]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iommu/arm-smmu-v3.c
Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[mirror_ubuntu-bionic-kernel.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2 * IOMMU API for ARM architected SMMUv3 implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 *
16 * Copyright (C) 2015 ARM Limited
17 *
18 * Author: Will Deacon <will.deacon@arm.com>
19 *
20 * This driver is powered by bad coffee and bombay mix.
21 */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0 0x0
46 #define IDR0_ST_LVL_SHIFT 27
47 #define IDR0_ST_LVL_MASK 0x3
48 #define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT 24
50 #define IDR0_STALL_MODEL_MASK 0x3
51 #define IDR0_STALL_MODEL_STALL (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT 21
54 #define IDR0_TTENDIAN_MASK 0x3
55 #define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L (1 << 19)
59 #define IDR0_VMID16 (1 << 18)
60 #define IDR0_PRI (1 << 16)
61 #define IDR0_SEV (1 << 14)
62 #define IDR0_MSI (1 << 13)
63 #define IDR0_ASID16 (1 << 12)
64 #define IDR0_ATS (1 << 10)
65 #define IDR0_HYP (1 << 9)
66 #define IDR0_COHACC (1 << 4)
67 #define IDR0_TTF_SHIFT 2
68 #define IDR0_TTF_MASK 0x3
69 #define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P (1 << 1)
72 #define IDR0_S2P (1 << 0)
73
74 #define ARM_SMMU_IDR1 0x4
75 #define IDR1_TABLES_PRESET (1 << 30)
76 #define IDR1_QUEUES_PRESET (1 << 29)
77 #define IDR1_REL (1 << 28)
78 #define IDR1_CMDQ_SHIFT 21
79 #define IDR1_CMDQ_MASK 0x1f
80 #define IDR1_EVTQ_SHIFT 16
81 #define IDR1_EVTQ_MASK 0x1f
82 #define IDR1_PRIQ_SHIFT 11
83 #define IDR1_PRIQ_MASK 0x1f
84 #define IDR1_SSID_SHIFT 6
85 #define IDR1_SSID_MASK 0x1f
86 #define IDR1_SID_SHIFT 0
87 #define IDR1_SID_MASK 0x3f
88
89 #define ARM_SMMU_IDR5 0x14
90 #define IDR5_STALL_MAX_SHIFT 16
91 #define IDR5_STALL_MAX_MASK 0xffff
92 #define IDR5_GRAN64K (1 << 6)
93 #define IDR5_GRAN16K (1 << 5)
94 #define IDR5_GRAN4K (1 << 4)
95 #define IDR5_OAS_SHIFT 0
96 #define IDR5_OAS_MASK 0x7
97 #define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0 0x20
105 #define CR0_CMDQEN (1 << 3)
106 #define CR0_EVTQEN (1 << 2)
107 #define CR0_PRIQEN (1 << 1)
108 #define CR0_SMMUEN (1 << 0)
109
110 #define ARM_SMMU_CR0ACK 0x24
111
112 #define ARM_SMMU_CR1 0x28
113 #define CR1_SH_NSH 0
114 #define CR1_SH_OSH 2
115 #define CR1_SH_ISH 3
116 #define CR1_CACHE_NC 0
117 #define CR1_CACHE_WB 1
118 #define CR1_CACHE_WT 2
119 #define CR1_TABLE_SH_SHIFT 10
120 #define CR1_TABLE_OC_SHIFT 8
121 #define CR1_TABLE_IC_SHIFT 6
122 #define CR1_QUEUE_SH_SHIFT 4
123 #define CR1_QUEUE_OC_SHIFT 2
124 #define CR1_QUEUE_IC_SHIFT 0
125
126 #define ARM_SMMU_CR2 0x2c
127 #define CR2_PTM (1 << 2)
128 #define CR2_RECINVSID (1 << 1)
129 #define CR2_E2H (1 << 0)
130
131 #define ARM_SMMU_GBPA 0x44
132 #define GBPA_ABORT (1 << 20)
133 #define GBPA_UPDATE (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL 0x50
136 #define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK 0x54
141
142 #define ARM_SMMU_GERROR 0x60
143 #define GERROR_SFM_ERR (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR (1 << 2)
150 #define GERROR_CMDQ_ERR (1 << 0)
151 #define GERROR_ERR_MASK 0xfd
152
153 #define ARM_SMMU_GERRORN 0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0 0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1 0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2 0x74
158
159 #define ARM_SMMU_STRTAB_BASE 0x80
160 #define STRTAB_BASE_RA (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT 6
162 #define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG 0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT 6
168 #define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT 16
170 #define STRTAB_BASE_CFG_FMT_MASK 0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE 0x90
175 #define ARM_SMMU_CMDQ_PROD 0x98
176 #define ARM_SMMU_CMDQ_CONS 0x9c
177
178 #define ARM_SMMU_EVTQ_BASE 0xa0
179 #define ARM_SMMU_EVTQ_PROD 0x100a8
180 #define ARM_SMMU_EVTQ_CONS 0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
184
185 #define ARM_SMMU_PRIQ_BASE 0xc0
186 #define ARM_SMMU_PRIQ_PROD 0x100c8
187 #define ARM_SMMU_PRIQ_CONS 0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT 2
194 #define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT 4
196 #define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT 0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG (1 << 31)
205 #define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p) ((q)->base + \
207 Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT 5
211 #define Q_BASE_ADDR_MASK 0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT 0
213 #define Q_BASE_LOG2SIZE_MASK 0x1fUL
214
215 /*
216 * Stream table.
217 *
218 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219 * 2lvl: 128k L1 entries,
220 * 256 lazy entries per table (each table covers a PCI bus)
221 */
222 #define STRTAB_L1_SZ_SHIFT 20
223 #define STRTAB_SPLIT 8
224
225 #define STRTAB_L1_DESC_DWORDS 1
226 #define STRTAB_L1_DESC_SPAN_SHIFT 0
227 #define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT 6
229 #define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS 8
232 #define STRTAB_STE_0_V (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT 1
234 #define STRTAB_STE_0_CFG_MASK 0x7UL
235 #define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT 4
241 #define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT 6
243 #define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT 59
245 #define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC 0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT 2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB 3UL
251 #define STRTAB_STE_1_S1C_SH_NSH 0UL
252 #define STRTAB_STE_1_S1C_SH_OSH 2UL
253 #define STRTAB_STE_1_S1C_SH_ISH 3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT 2
255 #define STRTAB_STE_1_S1COR_SHIFT 4
256 #define STRTAB_STE_1_S1CSH_SHIFT 6
257
258 #define STRTAB_STE_1_S1STALLD (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT 0UL
261 #define STRTAB_STE_1_EATS_TRANS 1UL
262 #define STRTAB_STE_1_EATS_S1CHK 2UL
263 #define STRTAB_STE_1_EATS_SHIFT 28
264
265 #define STRTAB_STE_1_STRW_NSEL1 0UL
266 #define STRTAB_STE_1_STRW_EL2 2UL
267 #define STRTAB_STE_1_STRW_SHIFT 30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING 1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT 44
271
272 #define STRTAB_STE_2_S2VMID_SHIFT 0
273 #define STRTAB_STE_2_S2VMID_MASK 0xffffUL
274 #define STRTAB_STE_2_VTCR_SHIFT 32
275 #define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
276 #define STRTAB_STE_2_S2AA64 (1UL << 51)
277 #define STRTAB_STE_2_S2ENDI (1UL << 52)
278 #define STRTAB_STE_2_S2PTW (1UL << 54)
279 #define STRTAB_STE_2_S2R (1UL << 58)
280
281 #define STRTAB_STE_3_S2TTB_SHIFT 4
282 #define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
283
284 /* Context descriptor (stage-1 only) */
285 #define CTXDESC_CD_DWORDS 8
286 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
287 #define ARM64_TCR_T0SZ_SHIFT 0
288 #define ARM64_TCR_T0SZ_MASK 0x1fUL
289 #define CTXDESC_CD_0_TCR_TG0_SHIFT 6
290 #define ARM64_TCR_TG0_SHIFT 14
291 #define ARM64_TCR_TG0_MASK 0x3UL
292 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
293 #define ARM64_TCR_IRGN0_SHIFT 8
294 #define ARM64_TCR_IRGN0_MASK 0x3UL
295 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
296 #define ARM64_TCR_ORGN0_SHIFT 10
297 #define ARM64_TCR_ORGN0_MASK 0x3UL
298 #define CTXDESC_CD_0_TCR_SH0_SHIFT 12
299 #define ARM64_TCR_SH0_SHIFT 12
300 #define ARM64_TCR_SH0_MASK 0x3UL
301 #define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
302 #define ARM64_TCR_EPD0_SHIFT 7
303 #define ARM64_TCR_EPD0_MASK 0x1UL
304 #define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
305 #define ARM64_TCR_EPD1_SHIFT 23
306 #define ARM64_TCR_EPD1_MASK 0x1UL
307
308 #define CTXDESC_CD_0_ENDI (1UL << 15)
309 #define CTXDESC_CD_0_V (1UL << 31)
310
311 #define CTXDESC_CD_0_TCR_IPS_SHIFT 32
312 #define ARM64_TCR_IPS_SHIFT 32
313 #define ARM64_TCR_IPS_MASK 0x7UL
314 #define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
315 #define ARM64_TCR_TBI0_SHIFT 37
316 #define ARM64_TCR_TBI0_MASK 0x1UL
317
318 #define CTXDESC_CD_0_AA64 (1UL << 41)
319 #define CTXDESC_CD_0_R (1UL << 45)
320 #define CTXDESC_CD_0_A (1UL << 46)
321 #define CTXDESC_CD_0_ASET_SHIFT 47
322 #define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
323 #define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
324 #define CTXDESC_CD_0_ASID_SHIFT 48
325 #define CTXDESC_CD_0_ASID_MASK 0xffffUL
326
