]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iommu/arm-smmu.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / arm-smmu.c
1 /*
2 * IOMMU API for ARM architected SMMU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 *
17 * Copyright (C) 2013 ARM Limited
18 *
19 * Author: Will Deacon <will.deacon@arm.com>
20 *
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - Context fault reporting
27 * - Extended Stream ID (16 bit)
28 */
29
30 #define pr_fmt(fmt) "arm-smmu: " fmt
31
32 #include <linux/acpi.h>
33 #include <linux/acpi_iort.h>
34 #include <linux/atomic.h>
35 #include <linux/delay.h>
36 #include <linux/dma-iommu.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/err.h>
39 #include <linux/interrupt.h>
40 #include <linux/io.h>
41 #include <linux/io-64-nonatomic-hi-lo.h>
42 #include <linux/iommu.h>
43 #include <linux/iopoll.h>
44 #include <linux/module.h>
45 #include <linux/of.h>
46 #include <linux/of_address.h>
47 #include <linux/of_device.h>
48 #include <linux/of_iommu.h>
49 #include <linux/pci.h>
50 #include <linux/platform_device.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53
54 #include <linux/amba/bus.h>
55
56 #include "io-pgtable.h"
57
58 /* Maximum number of context banks per SMMU */
59 #define ARM_SMMU_MAX_CBS 128
60
61 /* SMMU global address space */
62 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
63 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
64
65 /*
66 * SMMU global address space with conditional offset to access secure
67 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
68 * nsGFSYNR0: 0x450)
69 */
70 #define ARM_SMMU_GR0_NS(smmu) \
71 ((smmu)->base + \
72 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
73 ? 0x400 : 0))
74
75 /*
76 * Some 64-bit registers only make sense to write atomically, but in such
77 * cases all the data relevant to AArch32 formats lies within the lower word,
78 * therefore this actually makes more sense than it might first appear.
79 */
80 #ifdef CONFIG_64BIT
81 #define smmu_write_atomic_lq writeq_relaxed
82 #else
83 #define smmu_write_atomic_lq writel_relaxed
84 #endif
85
86 /* Configuration registers */
87 #define ARM_SMMU_GR0_sCR0 0x0
88 #define sCR0_CLIENTPD (1 << 0)
89 #define sCR0_GFRE (1 << 1)
90 #define sCR0_GFIE (1 << 2)
91 #define sCR0_EXIDENABLE (1 << 3)
92 #define sCR0_GCFGFRE (1 << 4)
93 #define sCR0_GCFGFIE (1 << 5)
94 #define sCR0_USFCFG (1 << 10)
95 #define sCR0_VMIDPNE (1 << 11)
96 #define sCR0_PTM (1 << 12)
97 #define sCR0_FB (1 << 13)
98 #define sCR0_VMID16EN (1 << 31)
99 #define sCR0_BSU_SHIFT 14
100 #define sCR0_BSU_MASK 0x3
101
102 /* Auxiliary Configuration register */
103 #define ARM_SMMU_GR0_sACR 0x10
104
105 /* Identification registers */
106 #define ARM_SMMU_GR0_ID0 0x20
107 #define ARM_SMMU_GR0_ID1 0x24
108 #define ARM_SMMU_GR0_ID2 0x28
109 #define ARM_SMMU_GR0_ID3 0x2c
110 #define ARM_SMMU_GR0_ID4 0x30
111 #define ARM_SMMU_GR0_ID5 0x34
112 #define ARM_SMMU_GR0_ID6 0x38
113 #define ARM_SMMU_GR0_ID7 0x3c
114 #define ARM_SMMU_GR0_sGFSR 0x48
115 #define ARM_SMMU_GR0_sGFSYNR0 0x50
116 #define ARM_SMMU_GR0_sGFSYNR1 0x54
117 #define ARM_SMMU_GR0_sGFSYNR2 0x58
118
119 #define ID0_S1TS (1 << 30)
120 #define ID0_S2TS (1 << 29)
121 #define ID0_NTS (1 << 28)
122 #define ID0_SMS (1 << 27)
123 #define ID0_ATOSNS (1 << 26)
124 #define ID0_PTFS_NO_AARCH32 (1 << 25)
125 #define ID0_PTFS_NO_AARCH32S (1 << 24)
126 #define ID0_CTTW (1 << 14)
127 #define ID0_NUMIRPT_SHIFT 16
128 #define ID0_NUMIRPT_MASK 0xff
129 #define ID0_NUMSIDB_SHIFT 9
130 #define ID0_NUMSIDB_MASK 0xf
131 #define ID0_EXIDS (1 << 8)
132 #define ID0_NUMSMRG_SHIFT 0
133 #define ID0_NUMSMRG_MASK 0xff
134
135 #define ID1_PAGESIZE (1 << 31)
136 #define ID1_NUMPAGENDXB_SHIFT 28
137 #define ID1_NUMPAGENDXB_MASK 7
138 #define ID1_NUMS2CB_SHIFT 16
139 #define ID1_NUMS2CB_MASK 0xff
140 #define ID1_NUMCB_SHIFT 0
141 #define ID1_NUMCB_MASK 0xff
142
143 #define ID2_OAS_SHIFT 4
144 #define ID2_OAS_MASK 0xf
145 #define ID2_IAS_SHIFT 0
146 #define ID2_IAS_MASK 0xf
147 #define ID2_UBS_SHIFT 8
148 #define ID2_UBS_MASK 0xf
149 #define ID2_PTFS_4K (1 << 12)
150 #define ID2_PTFS_16K (1 << 13)
151 #define ID2_PTFS_64K (1 << 14)
152 #define ID2_VMID16 (1 << 15)
153
154 #define ID7_MAJOR_SHIFT 4
155 #define ID7_MAJOR_MASK 0xf
156
157 /* Global TLB invalidation */
158 #define ARM_SMMU_GR0_TLBIVMID 0x64
159 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
160 #define ARM_SMMU_GR0_TLBIALLH 0x6c
161 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
162 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
163 #define sTLBGSTATUS_GSACTIVE (1 << 0)
164 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
165 #define TLB_SPIN_COUNT 10
166
167 /* Stream mapping registers */
168 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
169 #define SMR_VALID (1 << 31)
170 #define SMR_MASK_SHIFT 16
171 #define SMR_ID_SHIFT 0
172
173 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
174 #define S2CR_CBNDX_SHIFT 0
175 #define S2CR_CBNDX_MASK 0xff
