_table[devid];
4230 for (i = 0; i < 32; ++i)
4231 iommu->irte_ops->set_allocated(table, i);
4232 }
4233 WARN_ON(table->min_index != 32);
4234 index = info->ioapic_pin;
4235 } else {
4236 index = -ENOMEM;
4237 }
4238 } else {
4239 bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4240
4241 index = alloc_irq_index(devid, nr_irqs, align);
4242 }
4243 if (index < 0) {
4244 pr_warn("Failed to allocate IRTE\n");
4245 ret = index;
4246 goto out_free_parent;
4247 }
4248
4249 for (i = 0; i < nr_irqs; i++) {
4250 irq_data = irq_domain_get_irq_data(domain, virq + i);
4251 cfg = irqd_cfg(irq_data);
4252 if (!irq_data || !cfg) {
4253 ret = -EINVAL;
4254 goto out_free_data;
4255 }
4256
4257 ret = -ENOMEM;
4258 data = kzalloc(sizeof(*data), GFP_KERNEL);
4259 if (!data)
4260 goto out_free_data;
4261
4262 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4263 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4264 else
4265 data->entry = kzalloc(sizeof(struct irte_ga),
4266 GFP_KERNEL);
4267 if (!data->entry) {
4268 kfree(data);
4269 goto out_free_data;
4270 }
4271
4272 irq_data->hwirq = (devid << 16) + i;
4273 irq_data->chip_data = data;
4274 irq_data->chip = &amd_ir_chip;
4275 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4276 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4277 }
4278
4279 return 0;
4280
4281 out_free_data:
4282 for (i--; i >= 0; i--) {
4283 irq_data = irq_domain_get_irq_data(domain, virq + i);
4284 if (irq_data)
4285 kfree(irq_data->chip_data);
4286 }
4287 for (i = 0; i < nr_irqs; i++)
4288 free_irte(devid, index + i);
4289 out_free_parent:
4290 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4291 return ret;
4292 }
4293
4294 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4295 unsigned int nr_irqs)
4296 {
4297 struct irq_2_irte *irte_info;
4298 struct irq_data *irq_data;
4299 struct amd_ir_data *data;
4300 int i;
4301
4302 for (i = 0; i < nr_irqs; i++) {
4303 irq_data = irq_domain_get_irq_data(domain, virq + i);
4304 if (irq_data && irq_data->chip_data) {
4305 data = irq_data->chip_data;
4306 irte_info = &data->irq_2_irte;
4307 free_irte(irte_info->devid, irte_info->index);
4308 kfree(data->entry);
4309 kfree(data);
4310 }
4311 }
4312 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4313 }
4314
4315 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4316 struct amd_ir_data *ir_data,
4317 struct irq_2_irte *irte_info,
4318 struct irq_cfg *cfg);
4319
4320 static int irq_remapping_activate(struct irq_domain *domain,
4321 struct irq_data *irq_data, bool reserve)
4322 {
4323 struct amd_ir_data *data = irq_data->chip_data;
4324 struct irq_2_irte *irte_info = &data->irq_2_irte;
4325 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4326 struct irq_cfg *cfg = irqd_cfg(irq_data);
4327
4328 if (!iommu)
4329 return 0;
4330
4331 iommu->irte_ops->activate(data->entry, irte_info->devid,
4332 irte_info->index);
4333 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4334 return 0;
4335 }
4336
4337 static void irq_remapping_deactivate(struct irq_domain *domain,
4338 struct irq_data *irq_data)
4339 {
4340 struct amd_ir_data *data = irq_data->chip_data;
4341 struct irq_2_irte *irte_info = &data->irq_2_irte;
4342 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4343
4344 if (iommu)
4345 iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4346 irte_info->index);
4347 }
4348
4349 static const struct irq_domain_ops amd_ir_domain_ops = {
4350 .alloc = irq_remapping_alloc,
4351 .free = irq_remapping_free,
4352 .activate = irq_remapping_activate,
4353 .deactivate = irq_remapping_deactivate,
4354 };
4355
4356 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4357 {
4358 struct amd_iommu *iommu;
4359 struct amd_iommu_pi_data *pi_data = vcpu_info;
4360 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4361 struct amd_ir_data *ir_data = data->chip_data;
4362 struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
4363 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4364 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4365
4366 /* Note:
4367 * This device has never been set up for guest mode.
4368 * we should not modify the IRTE
4369 */
4370 if (!dev_data || !dev_data->use_vapic)
4371 return 0;
4372
4373 pi_data->ir_data = ir_data;
4374
4375 /* Note:
4376 * SVM tries to set up for VAPIC mode, but we are in
4377 * legacy mode. So, we force legacy mode instead.