327 #define CTXDESC_CD_1_TTB0_SHIFT 4
328 #define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
329
330 #define CTXDESC_CD_3_MAIR_SHIFT 0
331
332 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
333 #define ARM_SMMU_TCR2CD(tcr, fld) \
334 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
335 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
336
337 /* Command queue */
338 #define CMDQ_ENT_DWORDS 2
339 #define CMDQ_MAX_SZ_SHIFT 8
340
341 #define CMDQ_ERR_SHIFT 24
342 #define CMDQ_ERR_MASK 0x7f
343 #define CMDQ_ERR_CERROR_NONE_IDX 0
344 #define CMDQ_ERR_CERROR_ILL_IDX 1
345 #define CMDQ_ERR_CERROR_ABT_IDX 2
346
347 #define CMDQ_0_OP_SHIFT 0
348 #define CMDQ_0_OP_MASK 0xffUL
349 #define CMDQ_0_SSV (1UL << 11)
350
351 #define CMDQ_PREFETCH_0_SID_SHIFT 32
352 #define CMDQ_PREFETCH_1_SIZE_SHIFT 0
353 #define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
354
355 #define CMDQ_CFGI_0_SID_SHIFT 32
356 #define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
357 #define CMDQ_CFGI_1_LEAF (1UL << 0)
358 #define CMDQ_CFGI_1_RANGE_SHIFT 0
359 #define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
360
361 #define CMDQ_TLBI_0_VMID_SHIFT 32
362 #define CMDQ_TLBI_0_ASID_SHIFT 48
363 #define CMDQ_TLBI_1_LEAF (1UL << 0)
364 #define CMDQ_TLBI_1_VA_MASK ~0xfffUL
365 #define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
366
367 #define CMDQ_PRI_0_SSID_SHIFT 12
368 #define CMDQ_PRI_0_SSID_MASK 0xfffffUL
369 #define CMDQ_PRI_0_SID_SHIFT 32
370 #define CMDQ_PRI_0_SID_MASK 0xffffffffUL
371 #define CMDQ_PRI_1_GRPID_SHIFT 0
372 #define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
373 #define CMDQ_PRI_1_RESP_SHIFT 12
374 #define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
375 #define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
376 #define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
377
378 #define CMDQ_SYNC_0_CS_SHIFT 12
379 #define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
380 #define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
381
382 /* Event queue */
383 #define EVTQ_ENT_DWORDS 4
384 #define EVTQ_MAX_SZ_SHIFT 7
385
386 #define EVTQ_0_ID_SHIFT 0
387 #define EVTQ_0_ID_MASK 0xffUL
388
389 /* PRI queue */
390 #define PRIQ_ENT_DWORDS 2
391 #define PRIQ_MAX_SZ_SHIFT 8
392
393 #define PRIQ_0_SID_SHIFT 0
394 #define PRIQ_0_SID_MASK 0xffffffffUL
395 #define PRIQ_0_SSID_SHIFT 32
396 #define PRIQ_0_SSID_MASK 0xfffffUL
397 #define PRIQ_0_PERM_PRIV (1UL << 58)
398 #define PRIQ_0_PERM_EXEC (1UL << 59)
399 #define PRIQ_0_PERM_READ (1UL << 60)
400 #define PRIQ_0_PERM_WRITE (1UL << 61)
401 #define PRIQ_0_PRG_LAST (1UL << 62)
402 #define PRIQ_0_SSID_V (1UL << 63)
403
404 #define PRIQ_1_PRG_IDX_SHIFT 0
405 #define PRIQ_1_PRG_IDX_MASK 0x1ffUL
406 #define PRIQ_1_ADDR_SHIFT 12
407 #define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
408
409 /* High-level queue structures */
410 #define ARM_SMMU_POLL_TIMEOUT_US 100
411
412 #define MSI_IOVA_BASE 0x8000000
413 #define MSI_IOVA_LENGTH 0x100000
414
415 static bool disable_bypass;
416 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
417 MODULE_PARM_DESC(disable_bypass,
418 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
419
420 enum pri_resp {
421 PRI_RESP_DENY,
422 PRI_RESP_FAIL,
423 PRI_RESP_SUCC,
424 };
425
426 enum arm_smmu_msi_index {
427 EVTQ_MSI_INDEX,
428 GERROR_MSI_INDEX,
429 PRIQ_MSI_INDEX,
430 ARM_SMMU_MAX_MSIS,
431 };
432
433 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
434 [EVTQ_MSI_INDEX] = {
435 ARM_SMMU_EVTQ_IRQ_CFG0,
436 ARM_SMMU_EVTQ_IRQ_CFG1,
437 ARM_SMMU_EVTQ_IRQ_CFG2,
438 },
439 [GERROR_MSI_INDEX] = {
440 ARM_SMMU_GERROR_IRQ_CFG0,
441 ARM_SMMU_GERROR_IRQ_CFG1,
442 ARM_SMMU_GERROR_IRQ_CFG2,
443 },
444 [PRIQ_MSI_INDEX] = {
445 ARM_SMMU_PRIQ_IRQ_CFG0,
446 ARM_SMMU_PRIQ_IRQ_CFG1,
447 ARM_SMMU_PRIQ_IRQ_CFG2,
448 },
449 };
450
451 struct arm_smmu_cmdq_ent {
452 /* Common fields */
453 u8 opcode;
454 bool substream_valid;
455
456 /* Command-specific fields */
457 union {
458 #define CMDQ_OP_PREFETCH_CFG 0x1
459 struct {
460 u32 sid;
461 u8 size;
462 u64 addr;
463 } prefetch;
464
465 #define CMDQ_OP_CFGI_STE 0x3
466 #define CMDQ_OP_CFGI_ALL 0x4
467 struct {
468 u32 sid;
469 union {
470 bool leaf;
471 u8 span;
472 };
473 } cfgi;
474
475 #define CMDQ_OP_TLBI_NH_ASID 0x11
476 #define CMDQ_OP_TLBI_NH_VA 0x12
477 #define CMDQ_OP_TLBI_EL2_ALL 0x20
478 #define CMDQ_OP_TLBI_S12_VMALL 0x28
479 #define CMDQ_OP_TLBI_S2_IPA 0x2a
480 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
481 struct {
482 u16 asid;
483 u16 vmid;
484 bool leaf;
485 u64 addr;
486 } tlbi;
487
488 #define CMDQ_OP_PRI_RESP 0x41
489 struct {
490 u32 sid;
491 u32 ssid;
492 u16 grpid;
493 enum pri_resp resp;
494 } pri;
495
496 #define CMDQ_OP_CMD_SYNC 0x46
497 };
498 };
499
500 struct arm_smmu_queue {
501 int irq; /* Wired interrupt */
502
503 __le64 *base;
504 dma_addr_t base_dma;
505 u64 q_base;
506
507 size_t ent_dwords;
508 u32 max_n_shift;
509 u32 prod;
510 u32 cons;
511
512 u32 __iomem *prod_reg;
513 u32 __iomem *cons_reg;
514 };
515
516 struct arm_smmu_cmdq {
517 struct arm_smmu_queue q;
518 spinlock_t lock;
519 };
520
521 struct arm_smmu_evtq {
522 struct arm_smmu_queue q;
523 u32 max_stalls;
524 };
525
526 struct arm_smmu_priq {
527 struct arm_smmu_queue q;
528 };
529
530 /* High-level stream table and context descriptor structures */
531 struct arm_smmu_strtab_l1_desc {
532 u8 span;
533
534 __le64 *l2ptr;
535 dma_addr_t l2ptr_dma;
536 };
537
538 struct arm_smmu_s1_cfg {
539 __le64 *cdptr;
540 dma_addr_t cdptr_dma;
541
542 struct arm_smmu_ctx_desc {
543 u16 asid;
544 u64 ttbr;
545 u64 tcr;
546 u64 mair;
547 } cd;
548 };
549
550 struct arm_smmu_s2_cfg {
551 u16 vmid;
552 u64 vttbr;
553 u64 vtcr;
554 };
555
556 struct arm_smmu_strtab_ent {
557 bool valid;
558
559 bool bypass; /* Overrides s1/s2 config */
560 struct arm_smmu_s1_cfg *s1_cfg;
561 struct arm_smmu_s2_cfg *s2_cfg;
562 };
563
564 struct arm_smmu_strtab_cfg {
565 __le64 *strtab;
566 dma_addr_t strtab_dma;
567 struct arm_smmu_strtab_l1_desc *l1_desc;
568 unsigned int num_l1_ents;
569
570 u64 strtab_base;
571 u32 strtab_base_cfg;
572 };
573
574 /* An SMMUv3 instance */
575 struct arm_smmu_device {
576 struct device *dev;
577 void __iomem *base;
578
579 #define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
580 #define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
581 #define ARM_SMMU_FEAT_TT_LE (1 << 2)
582 #define ARM_SMMU_FEAT_TT_BE (1 << 3)
583 #define ARM_SMMU_FEAT_PRI (1 << 4)
584 #define ARM_SMMU_FEAT_ATS (1 << 5)
585 #define ARM_SMMU_FEAT_SEV (1 << 6)
586 #define ARM_SMMU_FEAT_MSI (1 << 7)
587 #define ARM_SMMU_FEAT_COHERENCY (1 << 8)
588 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
589 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
590 #define ARM_SMMU_FEAT_STALLS (1 << 11)
591 #define ARM_SMMU_FEAT_HYP (1 << 12)
592 u32 features;
593
594 #define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
595 u32 options;
596
597 struct arm_smmu_cmdq cmdq;
598 struct arm_smmu_evtq evtq;
599 struct arm_smmu_priq priq;
600
601 int gerr_irq;
602
603 unsigned long ias; /* IPA */
604 unsigned long oas; /* PA */
605 unsigned long pgsize_bitmap;
606
607 #define ARM_SMMU_MAX_ASIDS (1 << 16)
608 unsigned int asid_bits;
609 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
610
611 #define ARM_SMMU_MAX_VMIDS (1 << 16)
612 unsigned int vmid_bits;
613 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
614
615 unsigned int ssid_bits;
616 unsigned int sid_bits;
617
618 struct arm_smmu_strtab_cfg strtab_cfg;
619
620 /* IOMMU core code handle */
621 struct iommu_device iommu;
622 };
623
624 /* SMMU private data for each master */
625 struct arm_smmu_master_data {
626 struct arm_smmu_device *smmu;
627 struct arm_smmu_strtab_ent ste;
628 };
629
630 /* SMMU private data for an IOMMU domain */
631 enum arm_smmu_domain_stage {
632 ARM_SMMU_DOMAIN_S1 = 0,
633 ARM_SMMU_DOMAIN_S2,
634 ARM_SMMU_DOMAIN_NESTED,
635 };
636
637 struct arm_smmu_domain {
638 struct arm_smmu_device *smmu;
639 struct mutex init_mutex; /* Protects smmu pointer */
640
641 struct io_pgtable_ops *pgtbl_ops;
642 spinlock_t pgtbl_lock;
643
644 enum arm_smmu_domain_stage stage;
645 union {
646 struct arm_smmu_s1_cfg s1_cfg;
647 struct arm_smmu_s2_cfg s2_cfg;
648 };
649
650 struct iommu_domain domain;
651 };
652
653 struct arm_smmu_option_prop {
654 u32 opt;
655 const char *prop;
656 };
657
658 static struct arm_smmu_option_prop arm_smmu_options[] = {
659 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
660 { 0, NULL},
661 };
662
