]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iommu/arm-smmu-v3.c
Merge branches 'iommu/arm/smmu', 'iommu/updates', 'iommu/vt-d', 'iommu/ipmmu-vmsa...
[mirror_ubuntu-bionic-kernel.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2 * IOMMU API for ARM architected SMMUv3 implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 *
16 * Copyright (C) 2015 ARM Limited
17 *
18 * Author: Will Deacon <will.deacon@arm.com>
19 *
20 * This driver is powered by bad coffee and bombay mix.
21 */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0 0x0
46 #define IDR0_ST_LVL_SHIFT 27
47 #define IDR0_ST_LVL_MASK 0x3
48 #define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT 24
50 #define IDR0_STALL_MODEL_MASK 0x3
51 #define IDR0_STALL_MODEL_STALL (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT 21
54 #define IDR0_TTENDIAN_MASK 0x3
55 #define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L (1 << 19)
59 #define IDR0_VMID16 (1 << 18)
60 #define IDR0_PRI (1 << 16)
61 #define IDR0_SEV (1 << 14)
62 #define IDR0_MSI (1 << 13)
63 #define IDR0_ASID16 (1 << 12)
64 #define IDR0_ATS (1 << 10)
65 #define IDR0_HYP (1 << 9)
66 #define IDR0_COHACC (1 << 4)
67 #define IDR0_TTF_SHIFT 2
68 #define IDR0_TTF_MASK 0x3
69 #define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P (1 << 1)
72 #define IDR0_S2P (1 << 0)
73
74 #define ARM_SMMU_IDR1 0x4
75 #define IDR1_TABLES_PRESET (1 << 30)
76 #define IDR1_QUEUES_PRESET (1 << 29)
77 #define IDR1_REL (1 << 28)
78 #define IDR1_CMDQ_SHIFT 21
79 #define IDR1_CMDQ_MASK 0x1f
80 #define IDR1_EVTQ_SHIFT 16
81 #define IDR1_EVTQ_MASK 0x1f
82 #define IDR1_PRIQ_SHIFT 11
83 #define IDR1_PRIQ_MASK 0x1f
84 #define IDR1_SSID_SHIFT 6
85 #define IDR1_SSID_MASK 0x1f
86 #define IDR1_SID_SHIFT 0
87 #define IDR1_SID_MASK 0x3f
88
89 #define ARM_SMMU_IDR5 0x14
90 #define IDR5_STALL_MAX_SHIFT 16
91 #define IDR5_STALL_MAX_MASK 0xffff
92 #define IDR5_GRAN64K (1 << 6)
93 #define IDR5_GRAN16K (1 << 5)
94 #define IDR5_GRAN4K (1 << 4)
95 #define IDR5_OAS_SHIFT 0
96 #define IDR5_OAS_MASK 0x7
97 #define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0 0x20
105 #define CR0_CMDQEN (1 << 3)
106 #define CR0_EVTQEN (1 << 2)
107 #define CR0_PRIQEN (1 << 1)
108 #define CR0_SMMUEN (1 << 0)
109
110 #define ARM_SMMU_CR0ACK 0x24
111
112 #define ARM_SMMU_CR1 0x28
113 #define CR1_SH_NSH 0
114 #define CR1_SH_OSH 2
115 #define CR1_SH_ISH 3
116 #define CR1_CACHE_NC 0
117 #define CR1_CACHE_WB 1
118 #define CR1_CACHE_WT 2
119 #define CR1_TABLE_SH_SHIFT 10
120 #define CR1_TABLE_OC_SHIFT 8
121 #define CR1_TABLE_IC_SHIFT 6
122 #define CR1_QUEUE_SH_SHIFT 4
123 #define CR1_QUEUE_OC_SHIFT 2
124 #define CR1_QUEUE_IC_SHIFT 0
125
126 #define ARM_SMMU_CR2 0x2c
127 #define CR2_PTM (1 << 2)
128 #define CR2_RECINVSID (1 << 1)
129 #define CR2_E2H (1 << 0)
130
131 #define ARM_SMMU_GBPA 0x44
132 #define GBPA_ABORT (1 << 20)
133 #define GBPA_UPDATE (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL 0x50
136 #define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK 0x54
141
142 #define ARM_SMMU_GERROR 0x60
143 #define GERROR_SFM_ERR (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR (1 << 2)
150 #define GERROR_CMDQ_ERR (1 << 0)
151 #define GERROR_ERR_MASK 0xfd
152
153 #define ARM_SMMU_GERRORN 0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0 0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1 0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2 0x74
158
159 #define ARM_SMMU_STRTAB_BASE 0x80
160 #define STRTAB_BASE_RA (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT 6
162 #define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG 0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT 6
168 #define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT 16
170 #define STRTAB_BASE_CFG_FMT_MASK 0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE 0x90
175 #define ARM_SMMU_CMDQ_PROD 0x98
176 #define ARM_SMMU_CMDQ_CONS 0x9c
177
178 #define ARM_SMMU_EVTQ_BASE 0xa0
179 #define ARM_SMMU_EVTQ_PROD 0x100a8
180 #define ARM_SMMU_EVTQ_CONS 0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
184
185 #define ARM_SMMU_PRIQ_BASE 0xc0
186 #define ARM_SMMU_PRIQ_PROD 0x100c8
187 #define ARM_SMMU_PRIQ_CONS 0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT 2
194 #define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT 4
196 #define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT 0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG (1 << 31)
205 #define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p) ((q)->base + \
207 Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT 5
211 #define Q_BASE_ADDR_MASK 0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT 0
213 #define Q_BASE_LOG2SIZE_MASK 0x1fUL
214
215 /*
216 * Stream table.
217 *
218 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219 * 2lvl: 128k L1 entries,
220 * 256 lazy entries per table (each table covers a PCI bus)
221 */
222 #define STRTAB_L1_SZ_SHIFT 20
223 #define STRTAB_SPLIT 8
224
225 #define STRTAB_L1_DESC_DWORDS 1
226 #define STRTAB_L1_DESC_SPAN_SHIFT 0
227 #define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT 6
229 #define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS 8
232 #define STRTAB_STE_0_V (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT 1
234 #define STRTAB_STE_0_CFG_MASK 0x7UL
235 #define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT 4
241 #define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT 6
243 #define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT 59
245 #define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC 0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT 2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB 3UL
251 #define STRTAB_STE_1_S1C_SH_NSH 0UL
252 #define STRTAB_STE_1_S1C_SH_OSH 2UL
253 #define STRTAB_STE_1_S1C_SH_ISH 3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT 2
255 #define STRTAB_STE_1_S1COR_SHIFT 4
256 #define STRTAB_STE_1_S1CSH_SHIFT 6
257
258 #define STRTAB_STE_1_S1STALLD (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT 0UL
261 #define STRTAB_STE_1_EATS_TRANS 1UL
262 #define STRTAB_STE_1_EATS_S1CHK 2UL
263 #define STRTAB_STE_1_EATS_SHIFT 28
264
265 #define STRTAB_STE_1_STRW_NSEL1 0UL
266 #define STRTAB_STE_1_STRW_EL2 2UL
267 #define STRTAB_STE_1_STRW_SHIFT 30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING 1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT 44
271
272 #define STRTAB_STE_2_S2VMID_SHIFT 0
273 #define STRTAB_STE_2_S2VMID_MASK 0xffffUL
274 #define STRTAB_STE_2_VTCR_SHIFT 32
275 #define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
276 #define STRTAB_STE_2_S2AA64 (1UL << 51)
277 #define STRTAB_STE_2_S2ENDI (1UL << 52)
278 #define STRTAB_STE_2_S2PTW (1UL << 54)
279 #define STRTAB_STE_2_S2R (1UL << 58)
280
281 #define STRTAB_STE_3_S2TTB_SHIFT 4
282 #define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
283
284 /* Context descriptor (stage-1 only) */
285 #define CTXDESC_CD_DWORDS 8
286 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
287 #define ARM64_TCR_T0SZ_SHIFT 0
288 #define ARM64_TCR_T0SZ_MASK 0x1fUL
289 #define CTXDESC_CD_0_TCR_TG0_SHIFT 6
290 #define ARM64_TCR_TG0_SHIFT 14
291 #define ARM64_TCR_TG0_MASK 0x3UL
292 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
293 #define ARM64_TCR_IRGN0_SHIFT 8
294 #define ARM64_TCR_IRGN0_MASK 0x3UL
295 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
296 #define ARM64_TCR_ORGN0_SHIFT 10
297 #define ARM64_TCR_ORGN0_MASK 0x3UL
298 #define CTXDESC_CD_0_TCR_SH0_SHIFT 12
299 #define ARM64_TCR_SH0_SHIFT 12
300 #define ARM64_TCR_SH0_MASK 0x3UL
301 #define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
302 #define ARM64_TCR_EPD0_SHIFT 7
