]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/iommu/amd_iommu_init.c
Merge tag 'nfsd-4.10' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-zesty-kernel.git] / drivers / iommu / amd_iommu_init.c
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/pci.h>
21 #include <linux/acpi.h>
22 #include <linux/list.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/interrupt.h>
27 #include <linux/msi.h>
28 #include <linux/amd-iommu.h>
29 #include <linux/export.h>
30 #include <linux/iommu.h>
31 #include <linux/kmemleak.h>
32 #include <asm/pci-direct.h>
33 #include <asm/iommu.h>
34 #include <asm/gart.h>
35 #include <asm/x86_init.h>
36 #include <asm/iommu_table.h>
37 #include <asm/io_apic.h>
38 #include <asm/irq_remapping.h>
39
40 #include "amd_iommu_proto.h"
41 #include "amd_iommu_types.h"
42 #include "irq_remapping.h"
43
44 /*
45 * definitions for the ACPI scanning code
46 */
47 #define IVRS_HEADER_LENGTH 48
48
49 #define ACPI_IVHD_TYPE_MAX_SUPPORTED 0x40
50 #define ACPI_IVMD_TYPE_ALL 0x20
51 #define ACPI_IVMD_TYPE 0x21
52 #define ACPI_IVMD_TYPE_RANGE 0x22
53
54 #define IVHD_DEV_ALL 0x01
55 #define IVHD_DEV_SELECT 0x02
56 #define IVHD_DEV_SELECT_RANGE_START 0x03
57 #define IVHD_DEV_RANGE_END 0x04
58 #define IVHD_DEV_ALIAS 0x42
59 #define IVHD_DEV_ALIAS_RANGE 0x43
60 #define IVHD_DEV_EXT_SELECT 0x46
61 #define IVHD_DEV_EXT_SELECT_RANGE 0x47
62 #define IVHD_DEV_SPECIAL 0x48
63 #define IVHD_DEV_ACPI_HID 0xf0
64
65 #define UID_NOT_PRESENT 0
66 #define UID_IS_INTEGER 1
67 #define UID_IS_CHARACTER 2
68
69 #define IVHD_SPECIAL_IOAPIC 1
70 #define IVHD_SPECIAL_HPET 2
71
72 #define IVHD_FLAG_HT_TUN_EN_MASK 0x01
73 #define IVHD_FLAG_PASSPW_EN_MASK 0x02
74 #define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
75 #define IVHD_FLAG_ISOC_EN_MASK 0x08
76
77 #define IVMD_FLAG_EXCL_RANGE 0x08
78 #define IVMD_FLAG_UNITY_MAP 0x01
79
80 #define ACPI_DEVFLAG_INITPASS 0x01
81 #define ACPI_DEVFLAG_EXTINT 0x02
82 #define ACPI_DEVFLAG_NMI 0x04
83 #define ACPI_DEVFLAG_SYSMGT1 0x10
84 #define ACPI_DEVFLAG_SYSMGT2 0x20
85 #define ACPI_DEVFLAG_LINT0 0x40
86 #define ACPI_DEVFLAG_LINT1 0x80
87 #define ACPI_DEVFLAG_ATSDIS 0x10000000
88
89 #define LOOP_TIMEOUT 100000
90 /*
91 * ACPI table definitions
92 *
93 * These data structures are laid over the table to parse the important values
94 * out of it.
95 */
96
97 /*
98 * structure describing one IOMMU in the ACPI table. Typically followed by one
99 * or more ivhd_entrys.
100 */
101 struct ivhd_header {
102 u8 type;
103 u8 flags;
104 u16 length;
105 u16 devid;
106 u16 cap_ptr;
107 u64 mmio_phys;
108 u16 pci_seg;
109 u16 info;
110 u32 efr_attr;
111
112 /* Following only valid on IVHD type 11h and 40h */
113 u64 efr_reg; /* Exact copy of MMIO_EXT_FEATURES */
114 u64 res;
115 } __attribute__((packed));
116
117 /*
118 * A device entry describing which devices a specific IOMMU translates and
119 * which requestor ids they use.
120 */
121 struct ivhd_entry {
122 u8 type;
123 u16 devid;
124 u8 flags;
125 u32 ext;
126 u32 hidh;
127 u64 cid;
128 u8 uidf;
129 u8 uidl;
130 u8 uid;
131 } __attribute__((packed));
132
133 /*
134 * An AMD IOMMU memory definition structure. It defines things like exclusion
135 * ranges for devices and regions that should be unity mapped.
136 */
137 struct ivmd_header {
138 u8 type;
139 u8 flags;
140 u16 length;
141 u16 devid;
142 u16 aux;
143 u64 resv;
144 u64 range_start;
145 u64 range_length;
146 } __attribute__((packed));
147
148 bool amd_iommu_dump;
149 bool amd_iommu_irq_remap __read_mostly;
150
151 int amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_VAPIC;
152
153 static bool amd_iommu_detected;
154 static bool __initdata amd_iommu_disabled;
155 static int amd_iommu_target_ivhd_type;
156
157 u16 amd_iommu_last_bdf; /* largest PCI device id we have
158 to handle */
159 LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
160 we find in ACPI */
161 bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
162
163 LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
164 system */
165
166 /* Array to assign indices to IOMMUs*/
167 struct amd_iommu *amd_iommus[MAX_IOMMUS];
168 int amd_iommus_present;
169
170 /* IOMMUs have a non-present cache? */
171 bool amd_iommu_np_cache __read_mostly;
172 bool amd_iommu_iotlb_sup __read_mostly = true;
173
174 u32 amd_iommu_max_pasid __read_mostly = ~0;
175
176 bool amd_iommu_v2_present __read_mostly;
177 static bool amd_iommu_pc_present __read_mostly;
178
179 bool amd_iommu_force_isolation __read_mostly;
180
181 /*
182 * List of protection domains - used during resume
183 */
184 LIST_HEAD(amd_iommu_pd_list);
185 spinlock_t amd_iommu_pd_lock;
186
187 /*
188 * Pointer to the device table which is shared by all AMD IOMMUs
189 * it is indexed by the PCI device id or the HT unit id and contains
190 * information about the domain the device belongs to as well as the
191 * page table root pointer.
192 */
193 struct dev_table_entry *amd_iommu_dev_table;
194
195 /*
196 * The alias table is a driver specific data structure which contains the
197 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
198 * More than one device can share the same requestor id.
199 */
200 u16 *amd_iommu_alias_table;
201
202 /*
203 * The rlookup table is used to find the IOMMU which is responsible
204 * for a specific device. It is also indexed by the PCI device id.
205 */
206 struct amd_iommu **amd_iommu_rlookup_table;
207
208 /*
209 * This table is used to find the irq remapping table for a given device id
210 * quickly.
211 */
212 struct irq_remap_table **irq_lookup_table;
213
214 /*
215 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
216 * to know which ones are already in use.
217 */
218 unsigned long *amd_iommu_pd_alloc_bitmap;
219
220 static u32 dev_table_size; /* size of the device table */
221 static u32 alias_table_size; /* size of the alias table */
222 static u32 rlookup_table_size; /* size if the rlookup table */
223
224 enum iommu_init_state {
225 IOMMU_START_STATE,
226 IOMMU_IVRS_DETECTED,
227 IOMMU_ACPI_FINISHED,
228 IOMMU_ENABLED,
229 IOMMU_PCI_INIT,
230 IOMMU_INTERRUPTS_EN,
231 IOMMU_DMA_OPS,
232 IOMMU_INITIALIZED,
233 IOMMU_NOT_FOUND,
234 IOMMU_INIT_ERROR,
235 };
236
237 /* Early ioapic and hpet maps from kernel command line */
238 #define EARLY_MAP_SIZE 4
239 static struct devid_map __initdata early_ioapic_map[EARLY_MAP_SIZE];
240 static struct devid_map __initdata early_hpet_map[EARLY_MAP_SIZE];
241 static struct acpihid_map_entry __initdata early_acpihid_map[EARLY_MAP_SIZE];
242
243 static int __initdata early_ioapic_map_size;
244 static int __initdata early_hpet_map_size;
245 static int __initdata early_acpihid_map_size;
246
247 static bool __initdata cmdline_maps;
248
249 static enum iommu_init_state init_state = IOMMU_START_STATE;
250
251 static int amd_iommu_enable_interrupts(void);
252 static int __init iommu_go_to_state(enum iommu_init_state state);
253 static void init_device_table_dma(void);
254
255 static int iommu_pc_get_set_reg_val(struct amd_iommu *iommu,
256 u8 bank, u8 cntr, u8 fxn,
257 u64 *value, bool is_write);
258
259 static inline void update_last_devid(u16 devid)
260 {
261 if (devid > amd_iommu_last_bdf)
262 amd_iommu_last_bdf = devid;
263 }
264
265 static inline unsigned long tbl_size(int entry_size)
266 {
267 unsigned shift = PAGE_SHIFT +
268 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
269
270 return 1UL << shift;
271 }
272
273 /* Access to l1 and l2 indexed register spaces */
274
275 static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
276 {
277 u32 val;
278
279 pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
280 pci_read_config_dword(iommu->dev, 0xfc, &val);
281 return val;
282 }
283
284 static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
285 {
286 pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
287 pci_write_config_dword(iommu->dev, 0xfc, val);
288 pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
289 }
290
291 static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
292 {
293 u32 val;
294
295 pci_write_config_dword(iommu->dev, 0xf0, address);
296 pci_read_config_dword(iommu->dev, 0xf4, &val);
297 return val;
298 }
299
300 static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
301 {
302 pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
303 pci_write_config_dword(iommu->dev, 0xf4, val);
304 }
305
306 /****************************************************************************
307 *
308 * AMD IOMMU MMIO register space handling functions
309 *
310 * These functions are used to program the IOMMU device registers in
311 * MMIO space required for that driver.
312 *
313 ****************************************************************************/
314
315 /*
316 * This function set the exclusion range in the IOMMU. DMA accesses to the
317 * exclusion range are passed through untranslated
318 */
319 static void iommu_set_exclusion_range(struct amd_iommu *iommu)
320 {
321 u64 start = iommu->exclusion_start & PAGE_MASK;
322 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
323 u64 entry;
324
325 if (!iommu->exclusion_start)
326 return;
327
328 entry = start | MMIO_EXCL_ENABLE_MASK;
329 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
330 &entry, sizeof(entry));
331
332 entry = limit;
333 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
334 &entry, sizeof(entry));
335 }
336
337 /* Programs the physical address of the device table into the IOMMU hardware */
338 static void iommu_set_device_table(struct amd_iommu *iommu)
339 {
340 u64 entry;
341
342 BUG_ON(iommu->mmio_base == NULL);
343
344 entry = virt_to_phys(amd_iommu_dev_table);
345 entry |= (dev_table_size >> 12) - 1;
346 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
347 &entry, sizeof(entry));
348 }
349
350 /* Generic functions to enable/disable certain features of the IOMMU. */
351 static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
352 {
353 u32 ctrl;
354
355 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
356 ctrl |= (1 << bit);
357 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
358 }
359
360 static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
361 {
362 u32 ctrl;
363
364 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
365 ctrl &= ~(1 << bit);
366 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
367 }
368
369 static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout)
370 {
371 u32 ctrl;
372
373 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
374 ctrl &= ~CTRL_INV_TO_MASK;
375 ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK;
376 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
377 }
378
379 /* Function to enable the hardware */
380 static void iommu_enable(struct amd_iommu *iommu)
381 {
382 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
383 }
384
385 static void iommu_disable(struct amd_iommu *iommu)
386 {
387 /* Disable command buffer */
388 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
389
390 /* Disable event logging and event interrupts */
391 iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
392 iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
393
394 /* Disable IOMMU GA_LOG */
395 iommu_feature_disable(iommu, CONTROL_GALOG_EN);
396 iommu_feature_disable(iommu, CONTROL_GAINT_EN);
397
398 /* Disable IOMMU hardware itself */
399 iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
400 }
401
402 /*
403 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
404 * the system has one.