663 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
664 {
665 return container_of(dom, struct arm_smmu_domain, domain);
666 }
667
668 static void parse_driver_options(struct arm_smmu_device *smmu)
669 {
670 int i = 0;
671
672 do {
673 if (of_property_read_bool(smmu->dev->of_node,
674 arm_smmu_options[i].prop)) {
675 smmu->options |= arm_smmu_options[i].opt;
676 dev_notice(smmu->dev, "option %s\n",
677 arm_smmu_options[i].prop);
678 }
679 } while (arm_smmu_options[++i].opt);
680 }
681
682 /* Low-level queue manipulation functions */
683 static bool queue_full(struct arm_smmu_queue *q)
684 {
685 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
686 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
687 }
688
689 static bool queue_empty(struct arm_smmu_queue *q)
690 {
691 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
692 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
693 }
694
695 static void queue_sync_cons(struct arm_smmu_queue *q)
696 {
697 q->cons = readl_relaxed(q->cons_reg);
698 }
699
700 static void queue_inc_cons(struct arm_smmu_queue *q)
701 {
702 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
703
704 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
705 writel(q->cons, q->cons_reg);
706 }
707
708 static int queue_sync_prod(struct arm_smmu_queue *q)
709 {
710 int ret = 0;
711 u32 prod = readl_relaxed(q->prod_reg);
712
713 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
714 ret = -EOVERFLOW;
715
716 q->prod = prod;
717 return ret;
718 }
719
720 static void queue_inc_prod(struct arm_smmu_queue *q)
721 {
722 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
723
724 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
725 writel(q->prod, q->prod_reg);
726 }
727
728 /*
729 * Wait for the SMMU to consume items. If drain is true, wait until the queue
730 * is empty. Otherwise, wait until there is at least one free slot.
731 */
732 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
733 {
734 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
735
736 while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
737 if (ktime_compare(ktime_get(), timeout) > 0)
738 return -ETIMEDOUT;
739
740 if (wfe) {
741 wfe();
742 } else {
743 cpu_relax();
744 udelay(1);
745 }
746 }
747
748 return 0;
749 }
750
751 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
752 {
753 int i;
754
755 for (i = 0; i < n_dwords; ++i)
756 *dst++ = cpu_to_le64(*src++);
757 }
758
759 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
760 {
761 if (queue_full(q))
762 return -ENOSPC;
763
764 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
765 queue_inc_prod(q);
766 return 0;
767 }
768
769 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
770 {
771 int i;
772
773 for (i = 0; i < n_dwords; ++i)
774 *dst++ = le64_to_cpu(*src++);
775 }
776
777 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
778 {
779 if (queue_empty(q))
780 return -EAGAIN;
781
782 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
783 queue_inc_cons(q);
784 return 0;
785 }
786
787 /* High-level queue accessors */
788 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
789 {
790 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
791 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
792
793 switch (ent->opcode) {
794 case CMDQ_OP_TLBI_EL2_ALL:
795 case CMDQ_OP_TLBI_NSNH_ALL:
796 break;
797 case CMDQ_OP_PREFETCH_CFG:
798 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
799 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
800 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
801 break;
802 case CMDQ_OP_CFGI_STE:
803 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
804 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
805 break;
806 case CMDQ_OP_CFGI_ALL:
807 /* Cover the entire SID range */
808 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
809 break;
810 case CMDQ_OP_TLBI_NH_VA:
811 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
812 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
813 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
814 break;
815 case CMDQ_OP_TLBI_S2_IPA:
816 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
817 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
818 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
819 break;
820 case CMDQ_OP_TLBI_NH_ASID:
821 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
822 /* Fallthrough */
823 case CMDQ_OP_TLBI_S12_VMALL:
824 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
825 break;
826 case CMDQ_OP_PRI_RESP:
827 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
828 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
829 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
830 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
831 switch (ent->pri.resp) {
832 case PRI_RESP_DENY:
833 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
834 break;
835 case PRI_RESP_FAIL:
836 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
837 break;
838 case PRI_RESP_SUCC:
839 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
840 break;
841 default:
842 return -EINVAL;
843 }
844 break;
845 case CMDQ_OP_CMD_SYNC:
846 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
847 break;
848 default:
849 return -ENOENT;
850 }
851
852 return 0;
853 }
854
855 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
856 {
857 static const char *cerror_str[] = {
858 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
859 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
860 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
861 };
862
863 int i;
864 u64 cmd[CMDQ_ENT_DWORDS];
865 struct arm_smmu_queue *q = &smmu->cmdq.q;
866 u32 cons = readl_relaxed(q->cons_reg);
867 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
868 struct arm_smmu_cmdq_ent cmd_sync = {
869 .opcode = CMDQ_OP_CMD_SYNC,
870 };
871
872 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
873 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
874
875 switch (idx) {
876 case CMDQ_ERR_CERROR_ABT_IDX:
877 dev_err(smmu->dev, "retrying command fetch\n");
878 case CMDQ_ERR_CERROR_NONE_IDX:
879 return;
880 case CMDQ_ERR_CERROR_ILL_IDX:
881 /* Fallthrough */
882 default:
883 break;
884 }
885
886 /*
887 * We may have concurrent producers, so we need to be careful
888 * not to touch any of the shadow cmdq state.
889 */
890 queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
891 dev_err(smmu->dev, "skipping command in error state:\n");
892 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
893 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
894
895 /* Convert the erroneous command into a CMD_SYNC */
896 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
897 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
898 return;
899 }
900
901 queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
902 }
903
904 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
905 struct arm_smmu_cmdq_ent *ent)
906 {
907 u64 cmd[CMDQ_ENT_DWORDS];
908 unsigned long flags;
909 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
910 struct arm_smmu_queue *q = &smmu->cmdq.q;
911
912 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
913 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
914 ent->opcode);
915 return;
916 }
917
918 spin_lock_irqsave(&smmu->cmdq.lock, flags);
919 while (queue_insert_raw(q, cmd) == -ENOSPC) {
920 if (queue_poll_cons(q, false, wfe))
921 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
922 }
923
924 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
925 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
926 spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
927 }
928
929 /* Context descriptor manipulation functions */
930 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
931 {
932 u64 val = 0;
933
934 /* Repack the TCR. Just care about TTBR0 for now */
935 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
936 val |= ARM_SMMU_TCR2CD(tcr, TG0);
937 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
938 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
939 val |= ARM_SMMU_TCR2CD(tcr, SH0);
940 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
941 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
942 val |= ARM_SMMU_TCR2CD(tcr, IPS);
943 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
944
945 return val;
946 }
947
948 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
949 struct arm_smmu_s1_cfg *cfg)
950 {
951 u64 val;
952
953 /*
954 * We don't need to issue any invalidation here, as we'll invalidate
955 * the STE when installing the new entry anyway.