176 #define S2CR_EXIDVALID (1 << 10)
177 #define S2CR_TYPE_SHIFT 16
178 #define S2CR_TYPE_MASK 0x3
179 enum arm_smmu_s2cr_type {
180 S2CR_TYPE_TRANS,
181 S2CR_TYPE_BYPASS,
182 S2CR_TYPE_FAULT,
183 };
184
185 #define S2CR_PRIVCFG_SHIFT 24
186 #define S2CR_PRIVCFG_MASK 0x3
187 enum arm_smmu_s2cr_privcfg {
188 S2CR_PRIVCFG_DEFAULT,
189 S2CR_PRIVCFG_DIPAN,
190 S2CR_PRIVCFG_UNPRIV,
191 S2CR_PRIVCFG_PRIV,
192 };
193
194 /* Context bank attribute registers */
195 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
196 #define CBAR_VMID_SHIFT 0
197 #define CBAR_VMID_MASK 0xff
198 #define CBAR_S1_BPSHCFG_SHIFT 8
199 #define CBAR_S1_BPSHCFG_MASK 3
200 #define CBAR_S1_BPSHCFG_NSH 3
201 #define CBAR_S1_MEMATTR_SHIFT 12
202 #define CBAR_S1_MEMATTR_MASK 0xf
203 #define CBAR_S1_MEMATTR_WB 0xf
204 #define CBAR_TYPE_SHIFT 16
205 #define CBAR_TYPE_MASK 0x3
206 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
207 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
208 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
209 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
210 #define CBAR_IRPTNDX_SHIFT 24
211 #define CBAR_IRPTNDX_MASK 0xff
212
213 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
214 #define CBA2R_RW64_32BIT (0 << 0)
215 #define CBA2R_RW64_64BIT (1 << 0)
216 #define CBA2R_VMID_SHIFT 16
217 #define CBA2R_VMID_MASK 0xffff
218
219 /* Translation context bank */
220 #define ARM_SMMU_CB(smmu, n) ((smmu)->cb_base + ((n) << (smmu)->pgshift))
221
222 #define ARM_SMMU_CB_SCTLR 0x0
223 #define ARM_SMMU_CB_ACTLR 0x4
224 #define ARM_SMMU_CB_RESUME 0x8
225 #define ARM_SMMU_CB_TTBCR2 0x10
226 #define ARM_SMMU_CB_TTBR0 0x20
227 #define ARM_SMMU_CB_TTBR1 0x28
228 #define ARM_SMMU_CB_TTBCR 0x30
229 #define ARM_SMMU_CB_CONTEXTIDR 0x34
230 #define ARM_SMMU_CB_S1_MAIR0 0x38
231 #define ARM_SMMU_CB_S1_MAIR1 0x3c
232 #define ARM_SMMU_CB_PAR 0x50
233 #define ARM_SMMU_CB_FSR 0x58
234 #define ARM_SMMU_CB_FAR 0x60
235 #define ARM_SMMU_CB_FSYNR0 0x68
236 #define ARM_SMMU_CB_S1_TLBIVA 0x600
237 #define ARM_SMMU_CB_S1_TLBIASID 0x610
238 #define ARM_SMMU_CB_S1_TLBIVAL 0x620
239 #define ARM_SMMU_CB_S2_TLBIIPAS2 0x630
240 #define ARM_SMMU_CB_S2_TLBIIPAS2L 0x638
241 #define ARM_SMMU_CB_TLBSYNC 0x7f0
242 #define ARM_SMMU_CB_TLBSTATUS 0x7f4
243 #define ARM_SMMU_CB_ATS1PR 0x800
244 #define ARM_SMMU_CB_ATSR 0x8f0
245
246 #define SCTLR_S1_ASIDPNE (1 << 12)
247 #define SCTLR_CFCFG (1 << 7)
248 #define SCTLR_CFIE (1 << 6)
249 #define SCTLR_CFRE (1 << 5)
250 #define SCTLR_E (1 << 4)
251 #define SCTLR_AFE (1 << 2)
252 #define SCTLR_TRE (1 << 1)
253 #define SCTLR_M (1 << 0)
254
255 #define ARM_MMU500_ACTLR_CPRE (1 << 1)
256
257 #define ARM_MMU500_ACR_CACHE_LOCK (1 << 26)
258 #define ARM_MMU500_ACR_SMTNMB_TLBEN (1 << 8)
259
260 #define CB_PAR_F (1 << 0)
261
262 #define ATSR_ACTIVE (1 << 0)
263
264 #define RESUME_RETRY (0 << 0)
265 #define RESUME_TERMINATE (1 << 0)
266
267 #define TTBCR2_SEP_SHIFT 15
268 #define TTBCR2_SEP_UPSTREAM (0x7 << TTBCR2_SEP_SHIFT)
269 #define TTBCR2_AS (1 << 4)
270
271 #define TTBRn_ASID_SHIFT 48
272
273 #define FSR_MULTI (1 << 31)
274 #define FSR_SS (1 << 30)
275 #define FSR_UUT (1 << 8)
276 #define FSR_ASF (1 << 7)
277 #define FSR_TLBLKF (1 << 6)
278 #define FSR_TLBMCF (1 << 5)
279 #define FSR_EF (1 << 4)
280 #define FSR_PF (1 << 3)
281 #define FSR_AFF (1 << 2)
282 #define FSR_TF (1 << 1)
283
284 #define FSR_IGN (FSR_AFF | FSR_ASF | \
285 FSR_TLBMCF | FSR_TLBLKF)
286 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
287 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
288
289 #define FSYNR0_WNR (1 << 4)
290
291 #define MSI_IOVA_BASE 0x8000000
292 #define MSI_IOVA_LENGTH 0x100000
293
294 static int force_stage;
295 module_param(force_stage, int, S_IRUGO);
296 MODULE_PARM_DESC(force_stage,
297 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
298 static bool disable_bypass;
299 module_param(disable_bypass, bool, S_IRUGO);
300 MODULE_PARM_DESC(disable_bypass,
301 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
302
303 enum arm_smmu_arch_version {
304 ARM_SMMU_V1,
305 ARM_SMMU_V1_64K,
306 ARM_SMMU_V2,
307 };
308
309 enum arm_smmu_implementation {
310 GENERIC_SMMU,
311 ARM_MMU500,
312 CAVIUM_SMMUV2,
313 };
314
315 /* Until ACPICA headers cover IORT rev. C */
316 #ifndef ACPI_IORT_SMMU_CORELINK_MMU401
317 #define ACPI_IORT_SMMU_CORELINK_MMU401 0x4
318 #endif
319 #ifndef ACPI_IORT_SMMU_CAVIUM_THUNDERX
320 #define ACPI_IORT_SMMU_CAVIUM_THUNDERX 0x5
321 #endif
322
323 struct arm_smmu_s2cr {
324 struct iommu_group *group;
325 int count;
326 enum arm_smmu_s2cr_type type;
327 enum arm_smmu_s2cr_privcfg privcfg;
328 u8 cbndx;
329 };
330
331 #define s2cr_init_val (struct arm_smmu_s2cr){ \
332 .type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS, \
333 }
334
335 struct arm_smmu_smr {
336 u16 mask;
337 u16 id;
338 bool valid;
339 };
340
341 struct arm_smmu_master_cfg {
342 struct arm_smmu_device *smmu;
343 s16 smendx[];
344 };
345 #define INVALID_SMENDX -1