405 */
406 static u8 __iomem * __init iommu_map_mmio_space(u64 address, u64 end)
407 {
408 if (!request_mem_region(address, end, "amd_iommu")) {
409 pr_err("AMD-Vi: Can not reserve memory region %llx-%llx for mmio\n",
410 address, end);
411 pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
412 return NULL;
413 }
414
415 return (u8 __iomem *)ioremap_nocache(address, end);
416 }
417
418 static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
419 {
420 if (iommu->mmio_base)
421 iounmap(iommu->mmio_base);
422 release_mem_region(iommu->mmio_phys, iommu->mmio_phys_end);
423 }
424
425 static inline u32 get_ivhd_header_size(struct ivhd_header *h)
426 {
427 u32 size = 0;
428
429 switch (h->type) {
430 case 0x10:
431 size = 24;
432 break;
433 case 0x11:
434 case 0x40:
435 size = 40;
436 break;
437 }
438 return size;
439 }
440
441 /****************************************************************************
442 *
443 * The functions below belong to the first pass of AMD IOMMU ACPI table
444 * parsing. In this pass we try to find out the highest device id this
445 * code has to handle. Upon this information the size of the shared data
446 * structures is determined later.
447 *
448 ****************************************************************************/
449
450 /*
451 * This function calculates the length of a given IVHD entry
452 */
453 static inline int ivhd_entry_length(u8 *ivhd)
454 {
455 u32 type = ((struct ivhd_entry *)ivhd)->type;
456
457 if (type < 0x80) {
458 return 0x04 << (*ivhd >> 6);
459 } else if (type == IVHD_DEV_ACPI_HID) {
460 /* For ACPI_HID, offset 21 is uid len */
461 return *((u8 *)ivhd + 21) + 22;
462 }
463 return 0;
464 }
465
466 /*
467 * After reading the highest device id from the IOMMU PCI capability header
468 * this function looks if there is a higher device id defined in the ACPI table
469 */
470 static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
471 {
472 u8 *p = (void *)h, *end = (void *)h;
473 struct ivhd_entry *dev;
474
475 u32 ivhd_size = get_ivhd_header_size(h);
476
477 if (!ivhd_size) {
478 pr_err("AMD-Vi: Unsupported IVHD type %#x\n", h->type);
479 return -EINVAL;
480 }
481
482 p += ivhd_size;
483 end += h->length;
484
485 while (p < end) {
486 dev = (struct ivhd_entry *)p;
487 switch (dev->type) {
488 case IVHD_DEV_ALL:
489 /* Use maximum BDF value for DEV_ALL */
490 update_last_devid(0xffff);
491 break;
492 case IVHD_DEV_SELECT:
493 case IVHD_DEV_RANGE_END:
494 case IVHD_DEV_ALIAS:
495 case IVHD_DEV_EXT_SELECT:
496 /* all the above subfield types refer to device ids */
497 update_last_devid(dev->devid);
498 break;
499 default:
500 break;
501 }
502 p += ivhd_entry_length(p);
503 }
504
505 WARN_ON(p != end);
506
507 return 0;
508 }
509
510 static int __init check_ivrs_checksum(struct acpi_table_header *table)
511 {
512 int i;
513 u8 checksum = 0, *p = (u8 *)table;
514
515 for (i = 0; i < table->length; ++i)
516 checksum += p[i];
517 if (checksum != 0) {
518 /* ACPI table corrupt */
519 pr_err(FW_BUG "AMD-Vi: IVRS invalid checksum\n");
520 return -ENODEV;
521 }
522
523 return 0;
524 }
525
526 /*
527 * Iterate over all IVHD entries in the ACPI table and find the highest device
528 * id which we need to handle. This is the first of three functions which parse
529 * the ACPI table. So we check the checksum here.
530 */
531 static int __init find_last_devid_acpi(struct acpi_table_header *table)
532 {
533 u8 *p = (u8 *)table, *end = (u8 *)table;
534 struct ivhd_header *h;
535
536 p += IVRS_HEADER_LENGTH;
537
538 end += table->length;
539 while (p < end) {
540 h = (struct ivhd_header *)p;
541 if (h->type == amd_iommu_target_ivhd_type) {
542 int ret = find_last_devid_from_ivhd(h);
543
544 if (ret)
545 return ret;
546 }
547 p += h->length;
548 }
549 WARN_ON(p != end);
550
551 return 0;
552 }
553
554 /****************************************************************************
555 *
556 * The following functions belong to the code path which parses the ACPI table
557 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
558 * data structures, initialize the device/alias/rlookup table and also
559 * basically initialize the hardware.
560 *
561 ****************************************************************************/
562
563 /*
564 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
565 * write commands to that buffer later and the IOMMU will execute them
566 * asynchronously
567 */
568 static int __init alloc_command_buffer(struct amd_iommu *iommu)
569 {
570 iommu->cmd_buf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
571 get_order(CMD_BUFFER_SIZE));
572
573 return iommu->cmd_buf ? 0 : -ENOMEM;
574 }
575
576 /*
577 * This function resets the command buffer if the IOMMU stopped fetching
578 * commands from it.
579 */
580 void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
581 {
582 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
583
584 writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
585 writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
586
587 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
588 }
589
590 /*
591 * This function writes the command buffer address to the hardware and
592 * enables it.
593 */
594 static void iommu_enable_command_buffer(struct amd_iommu *iommu)
595 {
596 u64 entry;
597
598 BUG_ON(iommu->cmd_buf == NULL);
599
600 entry = (u64)virt_to_phys(iommu->cmd_buf);
601 entry |= MMIO_CMD_SIZE_512;
602
603 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
604 &entry, sizeof(entry));
605
606 amd_iommu_reset_cmd_buffer(iommu);
607 }
608
609 static void __init free_command_buffer(struct amd_iommu *iommu)
610 {
611 free_pages((unsigned long)iommu->cmd_buf, get_order(CMD_BUFFER_SIZE));
612 }
613
614 /* allocates the memory where the IOMMU will log its events to */
615 static int __init alloc_event_buffer(struct amd_iommu *iommu)
616 {
617 iommu->evt_buf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
618 get_order(EVT_BUFFER_SIZE));
619
620 return iommu->evt_buf ? 0 : -ENOMEM;
621 }
622
623 static void iommu_enable_event_buffer(struct amd_iommu *iommu)
624 {
625 u64 entry;
626
627 BUG_ON(iommu->evt_buf == NULL);
628
629 entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
630
631 memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
632 &entry, sizeof(entry));
633
634 /* set head and tail to zero manually */
635 writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
636 writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
637
638 iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
639 }
640
641 static void __init free_event_buffer(struct amd_iommu *iommu)
642 {
643 free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
644 }
645
646 /* allocates the memory where the IOMMU will log its events to */
647 static int __init alloc_ppr_log(struct amd_iommu *iommu)
648 {
649 iommu->ppr_log = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
650 get_order(PPR_LOG_SIZE));
651
652 return iommu->ppr_log ? 0 : -ENOMEM;
653 }
654
655 static void iommu_enable_ppr_log(struct amd_iommu *iommu)
656 {
657 u64 entry;
658
659 if (iommu->ppr_log == NULL)
660 return;
661
662 entry = (u64)virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512;
663
664 memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET,
665 &entry, sizeof(entry));
666
667 /* set head and tail to zero manually */
668 writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
669 writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
670
671 iommu_feature_enable(iommu, CONTROL_PPFLOG_EN);
672 iommu_feature_enable(iommu, CONTROL_PPR_EN);
673 }
674
675 static void __init free_ppr_log(struct amd_iommu *iommu)
676 {
677 if (iommu->ppr_log == NULL)
678 return;
679
680 free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE));
681 }
682
683 static void free_ga_log(struct amd_iommu *iommu)
684 {
685 #ifdef CONFIG_IRQ_REMAP
686 if (iommu->ga_log)
687 free_pages((unsigned long)iommu->ga_log,
688 get_order(GA_LOG_SIZE));
689 if (iommu->ga_log_tail)
690 free_pages((unsigned long)iommu->ga_log_tail,
691 get_order(8));
692 #endif
693 }
694
695 static int iommu_ga_log_enable(struct amd_iommu *iommu)
696 {
697 #ifdef CONFIG_IRQ_REMAP
698 u32 status, i;
699
700 if (!iommu->ga_log)
701 return -EINVAL;
702
703 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
704
705 /* Check if already running */
706 if (status & (MMIO_STATUS_GALOG_RUN_MASK))
707 return 0;
708
709 iommu_feature_enable(iommu, CONTROL_GAINT_EN);
710 iommu_feature_enable(iommu, CONTROL_GALOG_EN);
711
712 for (i = 0; i < LOOP_TIMEOUT; ++i) {
713 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
714 if (status & (MMIO_STATUS_GALOG_RUN_MASK))
715 break;
716 }
717
718 if (i >= LOOP_TIMEOUT)
719 return -EINVAL;
720 #endif /* CONFIG_IRQ_REMAP */
721 return 0;
722 }
723
724 #ifdef CONFIG_IRQ_REMAP
725 static int iommu_init_ga_log(struct amd_iommu *iommu)
726 {
727 u64 entry;
728
729 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
730 return 0;
731
732 iommu->ga_log = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
733 get_order(GA_LOG_SIZE));
734 if (!iommu->ga_log)
735 goto err_out;
736
737 iommu->ga_log_tail = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
738 get_order(8));
739 if (!iommu->ga_log_tail)
740 goto err_out;
741
742 entry = (u64)virt_to_phys(iommu->ga_log) | GA_LOG_SIZE_512;
743 memcpy_toio(iommu->mmio_base + MMIO_GA_LOG_BASE_OFFSET,
744 &entry, sizeof(entry));
745 entry = ((u64)virt_to_phys(iommu->ga_log) & 0xFFFFFFFFFFFFFULL) & ~7ULL;
746 memcpy_toio(iommu->mmio_base + MMIO_GA_LOG_TAIL_OFFSET,
747 &entry, sizeof(entry));
748 writel(0x00, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
749 writel(0x00, iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
750
751 return 0;
752 err_out:
753 free_ga_log(iommu);
754 return -EINVAL;
755 }
756 #endif /* CONFIG_IRQ_REMAP */
757
758 static int iommu_init_ga(struct amd_iommu *iommu)
759 {
760 int ret = 0;
761
762 #ifdef CONFIG_IRQ_REMAP
763 /* Note: We have already checked GASup from IVRS table.