303 #define ARM64_TCR_EPD0_MASK 0x1UL
304 #define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
305 #define ARM64_TCR_EPD1_SHIFT 23
306 #define ARM64_TCR_EPD1_MASK 0x1UL
307
308 #define CTXDESC_CD_0_ENDI (1UL << 15)
309 #define CTXDESC_CD_0_V (1UL << 31)
310
311 #define CTXDESC_CD_0_TCR_IPS_SHIFT 32
312 #define ARM64_TCR_IPS_SHIFT 32
313 #define ARM64_TCR_IPS_MASK 0x7UL
314 #define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
315 #define ARM64_TCR_TBI0_SHIFT 37
316 #define ARM64_TCR_TBI0_MASK 0x1UL
317
318 #define CTXDESC_CD_0_AA64 (1UL << 41)
319 #define CTXDESC_CD_0_S (1UL << 44)
320 #define CTXDESC_CD_0_R (1UL << 45)
321 #define CTXDESC_CD_0_A (1UL << 46)
322 #define CTXDESC_CD_0_ASET_SHIFT 47
323 #define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
324 #define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
325 #define CTXDESC_CD_0_ASID_SHIFT 48
326 #define CTXDESC_CD_0_ASID_MASK 0xffffUL
327
328 #define CTXDESC_CD_1_TTB0_SHIFT 4
329 #define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
330
331 #define CTXDESC_CD_3_MAIR_SHIFT 0
332
333 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
334 #define ARM_SMMU_TCR2CD(tcr, fld) \
335 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
336 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
337
338 /* Command queue */
339 #define CMDQ_ENT_DWORDS 2
340 #define CMDQ_MAX_SZ_SHIFT 8
341
342 #define CMDQ_ERR_SHIFT 24
343 #define CMDQ_ERR_MASK 0x7f
344 #define CMDQ_ERR_CERROR_NONE_IDX 0
345 #define CMDQ_ERR_CERROR_ILL_IDX 1
346 #define CMDQ_ERR_CERROR_ABT_IDX 2
347
348 #define CMDQ_0_OP_SHIFT 0
349 #define CMDQ_0_OP_MASK 0xffUL
350 #define CMDQ_0_SSV (1UL << 11)
351
352 #define CMDQ_PREFETCH_0_SID_SHIFT 32
353 #define CMDQ_PREFETCH_1_SIZE_SHIFT 0
354 #define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
355
356 #define CMDQ_CFGI_0_SID_SHIFT 32
357 #define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
358 #define CMDQ_CFGI_1_LEAF (1UL << 0)
359 #define CMDQ_CFGI_1_RANGE_SHIFT 0
360 #define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
361
362 #define CMDQ_TLBI_0_VMID_SHIFT 32
363 #define CMDQ_TLBI_0_ASID_SHIFT 48
364 #define CMDQ_TLBI_1_LEAF (1UL << 0)
365 #define CMDQ_TLBI_1_VA_MASK ~0xfffUL
366 #define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
367
368 #define CMDQ_PRI_0_SSID_SHIFT 12
369 #define CMDQ_PRI_0_SSID_MASK 0xfffffUL
370 #define CMDQ_PRI_0_SID_SHIFT 32
371 #define CMDQ_PRI_0_SID_MASK 0xffffffffUL
372 #define CMDQ_PRI_1_GRPID_SHIFT 0
373 #define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
374 #define CMDQ_PRI_1_RESP_SHIFT 12
375 #define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
376 #define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
377 #define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
378
379 #define CMDQ_SYNC_0_CS_SHIFT 12
380 #define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
381 #define CMDQ_SYNC_0_CS_IRQ (1UL << CMDQ_SYNC_0_CS_SHIFT)
382 #define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
383 #define CMDQ_SYNC_0_MSH_SHIFT 22
384 #define CMDQ_SYNC_0_MSH_ISH (3UL << CMDQ_SYNC_0_MSH_SHIFT)
385 #define CMDQ_SYNC_0_MSIATTR_SHIFT 24
386 #define CMDQ_SYNC_0_MSIATTR_OIWB (0xfUL << CMDQ_SYNC_0_MSIATTR_SHIFT)
387 #define CMDQ_SYNC_0_MSIDATA_SHIFT 32
388 #define CMDQ_SYNC_0_MSIDATA_MASK 0xffffffffUL
389 #define CMDQ_SYNC_1_MSIADDR_SHIFT 0
390 #define CMDQ_SYNC_1_MSIADDR_MASK 0xffffffffffffcUL
391
392 /* Event queue */
393 #define EVTQ_ENT_DWORDS 4
394 #define EVTQ_MAX_SZ_SHIFT 7
395
396 #define EVTQ_0_ID_SHIFT 0
397 #define EVTQ_0_ID_MASK 0xffUL
398
399 /* PRI queue */
400 #define PRIQ_ENT_DWORDS 2
401 #define PRIQ_MAX_SZ_SHIFT 8
402
403 #define PRIQ_0_SID_SHIFT 0
404 #define PRIQ_0_SID_MASK 0xffffffffUL
405 #define PRIQ_0_SSID_SHIFT 32
406 #define PRIQ_0_SSID_MASK 0xfffffUL
407 #define PRIQ_0_PERM_PRIV (1UL << 58)
408 #define PRIQ_0_PERM_EXEC (1UL << 59)
409 #define PRIQ_0_PERM_READ (1UL << 60)
410 #define PRIQ_0_PERM_WRITE (1UL << 61)
411 #define PRIQ_0_PRG_LAST (1UL << 62)
412 #define PRIQ_0_SSID_V (1UL << 63)
413
414 #define PRIQ_1_PRG_IDX_SHIFT 0
415 #define PRIQ_1_PRG_IDX_MASK 0x1ffUL
416 #define PRIQ_1_ADDR_SHIFT 12
417 #define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
418
419 /* High-level queue structures */
420 #define ARM_SMMU_POLL_TIMEOUT_US 100
421 #define ARM_SMMU_CMDQ_SYNC_TIMEOUT_US 1000000 /* 1s! */
422 #define ARM_SMMU_CMDQ_SYNC_SPIN_COUNT 10
423
424 #define MSI_IOVA_BASE 0x8000000
425 #define MSI_IOVA_LENGTH 0x100000
426
427 static bool disable_bypass;
428 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
429 MODULE_PARM_DESC(disable_bypass,
430 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
431
432 enum pri_resp {
433 PRI_RESP_DENY,
434 PRI_RESP_FAIL,
435 PRI_RESP_SUCC,
436 };
437
438 enum arm_smmu_msi_index {
439 EVTQ_MSI_INDEX,
440 GERROR_MSI_INDEX,
441 PRIQ_MSI_INDEX,
442 ARM_SMMU_MAX_MSIS,
443 };
444
445 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
446 [EVTQ_MSI_INDEX] = {
447 ARM_SMMU_EVTQ_IRQ_CFG0,
448 ARM_SMMU_EVTQ_IRQ_CFG1,
449 ARM_SMMU_EVTQ_IRQ_CFG2,
450 },
451 [GERROR_MSI_INDEX] = {
452 ARM_SMMU_GERROR_IRQ_CFG0,
453 ARM_SMMU_GERROR_IRQ_CFG1,
454 ARM_SMMU_GERROR_IRQ_CFG2,
455 },
456 [PRIQ_MSI_INDEX] = {
457 ARM_SMMU_PRIQ_IRQ_CFG0,
458 ARM_SMMU_PRIQ_IRQ_CFG1,
459 ARM_SMMU_PRIQ_IRQ_CFG2,
460 },
461 };
462
463 struct arm_smmu_cmdq_ent {
464 /* Common fields */
465 u8 opcode;
466 bool substream_valid;
467
468 /* Command-specific fields */
469 union {
470 #define CMDQ_OP_PREFETCH_CFG 0x1
471 struct {
472 u32 sid;
473 u8 size;
474 u64 addr;
475 } prefetch;
476
477 #define CMDQ_OP_CFGI_STE 0x3
478 #define CMDQ_OP_CFGI_ALL 0x4
479 struct {
480 u32 sid;
481 union {
482 bool leaf;
483 u8 span;
484 };
485 } cfgi;
486
487 #define CMDQ_OP_TLBI_NH_ASID 0x11
488 #define CMDQ_OP_TLBI_NH_VA 0x12
489 #define CMDQ_OP_TLBI_EL2_ALL 0x20
490 #define CMDQ_OP_TLBI_S12_VMALL 0x28
491 #define CMDQ_OP_TLBI_S2_IPA 0x2a
492 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
493 struct {
494 u16 asid;
495 u16 vmid;
496 bool leaf;
497 u64 addr;
498 } tlbi;
499
500 #define CMDQ_OP_PRI_RESP 0x41
501 struct {
502 u32 sid;
503 u32 ssid;
504 u16 grpid;
505 enum pri_resp resp;
506 } pri;
507
508 #define CMDQ_OP_CMD_SYNC 0x46
509 struct {
510 u32 msidata;
511 u64 msiaddr;
512 } sync;
513 };
514 };
515
516 struct arm_smmu_queue {
517 int irq; /* Wired interrupt */
518
519 __le64 *base;
520 dma_addr_t base_dma;
521 u64 q_base;
522
523 size_t ent_dwords;
524 u32 max_n_shift;
525 u32 prod;
526 u32 cons;
527
528 u32 __iomem *prod_reg;
529 u32 __iomem *cons_reg;
530 };
531
532 struct arm_smmu_cmdq {
533 struct arm_smmu_queue q;
534 spinlock_t lock;
535 };
536
537 struct arm_smmu_evtq {
538 struct arm_smmu_queue q;
539 u32 max_stalls;
540 };
541
542 struct arm_smmu_priq {
543 struct arm_smmu_queue q;
544 };
545
546 /* High-level stream table and context descriptor structures */
547 struct arm_smmu_strtab_l1_desc {
548 u8 span;
549
550 __le64 *l2ptr;
551 dma_addr_t l2ptr_dma;
552 };
553
554 struct arm_smmu_s1_cfg {
555 __le64 *cdptr;
556 dma_addr_t cdptr_dma;
557
558 struct arm_smmu_ctx_desc {
559 u16 asid;
560 u64 ttbr;
561 u64 tcr;
562 u64 mair;
563 } cd;
564 };
565
566 struct arm_smmu_s2_cfg {
567 u16 vmid;
568 u64 vttbr;
569 u64 vtcr;
570 };
571
572 struct arm_smmu_strtab_ent {
573 /*
574 * An STE is "assigned" if the master emitting the corresponding SID
575 * is attached to a domain. The behaviour of an unassigned STE is
576 * determined by the disable_bypass parameter, whereas an assigned
577 * STE behaves according to s1_cfg/s2_cfg, which themselves are
578 * configured according to the domain type.