956 */
957 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
958 #ifdef __BIG_ENDIAN
959 CTXDESC_CD_0_ENDI |
960 #endif
961 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
962 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
963 CTXDESC_CD_0_V;
964 cfg->cdptr[0] = cpu_to_le64(val);
965
966 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
967 cfg->cdptr[1] = cpu_to_le64(val);
968
969 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
970 }
971
972 /* Stream table manipulation functions */
973 static void
974 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
975 {
976 u64 val = 0;
977
978 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
979 << STRTAB_L1_DESC_SPAN_SHIFT;
980 val |= desc->l2ptr_dma &
981 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
982
983 *dst = cpu_to_le64(val);
984 }
985
986 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
987 {
988 struct arm_smmu_cmdq_ent cmd = {
989 .opcode = CMDQ_OP_CFGI_STE,
990 .cfgi = {
991 .sid = sid,
992 .leaf = true,
993 },
994 };
995
996 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
997 cmd.opcode = CMDQ_OP_CMD_SYNC;
998 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
999 }
1000
1001 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1002 __le64 *dst, struct arm_smmu_strtab_ent *ste)
1003 {
1004 /*
1005 * This is hideously complicated, but we only really care about
1006 * three cases at the moment:
1007 *
1008 * 1. Invalid (all zero) -> bypass (init)
1009 * 2. Bypass -> translation (attach)
1010 * 3. Translation -> bypass (detach)
1011 *
1012 * Given that we can't update the STE atomically and the SMMU
1013 * doesn't read the thing in a defined order, that leaves us
1014 * with the following maintenance requirements:
1015 *
1016 * 1. Update Config, return (init time STEs aren't live)
1017 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1018 * 3. Update Config, sync
1019 */
1020 u64 val = le64_to_cpu(dst[0]);
1021 bool ste_live = false;
1022 struct arm_smmu_cmdq_ent prefetch_cmd = {
1023 .opcode = CMDQ_OP_PREFETCH_CFG,
1024 .prefetch = {
1025 .sid = sid,
1026 },
1027 };
1028
1029 if (val & STRTAB_STE_0_V) {
1030 u64 cfg;
1031
1032 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1033 switch (cfg) {
1034 case STRTAB_STE_0_CFG_BYPASS:
1035 break;
1036 case STRTAB_STE_0_CFG_S1_TRANS:
1037 case STRTAB_STE_0_CFG_S2_TRANS:
1038 ste_live = true;
1039 break;
1040 case STRTAB_STE_0_CFG_ABORT:
1041 if (disable_bypass)
1042 break;
1043 default:
1044 BUG(); /* STE corruption */
1045 }
1046 }
1047
1048 /* Nuke the existing STE_0 value, as we're going to rewrite it */
1049 val = ste->valid ? STRTAB_STE_0_V : 0;
1050
1051 if (ste->bypass) {
1052 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1053 : STRTAB_STE_0_CFG_BYPASS;
1054 dst[0] = cpu_to_le64(val);
1055 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1056 << STRTAB_STE_1_SHCFG_SHIFT);
1057 dst[2] = 0; /* Nuke the VMID */
1058 if (ste_live)
1059 arm_smmu_sync_ste_for_sid(smmu, sid);
1060 return;
1061 }
1062
1063 if (ste->s1_cfg) {
1064 BUG_ON(ste_live);
1065 dst[1] = cpu_to_le64(
1066 STRTAB_STE_1_S1C_CACHE_WBRA
1067 << STRTAB_STE_1_S1CIR_SHIFT |
1068 STRTAB_STE_1_S1C_CACHE_WBRA
1069 << STRTAB_STE_1_S1COR_SHIFT |
1070 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1071 #ifdef CONFIG_PCI_ATS
1072 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1073 #endif
1074 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1075
1076 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1077 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1078
1079 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1080 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1081 STRTAB_STE_0_CFG_S1_TRANS;
1082 }
1083
1084 if (ste->s2_cfg) {
1085 BUG_ON(ste_live);
1086 dst[2] = cpu_to_le64(
1087 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1088 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1089 << STRTAB_STE_2_VTCR_SHIFT |
1090 #ifdef __BIG_ENDIAN
1091 STRTAB_STE_2_S2ENDI |
1092 #endif
1093 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1094 STRTAB_STE_2_S2R);
1095
1096 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1097 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1098
1099 val |= STRTAB_STE_0_CFG_S2_TRANS;
1100 }
1101
1102 arm_smmu_sync_ste_for_sid(smmu, sid);
1103 dst[0] = cpu_to_le64(val);
1104 arm_smmu_sync_ste_for_sid(smmu, sid);
1105
1106 /* It's likely that we'll want to use the new STE soon */
1107 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1108 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1109 }
1110
1111 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1112 {
1113 unsigned int i;
1114 struct arm_smmu_strtab_ent ste = {
1115 .valid = true,
1116 .bypass = true,
1117 };
1118
1119 for (i = 0; i < nent; ++i) {
1120 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1121 strtab += STRTAB_STE_DWORDS;
1122 }
1123 }
1124
1125 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1126 {
1127 size_t size;
1128 void *strtab;
1129 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1130 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1131
1132 if (desc->l2ptr)
1133 return 0;
1134
1135 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1136 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1137
1138 desc->span = STRTAB_SPLIT + 1;
1139 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1140 GFP_KERNEL | __GFP_ZERO);
1141 if (!desc->l2ptr) {
1142 dev_err(smmu->dev,
1143 "failed to allocate l2 stream table for SID %u\n",
1144 sid);
1145 return -ENOMEM;
1146 }
1147
1148 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1149 arm_smmu_write_strtab_l1_desc(strtab, desc);
1150 return 0;
1151 }
1152
1153 /* IRQ and event handlers */
1154 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1155 {
1156 int i;
1157 struct arm_smmu_device *smmu = dev;
1158 struct arm_smmu_queue *q = &smmu->evtq.q;
1159 u64 evt[EVTQ_ENT_DWORDS];
1160
1161 do {
1162 while (!queue_remove_raw(q, evt)) {
1163 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1164
1165 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1166 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1167 dev_info(smmu->dev, "\t0x%016llx\n",
1168 (unsigned long long)evt[i]);
1169
1170 }
1171
1172 /*
1173 * Not much we can do on overflow, so scream and pretend we're
1174 * trying harder.
1175 */
1176 if (queue_sync_prod(q) == -EOVERFLOW)
1177 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1178 } while (!queue_empty(q));
1179
1180 /* Sync our overflow flag, as we believe we're up to speed */
1181 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1182 return IRQ_HANDLED;
1183 }
1184
1185 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1186 {
1187 u32 sid, ssid;
1188 u16 grpid;
1189 bool ssv, last;
1190
1191 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1192 ssv = evt[0] & PRIQ_0_SSID_V;
1193 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1194 last = evt[0] & PRIQ_0_PRG_LAST;
1195 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1196
1197 dev_info(smmu->dev, "unexpected PRI request received:\n");
1198 dev_info(smmu->dev,
1199 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1200 sid, ssid, grpid, last ? "L" : "",
1201 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1202 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1203 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1204 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1205 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1206
1207 if (last) {
1208 struct arm_smmu_cmdq_ent cmd = {
1209 .opcode = CMDQ_OP_PRI_RESP,
1210 .substream_valid = ssv,
1211 .pri = {
1212 .sid = sid,
1213 .ssid = ssid,
1214 .grpid = grpid,
1215 .resp = PRI_RESP_DENY,
1216 },
1217 };
1218
1219 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1220 }
1221 }
1222
1223 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1224 {
1225 struct arm_smmu_device *smmu = dev;
1226 struct arm_smmu_queue *q = &smmu->priq.q;
1227 u64 evt[PRIQ_ENT_DWORDS];
1228
1229 do {
1230 while (!queue_remove_raw(q, evt))
1231 arm_smmu_handle_ppr(smmu, evt);
1232
1233 if (queue_sync_prod(q) == -EOVERFLOW)
1234 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1235 } while (!queue_empty(q));
1236
1237 /* Sync our overflow flag, as we believe we're up to speed */
1238 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1239 return IRQ_HANDLED;
1240 }
1241
1242 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1243 {
1244 /* We don't actually use CMD_SYNC interrupts for anything */
1245 return IRQ_HANDLED;
1246 }
1247
1248 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1249
1250 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1251 {
1252 u32 gerror, gerrorn, active;
1253 struct arm_smmu_device *smmu = dev;
1254
1255 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1256 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1257
1258 active = gerror ^ gerrorn;
1259 if (!(active & GERROR_ERR_MASK))
1260 return IRQ_NONE; /* No errors pending */
1261
1262 dev_warn(smmu->dev,
1263 "unexpected global error reported (0x%08x), this could be serious\n",
1264 active);
1265
1266 if (active & GERROR_SFM_ERR) {
1267 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1268 arm_smmu_device_disable(smmu);
1269 }
1270
1271 if (active & GERROR_MSI_GERROR_ABT_ERR)
1272 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1273
1274 if (active & GERROR_MSI_PRIQ_ABT_ERR)
1275 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1276
1277 if (active & GERROR_MSI_EVTQ_ABT_ERR)
1278 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1279
1280 if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1281 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1282 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1283 }
1284
1285 if (active & GERROR_PRIQ_ABT_ERR)
1286 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1287
1288 if (active & GERROR_EVTQ_ABT_ERR)
1289 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1290
1291 if (active & GERROR_CMDQ_ERR)
1292 arm_smmu_cmdq_skip_err(smmu);
1293
1294 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1295 return IRQ_HANDLED;
1296 }
1297
1298 /* IO_PGTABLE API */
1299 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1300 {
1301 struct arm_smmu_cmdq_ent cmd;
1302
1303 cmd.opcode = CMDQ_OP_CMD_SYNC;
1304 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1305 }
1306
1307 static void arm_smmu_tlb_sync(void *cookie)
1308 {
1309 struct arm_smmu_domain *smmu_domain = cookie;
1310 __arm_smmu_tlb_sync(smmu_domain->smmu);
1311 }
1312
1313 static void arm_smmu_tlb_inv_context(void *cookie)
1314 {
1315 struct arm_smmu_domain *smmu_domain = cookie;
1316 struct arm_smmu_device *smmu = smmu_domain->smmu;
1317 struct arm_smmu_cmdq_ent cmd;
1318
1319 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1320 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1321 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1322 cmd.tlbi.vmid = 0;
1323 } else {
1324 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1325 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1326 }
1327
1328 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1329 __arm_smmu_tlb_sync(smmu);
1330 }
1331
1332 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1333 size_t granule, bool leaf, void *cookie)
1334 {
1335 struct arm_smmu_domain *smmu_domain = cookie;
1336 struct arm_smmu_device *smmu = smmu_domain->smmu;
1337 struct arm_smmu_cmdq_ent cmd = {
1338 .tlbi = {
1339 .leaf = leaf,
1340 .addr = iova,
1341 },
1342 };
1343
1344 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1345 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1346 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1347 } else {
1348 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1349 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1350 }
1351
1352 do {
1353 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1354 cmd.tlbi.addr += granule;
1355 } while (size -= granule);
1356 }
1357
1358 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1359 .tlb_flush_all = arm_smmu_tlb_inv_context,
1360 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1361 .tlb_sync = arm_smmu_tlb_sync,
1362 };
1363
1364 /* IOMMU API */
1365 static bool arm_smmu_capable(enum iommu_cap cap)
1366 {
1367 switch (cap) {
1368 case IOMMU_CAP_CACHE_COHERENCY:
1369 return true;
1370 case IOMMU_CAP_NOEXEC:
1371 return true;
1372 default:
1373 return false;
1374 }
1375 }
1376
1377 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1378 {
1379 struct arm_smmu_domain *smmu_domain;
1380
1381 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1382 return NULL;
1383
1384 /*
1385 * Allocate the domain and initialise some of its data structures.