764 * Now, we need to make sure that GAMSup is set.
765 */
766 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
767 !iommu_feature(iommu, FEATURE_GAM_VAPIC))
768 amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA;
769
770 ret = iommu_init_ga_log(iommu);
771 #endif /* CONFIG_IRQ_REMAP */
772
773 return ret;
774 }
775
776 static void iommu_enable_gt(struct amd_iommu *iommu)
777 {
778 if (!iommu_feature(iommu, FEATURE_GT))
779 return;
780
781 iommu_feature_enable(iommu, CONTROL_GT_EN);
782 }
783
784 /* sets a specific bit in the device table entry. */
785 static void set_dev_entry_bit(u16 devid, u8 bit)
786 {
787 int i = (bit >> 6) & 0x03;
788 int _bit = bit & 0x3f;
789
790 amd_iommu_dev_table[devid].data[i] |= (1UL << _bit);
791 }
792
793 static int get_dev_entry_bit(u16 devid, u8 bit)
794 {
795 int i = (bit >> 6) & 0x03;
796 int _bit = bit & 0x3f;
797
798 return (amd_iommu_dev_table[devid].data[i] & (1UL << _bit)) >> _bit;
799 }
800
801
802 void amd_iommu_apply_erratum_63(u16 devid)
803 {
804 int sysmgt;
805
806 sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
807 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);
808
809 if (sysmgt == 0x01)
810 set_dev_entry_bit(devid, DEV_ENTRY_IW);
811 }
812
813 /* Writes the specific IOMMU for a device into the rlookup table */
814 static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
815 {
816 amd_iommu_rlookup_table[devid] = iommu;
817 }
818
819 /*
820 * This function takes the device specific flags read from the ACPI
821 * table and sets up the device table entry with that information
822 */
823 static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
824 u16 devid, u32 flags, u32 ext_flags)
825 {
826 if (flags & ACPI_DEVFLAG_INITPASS)
827 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
828 if (flags & ACPI_DEVFLAG_EXTINT)
829 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
830 if (flags & ACPI_DEVFLAG_NMI)
831 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
832 if (flags & ACPI_DEVFLAG_SYSMGT1)
833 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
834 if (flags & ACPI_DEVFLAG_SYSMGT2)
835 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
836 if (flags & ACPI_DEVFLAG_LINT0)
837 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
838 if (flags & ACPI_DEVFLAG_LINT1)
839 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
840
841 amd_iommu_apply_erratum_63(devid);
842
843 set_iommu_for_device(iommu, devid);
844 }
845
846 static int __init add_special_device(u8 type, u8 id, u16 *devid, bool cmd_line)
847 {
848 struct devid_map *entry;
849 struct list_head *list;
850
851 if (type == IVHD_SPECIAL_IOAPIC)
852 list = &ioapic_map;
853 else if (type == IVHD_SPECIAL_HPET)
854 list = &hpet_map;
855 else
856 return -EINVAL;
857
858 list_for_each_entry(entry, list, list) {
859 if (!(entry->id == id && entry->cmd_line))
860 continue;
861
862 pr_info("AMD-Vi: Command-line override present for %s id %d - ignoring\n",
863 type == IVHD_SPECIAL_IOAPIC ? "IOAPIC" : "HPET", id);
864
865 *devid = entry->devid;
866
867 return 0;
868 }
869
870 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
871 if (!entry)
872 return -ENOMEM;
873
874 entry->id = id;
875 entry->devid = *devid;
876 entry->cmd_line = cmd_line;
877
878 list_add_tail(&entry->list, list);
879
880 return 0;
881 }
882
883 static int __init add_acpi_hid_device(u8 *hid, u8 *uid, u16 *devid,
884 bool cmd_line)
885 {
886 struct acpihid_map_entry *entry;
887 struct list_head *list = &acpihid_map;
888
889 list_for_each_entry(entry, list, list) {
890 if (strcmp(entry->hid, hid) ||
891 (*uid && *entry->uid && strcmp(entry->uid, uid)) ||
892 !entry->cmd_line)
893 continue;
894
895 pr_info("AMD-Vi: Command-line override for hid:%s uid:%s\n",
896 hid, uid);
897 *devid = entry->devid;
898 return 0;
899 }
900
901 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
902 if (!entry)
903 return -ENOMEM;
904
905 memcpy(entry->uid, uid, strlen(uid));
906 memcpy(entry->hid, hid, strlen(hid));
907 entry->devid = *devid;
908 entry->cmd_line = cmd_line;
909 entry->root_devid = (entry->devid & (~0x7));
910
911 pr_info("AMD-Vi:%s, add hid:%s, uid:%s, rdevid:%d\n",
912 entry->cmd_line ? "cmd" : "ivrs",
913 entry->hid, entry->uid, entry->root_devid);
914
915 list_add_tail(&entry->list, list);
916 return 0;
917 }
918
919 static int __init add_early_maps(void)
920 {
921 int i, ret;
922
923 for (i = 0; i < early_ioapic_map_size; ++i) {
924 ret = add_special_device(IVHD_SPECIAL_IOAPIC,
925 early_ioapic_map[i].id,
926 &early_ioapic_map[i].devid,
927 early_ioapic_map[i].cmd_line);
928 if (ret)
929 return ret;
930 }
931
932 for (i = 0; i < early_hpet_map_size; ++i) {
933 ret = add_special_device(IVHD_SPECIAL_HPET,
934 early_hpet_map[i].id,
935 &early_hpet_map[i].devid,
936 early_hpet_map[i].cmd_line);
937 if (ret)
938 return ret;
939 }
940
941 for (i = 0; i < early_acpihid_map_size; ++i) {
942 ret = add_acpi_hid_device(early_acpihid_map[i].hid,
943 early_acpihid_map[i].uid,
944 &early_acpihid_map[i].devid,
945 early_acpihid_map[i].cmd_line);
946 if (ret)
947 return ret;
948 }
949
950 return 0;
951 }
952
953 /*
954 * Reads the device exclusion range from ACPI and initializes the IOMMU with
955 * it
956 */
957 static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
958 {
959 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
960
961 if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
962 return;
963
964 if (iommu) {
965 /*
966 * We only can configure exclusion ranges per IOMMU, not
967 * per device. But we can enable the exclusion range per
968 * device. This is done here
969 */
970 set_dev_entry_bit(devid, DEV_ENTRY_EX);
971 iommu->exclusion_start = m->range_start;
972 iommu->exclusion_length = m->range_length;
973 }
974 }
975
976 /*
977 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
978 * initializes the hardware and our data structures with it.
979 */
980 static int __init init_iommu_from_acpi(struct amd_iommu *iommu,
981 struct ivhd_header *h)
982 {
983 u8 *p = (u8 *)h;
984 u8 *end = p, flags = 0;
985 u16 devid = 0, devid_start = 0, devid_to = 0;
986 u32 dev_i, ext_flags = 0;
987 bool alias = false;
988 struct ivhd_entry *e;
989 u32 ivhd_size;
990 int ret;
991
992
993 ret = add_early_maps();
994 if (ret)
995 return ret;
996
997 /*
998 * First save the recommended feature enable bits from ACPI
999 */
1000 iommu->acpi_flags = h->flags;
1001
1002 /*
1003 * Done. Now parse the device entries
1004 */
1005 ivhd_size = get_ivhd_header_size(h);
1006 if (!ivhd_size) {
1007 pr_err("AMD-Vi: Unsupported IVHD type %#x\n", h->type);
1008 return -EINVAL;
1009 }
1010
1011 p += ivhd_size;
1012
1013 end += h->length;
1014
1015
1016 while (p < end) {
1017 e = (struct ivhd_entry *)p;
1018 switch (e->type) {
1019 case IVHD_DEV_ALL:
1020
1021 DUMP_printk(" DEV_ALL\t\t\tflags: %02x\n", e->flags);
1022
1023 for (dev_i = 0; dev_i <= amd_iommu_last_bdf; ++dev_i)
1024 set_dev_entry_from_acpi(iommu, dev_i, e->flags, 0);
1025 break;
1026 case IVHD_DEV_SELECT:
1027
1028 DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
1029 "flags: %02x\n",
1030 PCI_BUS_NUM(e->devid),
1031 PCI_SLOT(e->devid),
1032 PCI_FUNC(e->devid),
1033 e->flags);
1034
1035 devid = e->devid;
1036 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
1037 break;
1038 case IVHD_DEV_SELECT_RANGE_START:
1039
1040 DUMP_printk(" DEV_SELECT_RANGE_START\t "
1041 "devid: %02x:%02x.%x flags: %02x\n",
1042 PCI_BUS_NUM(e->devid),
1043 PCI_SLOT(e->devid),
1044 PCI_FUNC(e->devid),
1045 e->flags);
1046
1047 devid_start = e->devid;
1048 flags = e->flags;
1049 ext_flags = 0;
1050 alias = false;
1051 break;
1052 case IVHD_DEV_ALIAS:
1053
1054 DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
1055 "flags: %02x devid_to: %02x:%02x.%x\n",
1056 PCI_BUS_NUM(e->devid),
1057 PCI_SLOT(e->devid),
1058 PCI_FUNC(e->devid),
1059 e->flags,
1060 PCI_BUS_NUM(e->ext >> 8),
1061 PCI_SLOT(e->ext >> 8),
1062 PCI_FUNC(e->ext >> 8));
1063
1064 devid = e->devid;
1065 devid_to = e->ext >> 8;
1066 set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
1067 set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
1068 amd_iommu_alias_table[devid] = devid_to;
1069 break;
1070 case IVHD_DEV_ALIAS_RANGE:
1071
1072 DUMP_printk(" DEV_ALIAS_RANGE\t\t "
1073 "devid: %02x:%02x.%x flags: %02x "
1074 "devid_to: %02x:%02x.%x\n",
1075 PCI_BUS_NUM(e->devid),
1076 PCI_SLOT(e->devid),
1077 PCI_FUNC(e->devid),
1078 e->flags,
1079 PCI_BUS_NUM(e->ext >> 8),
1080 PCI_SLOT(e->ext >> 8),
1081 PCI_FUNC(e->ext >> 8));
1082
1083 devid_start = e->devid;
1084 flags = e->flags;
1085 devid_to = e->ext >> 8;
1086 ext_flags = 0;
1087 alias = true;
1088 break;
1089 case IVHD_DEV_EXT_SELECT:
1090
1091 DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
1092 "flags: %02x ext: %08x\n",
1093 PCI_BUS_NUM(e->devid),
1094 PCI_SLOT(e->devid),
1095 PCI_FUNC(e->devid),
1096 e->flags, e->ext);
1097
1098 devid = e->devid;
1099 set_dev_entry_from_acpi(iommu, devid, e->flags,
1100 e->ext);
1101 break;
1102 case IVHD_DEV_EXT_SELECT_RANGE:
1103
1104 DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
1105 "%02x:%02x.%x flags: %02x ext: %08x\n",
1106 PCI_BUS_NUM(e->devid),
1107 PCI_SLOT(e->devid),
1108 PCI_FUNC(e->devid),
1109 e->flags, e->ext);
1110
1111 devid_start = e->devid;
1112 flags = e->flags;
1113 ext_flags = e->ext;
1114 alias = false;
1115 break;
1116 case IVHD_DEV_RANGE_END:
1117
1118 DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
1119 PCI_BUS_NUM(e->devid),
1120 PCI_SLOT(e->devid),
1121 PCI_FUNC(e->devid));
1122
1123 devid = e->devid;
1124 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
1125 if (alias) {
1126 amd_iommu_alias_table[dev_i] = devid_to;
1127 set_dev_entry_from_acpi(iommu,
1128 devid_to, flags, ext_flags);
1129 }
1130 set_dev_entry_from_acpi(iommu, dev_i,
1131 flags, ext_flags);
1132 }
1133 break;
1134 case IVHD_DEV_SPECIAL: {
1135 u8 handle, type;
1136 const char *var;
1137 u16 devid;
1138 int ret;
1139
1140 handle = e->ext & 0xff;
1141 devid = (e->ext >> 8) & 0xffff;
1142 type = (e->ext >> 24) & 0xff;
1143
1144 if (type == IVHD_SPECIAL_IOAPIC)
1145 var = "IOAPIC";
1146 else if (type == IVHD_SPECIAL_HPET)
1147 var = "HPET";
1148 else
1149 var = "UNKNOWN";
1150
1151 DUMP_printk(" DEV_SPECIAL(%s[%d])\t\tdevid: %02x:%02x.%x\n",
1152 var, (int)handle,
1153 PCI_BUS_NUM(devid),
1154 PCI_SLOT(devid),
1155 PCI_FUNC(devid));
1156
1157 ret = add_special_device(type, handle, &devid, false);
1158 if (ret)
1159 return ret;
1160
1161 /*
1162 * add_special_device might update the devid in case a
1163 * command-line override is present. So call
1164 * set_dev_entry_from_acpi after add_special_device.