4378 */
4379 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4380 pr_debug("%s: Fall back to using intr legacy remap\n",
4381 __func__);
4382 pi_data->is_guest_mode = false;
4383 }
4384
4385 iommu = amd_iommu_rlookup_table[irte_info->devid];
4386 if (iommu == NULL)
4387 return -EINVAL;
4388
4389 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4390 if (pi_data->is_guest_mode) {
4391 /* Setting */
4392 irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
4393 irte->hi.fields.vector = vcpu_pi_info->vector;
4394 irte->lo.fields_vapic.ga_log_intr = 1;
4395 irte->lo.fields_vapic.guest_mode = 1;
4396 irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;
4397
4398 ir_data->cached_ga_tag = pi_data->ga_tag;
4399 } else {
4400 /* Un-Setting */
4401 struct irq_cfg *cfg = irqd_cfg(data);
4402
4403 irte->hi.val = 0;
4404 irte->lo.val = 0;
4405 irte->hi.fields.vector = cfg->vector;
4406 irte->lo.fields_remap.guest_mode = 0;
4407 irte->lo.fields_remap.destination =
4408 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
4409 irte->hi.fields.destination =
4410 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4411 irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
4412 irte->lo.fields_remap.dm = apic->irq_dest_mode;
4413
4414 /*
4415 * This communicates the ga_tag back to the caller
4416 * so that it can do all the necessary clean up.
4417 */
4418 ir_data->cached_ga_tag = 0;
4419 }
4420
4421 return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
4422 }
4423
4424
4425 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4426 struct amd_ir_data *ir_data,
4427 struct irq_2_irte *irte_info,
4428 struct irq_cfg *cfg)
4429 {
4430
4431 /*
4432 * Atomically updates the IRTE with the new destination, vector
4433 * and flushes the interrupt entry cache.
4434 */
4435 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4436 irte_info->index, cfg->vector,
4437 cfg->dest_apicid);
4438 }
4439
4440 static int amd_ir_set_affinity(struct irq_data *data,
4441 const struct cpumask *mask, bool force)
4442 {
4443 struct amd_ir_data *ir_data = data->chip_data;
4444 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4445 struct irq_cfg *cfg = irqd_cfg(data);
4446 struct irq_data *parent = data->parent_data;
4447 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4448 int ret;
4449
4450 if (!iommu)
4451 return -ENODEV;
4452
4453 ret = parent->chip->irq_set_affinity(parent, mask, force);
4454 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4455 return ret;
4456
4457 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4458 /*
4459 * After this point, all the interrupts will start arriving
4460 * at the new destination. So, time to cleanup the previous
4461 * vector allocation.
4462 */
4463 send_cleanup_vector(cfg);
4464
4465 return IRQ_SET_MASK_OK_DONE;
4466 }
4467
4468 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4469 {
4470 struct amd_ir_data *ir_data = irq_data->chip_data;
4471
4472 *msg = ir_data->msi_entry;
4473 }
4474
4475 static struct irq_chip amd_ir_chip = {
4476 .name = "AMD-IR",
4477 .irq_ack = apic_ack_irq,
4478 .irq_set_affinity = amd_ir_set_affinity,
4479 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4480 .irq_compose_msi_msg = ir_compose_msi_msg,
4481 };
4482
4483 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4484 {
4485 struct fwnode_handle *fn;
4486
4487 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4488 if (!fn)
4489 return -ENOMEM;
4490 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4491 irq_domain_free_fwnode(fn);
4492 if (!iommu->ir_domain)
4493 return -ENOMEM;
4494
4495 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4496 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4497 "AMD-IR-MSI",
4498 iommu->index);
4499 return 0;
4500 }
4501
4502 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4503 {
4504 unsigned long flags;
4505 struct amd_iommu *iommu;
4506 struct irq_remap_table *table;
4507 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4508 int devid = ir_data->irq_2_irte.devid;
4509 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4510 struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4511
4512 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4513 !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4514 return 0;
4515
4516 iommu = amd_iommu_rlookup_table[devid];
4517 if (!iommu)
4518 return -ENODEV;
4519
4520 table = get_irq_table(devid);
4521 if (!table)
4522 return -ENODEV;
4523
4524 raw_spin_lock_irqsave(&table->lock, flags);
4525
4526 if (ref->lo.fields_vapic.guest_mode) {
4527 if (cpu >= 0) {
4528 ref->lo.fields_vapic.destination =
4529 APICID_TO_IRTE_DEST_LO(cpu);
4530 ref->hi.fields.destination =
4531 APICID_TO_IRTE_DEST_HI(cpu);
4532 }
4533 ref->lo.fields_vapic.is_run = is_run;
4534 barrier();
4535 }
4536
4537 raw_spin_unlock_irqrestore(&table->lock, flags);
4538
4539 iommu_flush_irt(iommu, devid);
4540 iommu_completion_wait(iommu);
4541 return 0;
4542 }
4543 EXPORT_SYMBOL(amd_iommu_update_ga);
4544 #endif