579 */
580 bool assigned;
581 struct arm_smmu_s1_cfg *s1_cfg;
582 struct arm_smmu_s2_cfg *s2_cfg;
583 };
584
585 struct arm_smmu_strtab_cfg {
586 __le64 *strtab;
587 dma_addr_t strtab_dma;
588 struct arm_smmu_strtab_l1_desc *l1_desc;
589 unsigned int num_l1_ents;
590
591 u64 strtab_base;
592 u32 strtab_base_cfg;
593 };
594
595 /* An SMMUv3 instance */
596 struct arm_smmu_device {
597 struct device *dev;
598 void __iomem *base;
599
600 #define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
601 #define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
602 #define ARM_SMMU_FEAT_TT_LE (1 << 2)
603 #define ARM_SMMU_FEAT_TT_BE (1 << 3)
604 #define ARM_SMMU_FEAT_PRI (1 << 4)
605 #define ARM_SMMU_FEAT_ATS (1 << 5)
606 #define ARM_SMMU_FEAT_SEV (1 << 6)
607 #define ARM_SMMU_FEAT_MSI (1 << 7)
608 #define ARM_SMMU_FEAT_COHERENCY (1 << 8)
609 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
610 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
611 #define ARM_SMMU_FEAT_STALLS (1 << 11)
612 #define ARM_SMMU_FEAT_HYP (1 << 12)
613 #define ARM_SMMU_FEAT_STALL_FORCE (1 << 13)
614 u32 features;
615
616 #define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
617 #define ARM_SMMU_OPT_PAGE0_REGS_ONLY (1 << 1)
618 u32 options;
619
620 struct arm_smmu_cmdq cmdq;
621 struct arm_smmu_evtq evtq;
622 struct arm_smmu_priq priq;
623
624 int gerr_irq;
625 int combined_irq;
626 atomic_t sync_nr;
627
628 unsigned long ias; /* IPA */
629 unsigned long oas; /* PA */
630 unsigned long pgsize_bitmap;
631
632 #define ARM_SMMU_MAX_ASIDS (1 << 16)
633 unsigned int asid_bits;
634 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
635
636 #define ARM_SMMU_MAX_VMIDS (1 << 16)
637 unsigned int vmid_bits;
638 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
639
640 unsigned int ssid_bits;
641 unsigned int sid_bits;
642
643 struct arm_smmu_strtab_cfg strtab_cfg;
644
645 u32 sync_count;
646
647 /* IOMMU core code handle */
648 struct iommu_device iommu;
649 };
650
651 /* SMMU private data for each master */
652 struct arm_smmu_master_data {
653 struct arm_smmu_device *smmu;
654 struct arm_smmu_strtab_ent ste;
655 };
656
657 /* SMMU private data for an IOMMU domain */
658 enum arm_smmu_domain_stage {
659 ARM_SMMU_DOMAIN_S1 = 0,
660 ARM_SMMU_DOMAIN_S2,
661 ARM_SMMU_DOMAIN_NESTED,
662 ARM_SMMU_DOMAIN_BYPASS,
663 };
664
665 struct arm_smmu_domain {
666 struct arm_smmu_device *smmu;
667 struct mutex init_mutex; /* Protects smmu pointer */
668
669 struct io_pgtable_ops *pgtbl_ops;
670
671 enum arm_smmu_domain_stage stage;
672 union {
673 struct arm_smmu_s1_cfg s1_cfg;
674 struct arm_smmu_s2_cfg s2_cfg;
675 };
676
677 struct iommu_domain domain;
678 };
679
680 struct arm_smmu_option_prop {
681 u32 opt;
682 const char *prop;
683 };
684
685 static struct arm_smmu_option_prop arm_smmu_options[] = {
686 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
687 { ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
688 { 0, NULL},
689 };
690
691 static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
692 struct arm_smmu_device *smmu)
693 {
694 if ((offset > SZ_64K) &&
695 (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY))
696 offset -= SZ_64K;
697
698 return smmu->base + offset;
699 }
700
701 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
702 {
703 return container_of(dom, struct arm_smmu_domain, domain);
704 }
705
706 static void parse_driver_options(struct arm_smmu_device *smmu)
707 {
708 int i = 0;
709
710 do {
711 if (of_property_read_bool(smmu->dev->of_node,
712 arm_smmu_options[i].prop)) {
713 smmu->options |= arm_smmu_options[i].opt;
714 dev_notice(smmu->dev, "option %s\n",
715 arm_smmu_options[i].prop);
716 }
717 } while (arm_smmu_options[++i].opt);
718 }
719
720 /* Low-level queue manipulation functions */
721 static bool queue_full(struct arm_smmu_queue *q)
722 {
723 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
724 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
725 }
726
727 static bool queue_empty(struct arm_smmu_queue *q)
728 {
729 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
730 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
731 }
732
733 static void queue_sync_cons(struct arm_smmu_queue *q)
734 {
735 q->cons = readl_relaxed(q->cons_reg);
736 }
737
738 static void queue_inc_cons(struct arm_smmu_queue *q)
739 {
740 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
741
742 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
743 writel(q->cons, q->cons_reg);
744 }
745
746 static int queue_sync_prod(struct arm_smmu_queue *q)
747 {
748 int ret = 0;
749 u32 prod = readl_relaxed(q->prod_reg);
750
751 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
752 ret = -EOVERFLOW;
753
754 q->prod = prod;
755 return ret;
756 }
757
758 static void queue_inc_prod(struct arm_smmu_queue *q)
759 {
760 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
761
762 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
763 writel(q->prod, q->prod_reg);
764 }
765
766 /*
767 * Wait for the SMMU to consume items. If drain is true, wait until the queue
768 * is empty. Otherwise, wait until there is at least one free slot.
769 */
770 static int queue_poll_cons(struct arm_smmu_queue *q, bool sync, bool wfe)
771 {
772 ktime_t timeout;
773 unsigned int delay = 1, spin_cnt = 0;
774
775 /* Wait longer if it's a CMD_SYNC */
776 timeout = ktime_add_us(ktime_get(), sync ?
777 ARM_SMMU_CMDQ_SYNC_TIMEOUT_US :
778 ARM_SMMU_POLL_TIMEOUT_US);
779
780 while (queue_sync_cons(q), (sync ? !queue_empty(q) : queue_full(q))) {
781 if (ktime_compare(ktime_get(), timeout) > 0)
782 return -ETIMEDOUT;
783
784 if (wfe) {
785 wfe();
786 } else if (++spin_cnt < ARM_SMMU_CMDQ_SYNC_SPIN_COUNT) {
787 cpu_relax();
788 continue;
789 } else {
790 udelay(delay);
791 delay *= 2;
792 spin_cnt = 0;
793 }
794 }
795
796 return 0;
797 }
798
799 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
800 {
801 int i;
802
803 for (i = 0; i < n_dwords; ++i)
804 *dst++ = cpu_to_le64(*src++);
805 }
806
807 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
808 {
809 if (queue_full(q))
810 return -ENOSPC;
811
812 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
813 queue_inc_prod(q);
814 return 0;
815 }
816
817 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
818 {
819 int i;
820
821 for (i = 0; i < n_dwords; ++i)
822 *dst++ = le64_to_cpu(*src++);
823 }
824
825 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
826 {
827 if (queue_empty(q))
828 return -EAGAIN;
829
830 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
831 queue_inc_cons(q);
832 return 0;
833 }
834
835 /* High-level queue accessors */
836 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
837 {
838 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
839 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
840
841 switch (ent->opcode) {
842 case CMDQ_OP_TLBI_EL2_ALL:
843 case CMDQ_OP_TLBI_NSNH_ALL:
844 break;
845 case CMDQ_OP_PREFETCH_CFG:
846 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
847 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
848 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
849 break;
850 case CMDQ_OP_CFGI_STE:
851 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
852 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
853 break;
854 case CMDQ_OP_CFGI_ALL:
855 /* Cover the entire SID range */
856 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
857 break;
858 case CMDQ_OP_TLBI_NH_VA:
859 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
860 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
861 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
862 break;
863 case CMDQ_OP_TLBI_S2_IPA:
864 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
865 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
866 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
867 break;
868 case CMDQ_OP_TLBI_NH_ASID:
869 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
870 /* Fallthrough */
871 case CMDQ_OP_TLBI_S12_VMALL:
872 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
873 break;
874 case CMDQ_OP_PRI_RESP:
875 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
876 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
877 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
878 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
879 switch (ent->pri.resp) {
880 case PRI_RESP_DENY:
881 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
882 break;
883 case PRI_RESP_FAIL:
884 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
885 break;
886 case PRI_RESP_SUCC:
887 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
888 break;
889 default:
890 return -EINVAL;
891 }
892 break;
893 case CMDQ_OP_CMD_SYNC:
894 if (ent->sync.msiaddr)
895 cmd[0] |= CMDQ_SYNC_0_CS_IRQ;
896 else
897 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
898 cmd[0] |= CMDQ_SYNC_0_MSH_ISH | CMDQ_SYNC_0_MSIATTR_OIWB;
899 cmd[0] |= (u64)ent->sync.msidata << CMDQ_SYNC_0_MSIDATA_SHIFT;
900 cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
901 break;
902 default:
903 return -ENOENT;
904 }
905
906 return 0;
907 }
908
909 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
910 {
911 static const char *cerror_str[] = {
912 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
913 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
914 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
915 };
916
917 int i;
918 u64 cmd[CMDQ_ENT_DWORDS];
919 struct arm_smmu_queue *q = &smmu->cmdq.q;
920 u32 cons = readl_relaxed(q->cons_reg);
921 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
922 struct arm_smmu_cmdq_ent cmd_sync = {
923 .opcode = CMDQ_OP_CMD_SYNC,
924 };
925
926 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
927 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
928
929 switch (idx) {
930 case CMDQ_ERR_CERROR_ABT_IDX:
931 dev_err(smmu->dev, "retrying command fetch\n");
932 case CMDQ_ERR_CERROR_NONE_IDX:
933 return;
934 case CMDQ_ERR_CERROR_ILL_IDX:
935 /* Fallthrough */
936 default:
937 break;
938 }
939
940 /*
941 * We may have concurrent producers, so we need to be careful
942 * not to touch any of the shadow cmdq state.
943 */
944 queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
945 dev_err(smmu->dev, "skipping command in error state:\n");
946 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
947 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
948
949 /* Convert the erroneous command into a CMD_SYNC */
950 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
951 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
952 return;
953 }
954
955 queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
956 }
957
958 static void arm_smmu_cmdq_insert_cmd(struct arm_smmu_device *smmu, u64 *cmd)
959 {
960 struct arm_smmu_queue *q = &smmu->cmdq.q;
961 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
962
963 while (queue_insert_raw(q, cmd) == -ENOSPC) {
964 if (queue_poll_cons(q, false, wfe))
965 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
966 }
967 }
968
969 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
970 struct arm_smmu_cmdq_ent *ent)
971 {
972 u64 cmd[CMDQ_ENT_DWORDS];
973 unsigned long flags;
974
975 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
976 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
977 ent->opcode);
978 return;
979 }
980
981 spin_lock_irqsave(&smmu->cmdq.lock, flags);
982 arm_smmu_cmdq_insert_cmd(smmu, cmd);
983 spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
984 }
985
986 /*
987 * The difference between val and sync_idx is bounded by the maximum size of
988 * a queue at 2^20 entries, so 32 bits is plenty for wrap-safe arithmetic.