1165 */
1166 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
1167
1168 break;
1169 }
1170 case IVHD_DEV_ACPI_HID: {
1171 u16 devid;
1172 u8 hid[ACPIHID_HID_LEN] = {0};
1173 u8 uid[ACPIHID_UID_LEN] = {0};
1174 int ret;
1175
1176 if (h->type != 0x40) {
1177 pr_err(FW_BUG "Invalid IVHD device type %#x\n",
1178 e->type);
1179 break;
1180 }
1181
1182 memcpy(hid, (u8 *)(&e->ext), ACPIHID_HID_LEN - 1);
1183 hid[ACPIHID_HID_LEN - 1] = '\0';
1184
1185 if (!(*hid)) {
1186 pr_err(FW_BUG "Invalid HID.\n");
1187 break;
1188 }
1189
1190 switch (e->uidf) {
1191 case UID_NOT_PRESENT:
1192
1193 if (e->uidl != 0)
1194 pr_warn(FW_BUG "Invalid UID length.\n");
1195
1196 break;
1197 case UID_IS_INTEGER:
1198
1199 sprintf(uid, "%d", e->uid);
1200
1201 break;
1202 case UID_IS_CHARACTER:
1203
1204 memcpy(uid, (u8 *)(&e->uid), ACPIHID_UID_LEN - 1);
1205 uid[ACPIHID_UID_LEN - 1] = '\0';
1206
1207 break;
1208 default:
1209 break;
1210 }
1211
1212 devid = e->devid;
1213 DUMP_printk(" DEV_ACPI_HID(%s[%s])\t\tdevid: %02x:%02x.%x\n",
1214 hid, uid,
1215 PCI_BUS_NUM(devid),
1216 PCI_SLOT(devid),
1217 PCI_FUNC(devid));
1218
1219 flags = e->flags;
1220
1221 ret = add_acpi_hid_device(hid, uid, &devid, false);
1222 if (ret)
1223 return ret;
1224
1225 /*
1226 * add_special_device might update the devid in case a
1227 * command-line override is present. So call
1228 * set_dev_entry_from_acpi after add_special_device.
1229 */
1230 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
1231
1232 break;
1233 }
1234 default:
1235 break;
1236 }
1237
1238 p += ivhd_entry_length(p);
1239 }
1240
1241 return 0;
1242 }
1243
1244 static void __init free_iommu_one(struct amd_iommu *iommu)
1245 {
1246 free_command_buffer(iommu);
1247 free_event_buffer(iommu);
1248 free_ppr_log(iommu);
1249 free_ga_log(iommu);
1250 iommu_unmap_mmio_space(iommu);
1251 }
1252
1253 static void __init free_iommu_all(void)
1254 {
1255 struct amd_iommu *iommu, *next;
1256
1257 for_each_iommu_safe(iommu, next) {
1258 list_del(&iommu->list);
1259 free_iommu_one(iommu);
1260 kfree(iommu);
1261 }
1262 }
1263
1264 /*
1265 * Family15h Model 10h-1fh erratum 746 (IOMMU Logging May Stall Translations)
1266 * Workaround:
1267 * BIOS should disable L2B micellaneous clock gating by setting
1268 * L2_L2B_CK_GATE_CONTROL[CKGateL2BMiscDisable](D0F2xF4_x90[2]) = 1b
1269 */
1270 static void amd_iommu_erratum_746_workaround(struct amd_iommu *iommu)
1271 {
1272 u32 value;
1273
1274 if ((boot_cpu_data.x86 != 0x15) ||
1275 (boot_cpu_data.x86_model < 0x10) ||
1276 (boot_cpu_data.x86_model > 0x1f))
1277 return;
1278
1279 pci_write_config_dword(iommu->dev, 0xf0, 0x90);
1280 pci_read_config_dword(iommu->dev, 0xf4, &value);
1281
1282 if (value & BIT(2))
1283 return;
1284
1285 /* Select NB indirect register 0x90 and enable writing */
1286 pci_write_config_dword(iommu->dev, 0xf0, 0x90 | (1 << 8));
1287
1288 pci_write_config_dword(iommu->dev, 0xf4, value | 0x4);
1289 pr_info("AMD-Vi: Applying erratum 746 workaround for IOMMU at %s\n",
1290 dev_name(&iommu->dev->dev));
1291
1292 /* Clear the enable writing bit */
1293 pci_write_config_dword(iommu->dev, 0xf0, 0x90);
1294 }
1295
1296 /*
1297 * Family15h Model 30h-3fh (IOMMU Mishandles ATS Write Permission)
1298 * Workaround:
1299 * BIOS should enable ATS write permission check by setting
1300 * L2_DEBUG_3[AtsIgnoreIWDis](D0F2xF4_x47[0]) = 1b
1301 */
1302 static void amd_iommu_ats_write_check_workaround(struct amd_iommu *iommu)
1303 {
1304 u32 value;
1305
1306 if ((boot_cpu_data.x86 != 0x15) ||
1307 (boot_cpu_data.x86_model < 0x30) ||
1308 (boot_cpu_data.x86_model > 0x3f))
1309 return;
1310
1311 /* Test L2_DEBUG_3[AtsIgnoreIWDis] == 1 */
1312 value = iommu_read_l2(iommu, 0x47);
1313
1314 if (value & BIT(0))
1315 return;
1316
1317 /* Set L2_DEBUG_3[AtsIgnoreIWDis] = 1 */
1318 iommu_write_l2(iommu, 0x47, value | BIT(0));
1319
1320 pr_info("AMD-Vi: Applying ATS write check workaround for IOMMU at %s\n",
1321 dev_name(&iommu->dev->dev));
1322 }
1323
1324 /*
1325 * This function clues the initialization function for one IOMMU
1326 * together and also allocates the command buffer and programs the
1327 * hardware. It does NOT enable the IOMMU. This is done afterwards.
1328 */
1329 static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
1330 {
1331 int ret;
1332
1333 spin_lock_init(&iommu->lock);
1334
1335 /* Add IOMMU to internal data structures */
1336 list_add_tail(&iommu->list, &amd_iommu_list);
1337 iommu->index = amd_iommus_present++;
1338
1339 if (unlikely(iommu->index >= MAX_IOMMUS)) {
1340 WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
1341 return -ENOSYS;
1342 }
1343
1344 /* Index is fine - add IOMMU to the array */
1345 amd_iommus[iommu->index] = iommu;
1346
1347 /*
1348 * Copy data from ACPI table entry to the iommu struct
1349 */
1350 iommu->devid = h->devid;
1351 iommu->cap_ptr = h->cap_ptr;
1352 iommu->pci_seg = h->pci_seg;
1353 iommu->mmio_phys = h->mmio_phys;
1354
1355 switch (h->type) {
1356 case 0x10:
1357 /* Check if IVHD EFR contains proper max banks/counters */
1358 if ((h->efr_attr != 0) &&
1359 ((h->efr_attr & (0xF << 13)) != 0) &&
1360 ((h->efr_attr & (0x3F << 17)) != 0))
1361 iommu->mmio_phys_end = MMIO_REG_END_OFFSET;
1362 else
1363 iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET;
1364 if (((h->efr_attr & (0x1 << IOMMU_FEAT_GASUP_SHIFT)) == 0))
1365 amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY;
1366 break;
1367 case 0x11:
1368 case 0x40:
1369 if (h->efr_reg & (1 << 9))
1370 iommu->mmio_phys_end = MMIO_REG_END_OFFSET;
1371 else
1372 iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET;
1373 if (((h->efr_reg & (0x1 << IOMMU_EFR_GASUP_SHIFT)) == 0))
1374 amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY;
1375 break;
1376 default:
1377 return -EINVAL;
1378 }
1379
1380 iommu->mmio_base = iommu_map_mmio_space(iommu->mmio_phys,
1381 iommu->mmio_phys_end);
1382 if (!iommu->mmio_base)
1383 return -ENOMEM;
1384
1385 if (alloc_command_buffer(iommu))
1386 return -ENOMEM;
1387
1388 if (alloc_event_buffer(iommu))
1389 return -ENOMEM;
1390
1391 iommu->int_enabled = false;
1392
1393 ret = init_iommu_from_acpi(iommu, h);
1394 if (ret)
1395 return ret;
1396
1397 ret = amd_iommu_create_irq_domain(iommu);
1398 if (ret)
1399 return ret;
1400
1401 /*
1402 * Make sure IOMMU is not considered to translate itself. The IVRS
1403 * table tells us so, but this is a lie!