1386 * We can't really do anything meaningful until we've added a
1387 * master.
1388 */
1389 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1390 if (!smmu_domain)
1391 return NULL;
1392
1393 if (type == IOMMU_DOMAIN_DMA &&
1394 iommu_get_dma_cookie(&smmu_domain->domain)) {
1395 kfree(smmu_domain);
1396 return NULL;
1397 }
1398
1399 mutex_init(&smmu_domain->init_mutex);
1400 spin_lock_init(&smmu_domain->pgtbl_lock);
1401 return &smmu_domain->domain;
1402 }
1403
1404 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1405 {
1406 int idx, size = 1 << span;
1407
1408 do {
1409 idx = find_first_zero_bit(map, size);
1410 if (idx == size)
1411 return -ENOSPC;
1412 } while (test_and_set_bit(idx, map));
1413
1414 return idx;
1415 }
1416
1417 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1418 {
1419 clear_bit(idx, map);
1420 }
1421
1422 static void arm_smmu_domain_free(struct iommu_domain *domain)
1423 {
1424 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1425 struct arm_smmu_device *smmu = smmu_domain->smmu;
1426
1427 iommu_put_dma_cookie(domain);
1428 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1429
1430 /* Free the CD and ASID, if we allocated them */
1431 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1432 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1433
1434 if (cfg->cdptr) {
1435 dmam_free_coherent(smmu_domain->smmu->dev,
1436 CTXDESC_CD_DWORDS << 3,
1437 cfg->cdptr,
1438 cfg->cdptr_dma);
1439
1440 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1441 }
1442 } else {
1443 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1444 if (cfg->vmid)
1445 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1446 }
1447
1448 kfree(smmu_domain);
1449 }
1450
1451 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1452 struct io_pgtable_cfg *pgtbl_cfg)
1453 {
1454 int ret;
1455 int asid;
1456 struct arm_smmu_device *smmu = smmu_domain->smmu;
1457 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1458
1459 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1460 if (asid < 0)
1461 return asid;
1462
1463 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1464 &cfg->cdptr_dma,
1465 GFP_KERNEL | __GFP_ZERO);
1466 if (!cfg->cdptr) {
1467 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1468 ret = -ENOMEM;
1469 goto out_free_asid;
1470 }
1471
1472 cfg->cd.asid = (u16)asid;
1473 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1474 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1475 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1476 return 0;
1477
1478 out_free_asid:
1479 arm_smmu_bitmap_free(smmu->asid_map, asid);
1480 return ret;
1481 }
1482
1483 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1484 struct io_pgtable_cfg *pgtbl_cfg)
1485 {
1486 int vmid;
1487 struct arm_smmu_device *smmu = smmu_domain->smmu;
1488 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1489
1490 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1491 if (vmid < 0)
1492 return vmid;
1493
1494 cfg->vmid = (u16)vmid;
1495 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1496 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1497 return 0;
1498 }
1499
1500 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1501 {
1502 int ret;
1503 unsigned long ias, oas;
1504 enum io_pgtable_fmt fmt;
1505 struct io_pgtable_cfg pgtbl_cfg;
1506 struct io_pgtable_ops *pgtbl_ops;
1507 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1508 struct io_pgtable_cfg *);
1509 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1510 struct arm_smmu_device *smmu = smmu_domain->smmu;
1511
1512 /* Restrict the stage to what we can actually support */
1513 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1514 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1515 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1516 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1517
1518 switch (smmu_domain->stage) {
1519 case ARM_SMMU_DOMAIN_S1:
1520 ias = VA_BITS;
1521 oas = smmu->ias;
1522 fmt = ARM_64_LPAE_S1;
1523 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1524 break;
1525 case ARM_SMMU_DOMAIN_NESTED:
1526 case ARM_SMMU_DOMAIN_S2:
1527 ias = smmu->ias;
1528 oas = smmu->oas;
1529 fmt = ARM_64_LPAE_S2;
1530 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1531 break;
1532 default:
1533 return -EINVAL;
1534 }
1535
1536 pgtbl_cfg = (struct io_pgtable_cfg) {
1537 .pgsize_bitmap = smmu->pgsize_bitmap,
1538 .ias = ias,
1539 .oas = oas,
1540 .tlb = &arm_smmu_gather_ops,
1541 .iommu_dev = smmu->dev,
1542 };
1543
1544 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1545 if (!pgtbl_ops)
1546 return -ENOMEM;
1547
1548 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1549 domain->geometry.aperture_end = (1UL << ias) - 1;
1550 domain->geometry.force_aperture = true;
1551 smmu_domain->pgtbl_ops = pgtbl_ops;
1552
1553 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1554 if (ret < 0)
1555 free_io_pgtable_ops(pgtbl_ops);
1556
1557 return ret;
1558 }
1559
1560 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1561 {
1562 __le64 *step;
1563 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1564
1565 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1566 struct arm_smmu_strtab_l1_desc *l1_desc;
1567 int idx;
1568
1569 /* Two-level walk */
1570 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1571 l1_desc = &cfg->l1_desc[idx];
1572 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1573 step = &l1_desc->l2ptr[idx];
1574 } else {
1575 /* Simple linear lookup */
1576 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1577 }
1578
1579 return step;
1580 }
1581
1582 static int arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1583 {
1584 int i;
1585 struct arm_smmu_master_data *master = fwspec->iommu_priv;
1586 struct arm_smmu_device *smmu = master->smmu;
1587
1588 for (i = 0; i < fwspec->num_ids; ++i) {
1589 u32 sid = fwspec->ids[i];
1590 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1591
1592 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1593 }
1594
1595 return 0;
1596 }
1597
1598 static void arm_smmu_detach_dev(struct device *dev)
1599 {
1600 struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1601
1602 master->ste.bypass = true;
1603 if (arm_smmu_install_ste_for_dev(dev->iommu_fwspec) < 0)
1604 dev_warn(dev, "failed to install bypass STE\n");
1605 }
1606
1607 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1608 {
1609 int ret = 0;
1610 struct arm_smmu_device *smmu;
1611 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1612 struct arm_smmu_master_data *master;
1613 struct arm_smmu_strtab_ent *ste;
1614
1615 if (!dev->iommu_fwspec)
1616 return -ENOENT;
1617
1618 master = dev->iommu_fwspec->iommu_priv;
1619 smmu = master->smmu;
1620 ste = &master->ste;
1621
1622 /* Already attached to a different domain? */
1623 if (!ste->bypass)
1624 arm_smmu_detach_dev(dev);
1625
1626 mutex_lock(&smmu_domain->init_mutex);
1627
1628 if (!smmu_domain->smmu) {
1629 smmu_domain->smmu = smmu;
1630 ret = arm_smmu_domain_finalise(domain);
1631 if (ret) {
1632 smmu_domain->smmu = NULL;
1633 goto out_unlock;
1634 }
1635 } else if (smmu_domain->smmu != smmu) {
1636 dev_err(dev,
1637 "cannot attach to SMMU %s (upstream of %s)\n",
1638 dev_name(smmu_domain->smmu->dev),
1639 dev_name(smmu->dev));
1640 ret = -ENXIO;
1641 goto out_unlock;
1642 }
1643
1644 ste->bypass = false;
1645 ste->valid = true;
1646
1647 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1648 ste->s1_cfg = &smmu_domain->s1_cfg;
1649 ste->s2_cfg = NULL;
1650 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1651 } else {
1652 ste->s1_cfg = NULL;
1653 ste->s2_cfg = &smmu_domain->s2_cfg;
1654 }
1655
1656 ret = arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1657 if (ret < 0)
1658 ste->valid = false;
1659
1660 out_unlock:
1661 mutex_unlock(&smmu_domain->init_mutex);
1662 return ret;
1663 }
1664
1665 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1666 phys_addr_t paddr, size_t size, int prot)
1667 {
1668 int ret;
1669 unsigned long flags;
1670 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1671 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1672
1673 if (!ops)
1674 return -ENODEV;
1675
1676 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1677 ret = ops->map(ops, iova, paddr, size, prot);
1678 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1679 return ret;
1680 }
1681
1682 static size_t
1683 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1684 {
1685 size_t ret;
1686 unsigned long flags;
1687 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1688 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1689
1690 if (!ops)
1691 return 0;
1692
1693 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1694 ret = ops->unmap(ops, iova, size);
1695 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1696 return ret;
1697 }
1698
1699 static phys_addr_t
1700 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1701 {
1702 phys_addr_t ret;
1703 unsigned long flags;
1704 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1705 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1706
1707 if (!ops)
1708 return 0;
1709
1710 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1711 ret = ops->iova_to_phys(ops, iova);
1712 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1713
1714 return ret;
1715 }
1716
1717 static struct platform_driver arm_smmu_driver;
1718
1719 static int arm_smmu_match_node(struct device *dev, void *data)
1720 {
1721 return dev->fwnode == data;
1722 }
1723
1724 static
1725 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1726 {
1727 struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1728 fwnode, arm_smmu_match_node);
1729 put_device(dev);
1730 return dev ? dev_get_drvdata(dev) : NULL;
1731 }
1732
1733 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1734 {
1735 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1736
1737 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1738 limit *= 1UL << STRTAB_SPLIT;
1739
1740 return sid < limit;
1741 }
1742
1743 static struct iommu_ops arm_smmu_ops;
1744
1745 static int arm_smmu_add_device(struct device *dev)
1746 {
1747 int i, ret;
1748 struct arm_smmu_device *smmu;
1749 struct arm_smmu_master_data *master;
1750 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1751 struct iommu_group *group;
1752
1753 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1754 return -ENODEV;
1755 /*
1756 * We _can_ actually withstand dodgy bus code re-calling add_device()
1757 * without an intervening remove_device()/of_xlate() sequence, but
1758 * we're not going to do so quietly...