989 */
990 static int __arm_smmu_sync_poll_msi(struct arm_smmu_device *smmu, u32 sync_idx)
991 {
992 ktime_t timeout;
993 u32 val;
994
995 timeout = ktime_add_us(ktime_get(), ARM_SMMU_CMDQ_SYNC_TIMEOUT_US);
996 val = smp_cond_load_acquire(&smmu->sync_count,
997 (int)(VAL - sync_idx) >= 0 ||
998 !ktime_before(ktime_get(), timeout));
999
1000 return (int)(val - sync_idx) < 0 ? -ETIMEDOUT : 0;
1001 }
1002
1003 static int __arm_smmu_cmdq_issue_sync_msi(struct arm_smmu_device *smmu)
1004 {
1005 u64 cmd[CMDQ_ENT_DWORDS];
1006 unsigned long flags;
1007 struct arm_smmu_cmdq_ent ent = {
1008 .opcode = CMDQ_OP_CMD_SYNC,
1009 .sync = {
1010 .msidata = atomic_inc_return_relaxed(&smmu->sync_nr),
1011 .msiaddr = virt_to_phys(&smmu->sync_count),
1012 },
1013 };
1014
1015 arm_smmu_cmdq_build_cmd(cmd, &ent);
1016
1017 spin_lock_irqsave(&smmu->cmdq.lock, flags);
1018 arm_smmu_cmdq_insert_cmd(smmu, cmd);
1019 spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
1020
1021 return __arm_smmu_sync_poll_msi(smmu, ent.sync.msidata);
1022 }
1023
1024 static int __arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
1025 {
1026 u64 cmd[CMDQ_ENT_DWORDS];
1027 unsigned long flags;
1028 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
1029 struct arm_smmu_cmdq_ent ent = { .opcode = CMDQ_OP_CMD_SYNC };
1030 int ret;
1031
1032 arm_smmu_cmdq_build_cmd(cmd, &ent);
1033
1034 spin_lock_irqsave(&smmu->cmdq.lock, flags);
1035 arm_smmu_cmdq_insert_cmd(smmu, cmd);
1036 ret = queue_poll_cons(&smmu->cmdq.q, true, wfe);
1037 spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
1038
1039 return ret;
1040 }
1041
1042 static void arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
1043 {
1044 int ret;
1045 bool msi = (smmu->features & ARM_SMMU_FEAT_MSI) &&
1046 (smmu->features & ARM_SMMU_FEAT_COHERENCY);
1047
1048 ret = msi ? __arm_smmu_cmdq_issue_sync_msi(smmu)
1049 : __arm_smmu_cmdq_issue_sync(smmu);
1050 if (ret)
1051 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
1052 }
1053
1054 /* Context descriptor manipulation functions */
1055 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
1056 {
1057 u64 val = 0;
1058
1059 /* Repack the TCR. Just care about TTBR0 for now */
1060 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
1061 val |= ARM_SMMU_TCR2CD(tcr, TG0);
1062 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
1063 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
1064 val |= ARM_SMMU_TCR2CD(tcr, SH0);
1065 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
1066 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
1067 val |= ARM_SMMU_TCR2CD(tcr, IPS);
1068 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
1069
1070 return val;
1071 }
1072
1073 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
1074 struct arm_smmu_s1_cfg *cfg)
1075 {
1076 u64 val;
1077
1078 /*
1079 * We don't need to issue any invalidation here, as we'll invalidate
1080 * the STE when installing the new entry anyway.
1081 */
1082 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
1083 #ifdef __BIG_ENDIAN
1084 CTXDESC_CD_0_ENDI |
1085 #endif
1086 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
1087 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
1088 CTXDESC_CD_0_V;
1089
1090 /* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
1091 if (smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
1092 val |= CTXDESC_CD_0_S;
1093
1094 cfg->cdptr[0] = cpu_to_le64(val);
1095
1096 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
1097 cfg->cdptr[1] = cpu_to_le64(val);
1098
1099 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
1100 }
1101
1102 /* Stream table manipulation functions */
1103 static void
1104 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
1105 {
1106 u64 val = 0;
1107
1108 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
1109 << STRTAB_L1_DESC_SPAN_SHIFT;
1110 val |= desc->l2ptr_dma &
1111 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
1112
1113 *dst = cpu_to_le64(val);
1114 }
1115
1116 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
1117 {
1118 struct arm_smmu_cmdq_ent cmd = {
1119 .opcode = CMDQ_OP_CFGI_STE,
1120 .cfgi = {
1121 .sid = sid,
1122 .leaf = true,
1123 },
1124 };
1125
1126 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1127 arm_smmu_cmdq_issue_sync(smmu);
1128 }
1129
1130 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1131 __le64 *dst, struct arm_smmu_strtab_ent *ste)
1132 {
1133 /*
1134 * This is hideously complicated, but we only really care about
1135 * three cases at the moment:
1136 *
1137 * 1. Invalid (all zero) -> bypass/fault (init)
1138 * 2. Bypass/fault -> translation/bypass (attach)
1139 * 3. Translation/bypass -> bypass/fault (detach)
1140 *
1141 * Given that we can't update the STE atomically and the SMMU
1142 * doesn't read the thing in a defined order, that leaves us
1143 * with the following maintenance requirements:
1144 *
1145 * 1. Update Config, return (init time STEs aren't live)
1146 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1147 * 3. Update Config, sync
1148 */
1149 u64 val = le64_to_cpu(dst[0]);
1150 bool ste_live = false;
1151 struct arm_smmu_cmdq_ent prefetch_cmd = {
1152 .opcode = CMDQ_OP_PREFETCH_CFG,
1153 .prefetch = {
1154 .sid = sid,
1155 },
1156 };
1157
1158 if (val & STRTAB_STE_0_V) {
1159 u64 cfg;
1160
1161 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1162 switch (cfg) {
1163 case STRTAB_STE_0_CFG_BYPASS:
1164 break;
1165 case STRTAB_STE_0_CFG_S1_TRANS:
1166 case STRTAB_STE_0_CFG_S2_TRANS:
1167 ste_live = true;
1168 break;
1169 case STRTAB_STE_0_CFG_ABORT:
1170 if (disable_bypass)
1171 break;
1172 default:
1173 BUG(); /* STE corruption */
1174 }
1175 }
1176
1177 /* Nuke the existing STE_0 value, as we're going to rewrite it */
1178 val = STRTAB_STE_0_V;
1179
1180 /* Bypass/fault */
1181 if (!ste->assigned || !(ste->s1_cfg || ste->s2_cfg)) {
1182 if (!ste->assigned && disable_bypass)
1183 val |= STRTAB_STE_0_CFG_ABORT;
1184 else
1185 val |= STRTAB_STE_0_CFG_BYPASS;
1186
1187 dst[0] = cpu_to_le64(val);
1188 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1189 << STRTAB_STE_1_SHCFG_SHIFT);
1190 dst[2] = 0; /* Nuke the VMID */
1191 /*
1192 * The SMMU can perform negative caching, so we must sync
1193 * the STE regardless of whether the old value was live.
1194 */
1195 if (smmu)
1196 arm_smmu_sync_ste_for_sid(smmu, sid);
1197 return;
1198 }
1199
1200 if (ste->s1_cfg) {
1201 BUG_ON(ste_live);
1202 dst[1] = cpu_to_le64(
1203 STRTAB_STE_1_S1C_CACHE_WBRA
1204 << STRTAB_STE_1_S1CIR_SHIFT |
1205 STRTAB_STE_1_S1C_CACHE_WBRA
1206 << STRTAB_STE_1_S1COR_SHIFT |
1207 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1208 #ifdef CONFIG_PCI_ATS
1209 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1210 #endif
1211 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1212
1213 if (smmu->features & ARM_SMMU_FEAT_STALLS &&
1214 !(smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
1215 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1216
1217 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1218 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1219 STRTAB_STE_0_CFG_S1_TRANS;
1220 }
1221
1222 if (ste->s2_cfg) {
1223 BUG_ON(ste_live);
1224 dst[2] = cpu_to_le64(
1225 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1226 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1227 << STRTAB_STE_2_VTCR_SHIFT |
1228 #ifdef __BIG_ENDIAN
1229 STRTAB_STE_2_S2ENDI |
1230 #endif
1231 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1232 STRTAB_STE_2_S2R);
1233
1234 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1235 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1236
1237 val |= STRTAB_STE_0_CFG_S2_TRANS;
1238 }
1239
1240 arm_smmu_sync_ste_for_sid(smmu, sid);
1241 dst[0] = cpu_to_le64(val);
1242 arm_smmu_sync_ste_for_sid(smmu, sid);
1243
1244 /* It's likely that we'll want to use the new STE soon */
1245 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1246 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1247 }
1248
1249 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1250 {
1251 unsigned int i;
1252 struct arm_smmu_strtab_ent ste = { .assigned = false };
1253
1254 for (i = 0; i < nent; ++i) {
1255 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1256 strtab += STRTAB_STE_DWORDS;
1257 }
1258 }
1259
1260 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1261 {
1262 size_t size;
1263 void *strtab;
1264 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1265 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1266
1267 if (desc->l2ptr)
1268 return 0;
1269
1270 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1271 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1272
1273 desc->span = STRTAB_SPLIT + 1;
1274 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1275 GFP_KERNEL | __GFP_ZERO);
1276 if (!desc->l2ptr) {
1277 dev_err(smmu->dev,
1278 "failed to allocate l2 stream table for SID %u\n",
1279 sid);
1280 return -ENOMEM;
1281 }
1282
1283 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1284 arm_smmu_write_strtab_l1_desc(strtab, desc);
1285 return 0;
1286 }
1287
1288 /* IRQ and event handlers */
1289 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1290 {
1291 int i;
1292 struct arm_smmu_device *smmu = dev;
1293 struct arm_smmu_queue *q = &smmu->evtq.q;
1294 u64 evt[EVTQ_ENT_DWORDS];
1295
1296 do {
1297 while (!queue_remove_raw(q, evt)) {
1298 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1299
1300 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1301 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1302 dev_info(smmu->dev, "\t0x%016llx\n",
1303 (unsigned long long)evt[i]);
1304
1305 }
1306
1307 /*
1308 * Not much we can do on overflow, so scream and pretend we're
1309 * trying harder.