1404 */
1405 amd_iommu_rlookup_table[iommu->devid] = NULL;
1406
1407 return 0;
1408 }
1409
1410 /**
1411 * get_highest_supported_ivhd_type - Look up the appropriate IVHD type
1412 * @ivrs Pointer to the IVRS header
1413 *
1414 * This function search through all IVDB of the maximum supported IVHD
1415 */
1416 static u8 get_highest_supported_ivhd_type(struct acpi_table_header *ivrs)
1417 {
1418 u8 *base = (u8 *)ivrs;
1419 struct ivhd_header *ivhd = (struct ivhd_header *)
1420 (base + IVRS_HEADER_LENGTH);
1421 u8 last_type = ivhd->type;
1422 u16 devid = ivhd->devid;
1423
1424 while (((u8 *)ivhd - base < ivrs->length) &&
1425 (ivhd->type <= ACPI_IVHD_TYPE_MAX_SUPPORTED)) {
1426 u8 *p = (u8 *) ivhd;
1427
1428 if (ivhd->devid == devid)
1429 last_type = ivhd->type;
1430 ivhd = (struct ivhd_header *)(p + ivhd->length);
1431 }
1432
1433 return last_type;
1434 }
1435
1436 /*
1437 * Iterates over all IOMMU entries in the ACPI table, allocates the
1438 * IOMMU structure and initializes it with init_iommu_one()
1439 */
1440 static int __init init_iommu_all(struct acpi_table_header *table)
1441 {
1442 u8 *p = (u8 *)table, *end = (u8 *)table;
1443 struct ivhd_header *h;
1444 struct amd_iommu *iommu;
1445 int ret;
1446
1447 end += table->length;
1448 p += IVRS_HEADER_LENGTH;
1449
1450 while (p < end) {
1451 h = (struct ivhd_header *)p;
1452 if (*p == amd_iommu_target_ivhd_type) {
1453
1454 DUMP_printk("device: %02x:%02x.%01x cap: %04x "
1455 "seg: %d flags: %01x info %04x\n",
1456 PCI_BUS_NUM(h->devid), PCI_SLOT(h->devid),
1457 PCI_FUNC(h->devid), h->cap_ptr,
1458 h->pci_seg, h->flags, h->info);
1459 DUMP_printk(" mmio-addr: %016llx\n",
1460 h->mmio_phys);
1461
1462 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
1463 if (iommu == NULL)
1464 return -ENOMEM;
1465
1466 ret = init_iommu_one(iommu, h);
1467 if (ret)
1468 return ret;
1469 }
1470 p += h->length;
1471
1472 }
1473 WARN_ON(p != end);
1474
1475 return 0;
1476 }
1477
1478
1479 static void init_iommu_perf_ctr(struct amd_iommu *iommu)
1480 {
1481 u64 val = 0xabcd, val2 = 0;
1482
1483 if (!iommu_feature(iommu, FEATURE_PC))
1484 return;
1485
1486 amd_iommu_pc_present = true;
1487
1488 /* Check if the performance counters can be written to */
1489 if ((0 != iommu_pc_get_set_reg_val(iommu, 0, 0, 0, &val, true)) ||
1490 (0 != iommu_pc_get_set_reg_val(iommu, 0, 0, 0, &val2, false)) ||
1491 (val != val2)) {
1492 pr_err("AMD-Vi: Unable to write to IOMMU perf counter.\n");
1493 amd_iommu_pc_present = false;
1494 return;
1495 }
1496
1497 pr_info("AMD-Vi: IOMMU performance counters supported\n");
1498
1499 val = readl(iommu->mmio_base + MMIO_CNTR_CONF_OFFSET);
1500 iommu->max_banks = (u8) ((val >> 12) & 0x3f);
1501 iommu->max_counters = (u8) ((val >> 7) & 0xf);
1502 }
1503
1504 static ssize_t amd_iommu_show_cap(struct device *dev,
1505 struct device_attribute *attr,
1506 char *buf)
1507 {
1508 struct amd_iommu *iommu = dev_get_drvdata(dev);
1509 return sprintf(buf, "%x\n", iommu->cap);
1510 }
1511 static DEVICE_ATTR(cap, S_IRUGO, amd_iommu_show_cap, NULL);
1512
1513 static ssize_t amd_iommu_show_features(struct device *dev,
1514 struct device_attribute *attr,
1515 char *buf)
1516 {
1517 struct amd_iommu *iommu = dev_get_drvdata(dev);
1518 return sprintf(buf, "%llx\n", iommu->features);
1519 }
1520 static DEVICE_ATTR(features, S_IRUGO, amd_iommu_show_features, NULL);
1521
1522 static struct attribute *amd_iommu_attrs[] = {
1523 &dev_attr_cap.attr,
1524 &dev_attr_features.attr,
1525 NULL,
1526 };
1527
1528 static struct attribute_group amd_iommu_group = {
1529 .name = "amd-iommu",
1530 .attrs = amd_iommu_attrs,
1531 };
1532
1533 static const struct attribute_group *amd_iommu_groups[] = {
1534 &amd_iommu_group,
1535 NULL,
1536 };
1537
1538 static int iommu_init_pci(struct amd_iommu *iommu)
1539 {
1540 int cap_ptr = iommu->cap_ptr;
1541 u32 range, misc, low, high;
1542 int ret;
1543
1544 iommu->dev = pci_get_bus_and_slot(PCI_BUS_NUM(iommu->devid),
1545 iommu->devid & 0xff);
1546 if (!iommu->dev)
1547 return -ENODEV;
1548
1549 /* Prevent binding other PCI device drivers to IOMMU devices */
1550 iommu->dev->match_driver = false;
1551
1552 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
1553 &iommu->cap);
1554 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
1555 &range);
1556 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
1557 &misc);
1558
1559 if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB)))
1560 amd_iommu_iotlb_sup = false;
1561
1562 /* read extended feature bits */
1563 low = readl(iommu->mmio_base + MMIO_EXT_FEATURES);
1564 high = readl(iommu->mmio_base + MMIO_EXT_FEATURES + 4);
1565
1566 iommu->features = ((u64)high << 32) | low;
1567
1568 if (iommu_feature(iommu, FEATURE_GT)) {
1569 int glxval;
1570 u32 max_pasid;
1571 u64 pasmax;
1572
1573 pasmax = iommu->features & FEATURE_PASID_MASK;
1574 pasmax >>= FEATURE_PASID_SHIFT;
1575 max_pasid = (1 << (pasmax + 1)) - 1;
1576
1577 amd_iommu_max_pasid = min(amd_iommu_max_pasid, max_pasid);
1578
1579 BUG_ON(amd_iommu_max_pasid & ~PASID_MASK);
1580
1581 glxval = iommu->features & FEATURE_GLXVAL_MASK;
1582 glxval >>= FEATURE_GLXVAL_SHIFT;
1583
1584 if (amd_iommu_max_glx_val == -1)
1585 amd_iommu_max_glx_val = glxval;
1586 else
1587 amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval);
1588 }
1589
1590 if (iommu_feature(iommu, FEATURE_GT) &&
1591 iommu_feature(iommu, FEATURE_PPR)) {
1592 iommu->is_iommu_v2 = true;
1593 amd_iommu_v2_present = true;
1594 }
1595
1596 if (iommu_feature(iommu, FEATURE_PPR) && alloc_ppr_log(iommu))
1597 return -ENOMEM;
1598
1599 ret = iommu_init_ga(iommu);
1600 if (ret)
1601 return ret;
1602
1603 if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
1604 amd_iommu_np_cache = true;
1605
1606 init_iommu_perf_ctr(iommu);
1607
1608 if (is_rd890_iommu(iommu->dev)) {
1609 int i, j;
1610
1611 iommu->root_pdev = pci_get_bus_and_slot(iommu->dev->bus->number,
1612 PCI_DEVFN(0, 0));
1613
1614 /*
1615 * Some rd890 systems may not be fully reconfigured by the
1616 * BIOS, so it's necessary for us to store this information so
1617 * it can be reprogrammed on resume
1618 */
1619 pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
1620 &iommu->stored_addr_lo);
1621 pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
1622 &iommu->stored_addr_hi);
1623
1624 /* Low bit locks writes to configuration space */
1625 iommu->stored_addr_lo &= ~1;
1626
1627 for (i = 0; i < 6; i++)
1628 for (j = 0; j < 0x12; j++)
1629 iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);
1630
1631 for (i = 0; i < 0x83; i++)
1632 iommu->stored_l2[i] = iommu_read_l2(iommu, i);
1633 }
1634
1635 amd_iommu_erratum_746_workaround(iommu);
1636 amd_iommu_ats_write_check_workaround(iommu);
1637
1638 iommu->iommu_dev = iommu_device_create(&iommu->dev->dev, iommu,
1639 amd_iommu_groups, "ivhd%d",
1640 iommu->index);
1641
1642 return pci_enable_device(iommu->dev);
1643 }
1644
1645 static void print_iommu_info(void)
1646 {
1647 static const char * const feat_str[] = {
1648 "PreF", "PPR", "X2APIC", "NX", "GT", "[5]",
1649 "IA", "GA", "HE", "PC"
1650 };
1651 struct amd_iommu *iommu;
1652
1653 for_each_iommu(iommu) {
1654 int i;
1655
1656 pr_info("AMD-Vi: Found IOMMU at %s cap 0x%hx\n",
1657 dev_name(&iommu->dev->dev), iommu->cap_ptr);
1658
1659 if (iommu->cap & (1 << IOMMU_CAP_EFR)) {
1660 pr_info("AMD-Vi: Extended features (%#llx):\n",
1661 iommu->features);
1662 for (i = 0; i < ARRAY_SIZE(feat_str); ++i) {
1663 if (iommu_feature(iommu, (1ULL << i)))
1664 pr_cont(" %s", feat_str[i]);
1665 }
1666
1667 if (iommu->features & FEATURE_GAM_VAPIC)
1668 pr_cont(" GA_vAPIC");
1669
1670 pr_cont("\n");
1671 }
1672 }
1673 if (irq_remapping_enabled) {
1674 pr_info("AMD-Vi: Interrupt remapping enabled\n");
1675 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
1676 pr_info("AMD-Vi: virtual APIC enabled\n");
1677 }
1678 }
1679
1680 static int __init amd_iommu_init_pci(void)
1681 {
1682 struct amd_iommu *iommu;
1683 int ret = 0;
1684
1685 for_each_iommu(iommu) {
1686 ret = iommu_init_pci(iommu);
1687 if (ret)
1688 break;
1689 }
1690
1691 /*
1692 * Order is important here to make sure any unity map requirements are
1693 * fulfilled. The unity mappings are created and written to the device
1694 * table during the amd_iommu_init_api() call.
1695 *
1696 * After that we call init_device_table_dma() to make sure any
1697 * uninitialized DTE will block DMA, and in the end we flush the caches
1698 * of all IOMMUs to make sure the changes to the device table are
1699 * active.
1700 */
1701 ret = amd_iommu_init_api();
1702
1703 init_device_table_dma();
1704
1705 for_each_iommu(iommu)
1706 iommu_flush_all_caches(iommu);
1707
1708 if (!ret)
1709 print_iommu_info();
1710
1711 return ret;
1712 }
1713
1714 /****************************************************************************
1715 *
1716 * The following functions initialize the MSI interrupts for all IOMMUs
1717 * in the system. It's a bit challenging because there could be multiple
1718 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
1719 * pci_dev.