1759 */
1760 if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1761 master = fwspec->iommu_priv;
1762 smmu = master->smmu;
1763 } else {
1764 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1765 if (!smmu)
1766 return -ENODEV;
1767 master = kzalloc(sizeof(*master), GFP_KERNEL);
1768 if (!master)
1769 return -ENOMEM;
1770
1771 master->smmu = smmu;
1772 fwspec->iommu_priv = master;
1773 }
1774
1775 /* Check the SIDs are in range of the SMMU and our stream table */
1776 for (i = 0; i < fwspec->num_ids; i++) {
1777 u32 sid = fwspec->ids[i];
1778
1779 if (!arm_smmu_sid_in_range(smmu, sid))
1780 return -ERANGE;
1781
1782 /* Ensure l2 strtab is initialised */
1783 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1784 ret = arm_smmu_init_l2_strtab(smmu, sid);
1785 if (ret)
1786 return ret;
1787 }
1788 }
1789
1790 group = iommu_group_get_for_dev(dev);
1791 if (!IS_ERR(group)) {
1792 iommu_group_put(group);
1793 iommu_device_link(&smmu->iommu, dev);
1794 }
1795
1796 return PTR_ERR_OR_ZERO(group);
1797 }
1798
1799 static void arm_smmu_remove_device(struct device *dev)
1800 {
1801 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1802 struct arm_smmu_master_data *master;
1803 struct arm_smmu_device *smmu;
1804
1805 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1806 return;
1807
1808 master = fwspec->iommu_priv;
1809 smmu = master->smmu;
1810 if (master && master->ste.valid)
1811 arm_smmu_detach_dev(dev);
1812 iommu_group_remove_device(dev);
1813 iommu_device_unlink(&smmu->iommu, dev);
1814 kfree(master);
1815 iommu_fwspec_free(dev);
1816 }
1817
1818 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1819 {
1820 struct iommu_group *group;
1821
1822 /*
1823 * We don't support devices sharing stream IDs other than PCI RID
1824 * aliases, since the necessary ID-to-device lookup becomes rather
1825 * impractical given a potential sparse 32-bit stream ID space.
1826 */
1827 if (dev_is_pci(dev))
1828 group = pci_device_group(dev);
1829 else
1830 group = generic_device_group(dev);
1831
1832 return group;
1833 }
1834
1835 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1836 enum iommu_attr attr, void *data)
1837 {
1838 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1839
1840 switch (attr) {
1841 case DOMAIN_ATTR_NESTING:
1842 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1843 return 0;
1844 default:
1845 return -ENODEV;
1846 }
1847 }
1848
1849 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1850 enum iommu_attr attr, void *data)
1851 {
1852 int ret = 0;
1853 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1854
1855 mutex_lock(&smmu_domain->init_mutex);
1856
1857 switch (attr) {
1858 case DOMAIN_ATTR_NESTING:
1859 if (smmu_domain->smmu) {
1860 ret = -EPERM;
1861 goto out_unlock;
1862 }
1863
1864 if (*(int *)data)
1865 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1866 else
1867 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1868
1869 break;
1870 default:
1871 ret = -ENODEV;
1872 }
1873
1874 out_unlock:
1875 mutex_unlock(&smmu_domain->init_mutex);
1876 return ret;
1877 }
1878
1879 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1880 {
1881 return iommu_fwspec_add_ids(dev, args->args, 1);
1882 }
1883
1884 static void arm_smmu_get_resv_regions(struct device *dev,
1885 struct list_head *head)
1886 {
1887 struct iommu_resv_region *region;
1888 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1889
1890 region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1891 prot, IOMMU_RESV_SW_MSI);
1892 if (!region)
1893 return;
1894
1895 list_add_tail(&region->list, head);
1896 }
1897
1898 static void arm_smmu_put_resv_regions(struct device *dev,
1899 struct list_head *head)
1900 {
1901 struct iommu_resv_region *entry, *next;
1902
1903 list_for_each_entry_safe(entry, next, head, list)
1904 kfree(entry);
1905 }
1906
1907 static struct iommu_ops arm_smmu_ops = {
1908 .capable = arm_smmu_capable,
1909 .domain_alloc = arm_smmu_domain_alloc,
1910 .domain_free = arm_smmu_domain_free,
1911 .attach_dev = arm_smmu_attach_dev,
1912 .map = arm_smmu_map,
1913 .unmap = arm_smmu_unmap,
1914 .map_sg = default_iommu_map_sg,
1915 .iova_to_phys = arm_smmu_iova_to_phys,
1916 .add_device = arm_smmu_add_device,
1917 .remove_device = arm_smmu_remove_device,
1918 .device_group = arm_smmu_device_group,
1919 .domain_get_attr = arm_smmu_domain_get_attr,
1920 .domain_set_attr = arm_smmu_domain_set_attr,
1921 .of_xlate = arm_smmu_of_xlate,
1922 .get_resv_regions = arm_smmu_get_resv_regions,
1923 .put_resv_regions = arm_smmu_put_resv_regions,
1924 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1925 };
1926
1927 /* Probing and initialisation functions */
1928 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1929 struct arm_smmu_queue *q,
1930 unsigned long prod_off,
1931 unsigned long cons_off,
1932 size_t dwords)
1933 {
1934 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1935
1936 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1937 if (!q->base) {
1938 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1939 qsz);
1940 return -ENOMEM;
1941 }
1942
1943 q->prod_reg = smmu->base + prod_off;
1944 q->cons_reg = smmu->base + cons_off;
1945 q->ent_dwords = dwords;
1946
1947 q->q_base = Q_BASE_RWA;
1948 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1949 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1950 << Q_BASE_LOG2SIZE_SHIFT;
1951
1952 q->prod = q->cons = 0;
1953 return 0;
1954 }
1955
1956 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1957 {
1958 int ret;
1959
1960 /* cmdq */
1961 spin_lock_init(&smmu->cmdq.lock);
1962 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1963 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1964 if (ret)
1965 return ret;
1966
1967 /* evtq */
1968 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1969 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1970 if (ret)
1971 return ret;
1972
1973 /* priq */
1974 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1975 return 0;
1976
1977 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1978 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1979 }
1980
1981 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1982 {
1983 unsigned int i;
1984 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1985 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1986 void *strtab = smmu->strtab_cfg.strtab;
1987
1988 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1989 if (!cfg->l1_desc) {
1990 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1991 return -ENOMEM;
1992 }
1993
1994 for (i = 0; i < cfg->num_l1_ents; ++i) {
1995 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
1996 strtab += STRTAB_L1_DESC_DWORDS << 3;
1997 }
1998
1999 return 0;
2000 }
2001
2002 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2003 {
2004 void *strtab;
2005 u64 reg;
2006 u32 size, l1size;
2007 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2008
2009 /* Calculate the L1 size, capped to the SIDSIZE. */
2010 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2011 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2012 cfg->num_l1_ents = 1 << size;
2013
2014 size += STRTAB_SPLIT;
2015 if (size < smmu->sid_bits)
2016 dev_warn(smmu->dev,
2017 "2-level strtab only covers %u/%u bits of SID\n",
2018 size, smmu->sid_bits);
2019
2020 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2021 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2022 GFP_KERNEL | __GFP_ZERO);
2023 if (!strtab) {
2024 dev_err(smmu->dev,
2025 "failed to allocate l1 stream table (%u bytes)\n",
2026 size);
2027 return -ENOMEM;
2028 }
2029 cfg->strtab = strtab;
2030
2031 /* Configure strtab_base_cfg for 2 levels */
2032 reg = STRTAB_BASE_CFG_FMT_2LVL;
2033 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2034 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2035 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2036 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2037 cfg->strtab_base_cfg = reg;
2038
2039 return arm_smmu_init_l1_strtab(smmu);
2040 }
2041
2042 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2043 {
2044 void *strtab;
2045 u64 reg;
2046 u32 size;
2047 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2048
2049 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2050 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2051 GFP_KERNEL | __GFP_ZERO);
2052 if (!strtab) {
2053 dev_err(smmu->dev,
2054 "failed to allocate linear stream table (%u bytes)\n",
2055 size);
2056 return -ENOMEM;
2057 }
2058 cfg->strtab = strtab;
2059 cfg->num_l1_ents = 1 << smmu->sid_bits;
2060
2061 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2062 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2063 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2064 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2065 cfg->strtab_base_cfg = reg;
2066
2067 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2068 return 0;
2069 }
2070
2071 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2072 {
2073 u64 reg;
2074 int ret;
2075
2076 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2077 ret = arm_smmu_init_strtab_2lvl(smmu);
2078 else
2079 ret = arm_smmu_init_strtab_linear(smmu);
2080
2081 if (ret)
2082 return ret;
2083
2084 /* Set the strtab base address */
2085 reg = smmu->strtab_cfg.strtab_dma &
2086 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2087 reg |= STRTAB_BASE_RA;
2088 smmu->strtab_cfg.strtab_base = reg;
2089
2090 /* Allocate the first VMID for stage-2 bypass STEs */
2091 set_bit(0, smmu->vmid_map);
2092 return 0;
2093 }
2094
2095 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2096 {
2097 int ret;
2098
2099 ret = arm_smmu_init_queues(smmu);
2100 if (ret)
2101 return ret;
2102
2103 return arm_smmu_init_strtab(smmu);
2104 }
2105
2106 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2107 unsigned int reg_off, unsigned int ack_off)
2108 {
2109 u32 reg;
2110
2111 writel_relaxed(val, smmu->base + reg_off);
2112 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2113 1, ARM_SMMU_POLL_TIMEOUT_US);
2114 }
2115
2116 /* GBPA is "special" */
2117 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2118 {