1310 */
1311 if (queue_sync_prod(q) == -EOVERFLOW)
1312 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1313 } while (!queue_empty(q));
1314
1315 /* Sync our overflow flag, as we believe we're up to speed */
1316 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1317 return IRQ_HANDLED;
1318 }
1319
1320 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1321 {
1322 u32 sid, ssid;
1323 u16 grpid;
1324 bool ssv, last;
1325
1326 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1327 ssv = evt[0] & PRIQ_0_SSID_V;
1328 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1329 last = evt[0] & PRIQ_0_PRG_LAST;
1330 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1331
1332 dev_info(smmu->dev, "unexpected PRI request received:\n");
1333 dev_info(smmu->dev,
1334 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1335 sid, ssid, grpid, last ? "L" : "",
1336 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1337 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1338 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1339 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1340 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1341
1342 if (last) {
1343 struct arm_smmu_cmdq_ent cmd = {
1344 .opcode = CMDQ_OP_PRI_RESP,
1345 .substream_valid = ssv,
1346 .pri = {
1347 .sid = sid,
1348 .ssid = ssid,
1349 .grpid = grpid,
1350 .resp = PRI_RESP_DENY,
1351 },
1352 };
1353
1354 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1355 }
1356 }
1357
1358 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1359 {
1360 struct arm_smmu_device *smmu = dev;
1361 struct arm_smmu_queue *q = &smmu->priq.q;
1362 u64 evt[PRIQ_ENT_DWORDS];
1363
1364 do {
1365 while (!queue_remove_raw(q, evt))
1366 arm_smmu_handle_ppr(smmu, evt);
1367
1368 if (queue_sync_prod(q) == -EOVERFLOW)
1369 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1370 } while (!queue_empty(q));
1371
1372 /* Sync our overflow flag, as we believe we're up to speed */
1373 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1374 return IRQ_HANDLED;
1375 }
1376
1377 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1378
1379 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1380 {
1381 u32 gerror, gerrorn, active;
1382 struct arm_smmu_device *smmu = dev;
1383
1384 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1385 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1386
1387 active = gerror ^ gerrorn;
1388 if (!(active & GERROR_ERR_MASK))
1389 return IRQ_NONE; /* No errors pending */
1390
1391 dev_warn(smmu->dev,
1392 "unexpected global error reported (0x%08x), this could be serious\n",
1393 active);
1394
1395 if (active & GERROR_SFM_ERR) {
1396 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1397 arm_smmu_device_disable(smmu);
1398 }
1399
1400 if (active & GERROR_MSI_GERROR_ABT_ERR)
1401 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1402
1403 if (active & GERROR_MSI_PRIQ_ABT_ERR)
1404 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1405
1406 if (active & GERROR_MSI_EVTQ_ABT_ERR)
1407 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1408
1409 if (active & GERROR_MSI_CMDQ_ABT_ERR)
1410 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1411
1412 if (active & GERROR_PRIQ_ABT_ERR)
1413 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1414
1415 if (active & GERROR_EVTQ_ABT_ERR)
1416 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1417
1418 if (active & GERROR_CMDQ_ERR)
1419 arm_smmu_cmdq_skip_err(smmu);
1420
1421 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1422 return IRQ_HANDLED;
1423 }
1424
1425 static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
1426 {
1427 struct arm_smmu_device *smmu = dev;
1428
1429 arm_smmu_evtq_thread(irq, dev);
1430 if (smmu->features & ARM_SMMU_FEAT_PRI)
1431 arm_smmu_priq_thread(irq, dev);
1432
1433 return IRQ_HANDLED;
1434 }
1435
1436 static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
1437 {
1438 arm_smmu_gerror_handler(irq, dev);
1439 return IRQ_WAKE_THREAD;
1440 }
1441
1442 /* IO_PGTABLE API */
1443 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1444 {
1445 arm_smmu_cmdq_issue_sync(smmu);
1446 }
1447
1448 static void arm_smmu_tlb_sync(void *cookie)
1449 {
1450 struct arm_smmu_domain *smmu_domain = cookie;
1451 __arm_smmu_tlb_sync(smmu_domain->smmu);
1452 }
1453
1454 static void arm_smmu_tlb_inv_context(void *cookie)
1455 {
1456 struct arm_smmu_domain *smmu_domain = cookie;
1457 struct arm_smmu_device *smmu = smmu_domain->smmu;
1458 struct arm_smmu_cmdq_ent cmd;
1459
1460 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1461 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1462 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1463 cmd.tlbi.vmid = 0;
1464 } else {
1465 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1466 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1467 }
1468
1469 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1470 __arm_smmu_tlb_sync(smmu);
1471 }
1472
1473 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1474 size_t granule, bool leaf, void *cookie)
1475 {
1476 struct arm_smmu_domain *smmu_domain = cookie;
1477 struct arm_smmu_device *smmu = smmu_domain->smmu;
1478 struct arm_smmu_cmdq_ent cmd = {
1479 .tlbi = {
1480 .leaf = leaf,
1481 .addr = iova,
1482 },
1483 };
1484
1485 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1486 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1487 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1488 } else {
1489 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1490 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1491 }
1492
1493 do {
1494 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1495 cmd.tlbi.addr += granule;
1496 } while (size -= granule);
1497 }
1498
1499 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1500 .tlb_flush_all = arm_smmu_tlb_inv_context,
1501 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1502 .tlb_sync = arm_smmu_tlb_sync,
1503 };
1504
1505 /* IOMMU API */
1506 static bool arm_smmu_capable(enum iommu_cap cap)
1507 {
1508 switch (cap) {
1509 case IOMMU_CAP_CACHE_COHERENCY:
1510 return true;
1511 case IOMMU_CAP_NOEXEC:
1512 return true;
1513 default:
1514 return false;
1515 }
1516 }
1517
1518 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1519 {
1520 struct arm_smmu_domain *smmu_domain;
1521
1522 if (type != IOMMU_DOMAIN_UNMANAGED &&
1523 type != IOMMU_DOMAIN_DMA &&
1524 type != IOMMU_DOMAIN_IDENTITY)
1525 return NULL;
1526
1527 /*
1528 * Allocate the domain and initialise some of its data structures.
1529 * We can't really do anything meaningful until we've added a
1530 * master.
1531 */
1532 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1533 if (!smmu_domain)
1534 return NULL;
1535
1536 if (type == IOMMU_DOMAIN_DMA &&
1537 iommu_get_dma_cookie(&smmu_domain->domain)) {
1538 kfree(smmu_domain);
1539 return NULL;
1540 }
1541
1542 mutex_init(&smmu_domain->init_mutex);
1543 return &smmu_domain->domain;
1544 }
1545
1546 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1547 {
1548 int idx, size = 1 << span;
1549
1550 do {
1551 idx = find_first_zero_bit(map, size);
1552 if (idx == size)
1553 return -ENOSPC;
1554 } while (test_and_set_bit(idx, map));
1555
1556 return idx;
1557 }
1558
1559 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1560 {
1561 clear_bit(idx, map);
1562 }
1563
1564 static void arm_smmu_domain_free(struct iommu_domain *domain)
1565 {
1566 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1567 struct arm_smmu_device *smmu = smmu_domain->smmu;
1568
1569 iommu_put_dma_cookie(domain);
1570 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1571
1572 /* Free the CD and ASID, if we allocated them */
1573 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1574 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1575
1576 if (cfg->cdptr) {
1577 dmam_free_coherent(smmu_domain->smmu->dev,
1578 CTXDESC_CD_DWORDS << 3,
1579 cfg->cdptr,
1580 cfg->cdptr_dma);
1581
1582 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1583 }
1584 } else {
1585 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1586 if (cfg->vmid)
1587 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1588 }
1589
1590 kfree(smmu_domain);
1591 }
1592
1593 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1594 struct io_pgtable_cfg *pgtbl_cfg)
1595 {
1596 int ret;
1597 int asid;
1598 struct arm_smmu_device *smmu = smmu_domain->smmu;
1599 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1600
1601 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1602 if (asid < 0)
1603 return asid;
1604
1605 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1606 &cfg->cdptr_dma,
1607 GFP_KERNEL | __GFP_ZERO);
1608 if (!cfg->cdptr) {
1609 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1610 ret = -ENOMEM;
1611 goto out_free_asid;
1612 }
1613
1614 cfg->cd.asid = (u16)asid;
1615 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1616 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1617 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1618 return 0;
1619
1620 out_free_asid:
1621 arm_smmu_bitmap_free(smmu->asid_map, asid);
1622 return ret;
1623 }
1624
1625 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1626 struct io_pgtable_cfg *pgtbl_cfg)
1627 {
1628 int vmid;
1629 struct arm_smmu_device *smmu = smmu_domain->smmu;
1630 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1631
1632 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1633 if (vmid < 0)
1634 return vmid;
1635
1636 cfg->vmid = (u16)vmid;
1637 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1638 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1639 return 0;
1640 }
1641
1642 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1643 {
1644 int ret;
1645 unsigned long ias, oas;
1646 enum io_pgtable_fmt fmt;
1647 struct io_pgtable_cfg pgtbl_cfg;
1648 struct io_pgtable_ops *pgtbl_ops;
1649 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1650 struct io_pgtable_cfg *);
1651 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1652 struct arm_smmu_device *smmu = smmu_domain->smmu;
1653
1654 if (domain->type == IOMMU_DOMAIN_IDENTITY) {
1655 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
1656 return 0;
1657 }
1658
1659 /* Restrict the stage to what we can actually support */
1660 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1661 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1662 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1663 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1664
1665 switch (smmu_domain->stage) {
1666 case ARM_SMMU_DOMAIN_S1:
1667 ias = VA_BITS;
1668 oas = smmu->ias;
1669 fmt = ARM_64_LPAE_S1;
1670 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1671 break;
1672 case ARM_SMMU_DOMAIN_NESTED:
1673 case ARM_SMMU_DOMAIN_S2:
1674 ias = smmu->ias;
1675 oas = smmu->oas;
1676 fmt = ARM_64_LPAE_S2;
1677 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1678 break;
1679 default:
1680 return -EINVAL;
1681 }
1682
1683 pgtbl_cfg = (struct io_pgtable_cfg) {
1684 .pgsize_bitmap = smmu->pgsize_bitmap,
1685 .ias = ias,
1686 .oas = oas,
1687 .tlb = &arm_smmu_gather_ops,
1688 .iommu_dev = smmu->dev,
1689 };
1690
1691 if (smmu->features & ARM_SMMU_FEAT_COHERENCY)
1692 pgtbl_cfg.quirks = IO_PGTABLE_QUIRK_NO_DMA;
1693
1694 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1695 if (!pgtbl_ops)
1696 return -ENOMEM;
1697
1698 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1699 domain->geometry.aperture_end = (1UL << ias) - 1;
1700 domain->geometry.force_aperture = true;
1701 smmu_domain->pgtbl_ops = pgtbl_ops;
1702
1703 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1704 if (ret < 0)
1705 free_io_pgtable_ops(pgtbl_ops);
1706
1707 return ret;
1708 }
1709
1710 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1711 {
1712 __le64 *step;
1713 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1714
1715 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1716 struct arm_smmu_strtab_l1_desc *l1_desc;
1717 int idx;
1718
1719 /* Two-level walk */
1720 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1721 l1_desc = &cfg->l1_desc[idx];
1722 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1723 step = &l1_desc->l2ptr[idx];
1724 } else {
1725 /* Simple linear lookup */