1720 *
1721 ****************************************************************************/
1722
1723 static int iommu_setup_msi(struct amd_iommu *iommu)
1724 {
1725 int r;
1726
1727 r = pci_enable_msi(iommu->dev);
1728 if (r)
1729 return r;
1730
1731 r = request_threaded_irq(iommu->dev->irq,
1732 amd_iommu_int_handler,
1733 amd_iommu_int_thread,
1734 0, "AMD-Vi",
1735 iommu);
1736
1737 if (r) {
1738 pci_disable_msi(iommu->dev);
1739 return r;
1740 }
1741
1742 iommu->int_enabled = true;
1743
1744 return 0;
1745 }
1746
1747 static int iommu_init_msi(struct amd_iommu *iommu)
1748 {
1749 int ret;
1750
1751 if (iommu->int_enabled)
1752 goto enable_faults;
1753
1754 if (iommu->dev->msi_cap)
1755 ret = iommu_setup_msi(iommu);
1756 else
1757 ret = -ENODEV;
1758
1759 if (ret)
1760 return ret;
1761
1762 enable_faults:
1763 iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
1764
1765 if (iommu->ppr_log != NULL)
1766 iommu_feature_enable(iommu, CONTROL_PPFINT_EN);
1767
1768 iommu_ga_log_enable(iommu);
1769
1770 return 0;
1771 }
1772
1773 /****************************************************************************
1774 *
1775 * The next functions belong to the third pass of parsing the ACPI
1776 * table. In this last pass the memory mapping requirements are
1777 * gathered (like exclusion and unity mapping ranges).
1778 *
1779 ****************************************************************************/
1780
1781 static void __init free_unity_maps(void)
1782 {
1783 struct unity_map_entry *entry, *next;
1784
1785 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
1786 list_del(&entry->list);
1787 kfree(entry);
1788 }
1789 }
1790
1791 /* called when we find an exclusion range definition in ACPI */
1792 static int __init init_exclusion_range(struct ivmd_header *m)
1793 {
1794 int i;
1795
1796 switch (m->type) {
1797 case ACPI_IVMD_TYPE:
1798 set_device_exclusion_range(m->devid, m);
1799 break;
1800 case ACPI_IVMD_TYPE_ALL:
1801 for (i = 0; i <= amd_iommu_last_bdf; ++i)
1802 set_device_exclusion_range(i, m);
1803 break;
1804 case ACPI_IVMD_TYPE_RANGE:
1805 for (i = m->devid; i <= m->aux; ++i)
1806 set_device_exclusion_range(i, m);
1807 break;
1808 default:
1809 break;
1810 }
1811
1812 return 0;
1813 }
1814
1815 /* called for unity map ACPI definition */
1816 static int __init init_unity_map_range(struct ivmd_header *m)
1817 {
1818 struct unity_map_entry *e = NULL;
1819 char *s;
1820
1821 e = kzalloc(sizeof(*e), GFP_KERNEL);
1822 if (e == NULL)
1823 return -ENOMEM;
1824
1825 switch (m->type) {
1826 default:
1827 kfree(e);
1828 return 0;
1829 case ACPI_IVMD_TYPE:
1830 s = "IVMD_TYPEi\t\t\t";
1831 e->devid_start = e->devid_end = m->devid;
1832 break;
1833 case ACPI_IVMD_TYPE_ALL:
1834 s = "IVMD_TYPE_ALL\t\t";
1835 e->devid_start = 0;
1836 e->devid_end = amd_iommu_last_bdf;
1837 break;
1838 case ACPI_IVMD_TYPE_RANGE:
1839 s = "IVMD_TYPE_RANGE\t\t";
1840 e->devid_start = m->devid;
1841 e->devid_end = m->aux;
1842 break;
1843 }
1844 e->address_start = PAGE_ALIGN(m->range_start);
1845 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
1846 e->prot = m->flags >> 1;
1847
1848 DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
1849 " range_start: %016llx range_end: %016llx flags: %x\n", s,
1850 PCI_BUS_NUM(e->devid_start), PCI_SLOT(e->devid_start),
1851 PCI_FUNC(e->devid_start), PCI_BUS_NUM(e->devid_end),
1852 PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
1853 e->address_start, e->address_end, m->flags);
1854
1855 list_add_tail(&e->list, &amd_iommu_unity_map);
1856
1857 return 0;
1858 }
1859
1860 /* iterates over all memory definitions we find in the ACPI table */
1861 static int __init init_memory_definitions(struct acpi_table_header *table)
1862 {
1863 u8 *p = (u8 *)table, *end = (u8 *)table;
1864 struct ivmd_header *m;
1865
1866 end += table->length;
1867 p += IVRS_HEADER_LENGTH;
1868
1869 while (p < end) {
1870 m = (struct ivmd_header *)p;
1871 if (m->flags & IVMD_FLAG_EXCL_RANGE)
1872 init_exclusion_range(m);
1873 else if (m->flags & IVMD_FLAG_UNITY_MAP)
1874 init_unity_map_range(m);
1875
1876 p += m->length;
1877 }
1878
1879 return 0;
1880 }
1881
1882 /*
1883 * Init the device table to not allow DMA access for devices and
1884 * suppress all page faults
1885 */
1886 static void init_device_table_dma(void)
1887 {
1888 u32 devid;
1889
1890 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1891 set_dev_entry_bit(devid, DEV_ENTRY_VALID);
1892 set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
1893 }
1894 }
1895
1896 static void __init uninit_device_table_dma(void)
1897 {
1898 u32 devid;
1899
1900 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1901 amd_iommu_dev_table[devid].data[0] = 0ULL;
1902 amd_iommu_dev_table[devid].data[1] = 0ULL;
1903 }
1904 }
1905
1906 static void init_device_table(void)
1907 {
1908 u32 devid;
1909
1910 if (!amd_iommu_irq_remap)
1911 return;
1912
1913 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
1914 set_dev_entry_bit(devid, DEV_ENTRY_IRQ_TBL_EN);
1915 }
1916
1917 static void iommu_init_flags(struct amd_iommu *iommu)
1918 {
1919 iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
1920 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
1921 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
1922
1923 iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
1924 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
1925 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
1926
1927 iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
1928 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
1929 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
1930
1931 iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
1932 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
1933 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
1934
1935 /*
1936 * make IOMMU memory accesses cache coherent
1937 */
1938 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
1939
1940 /* Set IOTLB invalidation timeout to 1s */
1941 iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S);
1942 }
1943
1944 static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
1945 {
1946 int i, j;
1947 u32 ioc_feature_control;
1948 struct pci_dev *pdev = iommu->root_pdev;
1949
1950 /* RD890 BIOSes may not have completely reconfigured the iommu */
1951 if (!is_rd890_iommu(iommu->dev) || !pdev)
1952 return;
1953
1954 /*
1955 * First, we need to ensure that the iommu is enabled. This is
1956 * controlled by a register in the northbridge
1957 */
1958
1959 /* Select Northbridge indirect register 0x75 and enable writing */
1960 pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
1961 pci_read_config_dword(pdev, 0x64, &ioc_feature_control);
1962
1963 /* Enable the iommu */
1964 if (!(ioc_feature_control & 0x1))
1965 pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);
1966
1967 /* Restore the iommu BAR */
1968 pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
1969 iommu->stored_addr_lo);
1970 pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
1971 iommu->stored_addr_hi);
1972
1973 /* Restore the l1 indirect regs for each of the 6 l1s */
1974 for (i = 0; i < 6; i++)
1975 for (j = 0; j < 0x12; j++)
1976 iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);
1977
1978 /* Restore the l2 indirect regs */
1979 for (i = 0; i < 0x83; i++)
1980 iommu_write_l2(iommu, i, iommu->stored_l2[i]);
1981
1982 /* Lock PCI setup registers */
1983 pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
1984 iommu->stored_addr_lo | 1);
1985 }
1986
1987 static void iommu_enable_ga(struct amd_iommu *iommu)
1988 {
1989 #ifdef CONFIG_IRQ_REMAP
1990 switch (amd_iommu_guest_ir) {
1991 case AMD_IOMMU_GUEST_IR_VAPIC:
1992 iommu_feature_enable(iommu, CONTROL_GAM_EN);
1993 /* Fall through */
1994 case AMD_IOMMU_GUEST_IR_LEGACY_GA:
1995 iommu_feature_enable(iommu, CONTROL_GA_EN);
1996 iommu->irte_ops = &irte_128_ops;
1997 break;
1998 default:
1999 iommu->irte_ops = &irte_32_ops;
2000 break;
2001 }
2002 #endif
2003 }
2004
2005 /*
2006 * This function finally enables all IOMMUs found in the system after
2007 * they have been initialized
2008 */
2009 static void early_enable_iommus(void)
2010 {
2011 struct amd_iommu *iommu;
2012
2013 for_each_iommu(iommu) {
2014 iommu_disable(iommu);
2015 iommu_init_flags(iommu);
2016 iommu_set_device_table(iommu);
2017 iommu_enable_command_buffer(iommu);
2018 iommu_enable_event_buffer(iommu);
2019 iommu_set_exclusion_range(iommu);
2020 iommu_enable_ga(iommu);
2021 iommu_enable(iommu);
2022 iommu_flush_all_caches(iommu);
2023 }
2024
2025 #ifdef CONFIG_IRQ_REMAP
2026 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
2027 amd_iommu_irq_ops.capability |= (1 << IRQ_POSTING_CAP);
2028 #endif
2029 }
2030
2031 static void enable_iommus_v2(void)
2032 {
2033 struct amd_iommu *iommu;
2034
2035 for_each_iommu(iommu) {
2036 iommu_enable_ppr_log(iommu);
2037 iommu_enable_gt(iommu);
2038 }
2039 }
2040
2041 static void enable_iommus(void)
2042 {
2043 early_enable_iommus();
2044
2045 enable_iommus_v2();
2046 }
2047
2048 static void disable_iommus(void)
2049 {
2050 struct amd_iommu *iommu;
2051
2052 for_each_iommu(iommu)
2053 iommu_disable(iommu);
2054
2055 #ifdef CONFIG_IRQ_REMAP
2056 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
2057 amd_iommu_irq_ops.capability &= ~(1 << IRQ_POSTING_CAP);
2058 #endif
2059 }
2060
2061 /*
2062 * Suspend/Resume support
2063 * disable suspend until real resume implemented
2064 */
2065
2066 static void amd_iommu_resume(void)
2067 {
2068 struct amd_iommu *iommu;
2069
2070 for_each_iommu(iommu)
2071 iommu_apply_resume_quirks(iommu);
2072
2073 /* re-load the hardware */
2074 enable_iommus();
2075
2076 amd_iommu_enable_interrupts();
2077 }
2078
2079 static int amd_iommu_suspend(void)
2080 {
2081 /* disable IOMMUs to go out of the way for BIOS */
2082 disable_iommus();
2083
2084 return 0;
2085 }
2086
2087 static struct syscore_ops amd_iommu_syscore_ops = {
2088 .suspend = amd_iommu_suspend,
2089 .resume = amd_iommu_resume,
2090 };
2091
2092 static void __init free_on_init_error(void)
2093 {
2094 kmemleak_free(irq_lookup_table);
2095 free_pages((unsigned long)irq_lookup_table,
2096 get_order(rlookup_table_size));
2097
2098 kmem_cache_destroy(amd_iommu_irq_cache);
2099 amd_iommu_irq_cache = NULL;
2100
2101 free_pages((unsigned long)amd_iommu_rlookup_table,
2102 get_order(rlookup_table_size));
2103
2104 free_pages((unsigned long)amd_iommu_alias_table,
2105 get_order(alias_table_size));
2106
2107 free_pages((unsigned long)amd_iommu_dev_table,
2108 get_order(dev_table_size));
2109
2110 free_iommu_all();
2111
2112 #ifdef CONFIG_GART_IOMMU
2113 /*
2114 * We failed to initialize the AMD IOMMU - try fallback to GART
2115 * if possible.