346 #define __fwspec_cfg(fw) ((struct arm_smmu_master_cfg *)fw->iommu_priv)
347 #define fwspec_smmu(fw) (__fwspec_cfg(fw)->smmu)
348 #define fwspec_smendx(fw, i) \
349 (i >= fw->num_ids ? INVALID_SMENDX : __fwspec_cfg(fw)->smendx[i])
350 #define for_each_cfg_sme(fw, i, idx) \
351 for (i = 0; idx = fwspec_smendx(fw, i), i < fw->num_ids; ++i)
352
353 struct arm_smmu_device {
354 struct device *dev;
355
356 void __iomem *base;
357 void __iomem *cb_base;
358 unsigned long pgshift;
359
360 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
361 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
362 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
363 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
364 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
365 #define ARM_SMMU_FEAT_TRANS_OPS (1 << 5)
366 #define ARM_SMMU_FEAT_VMID16 (1 << 6)
367 #define ARM_SMMU_FEAT_FMT_AARCH64_4K (1 << 7)
368 #define ARM_SMMU_FEAT_FMT_AARCH64_16K (1 << 8)
369 #define ARM_SMMU_FEAT_FMT_AARCH64_64K (1 << 9)
370 #define ARM_SMMU_FEAT_FMT_AARCH32_L (1 << 10)
371 #define ARM_SMMU_FEAT_FMT_AARCH32_S (1 << 11)
372 #define ARM_SMMU_FEAT_EXIDS (1 << 12)
373 u32 features;
374
375 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
376 u32 options;
377 enum arm_smmu_arch_version version;
378 enum arm_smmu_implementation model;
379
380 u32 num_context_banks;
381 u32 num_s2_context_banks;
382 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
383 atomic_t irptndx;
384
385 u32 num_mapping_groups;
386 u16 streamid_mask;
387 u16 smr_mask_mask;
388 struct arm_smmu_smr *smrs;
389 struct arm_smmu_s2cr *s2crs;
390 struct mutex stream_map_mutex;
391
392 unsigned long va_size;
393 unsigned long ipa_size;
394 unsigned long pa_size;
395 unsigned long pgsize_bitmap;
396
397 u32 num_global_irqs;
398 u32 num_context_irqs;
399 unsigned int *irqs;
400
401 u32 cavium_id_base; /* Specific to Cavium */
402
403 spinlock_t global_sync_lock;
404
405 /* IOMMU core code handle */
406 struct iommu_device iommu;
407 };
408
409 enum arm_smmu_context_fmt {
410 ARM_SMMU_CTX_FMT_NONE,
411 ARM_SMMU_CTX_FMT_AARCH64,
412 ARM_SMMU_CTX_FMT_AARCH32_L,
413 ARM_SMMU_CTX_FMT_AARCH32_S,
414 };
415
416 struct arm_smmu_cfg {
417 u8 cbndx;
418 u8 irptndx;
419 union {
420 u16 asid;
421 u16 vmid;
422 };
423 u32 cbar;
424 enum arm_smmu_context_fmt fmt;
425 };
426 #define INVALID_IRPTNDX 0xff
427
428 enum arm_smmu_domain_stage {
429 ARM_SMMU_DOMAIN_S1 = 0,
430 ARM_SMMU_DOMAIN_S2,
431 ARM_SMMU_DOMAIN_NESTED,
432 ARM_SMMU_DOMAIN_BYPASS,
433 };
434
435 struct arm_smmu_domain {
436 struct arm_smmu_device *smmu;
437 struct io_pgtable_ops *pgtbl_ops;
438 struct arm_smmu_cfg cfg;
439 enum arm_smmu_domain_stage stage;
440 struct mutex init_mutex; /* Protects smmu pointer */
441 spinlock_t cb_lock; /* Serialises ATS1* ops and TLB syncs */
442 struct iommu_domain domain;
443 };
444
445 struct arm_smmu_option_prop {
446 u32 opt;
447 const char *prop;
448 };
449
450 static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);
451
452 static bool using_legacy_binding, using_generic_binding;
453
454 static struct arm_smmu_option_prop arm_smmu_options[] = {
455 { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
456 { 0, NULL},
457 };
458
459 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
460 {
461 return container_of(dom, struct arm_smmu_domain, domain);
462 }
463
464 static void parse_driver_options(struct arm_smmu_device *smmu)
465 {
466 int i = 0;
467
468 do {
469 if (of_property_read_bool(smmu->dev->of_node,
470 arm_smmu_options[i].prop)) {
471 smmu->options |= arm_smmu_options[i].opt;
472 dev_notice(smmu->dev, "option %s\n",
473 arm_smmu_options[i].prop);
474 }
475 } while (arm_smmu_options[++i].opt);
476 }
477
478 static struct device_node *dev_get_dev_node(struct device *dev)
479 {
480 if (dev_is_pci(dev)) {
481 struct pci_bus *bus = to_pci_dev(dev)->bus;
482
483 while (!pci_is_root_bus(bus))
484 bus = bus->parent;
485 return of_node_get(bus->bridge->parent->of_node);
486 }
487
488 return of_node_get(dev->of_node);
489 }
490
491 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
492 {
493 *((__be32 *)data) = cpu_to_be32(alias);
494 return 0; /* Continue walking */
495 }
496
497 static int __find_legacy_master_phandle(struct device *dev, void *data)
498 {
499 struct of_phandle_iterator *it = *(void **)data;
500 struct device_node *np = it->node;
501 int err;
502
503 of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
504 "#stream-id-cells", 0)
505 if (it->node == np) {
506 *(void **)data = dev;
507 return 1;
508 }
509 it->node = np;
510 return err == -ENOENT ? 0 : err;
511 }
512
513 static struct platform_driver arm_smmu_driver;
514 static struct iommu_ops arm_smmu_ops;
515
516 static int arm_smmu_register_legacy_master(struct device *dev,
517 struct arm_smmu_device **smmu)
518 {
519 struct device *smmu_dev;
520 struct device_node *np;
521 struct of_phandle_iterator it;
522 void *data = &it;
523 u32 *sids;
524 __be32 pci_sid;
525 int err;
526