1726 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1727 }
1728
1729 return step;
1730 }
1731
1732 static void arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1733 {
1734 int i;
1735 struct arm_smmu_master_data *master = fwspec->iommu_priv;
1736 struct arm_smmu_device *smmu = master->smmu;
1737
1738 for (i = 0; i < fwspec->num_ids; ++i) {
1739 u32 sid = fwspec->ids[i];
1740 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1741
1742 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1743 }
1744 }
1745
1746 static void arm_smmu_detach_dev(struct device *dev)
1747 {
1748 struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1749
1750 master->ste.assigned = false;
1751 arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1752 }
1753
1754 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1755 {
1756 int ret = 0;
1757 struct arm_smmu_device *smmu;
1758 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1759 struct arm_smmu_master_data *master;
1760 struct arm_smmu_strtab_ent *ste;
1761
1762 if (!dev->iommu_fwspec)
1763 return -ENOENT;
1764
1765 master = dev->iommu_fwspec->iommu_priv;
1766 smmu = master->smmu;
1767 ste = &master->ste;
1768
1769 /* Already attached to a different domain? */
1770 if (ste->assigned)
1771 arm_smmu_detach_dev(dev);
1772
1773 mutex_lock(&smmu_domain->init_mutex);
1774
1775 if (!smmu_domain->smmu) {
1776 smmu_domain->smmu = smmu;
1777 ret = arm_smmu_domain_finalise(domain);
1778 if (ret) {
1779 smmu_domain->smmu = NULL;
1780 goto out_unlock;
1781 }
1782 } else if (smmu_domain->smmu != smmu) {
1783 dev_err(dev,
1784 "cannot attach to SMMU %s (upstream of %s)\n",
1785 dev_name(smmu_domain->smmu->dev),
1786 dev_name(smmu->dev));
1787 ret = -ENXIO;
1788 goto out_unlock;
1789 }
1790
1791 ste->assigned = true;
1792
1793 if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS) {
1794 ste->s1_cfg = NULL;
1795 ste->s2_cfg = NULL;
1796 } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1797 ste->s1_cfg = &smmu_domain->s1_cfg;
1798 ste->s2_cfg = NULL;
1799 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1800 } else {
1801 ste->s1_cfg = NULL;
1802 ste->s2_cfg = &smmu_domain->s2_cfg;
1803 }
1804
1805 arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1806 out_unlock:
1807 mutex_unlock(&smmu_domain->init_mutex);
1808 return ret;
1809 }
1810
1811 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1812 phys_addr_t paddr, size_t size, int prot)
1813 {
1814 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1815
1816 if (!ops)
1817 return -ENODEV;
1818
1819 return ops->map(ops, iova, paddr, size, prot);
1820 }
1821
1822 static size_t
1823 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1824 {
1825 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1826
1827 if (!ops)
1828 return 0;
1829
1830 return ops->unmap(ops, iova, size);
1831 }
1832
1833 static void arm_smmu_iotlb_sync(struct iommu_domain *domain)
1834 {
1835 struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu;
1836
1837 if (smmu)
1838 __arm_smmu_tlb_sync(smmu);
1839 }
1840
1841 static phys_addr_t
1842 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1843 {
1844 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1845
1846 if (domain->type == IOMMU_DOMAIN_IDENTITY)
1847 return iova;
1848
1849 if (!ops)
1850 return 0;
1851
1852 return ops->iova_to_phys(ops, iova);
1853 }
1854
1855 static struct platform_driver arm_smmu_driver;
1856
1857 static int arm_smmu_match_node(struct device *dev, void *data)
1858 {
1859 return dev->fwnode == data;
1860 }
1861
1862 static
1863 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1864 {
1865 struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1866 fwnode, arm_smmu_match_node);
1867 put_device(dev);
1868 return dev ? dev_get_drvdata(dev) : NULL;
1869 }
1870
1871 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1872 {
1873 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1874
1875 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1876 limit *= 1UL << STRTAB_SPLIT;
1877
1878 return sid < limit;
1879 }
1880
1881 static struct iommu_ops arm_smmu_ops;
1882
1883 static int arm_smmu_add_device(struct device *dev)
1884 {
1885 int i, ret;
1886 struct arm_smmu_device *smmu;
1887 struct arm_smmu_master_data *master;
1888 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1889 struct iommu_group *group;
1890
1891 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1892 return -ENODEV;
1893 /*
1894 * We _can_ actually withstand dodgy bus code re-calling add_device()
1895 * without an intervening remove_device()/of_xlate() sequence, but
1896 * we're not going to do so quietly...
1897 */
1898 if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1899 master = fwspec->iommu_priv;
1900 smmu = master->smmu;
1901 } else {
1902 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1903 if (!smmu)
1904 return -ENODEV;
1905 master = kzalloc(sizeof(*master), GFP_KERNEL);
1906 if (!master)
1907 return -ENOMEM;
1908
1909 master->smmu = smmu;
1910 fwspec->iommu_priv = master;
1911 }
1912
1913 /* Check the SIDs are in range of the SMMU and our stream table */
1914 for (i = 0; i < fwspec->num_ids; i++) {
1915 u32 sid = fwspec->ids[i];
1916
1917 if (!arm_smmu_sid_in_range(smmu, sid))
1918 return -ERANGE;
1919
1920 /* Ensure l2 strtab is initialised */
1921 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1922 ret = arm_smmu_init_l2_strtab(smmu, sid);
1923 if (ret)
1924 return ret;
1925 }
1926 }
1927
1928 group = iommu_group_get_for_dev(dev);
1929 if (!IS_ERR(group)) {
1930 iommu_group_put(group);
1931 iommu_device_link(&smmu->iommu, dev);
1932 }
1933
1934 return PTR_ERR_OR_ZERO(group);
1935 }
1936
1937 static void arm_smmu_remove_device(struct device *dev)
1938 {
1939 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1940 struct arm_smmu_master_data *master;
1941 struct arm_smmu_device *smmu;
1942
1943 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1944 return;
1945
1946 master = fwspec->iommu_priv;
1947 smmu = master->smmu;
1948 if (master && master->ste.assigned)
1949 arm_smmu_detach_dev(dev);
1950 iommu_group_remove_device(dev);
1951 iommu_device_unlink(&smmu->iommu, dev);
1952 kfree(master);
1953 iommu_fwspec_free(dev);
1954 }
1955
1956 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1957 {
1958 struct iommu_group *group;
1959
1960 /*
1961 * We don't support devices sharing stream IDs other than PCI RID
1962 * aliases, since the necessary ID-to-device lookup becomes rather
1963 * impractical given a potential sparse 32-bit stream ID space.
1964 */
1965 if (dev_is_pci(dev))
1966 group = pci_device_group(dev);
1967 else
1968 group = generic_device_group(dev);
1969
1970 return group;
1971 }
1972
1973 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1974 enum iommu_attr attr, void *data)
1975 {
1976 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1977
1978 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1979 return -EINVAL;
1980
1981 switch (attr) {
1982 case DOMAIN_ATTR_NESTING:
1983 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1984 return 0;
1985 default:
1986 return -ENODEV;
1987 }
1988 }
1989
1990 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1991 enum iommu_attr attr, void *data)
1992 {
1993 int ret = 0;
1994 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1995
1996 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1997 return -EINVAL;
1998
1999 mutex_lock(&smmu_domain->init_mutex);
2000
2001 switch (attr) {
2002 case DOMAIN_ATTR_NESTING:
2003 if (smmu_domain->smmu) {
2004 ret = -EPERM;
2005 goto out_unlock;
2006 }
2007
2008 if (*(int *)data)
2009 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
2010 else
2011 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
2012
2013 break;
2014 default:
2015 ret = -ENODEV;
2016 }
2017
2018 out_unlock:
2019 mutex_unlock(&smmu_domain->init_mutex);
2020 return ret;
2021 }
2022
2023 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
2024 {
2025 return iommu_fwspec_add_ids(dev, args->args, 1);
2026 }
2027
2028 static void arm_smmu_get_resv_regions(struct device *dev,
2029 struct list_head *head)
2030 {
2031 struct iommu_resv_region *region;
2032 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
2033
2034 region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
2035 prot, IOMMU_RESV_SW_MSI);
2036 if (!region)
2037 return;
2038
2039 list_add_tail(&region->list, head);
2040
2041 iommu_dma_get_resv_regions(dev, head);
2042 }
2043
2044 static void arm_smmu_put_resv_regions(struct device *dev,
2045 struct list_head *head)
2046 {
2047 struct iommu_resv_region *entry, *next;
2048
2049 list_for_each_entry_safe(entry, next, head, list)
2050 kfree(entry);
2051 }
2052
2053 static struct iommu_ops arm_smmu_ops = {
2054 .capable = arm_smmu_capable,
2055 .domain_alloc = arm_smmu_domain_alloc,
2056 .domain_free = arm_smmu_domain_free,
2057 .attach_dev = arm_smmu_attach_dev,
2058 .map = arm_smmu_map,
2059 .unmap = arm_smmu_unmap,
2060 .map_sg = default_iommu_map_sg,
2061 .flush_iotlb_all = arm_smmu_iotlb_sync,
2062 .iotlb_sync = arm_smmu_iotlb_sync,
2063 .iova_to_phys = arm_smmu_iova_to_phys,
2064 .add_device = arm_smmu_add_device,
2065 .remove_device = arm_smmu_remove_device,
2066 .device_group = arm_smmu_device_group,
2067 .domain_get_attr = arm_smmu_domain_get_attr,
2068 .domain_set_attr = arm_smmu_domain_set_attr,
2069 .of_xlate = arm_smmu_of_xlate,
2070 .get_resv_regions = arm_smmu_get_resv_regions,
2071 .put_resv_regions = arm_smmu_put_resv_regions,
2072 .pgsize_bitmap = -1UL, /* Restricted during device attach */
2073 };
2074
2075 /* Probing and initialisation functions */
2076 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
2077 struct arm_smmu_queue *q,
2078 unsigned long prod_off,
2079 unsigned long cons_off,
2080 size_t dwords)
2081 {
2082 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
2083
2084 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
2085 if (!q->base) {
2086 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
2087 qsz);
2088 return -ENOMEM;
2089 }
2090
2091 q->prod_reg = arm_smmu_page1_fixup(prod_off, smmu);
2092 q->cons_reg = arm_smmu_page1_fixup(cons_off, smmu);
2093 q->ent_dwords = dwords;
2094
2095 q->q_base = Q_BASE_RWA;
2096 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
2097 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
2098 << Q_BASE_LOG2SIZE_SHIFT;
2099
2100 q->prod = q->cons = 0;
2101 return 0;
2102 }
2103
2104 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
2105 {
2106 int ret;
2107
2108 /* cmdq */
2109 spin_lock_init(&smmu->cmdq.lock);
2110 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
2111 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
2112 if (ret)
2113 return ret;
2114
2115 /* evtq */
2116 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
2117 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
2118 if (ret)
2119 return ret;
2120
2121 /* priq */
2122 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2123 return 0;
2124
2125 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2126 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2127 }
2128
2129 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2130 {
2131 unsigned int i;
2132 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2133 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2134 void *strtab = smmu->strtab_cfg.strtab;
2135
2136 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2137 if (!cfg->l1_desc) {
2138 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2139 return -ENOMEM;
2140 }
2141
2142 for (i = 0; i < cfg->num_l1_ents; ++i) {
2143 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2144 strtab += STRTAB_L1_DESC_DWORDS << 3;
2145 }
2146
2147 return 0;
2148 }
2149
2150 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2151 {
2152 void *strtab;
2153 u64 reg;
2154 u32 size, l1size;
2155 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2156
2157 /* Calculate the L1 size, capped to the SIDSIZE. */
2158 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2159 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2160 cfg->num_l1_ents = 1 << size;
2161
2162 size += STRTAB_SPLIT;
2163 if (size < smmu->sid_bits)
2164 dev_warn(smmu->dev,
2165 "2-level strtab only covers %u/%u bits of SID\n",