2119 int ret;
2120 u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2121
2122 ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2123 1, ARM_SMMU_POLL_TIMEOUT_US);
2124 if (ret)
2125 return ret;
2126
2127 reg &= ~clr;
2128 reg |= set;
2129 writel_relaxed(reg | GBPA_UPDATE, gbpa);
2130 return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2131 1, ARM_SMMU_POLL_TIMEOUT_US);
2132 }
2133
2134 static void arm_smmu_free_msis(void *data)
2135 {
2136 struct device *dev = data;
2137 platform_msi_domain_free_irqs(dev);
2138 }
2139
2140 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2141 {
2142 phys_addr_t doorbell;
2143 struct device *dev = msi_desc_to_dev(desc);
2144 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2145 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2146
2147 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2148 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2149
2150 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2151 writel_relaxed(msg->data, smmu->base + cfg[1]);
2152 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2153 }
2154
2155 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2156 {
2157 struct msi_desc *desc;
2158 int ret, nvec = ARM_SMMU_MAX_MSIS;
2159 struct device *dev = smmu->dev;
2160
2161 /* Clear the MSI address regs */
2162 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2163 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2164
2165 if (smmu->features & ARM_SMMU_FEAT_PRI)
2166 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2167 else
2168 nvec--;
2169
2170 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2171 return;
2172
2173 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2174 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2175 if (ret) {
2176 dev_warn(dev, "failed to allocate MSIs\n");
2177 return;
2178 }
2179
2180 for_each_msi_entry(desc, dev) {
2181 switch (desc->platform.msi_index) {
2182 case EVTQ_MSI_INDEX:
2183 smmu->evtq.q.irq = desc->irq;
2184 break;
2185 case GERROR_MSI_INDEX:
2186 smmu->gerr_irq = desc->irq;
2187 break;
2188 case PRIQ_MSI_INDEX:
2189 smmu->priq.q.irq = desc->irq;
2190 break;
2191 default: /* Unknown */
2192 continue;
2193 }
2194 }
2195
2196 /* Add callback to free MSIs on teardown */
2197 devm_add_action(dev, arm_smmu_free_msis, dev);
2198 }
2199
2200 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2201 {
2202 int ret, irq;
2203 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2204
2205 /* Disable IRQs first */
2206 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2207 ARM_SMMU_IRQ_CTRLACK);
2208 if (ret) {
2209 dev_err(smmu->dev, "failed to disable irqs\n");
2210 return ret;
2211 }
2212
2213 arm_smmu_setup_msis(smmu);
2214
2215 /* Request interrupt lines */
2216 irq = smmu->evtq.q.irq;
2217 if (irq) {
2218 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2219 arm_smmu_evtq_thread,
2220 IRQF_ONESHOT,
2221 "arm-smmu-v3-evtq", smmu);
2222 if (ret < 0)
2223 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2224 }
2225
2226 irq = smmu->cmdq.q.irq;
2227 if (irq) {
2228 ret = devm_request_irq(smmu->dev, irq,
2229 arm_smmu_cmdq_sync_handler, 0,
2230 "arm-smmu-v3-cmdq-sync", smmu);
2231 if (ret < 0)
2232 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2233 }
2234
2235 irq = smmu->gerr_irq;
2236 if (irq) {
2237 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2238 0, "arm-smmu-v3-gerror", smmu);
2239 if (ret < 0)
2240 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2241 }
2242
2243 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2244 irq = smmu->priq.q.irq;
2245 if (irq) {
2246 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2247 arm_smmu_priq_thread,
2248 IRQF_ONESHOT,
2249 "arm-smmu-v3-priq",
2250 smmu);
2251 if (ret < 0)
2252 dev_warn(smmu->dev,
2253 "failed to enable priq irq\n");
2254 else
2255 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2256 }
2257 }
2258
2259 /* Enable interrupt generation on the SMMU */
2260 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2261 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2262 if (ret)
2263 dev_warn(smmu->dev, "failed to enable irqs\n");
2264
2265 return 0;
2266 }
2267
2268 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2269 {
2270 int ret;
2271
2272 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2273 if (ret)
2274 dev_err(smmu->dev, "failed to clear cr0\n");
2275
2276 return ret;
2277 }
2278
2279 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2280 {
2281 int ret;
2282 u32 reg, enables;
2283 struct arm_smmu_cmdq_ent cmd;
2284
2285 /* Clear CR0 and sync (disables SMMU and queue processing) */
2286 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2287 if (reg & CR0_SMMUEN)
2288 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2289
2290 ret = arm_smmu_device_disable(smmu);
2291 if (ret)
2292 return ret;
2293
2294 /* CR1 (table and queue memory attributes) */
2295 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2296 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2297 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2298 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2299 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2300 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2301 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2302
2303 /* CR2 (random crap) */
2304 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2305 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2306
2307 /* Stream table */
2308 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2309 smmu->base + ARM_SMMU_STRTAB_BASE);
2310 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2311 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2312
2313 /* Command queue */
2314 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2315 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2316 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2317
2318 enables = CR0_CMDQEN;
2319 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2320 ARM_SMMU_CR0ACK);
2321 if (ret) {
2322 dev_err(smmu->dev, "failed to enable command queue\n");
2323 return ret;
2324 }
2325
2326 /* Invalidate any cached configuration */
2327 cmd.opcode = CMDQ_OP_CFGI_ALL;
2328 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2329 cmd.opcode = CMDQ_OP_CMD_SYNC;
2330 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2331
2332 /* Invalidate any stale TLB entries */
2333 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2334 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2335 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2336 }
2337
2338 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2339 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2340 cmd.opcode = CMDQ_OP_CMD_SYNC;
2341 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2342
2343 /* Event queue */
2344 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2345 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2346 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2347
2348 enables |= CR0_EVTQEN;
2349 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2350 ARM_SMMU_CR0ACK);
2351 if (ret) {
2352 dev_err(smmu->dev, "failed to enable event queue\n");
2353 return ret;
2354 }
2355
2356 /* PRI queue */
2357 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2358 writeq_relaxed(smmu->priq.q.q_base,
2359 smmu->base + ARM_SMMU_PRIQ_BASE);
2360 writel_relaxed(smmu->priq.q.prod,
2361 smmu->base + ARM_SMMU_PRIQ_PROD);
2362 writel_relaxed(smmu->priq.q.cons,
2363 smmu->base + ARM_SMMU_PRIQ_CONS);
2364
2365 enables |= CR0_PRIQEN;
2366 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2367 ARM_SMMU_CR0ACK);
2368 if (ret) {
2369 dev_err(smmu->dev, "failed to enable PRI queue\n");
2370 return ret;
2371 }
2372 }
2373
2374 ret = arm_smmu_setup_irqs(smmu);
2375 if (ret) {
2376 dev_err(smmu->dev, "failed to setup irqs\n");
2377 return ret;
2378 }
2379
2380
2381 /* Enable the SMMU interface, or ensure bypass */
2382 if (!bypass || disable_bypass) {
2383 enables |= CR0_SMMUEN;
2384 } else {
2385 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2386 if (ret) {
2387 dev_err(smmu->dev, "GBPA not responding to update\n");
2388 return ret;
2389 }
2390 }
2391 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2392 ARM_SMMU_CR0ACK);
2393 if (ret) {
2394 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2395 return ret;
2396 }
2397
2398 return 0;
2399 }
2400
2401 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2402 {
2403 u32 reg;
2404 bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2405
2406 /* IDR0 */
2407 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2408
2409 /* 2-level structures */
2410 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2411 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2412
2413 if (reg & IDR0_CD2L)
2414 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2415
2416 /*
2417 * Translation table endianness.
2418 * We currently require the same endianness as the CPU, but this
2419 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2420 */
2421 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2422 case IDR0_TTENDIAN_MIXED:
2423 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2424 break;
2425 #ifdef __BIG_ENDIAN
2426 case IDR0_TTENDIAN_BE:
2427 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2428 break;
2429 #else
2430 case IDR0_TTENDIAN_LE:
2431 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2432 break;
2433 #endif
2434 default:
2435 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2436 return -ENXIO;
2437 }
2438
2439 /* Boolean feature flags */
2440 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2441 smmu->features |= ARM_SMMU_FEAT_PRI;
2442
2443 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2444 smmu->features |= ARM_SMMU_FEAT_ATS;
2445
2446 if (reg & IDR0_SEV)
2447 smmu->features |= ARM_SMMU_FEAT_SEV;
2448
2449 if (reg & IDR0_MSI)
2450 smmu->features |= ARM_SMMU_FEAT_MSI;
2451
2452 if (reg & IDR0_HYP)
2453 smmu->features |= ARM_SMMU_FEAT_HYP;
2454
2455 /*
2456 * The coherency feature as set by FW is used in preference to the ID
2457 * register, but warn on mismatch.