527 np = dev_get_dev_node(dev);
528 if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
529 of_node_put(np);
530 return -ENODEV;
531 }
532
533 it.node = np;
534 err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
535 __find_legacy_master_phandle);
536 smmu_dev = data;
537 of_node_put(np);
538 if (err == 0)
539 return -ENODEV;
540 if (err < 0)
541 return err;
542
543 if (dev_is_pci(dev)) {
544 /* "mmu-masters" assumes Stream ID == Requester ID */
545 pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
546 &pci_sid);
547 it.cur = &pci_sid;
548 it.cur_count = 1;
549 }
550
551 err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode,
552 &arm_smmu_ops);
553 if (err)
554 return err;
555
556 sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL);
557 if (!sids)
558 return -ENOMEM;
559
560 *smmu = dev_get_drvdata(smmu_dev);
561 of_phandle_iterator_args(&it, sids, it.cur_count);
562 err = iommu_fwspec_add_ids(dev, sids, it.cur_count);
563 kfree(sids);
564 return err;
565 }
566
567 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
568 {
569 int idx;
570
571 do {
572 idx = find_next_zero_bit(map, end, start);
573 if (idx == end)
574 return -ENOSPC;
575 } while (test_and_set_bit(idx, map));
576
577 return idx;
578 }
579
580 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
581 {
582 clear_bit(idx, map);
583 }
584
585 /* Wait for any pending TLB invalidations to complete */
586 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu,
587 void __iomem *sync, void __iomem *status)
588 {
589 unsigned int spin_cnt, delay;
590
591 writel_relaxed(0, sync);
592 for (delay = 1; delay < TLB_LOOP_TIMEOUT; delay *= 2) {
593 for (spin_cnt = TLB_SPIN_COUNT; spin_cnt > 0; spin_cnt--) {
594 if (!(readl_relaxed(status) & sTLBGSTATUS_GSACTIVE))
595 return;
596 cpu_relax();
597 }
598 udelay(delay);
599 }
600 dev_err_ratelimited(smmu->dev,
601 "TLB sync timed out -- SMMU may be deadlocked\n");
602 }
603
604 static void arm_smmu_tlb_sync_global(struct arm_smmu_device *smmu)
605 {
606 void __iomem *base = ARM_SMMU_GR0(smmu);
607 unsigned long flags;
608
609 spin_lock_irqsave(&smmu->global_sync_lock, flags);
610 __arm_smmu_tlb_sync(smmu, base + ARM_SMMU_GR0_sTLBGSYNC,
611 base + ARM_SMMU_GR0_sTLBGSTATUS);
612 spin_unlock_irqrestore(&smmu->global_sync_lock, flags);
613 }
614
615 static void arm_smmu_tlb_sync_context(void *cookie)
616 {
617 struct arm_smmu_domain *smmu_domain = cookie;
618 struct arm_smmu_device *smmu = smmu_domain->smmu;
619 void __iomem *base = ARM_SMMU_CB(smmu, smmu_domain->cfg.cbndx);
620 unsigned long flags;
621
622 spin_lock_irqsave(&smmu_domain->cb_lock, flags);
623 __arm_smmu_tlb_sync(smmu, base + ARM_SMMU_CB_TLBSYNC,
624 base + ARM_SMMU_CB_TLBSTATUS);
625 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
626 }
627
628 static void arm_smmu_tlb_sync_vmid(void *cookie)
629 {
630 struct arm_smmu_domain *smmu_domain = cookie;
631
632 arm_smmu_tlb_sync_global(smmu_domain->smmu);
633 }
634
635 static void arm_smmu_tlb_inv_context_s1(void *cookie)
636 {
637 struct arm_smmu_domain *smmu_domain = cookie;
638 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
639 void __iomem *base = ARM_SMMU_CB(smmu_domain->smmu, cfg->cbndx);
640
641 writel_relaxed(cfg->asid, base + ARM_SMMU_CB_S1_TLBIASID);
642 arm_smmu_tlb_sync_context(cookie);
643 }
644
645 static void arm_smmu_tlb_inv_context_s2(void *cookie)
646 {
647 struct arm_smmu_domain *smmu_domain = cookie;
648 struct arm_smmu_device *smmu = smmu_domain->smmu;
649 void __iomem *base = ARM_SMMU_GR0(smmu);
650
651 writel_relaxed(smmu_domain->cfg.vmid, base + ARM_SMMU_GR0_TLBIVMID);
652 arm_smmu_tlb_sync_global(smmu);
653 }
654
655 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
656 size_t granule, bool leaf, void *cookie)
657 {
658 struct arm_smmu_domain *smmu_domain = cookie;
659 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
660 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
661 void __iomem *reg = ARM_SMMU_CB(smmu_domain->smmu, cfg->cbndx);
662
663 if (stage1) {
664 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
665
666 if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
667 iova &= ~12UL;
668 iova |= cfg->asid;
669 do {
670 writel_relaxed(iova, reg);
671 iova += granule;
672 } while (size -= granule);
673 } else {
674 iova >>= 12;
675 iova |= (u64)cfg->asid << 48;
676 do {
677 writeq_relaxed(iova, reg);
678 iova += granule >> 12;
679 } while (size -= granule);
680 }
681 } else {
682 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
683 ARM_SMMU_CB_S2_TLBIIPAS2;
684 iova >>= 12;
685 do {
686 smmu_write_atomic_lq(iova, reg);
687 iova += granule >> 12;
688 } while (size -= granule);
689 }
690 }
691
692 /*
693 * On MMU-401 at least, the cost of firing off multiple TLBIVMIDs appears
694 * almost negligible, but the benefit of getting the first one in as far ahead
695 * of the sync as possible is significant, hence we don't just make this a
696 * no-op and set .tlb_sync to arm_smmu_inv_context_s2() as you might think.