2166 size, smmu->sid_bits);
2167
2168 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2169 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2170 GFP_KERNEL | __GFP_ZERO);
2171 if (!strtab) {
2172 dev_err(smmu->dev,
2173 "failed to allocate l1 stream table (%u bytes)\n",
2174 size);
2175 return -ENOMEM;
2176 }
2177 cfg->strtab = strtab;
2178
2179 /* Configure strtab_base_cfg for 2 levels */
2180 reg = STRTAB_BASE_CFG_FMT_2LVL;
2181 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2182 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2183 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2184 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2185 cfg->strtab_base_cfg = reg;
2186
2187 return arm_smmu_init_l1_strtab(smmu);
2188 }
2189
2190 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2191 {
2192 void *strtab;
2193 u64 reg;
2194 u32 size;
2195 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2196
2197 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2198 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2199 GFP_KERNEL | __GFP_ZERO);
2200 if (!strtab) {
2201 dev_err(smmu->dev,
2202 "failed to allocate linear stream table (%u bytes)\n",
2203 size);
2204 return -ENOMEM;
2205 }
2206 cfg->strtab = strtab;
2207 cfg->num_l1_ents = 1 << smmu->sid_bits;
2208
2209 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2210 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2211 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2212 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2213 cfg->strtab_base_cfg = reg;
2214
2215 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2216 return 0;
2217 }
2218
2219 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2220 {
2221 u64 reg;
2222 int ret;
2223
2224 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2225 ret = arm_smmu_init_strtab_2lvl(smmu);
2226 else
2227 ret = arm_smmu_init_strtab_linear(smmu);
2228
2229 if (ret)
2230 return ret;
2231
2232 /* Set the strtab base address */
2233 reg = smmu->strtab_cfg.strtab_dma &
2234 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2235 reg |= STRTAB_BASE_RA;
2236 smmu->strtab_cfg.strtab_base = reg;
2237
2238 /* Allocate the first VMID for stage-2 bypass STEs */
2239 set_bit(0, smmu->vmid_map);
2240 return 0;
2241 }
2242
2243 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2244 {
2245 int ret;
2246
2247 atomic_set(&smmu->sync_nr, 0);
2248 ret = arm_smmu_init_queues(smmu);
2249 if (ret)
2250 return ret;
2251
2252 return arm_smmu_init_strtab(smmu);
2253 }
2254
2255 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2256 unsigned int reg_off, unsigned int ack_off)
2257 {
2258 u32 reg;
2259
2260 writel_relaxed(val, smmu->base + reg_off);
2261 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2262 1, ARM_SMMU_POLL_TIMEOUT_US);
2263 }
2264
2265 /* GBPA is "special" */
2266 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2267 {
2268 int ret;
2269 u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2270
2271 ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2272 1, ARM_SMMU_POLL_TIMEOUT_US);
2273 if (ret)
2274 return ret;
2275
2276 reg &= ~clr;
2277 reg |= set;
2278 writel_relaxed(reg | GBPA_UPDATE, gbpa);
2279 return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2280 1, ARM_SMMU_POLL_TIMEOUT_US);
2281 }
2282
2283 static void arm_smmu_free_msis(void *data)
2284 {
2285 struct device *dev = data;
2286 platform_msi_domain_free_irqs(dev);
2287 }
2288
2289 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2290 {
2291 phys_addr_t doorbell;
2292 struct device *dev = msi_desc_to_dev(desc);
2293 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2294 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2295
2296 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2297 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2298
2299 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2300 writel_relaxed(msg->data, smmu->base + cfg[1]);
2301 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2302 }
2303
2304 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2305 {
2306 struct msi_desc *desc;
2307 int ret, nvec = ARM_SMMU_MAX_MSIS;
2308 struct device *dev = smmu->dev;
2309
2310 /* Clear the MSI address regs */
2311 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2312 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2313
2314 if (smmu->features & ARM_SMMU_FEAT_PRI)
2315 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2316 else
2317 nvec--;
2318
2319 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2320 return;
2321
2322 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2323 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2324 if (ret) {
2325 dev_warn(dev, "failed to allocate MSIs\n");
2326 return;
2327 }
2328
2329 for_each_msi_entry(desc, dev) {
2330 switch (desc->platform.msi_index) {
2331 case EVTQ_MSI_INDEX:
2332 smmu->evtq.q.irq = desc->irq;
2333 break;
2334 case GERROR_MSI_INDEX:
2335 smmu->gerr_irq = desc->irq;
2336 break;
2337 case PRIQ_MSI_INDEX:
2338 smmu->priq.q.irq = desc->irq;
2339 break;
2340 default: /* Unknown */
2341 continue;
2342 }
2343 }
2344
2345 /* Add callback to free MSIs on teardown */
2346 devm_add_action(dev, arm_smmu_free_msis, dev);
2347 }
2348
2349 static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
2350 {
2351 int irq, ret;
2352
2353 arm_smmu_setup_msis(smmu);
2354
2355 /* Request interrupt lines */
2356 irq = smmu->evtq.q.irq;
2357 if (irq) {
2358 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2359 arm_smmu_evtq_thread,
2360 IRQF_ONESHOT,
2361 "arm-smmu-v3-evtq", smmu);
2362 if (ret < 0)
2363 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2364 }
2365
2366 irq = smmu->gerr_irq;
2367 if (irq) {
2368 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2369 0, "arm-smmu-v3-gerror", smmu);
2370 if (ret < 0)
2371 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2372 }
2373
2374 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2375 irq = smmu->priq.q.irq;
2376 if (irq) {
2377 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2378 arm_smmu_priq_thread,
2379 IRQF_ONESHOT,
2380 "arm-smmu-v3-priq",
2381 smmu);
2382 if (ret < 0)
2383 dev_warn(smmu->dev,
2384 "failed to enable priq irq\n");
2385 }
2386 }
2387 }
2388
2389 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2390 {
2391 int ret, irq;
2392 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2393
2394 /* Disable IRQs first */
2395 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2396 ARM_SMMU_IRQ_CTRLACK);
2397 if (ret) {
2398 dev_err(smmu->dev, "failed to disable irqs\n");
2399 return ret;
2400 }
2401
2402 irq = smmu->combined_irq;
2403 if (irq) {
2404 /*
2405 * Cavium ThunderX2 implementation doesn't not support unique
2406 * irq lines. Use single irq line for all the SMMUv3 interrupts.
2407 */
2408 ret = devm_request_threaded_irq(smmu->dev, irq,
2409 arm_smmu_combined_irq_handler,
2410 arm_smmu_combined_irq_thread,
2411 IRQF_ONESHOT,
2412 "arm-smmu-v3-combined-irq", smmu);
2413 if (ret < 0)
2414 dev_warn(smmu->dev, "failed to enable combined irq\n");
2415 } else
2416 arm_smmu_setup_unique_irqs(smmu);
2417
2418 if (smmu->features & ARM_SMMU_FEAT_PRI)
2419 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2420
2421 /* Enable interrupt generation on the SMMU */
2422 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2423 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2424 if (ret)
2425 dev_warn(smmu->dev, "failed to enable irqs\n");
2426
2427 return 0;
2428 }
2429
2430 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2431 {
2432 int ret;
2433
2434 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2435 if (ret)
2436 dev_err(smmu->dev, "failed to clear cr0\n");
2437
2438 return ret;
2439 }
2440
2441 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2442 {
2443 int ret;
2444 u32 reg, enables;
2445 struct arm_smmu_cmdq_ent cmd;
2446
2447 /* Clear CR0 and sync (disables SMMU and queue processing) */
2448 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2449 if (reg & CR0_SMMUEN)
2450 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2451
2452 ret = arm_smmu_device_disable(smmu);
2453 if (ret)
2454 return ret;
2455
2456 /* CR1 (table and queue memory attributes) */
2457 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2458 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2459 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2460 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2461 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2462 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2463 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2464
2465 /* CR2 (random crap) */
2466 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2467 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2468
2469 /* Stream table */
2470 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2471 smmu->base + ARM_SMMU_STRTAB_BASE);
2472 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2473 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2474
2475 /* Command queue */
2476 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2477 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2478 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2479
2480 enables = CR0_CMDQEN;
2481 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2482 ARM_SMMU_CR0ACK);
2483 if (ret) {
2484 dev_err(smmu->dev, "failed to enable command queue\n");
2485 return ret;
2486 }
2487
2488 /* Invalidate any cached configuration */
2489 cmd.opcode = CMDQ_OP_CFGI_ALL;
2490 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2491 arm_smmu_cmdq_issue_sync(smmu);
2492
2493 /* Invalidate any stale TLB entries */
2494 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2495 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2496 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2497 }
2498
2499 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2500 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2501 arm_smmu_cmdq_issue_sync(smmu);
2502
2503 /* Event queue */
2504 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2505 writel_relaxed(smmu->evtq.q.prod,
2506 arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
2507 writel_relaxed(smmu->evtq.q.cons,
2508 arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
2509
2510 enables |= CR0_EVTQEN;
2511 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2512 ARM_SMMU_CR0ACK);
2513 if (ret) {
2514 dev_err(smmu->dev, "failed to enable event queue\n");
2515 return ret;
2516 }
2517
2518 /* PRI queue */
2519 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2520 writeq_relaxed(smmu->priq.q.q_base,
2521 smmu->base + ARM_SMMU_PRIQ_BASE);
2522 writel_relaxed(smmu->priq.q.prod,
2523 arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
2524 writel_relaxed(smmu->priq.q.cons,
2525 arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
2526
2527 enables |= CR0_PRIQEN;
2528 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2529 ARM_SMMU_CR0ACK);
2530 if (ret) {
2531 dev_err(smmu->dev, "failed to enable PRI queue\n");
2532 return ret;
2533 }
2534 }
2535
2536 ret = arm_smmu_setup_irqs(smmu);
2537 if (ret) {
2538 dev_err(smmu->dev, "failed to setup irqs\n");
2539 return ret;
2540 }
2541
2542
2543 /* Enable the SMMU interface, or ensure bypass */
2544 if (!bypass || disable_bypass) {
2545 enables |= CR0_SMMUEN;
2546 } else {
2547 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2548 if (ret) {
2549 dev_err(smmu->dev, "GBPA not responding to update\n");
2550 return ret;
2551 }
2552 }
2553 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2554 ARM_SMMU_CR0ACK);
2555 if (ret) {
2556 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2557 return ret;
2558 }
2559
2560 return 0;
2561 }
2562
2563 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2564 {
2565 u32 reg;
2566 bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2567
2568 /* IDR0 */
2569 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2570
2571 /* 2-level structures */
2572 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2573 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2574
2575 if (reg & IDR0_CD2L)
2576 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2577
2578 /*
2579 * Translation table endianness.