2458 */
2459 if (!!(reg & IDR0_COHACC) != coherent)
2460 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2461 coherent ? "true" : "false");
2462
2463 switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2464 case IDR0_STALL_MODEL_STALL:
2465 /* Fallthrough */
2466 case IDR0_STALL_MODEL_FORCE:
2467 smmu->features |= ARM_SMMU_FEAT_STALLS;
2468 }
2469
2470 if (reg & IDR0_S1P)
2471 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2472
2473 if (reg & IDR0_S2P)
2474 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2475
2476 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2477 dev_err(smmu->dev, "no translation support!\n");
2478 return -ENXIO;
2479 }
2480
2481 /* We only support the AArch64 table format at present */
2482 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2483 case IDR0_TTF_AARCH32_64:
2484 smmu->ias = 40;
2485 /* Fallthrough */
2486 case IDR0_TTF_AARCH64:
2487 break;
2488 default:
2489 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2490 return -ENXIO;
2491 }
2492
2493 /* ASID/VMID sizes */
2494 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2495 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2496
2497 /* IDR1 */
2498 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2499 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2500 dev_err(smmu->dev, "embedded implementation not supported\n");
2501 return -ENXIO;
2502 }
2503
2504 /* Queue sizes, capped at 4k */
2505 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2506 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2507 if (!smmu->cmdq.q.max_n_shift) {
2508 /* Odd alignment restrictions on the base, so ignore for now */
2509 dev_err(smmu->dev, "unit-length command queue not supported\n");
2510 return -ENXIO;
2511 }
2512
2513 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2514 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2515 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2516 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2517
2518 /* SID/SSID sizes */
2519 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2520 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2521
2522 /*
2523 * If the SMMU supports fewer bits than would fill a single L2 stream
2524 * table, use a linear table instead.
2525 */
2526 if (smmu->sid_bits <= STRTAB_SPLIT)
2527 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
2528
2529 /* IDR5 */
2530 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2531
2532 /* Maximum number of outstanding stalls */
2533 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2534 & IDR5_STALL_MAX_MASK;
2535
2536 /* Page sizes */
2537 if (reg & IDR5_GRAN64K)
2538 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2539 if (reg & IDR5_GRAN16K)
2540 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2541 if (reg & IDR5_GRAN4K)
2542 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2543
2544 if (arm_smmu_ops.pgsize_bitmap == -1UL)
2545 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2546 else
2547 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2548
2549 /* Output address size */
2550 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2551 case IDR5_OAS_32_BIT:
2552 smmu->oas = 32;
2553 break;
2554 case IDR5_OAS_36_BIT:
2555 smmu->oas = 36;
2556 break;
2557 case IDR5_OAS_40_BIT:
2558 smmu->oas = 40;
2559 break;
2560 case IDR5_OAS_42_BIT:
2561 smmu->oas = 42;
2562 break;
2563 case IDR5_OAS_44_BIT:
2564 smmu->oas = 44;
2565 break;
2566 default:
2567 dev_info(smmu->dev,
2568 "unknown output address size. Truncating to 48-bit\n");
2569 /* Fallthrough */
2570 case IDR5_OAS_48_BIT:
2571 smmu->oas = 48;
2572 }
2573
2574 /* Set the DMA mask for our table walker */
2575 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2576 dev_warn(smmu->dev,
2577 "failed to set DMA mask for table walker\n");
2578
2579 smmu->ias = max(smmu->ias, smmu->oas);
2580
2581 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2582 smmu->ias, smmu->oas, smmu->features);
2583 return 0;
2584 }
2585
2586 #ifdef CONFIG_ACPI
2587 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2588 struct arm_smmu_device *smmu)
2589 {
2590 struct acpi_iort_smmu_v3 *iort_smmu;
2591 struct device *dev = smmu->dev;
2592 struct acpi_iort_node *node;
2593
2594 node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2595
2596 /* Retrieve SMMUv3 specific data */
2597 iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2598
2599 if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2600 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2601
2602 return 0;
2603 }
2604 #else
2605 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2606 struct arm_smmu_device *smmu)
2607 {
2608 return -ENODEV;
2609 }
2610 #endif
2611
2612 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2613 struct arm_smmu_device *smmu)
2614 {
2615 struct device *dev = &pdev->dev;
2616 u32 cells;
2617 int ret = -EINVAL;
2618
2619 if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2620 dev_err(dev, "missing #iommu-cells property\n");
2621 else if (cells != 1)
2622 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2623 else
2624 ret = 0;
2625
2626 parse_driver_options(smmu);
2627
2628 if (of_dma_is_coherent(dev->of_node))
2629 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2630
2631 return ret;
2632 }
2633
2634 static int arm_smmu_device_probe(struct platform_device *pdev)
2635 {
2636 int irq, ret;
2637 struct resource *res;
2638 resource_size_t ioaddr;
2639 struct arm_smmu_device *smmu;
2640 struct device *dev = &pdev->dev;
2641 bool bypass;
2642
2643 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2644 if (!smmu) {
2645 dev_err(dev, "failed to allocate arm_smmu_device\n");
2646 return -ENOMEM;
2647 }
2648 smmu->dev = dev;
2649
2650 /* Base address */
2651 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2652 if (resource_size(res) + 1 < SZ_128K) {
2653 dev_err(dev, "MMIO region too small (%pr)\n", res);
2654 return -EINVAL;
2655 }
2656 ioaddr = res->start;
2657
2658 smmu->base = devm_ioremap_resource(dev, res);
2659 if (IS_ERR(smmu->base))
2660 return PTR_ERR(smmu->base);
2661
2662 /* Interrupt lines */
2663 irq = platform_get_irq_byname(pdev, "eventq");
2664 if (irq > 0)
2665 smmu->evtq.q.irq = irq;
2666
2667 irq = platform_get_irq_byname(pdev, "priq");
2668 if (irq > 0)
2669 smmu->priq.q.irq = irq;
2670
2671 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2672 if (irq > 0)
2673 smmu->cmdq.q.irq = irq;
2674
2675 irq = platform_get_irq_byname(pdev, "gerror");
2676 if (irq > 0)
2677 smmu->gerr_irq = irq;
2678
2679 if (dev->of_node) {
2680 ret = arm_smmu_device_dt_probe(pdev, smmu);
2681 } else {
2682 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2683 if (ret == -ENODEV)
2684 return ret;
2685 }
2686
2687 /* Set bypass mode according to firmware probing result */
2688 bypass = !!ret;
2689
2690 /* Probe the h/w */
2691 ret = arm_smmu_device_hw_probe(smmu);
2692 if (ret)
2693 return ret;
2694
2695 /* Initialise in-memory data structures */
2696 ret = arm_smmu_init_structures(smmu);
2697 if (ret)
2698 return ret;
2699
2700 /* Record our private device structure */
2701 platform_set_drvdata(pdev, smmu);
2702
2703 /* Reset the device */
2704 ret = arm_smmu_device_reset(smmu, bypass);
2705 if (ret)
2706 return ret;
2707
2708 /* And we're up. Go go go! */
2709 ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
2710 "smmu3.%pa", &ioaddr);
2711 if (ret)
2712 return ret;
2713
2714 iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2715 iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2716
2717 ret = iommu_device_register(&smmu->iommu);
2718
2719 #ifdef CONFIG_PCI
2720 if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2721 pci_request_acs();
2722 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2723 if (ret)
2724 return ret;
2725 }
2726 #endif
2727 #ifdef CONFIG_ARM_AMBA
2728 if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2729 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2730 if (ret)
2731 return ret;
2732 }
2733 #endif
2734 if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2735 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2736 if (ret)
2737 return ret;
2738 }
2739 return 0;
2740 }
2741
2742 static int arm_smmu_device_remove(struct platform_device *pdev)
2743 {
2744 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2745
2746 arm_smmu_device_disable(smmu);
2747 return 0;
2748 }
2749
2750 static struct of_device_id arm_smmu_of_match[] = {
2751 { .compatible = "arm,smmu-v3", },
2752 { },
2753 };
2754 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2755
2756 static struct platform_driver arm_smmu_driver = {
2757 .driver = {
2758 .name = "arm-smmu-v3",
2759 .of_match_table = of_match_ptr(arm_smmu_of_match),
2760 },
2761 .probe = arm_smmu_device_probe,
2762 .remove = arm_smmu_device_remove,
2763 };
2764
2765 static int __init arm_smmu_init(void)
2766 {
2767 static bool registered;
2768 int ret = 0;
2769
2770 if (!registered) {
2771 ret = platform_driver_register(&arm_smmu_driver);
2772 registered = !ret;
2773 }
2774 return ret;
2775 }
2776
2777 static void __exit arm_smmu_exit(void)
2778 {
2779 return platform_driver_unregister(&arm_smmu_driver);
2780 }
2781
2782 subsys_initcall(arm_smmu_init);
2783 module_exit(arm_smmu_exit);
2784
2785 static int __init arm_smmu_of_init(struct device_node *np)
2786 {
2787 int ret = arm_smmu_init();
2788
2789 if (ret)
2790 return ret;
2791
2792 if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2793 return -ENODEV;
2794
2795 return 0;
2796 }
2797 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", arm_smmu_of_init);
2798
2799 #ifdef CONFIG_ACPI
2800 static int __init acpi_smmu_v3_init(struct acpi_table_header *table)
2801 {
2802 if (iort_node_match(ACPI_IORT_NODE_SMMU_V3))
2803 return arm_smmu_init();
2804
2805 return 0;
2806 }
2807 IORT_ACPI_DECLARE(arm_smmu_v3, ACPI_SIG_IORT, acpi_smmu_v3_init);
2808 #endif
2809
2810 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2811 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2812 MODULE_LICENSE("GPL v2");