697 */
698 static void arm_smmu_tlb_inv_vmid_nosync(unsigned long iova, size_t size,
699 size_t granule, bool leaf, void *cookie)
700 {
701 struct arm_smmu_domain *smmu_domain = cookie;
702 void __iomem *base = ARM_SMMU_GR0(smmu_domain->smmu);
703
704 writel_relaxed(smmu_domain->cfg.vmid, base + ARM_SMMU_GR0_TLBIVMID);
705 }
706
707 static const struct iommu_gather_ops arm_smmu_s1_tlb_ops = {
708 .tlb_flush_all = arm_smmu_tlb_inv_context_s1,
709 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
710 .tlb_sync = arm_smmu_tlb_sync_context,
711 };
712
713 static const struct iommu_gather_ops arm_smmu_s2_tlb_ops_v2 = {
714 .tlb_flush_all = arm_smmu_tlb_inv_context_s2,
715 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
716 .tlb_sync = arm_smmu_tlb_sync_context,
717 };
718
719 static const struct iommu_gather_ops arm_smmu_s2_tlb_ops_v1 = {
720 .tlb_flush_all = arm_smmu_tlb_inv_context_s2,
721 .tlb_add_flush = arm_smmu_tlb_inv_vmid_nosync,
722 .tlb_sync = arm_smmu_tlb_sync_vmid,
723 };
724
725 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
726 {
727 u32 fsr, fsynr;
728 unsigned long iova;
729 struct iommu_domain *domain = dev;
730 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
731 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
732 struct arm_smmu_device *smmu = smmu_domain->smmu;
733 void __iomem *cb_base;
734
735 cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
736 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
737
738 if (!(fsr & FSR_FAULT))
739 return IRQ_NONE;
740
741 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
742 iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
743
744 dev_err_ratelimited(smmu->dev,
745 "Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
746 fsr, iova, fsynr, cfg->cbndx);
747
748 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
749 return IRQ_HANDLED;
750 }
751
752 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
753 {
754 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
755 struct arm_smmu_device *smmu = dev;
756 void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
757
758 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
759 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
760 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
761 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
762
763 if (!gfsr)
764 return IRQ_NONE;
765
766 dev_err_ratelimited(smmu->dev,
767 "Unexpected global fault, this could be serious\n");
768 dev_err_ratelimited(smmu->dev,
769 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
770 gfsr, gfsynr0, gfsynr1, gfsynr2);
771
772 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
773 return IRQ_HANDLED;
774 }
775
776 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
777 struct io_pgtable_cfg *pgtbl_cfg)
778 {
779 u32 reg, reg2;
780 u64 reg64;
781 bool stage1;
782 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
783 struct arm_smmu_device *smmu = smmu_domain->smmu;
784 void __iomem *cb_base, *gr1_base;
785
786 gr1_base = ARM_SMMU_GR1(smmu);
787 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
788 cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
789
790 if (smmu->version > ARM_SMMU_V1) {
791 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
792 reg = CBA2R_RW64_64BIT;
793 else
794 reg = CBA2R_RW64_32BIT;
795 /* 16-bit VMIDs live in CBA2R */
796 if (smmu->features & ARM_SMMU_FEAT_VMID16)
797 reg |= cfg->vmid << CBA2R_VMID_SHIFT;
798
799 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
800 }
801
802 /* CBAR */
803 reg = cfg->cbar;
804 if (smmu->version < ARM_SMMU_V2)
805 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
806
807 /*
808 * Use the weakest shareability/memory types, so they are
809 * overridden by the ttbcr/pte.
810 */
811 if (stage1) {
812 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
813 (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
814 } else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
815 /* 8-bit VMIDs live in CBAR */
816 reg |= cfg->vmid << CBAR_VMID_SHIFT;
817 }
818 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
819
820 /*
821 * TTBCR
822 * We must write this before the TTBRs, since it determines the
823 * access behaviour of some fields (in particular, ASID[15:8]).