2580 * We currently require the same endianness as the CPU, but this
2581 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2582 */
2583 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2584 case IDR0_TTENDIAN_MIXED:
2585 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2586 break;
2587 #ifdef __BIG_ENDIAN
2588 case IDR0_TTENDIAN_BE:
2589 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2590 break;
2591 #else
2592 case IDR0_TTENDIAN_LE:
2593 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2594 break;
2595 #endif
2596 default:
2597 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2598 return -ENXIO;
2599 }
2600
2601 /* Boolean feature flags */
2602 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2603 smmu->features |= ARM_SMMU_FEAT_PRI;
2604
2605 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2606 smmu->features |= ARM_SMMU_FEAT_ATS;
2607
2608 if (reg & IDR0_SEV)
2609 smmu->features |= ARM_SMMU_FEAT_SEV;
2610
2611 if (reg & IDR0_MSI)
2612 smmu->features |= ARM_SMMU_FEAT_MSI;
2613
2614 if (reg & IDR0_HYP)
2615 smmu->features |= ARM_SMMU_FEAT_HYP;
2616
2617 /*
2618 * The coherency feature as set by FW is used in preference to the ID
2619 * register, but warn on mismatch.
2620 */
2621 if (!!(reg & IDR0_COHACC) != coherent)
2622 dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
2623 coherent ? "true" : "false");
2624
2625 switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2626 case IDR0_STALL_MODEL_FORCE:
2627 smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
2628 /* Fallthrough */
2629 case IDR0_STALL_MODEL_STALL:
2630 smmu->features |= ARM_SMMU_FEAT_STALLS;
2631 }
2632
2633 if (reg & IDR0_S1P)
2634 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2635
2636 if (reg & IDR0_S2P)
2637 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2638
2639 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2640 dev_err(smmu->dev, "no translation support!\n");
2641 return -ENXIO;
2642 }
2643
2644 /* We only support the AArch64 table format at present */
2645 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2646 case IDR0_TTF_AARCH32_64:
2647 smmu->ias = 40;
2648 /* Fallthrough */
2649 case IDR0_TTF_AARCH64:
2650 break;
2651 default:
2652 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2653 return -ENXIO;
2654 }
2655
2656 /* ASID/VMID sizes */
2657 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2658 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2659
2660 /* IDR1 */
2661 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2662 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2663 dev_err(smmu->dev, "embedded implementation not supported\n");
2664 return -ENXIO;
2665 }
2666
2667 /* Queue sizes, capped at 4k */
2668 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2669 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2670 if (!smmu->cmdq.q.max_n_shift) {
2671 /* Odd alignment restrictions on the base, so ignore for now */
2672 dev_err(smmu->dev, "unit-length command queue not supported\n");
2673 return -ENXIO;
2674 }
2675
2676 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2677 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2678 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2679 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2680
2681 /* SID/SSID sizes */
2682 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2683 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2684
2685 /*
2686 * If the SMMU supports fewer bits than would fill a single L2 stream
2687 * table, use a linear table instead.
2688 */
2689 if (smmu->sid_bits <= STRTAB_SPLIT)
2690 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
2691
2692 /* IDR5 */
2693 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2694
2695 /* Maximum number of outstanding stalls */
2696 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2697 & IDR5_STALL_MAX_MASK;
2698
2699 /* Page sizes */
2700 if (reg & IDR5_GRAN64K)
2701 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2702 if (reg & IDR5_GRAN16K)
2703 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2704 if (reg & IDR5_GRAN4K)
2705 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2706
2707 if (arm_smmu_ops.pgsize_bitmap == -1UL)
2708 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2709 else
2710 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2711
2712 /* Output address size */
2713 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2714 case IDR5_OAS_32_BIT:
2715 smmu->oas = 32;
2716 break;
2717 case IDR5_OAS_36_BIT:
2718 smmu->oas = 36;
2719 break;
2720 case IDR5_OAS_40_BIT:
2721 smmu->oas = 40;
2722 break;
2723 case IDR5_OAS_42_BIT:
2724 smmu->oas = 42;
2725 break;
2726 case IDR5_OAS_44_BIT:
2727 smmu->oas = 44;
2728 break;
2729 default:
2730 dev_info(smmu->dev,
2731 "unknown output address size. Truncating to 48-bit\n");
2732 /* Fallthrough */
2733 case IDR5_OAS_48_BIT:
2734 smmu->oas = 48;
2735 }
2736
2737 /* Set the DMA mask for our table walker */
2738 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2739 dev_warn(smmu->dev,
2740 "failed to set DMA mask for table walker\n");
2741
2742 smmu->ias = max(smmu->ias, smmu->oas);
2743
2744 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2745 smmu->ias, smmu->oas, smmu->features);
2746 return 0;
2747 }
2748
2749 #ifdef CONFIG_ACPI
2750 static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
2751 {
2752 switch (model) {
2753 case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
2754 smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
2755 break;
2756 case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
2757 smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
2758 break;
2759 }
2760
2761 dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
2762 }
2763
2764 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2765 struct arm_smmu_device *smmu)
2766 {
2767 struct acpi_iort_smmu_v3 *iort_smmu;
2768 struct device *dev = smmu->dev;
2769 struct acpi_iort_node *node;
2770
2771 node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2772
2773 /* Retrieve SMMUv3 specific data */
2774 iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2775
2776 acpi_smmu_get_options(iort_smmu->model, smmu);
2777
2778 if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2779 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2780
2781 return 0;
2782 }
2783 #else
2784 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2785 struct arm_smmu_device *smmu)
2786 {
2787 return -ENODEV;
2788 }
2789 #endif
2790
2791 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2792 struct arm_smmu_device *smmu)
2793 {
2794 struct device *dev = &pdev->dev;
2795 u32 cells;
2796 int ret = -EINVAL;
2797
2798 if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2799 dev_err(dev, "missing #iommu-cells property\n");
2800 else if (cells != 1)
2801 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2802 else
2803 ret = 0;
2804
2805 parse_driver_options(smmu);
2806
2807 if (of_dma_is_coherent(dev->of_node))
2808 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2809
2810 return ret;
2811 }
2812
2813 static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
2814 {
2815 if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
2816 return SZ_64K;
2817 else
2818 return SZ_128K;
2819 }
2820
2821 static int arm_smmu_device_probe(struct platform_device *pdev)
2822 {
2823 int irq, ret;
2824 struct resource *res;
2825 resource_size_t ioaddr;
2826 struct arm_smmu_device *smmu;
2827 struct device *dev = &pdev->dev;
2828 bool bypass;
2829
2830 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2831 if (!smmu) {
2832 dev_err(dev, "failed to allocate arm_smmu_device\n");
2833 return -ENOMEM;
2834 }
2835 smmu->dev = dev;
2836
2837 if (dev->of_node) {
2838 ret = arm_smmu_device_dt_probe(pdev, smmu);
2839 } else {
2840 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2841 if (ret == -ENODEV)
2842 return ret;
2843 }
2844
2845 /* Set bypass mode according to firmware probing result */
2846 bypass = !!ret;
2847
2848 /* Base address */
2849 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2850 if (resource_size(res) + 1 < arm_smmu_resource_size(smmu)) {
2851 dev_err(dev, "MMIO region too small (%pr)\n", res);
2852 return -EINVAL;
2853 }
2854 ioaddr = res->start;
2855
2856 smmu->base = devm_ioremap_resource(dev, res);
2857 if (IS_ERR(smmu->base))
2858 return PTR_ERR(smmu->base);
2859
2860 /* Interrupt lines */
2861
2862 irq = platform_get_irq_byname(pdev, "combined");
2863 if (irq > 0)
2864 smmu->combined_irq = irq;
2865 else {
2866 irq = platform_get_irq_byname(pdev, "eventq");
2867 if (irq > 0)
2868 smmu->evtq.q.irq = irq;
2869
2870 irq = platform_get_irq_byname(pdev, "priq");
2871 if (irq > 0)
2872 smmu->priq.q.irq = irq;
2873
2874 irq = platform_get_irq_byname(pdev, "gerror");
2875 if (irq > 0)
2876 smmu->gerr_irq = irq;
2877 }
2878 /* Probe the h/w */
2879 ret = arm_smmu_device_hw_probe(smmu);
2880 if (ret)
2881 return ret;
2882
2883 /* Initialise in-memory data structures */
2884 ret = arm_smmu_init_structures(smmu);
2885 if (ret)
2886 return ret;
2887
2888 /* Record our private device structure */
2889 platform_set_drvdata(pdev, smmu);
2890
2891 /* Reset the device */
2892 ret = arm_smmu_device_reset(smmu, bypass);
2893 if (ret)
2894 return ret;
2895
2896 /* And we're up. Go go go! */
2897 ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
2898 "smmu3.%pa", &ioaddr);
2899 if (ret)
2900 return ret;
2901
2902 iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2903 iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2904
2905 ret = iommu_device_register(&smmu->iommu);
2906 if (ret) {
2907 dev_err(dev, "Failed to register iommu\n");
2908 return ret;
2909 }
2910
2911 #ifdef CONFIG_PCI
2912 if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2913 pci_request_acs();
2914 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2915 if (ret)
2916 return ret;
2917 }
2918 #endif
2919 #ifdef CONFIG_ARM_AMBA
2920 if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2921 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2922 if (ret)
2923 return ret;
2924 }
2925 #endif
2926 if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2927 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2928 if (ret)
2929 return ret;
2930 }
2931 return 0;
2932 }
2933
2934 static int arm_smmu_device_remove(struct platform_device *pdev)
2935 {
2936 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2937
2938 arm_smmu_device_disable(smmu);
2939
2940 return 0;
2941 }
2942
2943 static void arm_smmu_device_shutdown(struct platform_device *pdev)
2944 {
2945 arm_smmu_device_remove(pdev);
2946 }
2947
2948 static const struct of_device_id arm_smmu_of_match[] = {
2949 { .compatible = "arm,smmu-v3", },
2950 { },
2951 };
2952 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2953
2954 static struct platform_driver arm_smmu_driver = {
2955 .driver = {
2956 .name = "arm-smmu-v3",
2957 .of_match_table = of_match_ptr(arm_smmu_of_match),
2958 },
2959 .probe = arm_smmu_device_probe,
2960 .remove = arm_smmu_device_remove,
2961 .shutdown = arm_smmu_device_shutdown,
2962 };
2963 module_platform_driver(arm_smmu_driver);
2964
2965 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", NULL);
2966
2967 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2968 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2969 MODULE_LICENSE("GPL v2");