2116 */
2117 gart_iommu_init();
2118
2119 #endif
2120 }
2121
2122 /* SB IOAPIC is always on this device in AMD systems */
2123 #define IOAPIC_SB_DEVID ((0x00 << 8) | PCI_DEVFN(0x14, 0))
2124
2125 static bool __init check_ioapic_information(void)
2126 {
2127 const char *fw_bug = FW_BUG;
2128 bool ret, has_sb_ioapic;
2129 int idx;
2130
2131 has_sb_ioapic = false;
2132 ret = false;
2133
2134 /*
2135 * If we have map overrides on the kernel command line the
2136 * messages in this function might not describe firmware bugs
2137 * anymore - so be careful
2138 */
2139 if (cmdline_maps)
2140 fw_bug = "";
2141
2142 for (idx = 0; idx < nr_ioapics; idx++) {
2143 int devid, id = mpc_ioapic_id(idx);
2144
2145 devid = get_ioapic_devid(id);
2146 if (devid < 0) {
2147 pr_err("%sAMD-Vi: IOAPIC[%d] not in IVRS table\n",
2148 fw_bug, id);
2149 ret = false;
2150 } else if (devid == IOAPIC_SB_DEVID) {
2151 has_sb_ioapic = true;
2152 ret = true;
2153 }
2154 }
2155
2156 if (!has_sb_ioapic) {
2157 /*
2158 * We expect the SB IOAPIC to be listed in the IVRS
2159 * table. The system timer is connected to the SB IOAPIC
2160 * and if we don't have it in the list the system will
2161 * panic at boot time. This situation usually happens
2162 * when the BIOS is buggy and provides us the wrong
2163 * device id for the IOAPIC in the system.
2164 */
2165 pr_err("%sAMD-Vi: No southbridge IOAPIC found\n", fw_bug);
2166 }
2167
2168 if (!ret)
2169 pr_err("AMD-Vi: Disabling interrupt remapping\n");
2170
2171 return ret;
2172 }
2173
2174 static void __init free_dma_resources(void)
2175 {
2176 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
2177 get_order(MAX_DOMAIN_ID/8));
2178
2179 free_unity_maps();
2180 }
2181
2182 /*
2183 * This is the hardware init function for AMD IOMMU in the system.
2184 * This function is called either from amd_iommu_init or from the interrupt
2185 * remapping setup code.
2186 *
2187 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
2188 * four times:
2189 *
2190 * 1 pass) Discover the most comprehensive IVHD type to use.
2191 *
2192 * 2 pass) Find the highest PCI device id the driver has to handle.
2193 * Upon this information the size of the data structures is
2194 * determined that needs to be allocated.
2195 *
2196 * 3 pass) Initialize the data structures just allocated with the
2197 * information in the ACPI table about available AMD IOMMUs
2198 * in the system. It also maps the PCI devices in the
2199 * system to specific IOMMUs
2200 *
2201 * 4 pass) After the basic data structures are allocated and
2202 * initialized we update them with information about memory
2203 * remapping requirements parsed out of the ACPI table in
2204 * this last pass.
2205 *
2206 * After everything is set up the IOMMUs are enabled and the necessary
2207 * hotplug and suspend notifiers are registered.
2208 */
2209 static int __init early_amd_iommu_init(void)
2210 {
2211 struct acpi_table_header *ivrs_base;
2212 acpi_size ivrs_size;
2213 acpi_status status;
2214 int i, remap_cache_sz, ret = 0;
2215
2216 if (!amd_iommu_detected)
2217 return -ENODEV;
2218
2219 status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
2220 if (status == AE_NOT_FOUND)
2221 return -ENODEV;
2222 else if (ACPI_FAILURE(status)) {
2223 const char *err = acpi_format_exception(status);
2224 pr_err("AMD-Vi: IVRS table error: %s\n", err);
2225 return -EINVAL;
2226 }
2227
2228 /*
2229 * Validate checksum here so we don't need to do it when
2230 * we actually parse the table
2231 */
2232 ret = check_ivrs_checksum(ivrs_base);
2233 if (ret)
2234 return ret;
2235
2236 amd_iommu_target_ivhd_type = get_highest_supported_ivhd_type(ivrs_base);
2237 DUMP_printk("Using IVHD type %#x\n", amd_iommu_target_ivhd_type);
2238
2239 /*
2240 * First parse ACPI tables to find the largest Bus/Dev/Func
2241 * we need to handle. Upon this information the shared data
2242 * structures for the IOMMUs in the system will be allocated
2243 */
2244 ret = find_last_devid_acpi(ivrs_base);
2245 if (ret)
2246 goto out;
2247
2248 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
2249 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
2250 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
2251
2252 /* Device table - directly used by all IOMMUs */
2253 ret = -ENOMEM;
2254 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2255 get_order(dev_table_size));
2256 if (amd_iommu_dev_table == NULL)
2257 goto out;
2258
2259 /*
2260 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
2261 * IOMMU see for that device
2262 */
2263 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
2264 get_order(alias_table_size));
2265 if (amd_iommu_alias_table == NULL)
2266 goto out;
2267
2268 /* IOMMU rlookup table - find the IOMMU for a specific device */
2269 amd_iommu_rlookup_table = (void *)__get_free_pages(
2270 GFP_KERNEL | __GFP_ZERO,
2271 get_order(rlookup_table_size));
2272 if (amd_iommu_rlookup_table == NULL)
2273 goto out;
2274
2275 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
2276 GFP_KERNEL | __GFP_ZERO,
2277 get_order(MAX_DOMAIN_ID/8));
2278 if (amd_iommu_pd_alloc_bitmap == NULL)
2279 goto out;
2280
2281 /*
2282 * let all alias entries point to itself
2283 */
2284 for (i = 0; i <= amd_iommu_last_bdf; ++i)
2285 amd_iommu_alias_table[i] = i;
2286
2287 /*
2288 * never allocate domain 0 because its used as the non-allocated and
2289 * error value placeholder
2290 */
2291 __set_bit(0, amd_iommu_pd_alloc_bitmap);
2292
2293 spin_lock_init(&amd_iommu_pd_lock);
2294
2295 /*
2296 * now the data structures are allocated and basically initialized
2297 * start the real acpi table scan
2298 */
2299 ret = init_iommu_all(ivrs_base);
2300 if (ret)
2301 goto out;
2302
2303 if (amd_iommu_irq_remap)
2304 amd_iommu_irq_remap = check_ioapic_information();
2305
2306 if (amd_iommu_irq_remap) {
2307 /*
2308 * Interrupt remapping enabled, create kmem_cache for the
2309 * remapping tables.
2310 */
2311 ret = -ENOMEM;
2312 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2313 remap_cache_sz = MAX_IRQS_PER_TABLE * sizeof(u32);
2314 else
2315 remap_cache_sz = MAX_IRQS_PER_TABLE * (sizeof(u64) * 2);
2316 amd_iommu_irq_cache = kmem_cache_create("irq_remap_cache",
2317 remap_cache_sz,
2318 IRQ_TABLE_ALIGNMENT,
2319 0, NULL);
2320 if (!amd_iommu_irq_cache)
2321 goto out;
2322
2323 irq_lookup_table = (void *)__get_free_pages(
2324 GFP_KERNEL | __GFP_ZERO,
2325 get_order(rlookup_table_size));
2326 kmemleak_alloc(irq_lookup_table, rlookup_table_size,
2327 1, GFP_KERNEL);
2328 if (!irq_lookup_table)
2329 goto out;
2330 }
2331
2332 ret = init_memory_definitions(ivrs_base);
2333 if (ret)
2334 goto out;
2335
2336 /* init the device table */
2337 init_device_table();
2338
2339 out:
2340 /* Don't leak any ACPI memory */
2341 early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);
2342 ivrs_base = NULL;
2343
2344 return ret;
2345 }
2346
2347 static int amd_iommu_enable_interrupts(void)
2348 {
2349 struct amd_iommu *iommu;
2350 int ret = 0;
2351
2352 for_each_iommu(iommu) {
2353 ret = iommu_init_msi(iommu);
2354 if (ret)
2355 goto out;
2356 }
2357
2358 out:
2359 return ret;
2360 }
2361
2362 static bool detect_ivrs(void)
2363 {
2364 struct acpi_table_header *ivrs_base;
2365 acpi_size ivrs_size;
2366 acpi_status status;
2367
2368 status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
2369 if (status == AE_NOT_FOUND)
2370 return false;
2371 else if (ACPI_FAILURE(status)) {
2372 const char *err = acpi_format_exception(status);
2373 pr_err("AMD-Vi: IVRS table error: %s\n", err);
2374 return false;
2375 }
2376
2377 early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);
2378
2379 /* Make sure ACS will be enabled during PCI probe */
2380 pci_request_acs();
2381
2382 return true;
2383 }
2384
2385 /****************************************************************************
2386 *
2387 * AMD IOMMU Initialization State Machine
2388 *
2389 ****************************************************************************/
2390
2391 static int __init state_next(void)
2392 {
2393 int ret = 0;
2394
2395 switch (init_state) {
2396 case IOMMU_START_STATE:
2397 if (!detect_ivrs()) {
2398 init_state = IOMMU_NOT_FOUND;
2399 ret = -ENODEV;
2400 } else {
2401 init_state = IOMMU_IVRS_DETECTED;
2402 }
2403 break;
2404 case IOMMU_IVRS_DETECTED:
2405 ret = early_amd_iommu_init();
2406 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED;
2407 break;
2408 case IOMMU_ACPI_FINISHED:
2409 early_enable_iommus();
2410 register_syscore_ops(&amd_iommu_syscore_ops);
2411 x86_platform.iommu_shutdown = disable_iommus;
2412 init_state = IOMMU_ENABLED;
2413 break;
2414 case IOMMU_ENABLED:
2415 ret = amd_iommu_init_pci();
2416 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT;
2417 enable_iommus_v2();
2418 break;
2419 case IOMMU_PCI_INIT:
2420 ret = amd_iommu_enable_interrupts();
2421 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN;
2422 break;
2423 case IOMMU_INTERRUPTS_EN:
2424 ret = amd_iommu_init_dma_ops();
2425 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_DMA_OPS;
2426 break;
2427 case IOMMU_DMA_OPS:
2428 init_state = IOMMU_INITIALIZED;
2429 break;
2430 case IOMMU_INITIALIZED:
2431 /* Nothing to do */
2432 break;
2433 case IOMMU_NOT_FOUND:
2434 case IOMMU_INIT_ERROR:
2435 /* Error states => do nothing */
2436 ret = -EINVAL;
2437 break;
2438 default:
2439 /* Unknown state */
2440 BUG();
2441 }
2442
2443 return ret;
2444 }
2445
2446 static int __init iommu_go_to_state(enum iommu_init_state state)
2447 {
2448 int ret = 0;
2449
2450 while (init_state != state) {
2451 ret = state_next();
2452 if (init_state == IOMMU_NOT_FOUND ||
2453 init_state == IOMMU_INIT_ERROR)
2454 break;
2455 }
2456
2457 return ret;
2458 }
2459
2460 #ifdef CONFIG_IRQ_REMAP
2461 int __init amd_iommu_prepare(void)
2462 {
2463 int ret;
2464
2465 amd_iommu_irq_remap = true;
2466
2467 ret = iommu_go_to_state(IOMMU_ACPI_FINISHED);
2468 if (ret)
2469 return ret;
2470 return amd_iommu_irq_remap ? 0 : -ENODEV;
2471 }
2472
2473 int __init amd_iommu_enable(void)
2474 {
2475 int ret;
2476
2477 ret = iommu_go_to_state(IOMMU_ENABLED);
2478 if (ret)
2479 return ret;
2480
2481 irq_remapping_enabled = 1;
2482
2483 return 0;
2484 }
2485
2486 void amd_iommu_disable(void)
2487 {
2488 amd_iommu_suspend();
2489 }
2490
2491 int amd_iommu_reenable(int mode)
2492 {
2493 amd_iommu_resume();
2494
2495 return 0;
2496 }
2497
2498 int __init amd_iommu_enable_faulting(void)
2499 {
2500 /* We enable MSI later when PCI is initialized */
2501 return 0;
2502 }
2503 #endif
2504
2505 /*
2506 * This is the core init function for AMD IOMMU hardware in the system.