824 */
825 if (stage1) {
826 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
827 reg = pgtbl_cfg->arm_v7s_cfg.tcr;
828 reg2 = 0;
829 } else {
830 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
831 reg2 = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
832 reg2 |= TTBCR2_SEP_UPSTREAM;
833 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
834 reg2 |= TTBCR2_AS;
835 }
836 if (smmu->version > ARM_SMMU_V1)
837 writel_relaxed(reg2, cb_base + ARM_SMMU_CB_TTBCR2);
838 } else {
839 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
840 }
841 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
842
843 /* TTBRs */
844 if (stage1) {
845 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
846 reg = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
847 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0);
848 reg = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
849 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1);
850 writel_relaxed(cfg->asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
851 } else {
852 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
853 reg64 |= (u64)cfg->asid << TTBRn_ASID_SHIFT;
854 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
855 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
856 reg64 |= (u64)cfg->asid << TTBRn_ASID_SHIFT;
857 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
858 }
859 } else {
860 reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
861 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
862 }
863
864 /* MAIRs (stage-1 only) */
865 if (stage1) {
866 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
867 reg = pgtbl_cfg->arm_v7s_cfg.prrr;
868 reg2 = pgtbl_cfg->arm_v7s_cfg.nmrr;
869 } else {
870 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
871 reg2 = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
872 }
873 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
874 writel_relaxed(reg2, cb_base + ARM_SMMU_CB_S1_MAIR1);
875 }
876
877 /* SCTLR */
878 reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
879 if (stage1)
880 reg |= SCTLR_S1_ASIDPNE;
881 #ifdef __BIG_ENDIAN
882 reg |= SCTLR_E;
883 #endif
884 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
885 }
886
887 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
888 struct arm_smmu_device *smmu)
889 {
890 int irq, start, ret = 0;
891 unsigned long ias, oas;
892 struct io_pgtable_ops *pgtbl_ops;
893 struct io_pgtable_cfg pgtbl_cfg;
894 enum io_pgtable_fmt fmt;
895 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
896 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
897 const struct iommu_gather_ops *tlb_ops;
898
899 mutex_lock(&smmu_domain->init_mutex);
900 if (smmu_domain->smmu)
901 goto out_unlock;
902
903 if (domain->type == IOMMU_DOMAIN_IDENTITY) {
904 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
905 smmu_domain->smmu = smmu;
906 goto out_unlock;
907 }
908
909 /*
910 * Mapping the requested stage onto what we support is surprisingly
911 * complicated, mainly because the spec allows S1+S2 SMMUs without
912 * support for nested translation. That means we end up with the
913 * following table:
914 *
915 * Requested Supported Actual
916 * S1 N S1
917 * S1 S1+S2 S1
918 * S1 S2 S2
919 * S1 S1 S1
920 * N N N
921 * N S1+S2 S2
922 * N S2 S2
923 * N S1 S1
924 *
925 * Note that you can't actually request stage-2 mappings.
926 */
927 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
928 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
929 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
930 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
931
932 /*
933 * Choosing a suitable context format is even more fiddly. Until we
934 * grow some way for the caller to express a preference, and/or move
935 * the decision into the io-pgtable code where it arguably belongs,
936 * just aim for the closest thing to the rest of the system, and hope
937 * that the hardware isn't esoteric enough that we can't assume AArch64
938 * support to be a superset of AArch32 support...
939 */
940 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
941 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
942 if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
943 !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
944 (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
945 (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
946 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
947 if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
948 (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
949 ARM_SMMU_FEAT_FMT_AARCH64_16K |
950 ARM_SMMU_FEAT_FMT_AARCH64_4K)))
951 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;
952
953 if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
954 ret = -EINVAL;
955 goto out_unlock;
956 }
957
958 switch (smmu_domain->stage) {
959 case ARM_SMMU_DOMAIN_S1:
960 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
961 start = smmu->num_s2_context_banks;
962 ias = smmu->va_size;
963 oas = smmu->ipa_size;
964 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
965 fmt = ARM_64_LPAE_S1;
966 } else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
967 fmt = ARM_32_LPAE_S1;
968 ias = min(ias, 32UL);
969 oas = min(oas, 40UL);
970 } else {
971 fmt = ARM_V7S;
972 ias = min(ias, 32UL);
973 oas = min(oas, 32UL);
974 }
975 tlb_ops = &arm_smmu_s1_tlb_ops;
976 break;
977 case ARM_SMMU_DOMAIN_NESTED:
978 /*
979 * We will likely want to change this if/when KVM gets
980 * involved.
981 */
982 case ARM_SMMU_DOMAIN_S2:
983 cfg->cbar = CBAR_TYPE_S2_TRANS;
984 start = 0;
985 ias = smmu->ipa_size;
986 oas = smmu->pa_size;
987 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
988 fmt = ARM_64_LPAE_S2;
989 } else {
990 fmt = ARM_32_LPAE_S2;
991 ias = min(ias, 40UL);
992 oas = min(oas, 40UL);
993 }
994 if (smmu->version == ARM_SMMU_V2)
995 tlb_ops = &arm_smmu_s2_tlb_ops_v2;
996 else
997 tlb_ops = &arm_smmu_s2_tlb_ops_v1;
998 break;
999 default:
1000 ret = -EINVAL;
1001 goto out_unlock;
1002 }
1003 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
1004 smmu->num_context_banks);
1005 if (ret < 0)
1006 goto out_unlock;
1007
1008 cfg->cbndx = ret;
1009 if (smmu->version < ARM_SMMU_V2) {
1010 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
1011 cfg->irptndx %= smmu->num_context_irqs;
1012 } else {
1013 cfg->irptndx = cfg->cbndx;
1014 }
1015
1016 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S2)
1017 cfg->vmid = cfg->cbndx + 1 + smmu->cavium_id_base;
1018 else
1019 cfg->asid = cfg->cbndx + smmu->cavium_id_base;
1020
1021 pgtbl_cfg = (struct io_pgtable_cfg) {
1022 .pgsize_bitmap = smmu->pgsize_bitmap,
1023 .ias = ias,
1024 .oas = oas,
1025 .tlb = tlb_ops,
1026 .iommu_dev = smmu->dev,
1027 };
1028
1029 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1030 pgtbl_cfg.quirks = IO_PGTABLE_QUIRK_NO_DMA;
1031
1032 smmu_domain->smmu = smmu;
1033 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1034 if (!pgtbl_ops) {
1035 ret = -ENOMEM;
1036 goto out_clear_smmu;
1037 }
1038
1039 /* Update the domain's page sizes to reflect the page table format */
1040 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1041 domain->geometry.aperture_end = (1UL << ias) - 1;
1042 domain->geometry.force_aperture = true;
1043
1044 /* Initialise the context bank with our page table cfg */
1045 arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
1046
1047 /*
1048 * Request context fault interrupt. Do this last to avoid the
1049 * handler seeing a half-initialised domain state.
1050 */
1051 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1052 ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
1053 IRQF_SHARED, "arm-smmu-context-fault", domain);
1054 if (ret < 0) {
1055 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
1056 cfg->irptndx, irq);
1057 cfg->irptndx = INVALID_IRPTNDX;
1058 }
1059
1060 mutex_unlock(&smmu_domain->init_mutex);
1061
1062 /* Publish page table ops for map/unmap */
1063 smmu_domain->pgtbl_ops = pgtbl_ops;
1064 return 0;
1065
1066 out_clear_smmu:
1067 smmu_domain->smmu = NULL;
1068 out_unlock:
1069 mutex_unlock(&smmu_domain->init_mutex);
1070 return ret;
1071 }
1072
1073 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
1074 {
1075 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1076 struct arm_smmu_device *smmu = smmu_domain->smmu;
1077 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1078 void __iomem *cb_base;
1079 int irq;
1080
1081 if (!smmu || domain->type == IOMMU_DOMAIN_IDENTITY)
1082 return;
1083
1084 /*
1085 * Disable the context bank and free the page tables before freeing
1086 * it.
1087 */
1088 cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
1089 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1090
1091 if (cfg->irptndx != INVALID_IRPTNDX) {
1092 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1093 devm_free_irq(smmu->dev, irq, domain);
1094 }
1095
1096 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1097 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1098 }
1099
1100 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1101 {
1102 struct arm_smmu_domain *smmu_domain;
1103
1104 if (type != IOMMU_DOMAIN_UNMANAGED &&
1105 type != IOMMU_DOMAIN_DMA &&
1106 type != IOMMU_DOMAIN_IDENTITY)
1107 return NULL;
1108 /*
1109 * Allocate the domain and initialise some of its data structures.
1110 * We can't really do anything meaningful until we've added a
1111 * master.
1112 */
1113 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1114 if (!smmu_domain)
1115 return NULL;
1116
1117 if (type == IOMMU_DOMAIN_DMA && (using_legacy_binding ||
1118 iommu_get_dma_cookie(&smmu_domain->domain))) {
1119 kfree(smmu_domain);
1120 return NULL;
1121 }
1122
1123 mutex_init(&smmu_domain->init_mutex);
1124 spin_lock_init(&smmu_domain->cb_lock);
1125
1126 return &smmu_domain->domain;
1127 }
1128
1129 static void arm_smmu_domain_free(struct iommu_domain *domain)
1130 {
1131 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1132
1133 /*
1134 * Free the domain resources. We assume that all devices have
1135 * already been detached.
1136 */
1137 iommu_put_dma_cookie(domain);
1138 arm_smmu_destroy_domain_context(domain);
1139 kfree(smmu_domain);
1140 }
1141
1142 static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
1143 {
1144 struct arm_smmu_smr *smr = smmu->smrs + idx;
1145 u32 reg = smr->id << SMR_ID_SHIFT | smr->mask << SMR_MASK_SHIFT;
1146
1147 if (!(smmu->features & ARM_SMMU_FEAT_EXIDS) && smr->valid)
1148 reg |= SMR_VALID;
1149 writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
1150 }
1151
1152 static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
1153 {
1154 struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
1155 u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
1156 (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
1157 (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;
1158
1159 if (smmu->features & ARM_SMMU_FEAT_EXIDS && smmu->smrs &&
1160 smmu->smrs[idx].valid)
1161 reg |= S2CR_EXIDVALID;
1162 writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
1163 }
1164
1165 static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
1166 {
1167 arm_smmu_write_s2cr(smmu, idx);
1168 if (smmu->smrs)
1169 arm_smmu_write_smr(smmu, idx);
1170 }
1171
1172 /*
1173 * The width of SMR's mask field depends on sCR0_EXIDENABLE, so this function
1174 * should be called after sCR0 is written.
1175 */
1176 static void arm_smmu_test_smr_masks(struct arm_smmu_device *smmu)
1177 {
1178 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1179 u32 smr;
1180
1181 if (!smmu->smrs)
1182 return;
1183
1184 /*
1185 * SMR.ID bits may not be preserved if the corresponding MASK
1186 * bits are set, so check each one separately. We can reject
1187 * masters later if they try to claim IDs outside these masks.
1188 */
1189 smr = smmu->streamid_mask << SMR_ID_SHIFT;
1190 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1191 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1192 smmu->streamid_mask = smr >> SMR_ID_SHIFT;
1193
1194 smr = smmu->streamid_mask << SMR_MASK_SHIFT;
1195 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1196 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1197 smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
1198 }
1199
1200 static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
1201 {
1202 struct arm_smmu_smr *smrs = smmu->smrs;
1203 int i, free_idx = -ENOSPC;
1204
1205 /* Stream indexing is blissfully easy */
1206 if (!smrs)
1207 return id;
1208
1209 /* Validating SMRs is... less so */
1210 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1211 if (!smrs[i].valid) {
1212 /*
1213 * Note the first free entry we come across, which
1214 * we'll claim in the end if nothing else matches.
1215 */
1216 if (free_idx < 0)
1217 free_idx = i;
1218 continue;
1219 }
1220 /*
1221 * If the new entry is _entirely_ matched by an existing entry,
1222 * then reuse that, with the guarantee that there also cannot
1223 * be any subsequent conflicting entries. In normal use we'd
1224 * expect simply identical entries for this case, but there's
1225 * no harm in accommodating the generalisation.
1226 */
1227 if ((mask & smrs[i].mask) == mask &&
1228 !((id ^ smrs[i].id) & ~smrs[i].mask))
1229 return i;
1230 /*
1231 * If the new entry has any other overlap with an existing one,
1232 * though, then there always exists at least one stream ID
1233 * which would cause a conflict, and we can't allow that risk.