2507 * This function is called from the generic x86 DMA layer initialization
2508 * code.
2509 */
2510 static int __init amd_iommu_init(void)
2511 {
2512 int ret;
2513
2514 ret = iommu_go_to_state(IOMMU_INITIALIZED);
2515 if (ret) {
2516 free_dma_resources();
2517 if (!irq_remapping_enabled) {
2518 disable_iommus();
2519 free_on_init_error();
2520 } else {
2521 struct amd_iommu *iommu;
2522
2523 uninit_device_table_dma();
2524 for_each_iommu(iommu)
2525 iommu_flush_all_caches(iommu);
2526 }
2527 }
2528
2529 return ret;
2530 }
2531
2532 /****************************************************************************
2533 *
2534 * Early detect code. This code runs at IOMMU detection time in the DMA
2535 * layer. It just looks if there is an IVRS ACPI table to detect AMD
2536 * IOMMUs
2537 *
2538 ****************************************************************************/
2539 int __init amd_iommu_detect(void)
2540 {
2541 int ret;
2542
2543 if (no_iommu || (iommu_detected && !gart_iommu_aperture))
2544 return -ENODEV;
2545
2546 if (amd_iommu_disabled)
2547 return -ENODEV;
2548
2549 ret = iommu_go_to_state(IOMMU_IVRS_DETECTED);
2550 if (ret)
2551 return ret;
2552
2553 amd_iommu_detected = true;
2554 iommu_detected = 1;
2555 x86_init.iommu.iommu_init = amd_iommu_init;
2556
2557 return 1;
2558 }
2559
2560 /****************************************************************************
2561 *
2562 * Parsing functions for the AMD IOMMU specific kernel command line
2563 * options.
2564 *
2565 ****************************************************************************/
2566
2567 static int __init parse_amd_iommu_dump(char *str)
2568 {
2569 amd_iommu_dump = true;
2570
2571 return 1;
2572 }
2573
2574 static int __init parse_amd_iommu_intr(char *str)
2575 {
2576 for (; *str; ++str) {
2577 if (strncmp(str, "legacy", 6) == 0) {
2578 amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY;
2579 break;
2580 }
2581 if (strncmp(str, "vapic", 5) == 0) {
2582 amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_VAPIC;
2583 break;
2584 }
2585 }
2586 return 1;
2587 }
2588
2589 static int __init parse_amd_iommu_options(char *str)
2590 {
2591 for (; *str; ++str) {
2592 if (strncmp(str, "fullflush", 9) == 0)
2593 amd_iommu_unmap_flush = true;
2594 if (strncmp(str, "off", 3) == 0)
2595 amd_iommu_disabled = true;
2596 if (strncmp(str, "force_isolation", 15) == 0)
2597 amd_iommu_force_isolation = true;
2598 }
2599
2600 return 1;
2601 }
2602
2603 static int __init parse_ivrs_ioapic(char *str)
2604 {
2605 unsigned int bus, dev, fn;
2606 int ret, id, i;
2607 u16 devid;
2608
2609 ret = sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn);
2610
2611 if (ret != 4) {
2612 pr_err("AMD-Vi: Invalid command line: ivrs_ioapic%s\n", str);
2613 return 1;
2614 }
2615
2616 if (early_ioapic_map_size == EARLY_MAP_SIZE) {
2617 pr_err("AMD-Vi: Early IOAPIC map overflow - ignoring ivrs_ioapic%s\n",
2618 str);
2619 return 1;
2620 }
2621
2622 devid = ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7);
2623
2624 cmdline_maps = true;
2625 i = early_ioapic_map_size++;
2626 early_ioapic_map[i].id = id;
2627 early_ioapic_map[i].devid = devid;
2628 early_ioapic_map[i].cmd_line = true;
2629
2630 return 1;
2631 }
2632
2633 static int __init parse_ivrs_hpet(char *str)
2634 {
2635 unsigned int bus, dev, fn;
2636 int ret, id, i;
2637 u16 devid;
2638
2639 ret = sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn);
2640
2641 if (ret != 4) {
2642 pr_err("AMD-Vi: Invalid command line: ivrs_hpet%s\n", str);
2643 return 1;
2644 }
2645
2646 if (early_hpet_map_size == EARLY_MAP_SIZE) {
2647 pr_err("AMD-Vi: Early HPET map overflow - ignoring ivrs_hpet%s\n",
2648 str);
2649 return 1;
2650 }
2651
2652 devid = ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7);
2653
2654 cmdline_maps = true;
2655 i = early_hpet_map_size++;
2656 early_hpet_map[i].id = id;
2657 early_hpet_map[i].devid = devid;
2658 early_hpet_map[i].cmd_line = true;
2659
2660 return 1;
2661 }
2662
2663 static int __init parse_ivrs_acpihid(char *str)
2664 {
2665 u32 bus, dev, fn;
2666 char *hid, *uid, *p;
2667 char acpiid[ACPIHID_UID_LEN + ACPIHID_HID_LEN] = {0};
2668 int ret, i;
2669
2670 ret = sscanf(str, "[%x:%x.%x]=%s", &bus, &dev, &fn, acpiid);
2671 if (ret != 4) {
2672 pr_err("AMD-Vi: Invalid command line: ivrs_acpihid(%s)\n", str);
2673 return 1;
2674 }
2675
2676 p = acpiid;
2677 hid = strsep(&p, ":");
2678 uid = p;
2679
2680 if (!hid || !(*hid) || !uid) {
2681 pr_err("AMD-Vi: Invalid command line: hid or uid\n");
2682 return 1;
2683 }
2684
2685 i = early_acpihid_map_size++;
2686 memcpy(early_acpihid_map[i].hid, hid, strlen(hid));
2687 memcpy(early_acpihid_map[i].uid, uid, strlen(uid));
2688 early_acpihid_map[i].devid =
2689 ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7);
2690 early_acpihid_map[i].cmd_line = true;
2691
2692 return 1;
2693 }
2694
2695 __setup("amd_iommu_dump", parse_amd_iommu_dump);
2696 __setup("amd_iommu=", parse_amd_iommu_options);
2697 __setup("amd_iommu_intr=", parse_amd_iommu_intr);
2698 __setup("ivrs_ioapic", parse_ivrs_ioapic);
2699 __setup("ivrs_hpet", parse_ivrs_hpet);
2700 __setup("ivrs_acpihid", parse_ivrs_acpihid);
2701
2702 IOMMU_INIT_FINISH(amd_iommu_detect,
2703 gart_iommu_hole_init,
2704 NULL,
2705 NULL);
2706
2707 bool amd_iommu_v2_supported(void)
2708 {
2709 return amd_iommu_v2_present;
2710 }
2711 EXPORT_SYMBOL(amd_iommu_v2_supported);
2712
2713 /****************************************************************************
2714 *
2715 * IOMMU EFR Performance Counter support functionality. This code allows
2716 * access to the IOMMU PC functionality.
2717 *
2718 ****************************************************************************/
2719
2720 u8 amd_iommu_pc_get_max_banks(u16 devid)
2721 {
2722 struct amd_iommu *iommu;
2723 u8 ret = 0;
2724
2725 /* locate the iommu governing the devid */
2726 iommu = amd_iommu_rlookup_table[devid];
2727 if (iommu)
2728 ret = iommu->max_banks;
2729
2730 return ret;
2731 }
2732 EXPORT_SYMBOL(amd_iommu_pc_get_max_banks);
2733
2734 bool amd_iommu_pc_supported(void)
2735 {
2736 return amd_iommu_pc_present;
2737 }
2738 EXPORT_SYMBOL(amd_iommu_pc_supported);
2739
2740 u8 amd_iommu_pc_get_max_counters(u16 devid)
2741 {
2742 struct amd_iommu *iommu;
2743 u8 ret = 0;
2744
2745 /* locate the iommu governing the devid */
2746 iommu = amd_iommu_rlookup_table[devid];
2747 if (iommu)
2748 ret = iommu->max_counters;
2749
2750 return ret;
2751 }
2752 EXPORT_SYMBOL(amd_iommu_pc_get_max_counters);
2753
2754 static int iommu_pc_get_set_reg_val(struct amd_iommu *iommu,
2755 u8 bank, u8 cntr, u8 fxn,
2756 u64 *value, bool is_write)
2757 {
2758 u32 offset;
2759 u32 max_offset_lim;
2760
2761 /* Check for valid iommu and pc register indexing */
2762 if (WARN_ON((fxn > 0x28) || (fxn & 7)))
2763 return -ENODEV;
2764
2765 offset = (u32)(((0x40|bank) << 12) | (cntr << 8) | fxn);
2766
2767 /* Limit the offset to the hw defined mmio region aperture */
2768 max_offset_lim = (u32)(((0x40|iommu->max_banks) << 12) |
2769 (iommu->max_counters << 8) | 0x28);
2770 if ((offset < MMIO_CNTR_REG_OFFSET) ||
2771 (offset > max_offset_lim))
2772 return -EINVAL;
2773
2774 if (is_write) {
2775 writel((u32)*value, iommu->mmio_base + offset);
2776 writel((*value >> 32), iommu->mmio_base + offset + 4);
2777 } else {
2778 *value = readl(iommu->mmio_base + offset + 4);
2779 *value <<= 32;
2780 *value = readl(iommu->mmio_base + offset);
2781 }
2782
2783 return 0;
2784 }
2785 EXPORT_SYMBOL(amd_iommu_pc_get_set_reg_val);
2786
2787 int amd_iommu_pc_get_set_reg_val(u16 devid, u8 bank, u8 cntr, u8 fxn,
2788 u64 *value, bool is_write)
2789 {
2790 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
2791
2792 /* Make sure the IOMMU PC resource is available */
2793 if (!amd_iommu_pc_present || iommu == NULL)
2794 return -ENODEV;
2795
2796 return iommu_pc_get_set_reg_val(iommu, bank, cntr, fxn,
2797 value, is_write);
2798 }