1234 */
1235 if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
1236 return -EINVAL;
1237 }
1238
1239 return free_idx;
1240 }
1241
1242 static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
1243 {
1244 if (--smmu->s2crs[idx].count)
1245 return false;
1246
1247 smmu->s2crs[idx] = s2cr_init_val;
1248 if (smmu->smrs)
1249 smmu->smrs[idx].valid = false;
1250
1251 return true;
1252 }
1253
1254 static int arm_smmu_master_alloc_smes(struct device *dev)
1255 {
1256 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1257 struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1258 struct arm_smmu_device *smmu = cfg->smmu;
1259 struct arm_smmu_smr *smrs = smmu->smrs;
1260 struct iommu_group *group;
1261 int i, idx, ret;
1262
1263 mutex_lock(&smmu->stream_map_mutex);
1264 /* Figure out a viable stream map entry allocation */
1265 for_each_cfg_sme(fwspec, i, idx) {
1266 u16 sid = fwspec->ids[i];
1267 u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1268
1269 if (idx != INVALID_SMENDX) {
1270 ret = -EEXIST;
1271 goto out_err;
1272 }
1273
1274 ret = arm_smmu_find_sme(smmu, sid, mask);
1275 if (ret < 0)
1276 goto out_err;
1277
1278 idx = ret;
1279 if (smrs && smmu->s2crs[idx].count == 0) {
1280 smrs[idx].id = sid;
1281 smrs[idx].mask = mask;
1282 smrs[idx].valid = true;
1283 }
1284 smmu->s2crs[idx].count++;
1285 cfg->smendx[i] = (s16)idx;
1286 }
1287
1288 group = iommu_group_get_for_dev(dev);
1289 if (!group)
1290 group = ERR_PTR(-ENOMEM);
1291 if (IS_ERR(group)) {
1292 ret = PTR_ERR(group);
1293 goto out_err;
1294 }
1295 iommu_group_put(group);
1296
1297 /* It worked! Now, poke the actual hardware */
1298 for_each_cfg_sme(fwspec, i, idx) {
1299 arm_smmu_write_sme(smmu, idx);
1300 smmu->s2crs[idx].group = group;
1301 }
1302
1303 mutex_unlock(&smmu->stream_map_mutex);
1304 return 0;
1305
1306 out_err:
1307 while (i--) {
1308 arm_smmu_free_sme(smmu, cfg->smendx[i]);
1309 cfg->smendx[i] = INVALID_SMENDX;
1310 }
1311 mutex_unlock(&smmu->stream_map_mutex);
1312 return ret;
1313 }
1314
1315 static void arm_smmu_master_free_smes(struct iommu_fwspec *fwspec)
1316 {
1317 struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1318 struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1319 int i, idx;
1320
1321 mutex_lock(&smmu->stream_map_mutex);
1322 for_each_cfg_sme(fwspec, i, idx) {
1323 if (arm_smmu_free_sme(smmu, idx))
1324 arm_smmu_write_sme(smmu, idx);
1325 cfg->smendx[i] = INVALID_SMENDX;
1326 }
1327 mutex_unlock(&smmu->stream_map_mutex);
1328 }
1329
1330 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1331 struct iommu_fwspec *fwspec)
1332 {
1333 struct arm_smmu_device *smmu = smmu_domain->smmu;
1334 struct arm_smmu_s2cr *s2cr = smmu->s2crs;
1335 u8 cbndx = smmu_domain->cfg.cbndx;
1336 enum arm_smmu_s2cr_type type;
1337 int i, idx;
1338
1339 if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS)
1340 type = S2CR_TYPE_BYPASS;
1341 else
1342 type = S2CR_TYPE_TRANS;
1343
1344 for_each_cfg_sme(fwspec, i, idx) {
1345 if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
1346 continue;
1347
1348 s2cr[idx].type = type;
1349 s2cr[idx].privcfg = S2CR_PRIVCFG_DEFAULT;
1350 s2cr[idx].cbndx = cbndx;
1351 arm_smmu_write_s2cr(smmu, idx);
1352 }
1353 return 0;
1354 }
1355
1356 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1357 {
1358 int ret;
1359 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1360 struct arm_smmu_device *smmu;
1361 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1362
1363 if (!fwspec || fwspec->ops != &arm_smmu_ops) {
1364 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1365 return -ENXIO;
1366 }
1367
1368 /*
1369 * FIXME: The arch/arm DMA API code tries to attach devices to its own
1370 * domains between of_xlate() and add_device() - we have no way to cope
1371 * with that, so until ARM gets converted to rely on groups and default
1372 * domains, just say no (but more politely than by dereferencing NULL).
1373 * This should be at least a WARN_ON once that's sorted.
1374 */
1375 if (!fwspec->iommu_priv)
1376 return -ENODEV;
1377
1378 smmu = fwspec_smmu(fwspec);
1379 /* Ensure that the domain is finalised */
1380 ret = arm_smmu_init_domain_context(domain, smmu);
1381 if (ret < 0)
1382 return ret;
1383
1384 /*
1385 * Sanity check the domain. We don't support domains across
1386 * different SMMUs.
1387 */
1388 if (smmu_domain->smmu != smmu) {
1389 dev_err(dev,
1390 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1391 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1392 return -EINVAL;
1393 }
1394
1395 /* Looks ok, so add the device to the domain */
1396 return arm_smmu_domain_add_master(smmu_domain, fwspec);
1397 }
1398
1399 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1400 phys_addr_t paddr, size_t size, int prot)
1401 {
1402 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1403
1404 if (!ops)
1405 return -ENODEV;
1406
1407 return ops->map(ops, iova, paddr, size, prot);
1408 }
1409
1410 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1411 size_t size)
1412 {
1413 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1414
1415 if (!ops)
1416 return 0;
1417
1418 return ops->unmap(ops, iova, size);
1419 }
1420
1421 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1422 dma_addr_t iova)
1423 {
1424 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1425 struct arm_smmu_device *smmu = smmu_domain->smmu;
1426 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1427 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1428 struct device *dev = smmu->dev;
1429 void __iomem *cb_base;
1430 u32 tmp;
1431 u64 phys;
1432 unsigned long va, flags;
1433
1434 cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
1435
1436 spin_lock_irqsave(&smmu_domain->cb_lock, flags);
1437 /* ATS1 registers can only be written atomically */
1438 va = iova & ~0xfffUL;
1439 if (smmu->version == ARM_SMMU_V2)
1440 smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1441 else /* Register is only 32-bit in v1 */
1442 writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1443
1444 if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1445 !(tmp & ATSR_ACTIVE), 5, 50)) {
1446 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
1447 dev_err(dev,
1448 "iova to phys timed out on %pad. Falling back to software table walk.\n",
1449 &iova);
1450 return ops->iova_to_phys(ops, iova);
1451 }
1452
1453 phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1454 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
1455 if (phys & CB_PAR_F) {
1456 dev_err(dev, "translation fault!\n");
1457 dev_err(dev, "PAR = 0x%llx\n", phys);
1458 return 0;
1459 }
1460
1461 return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1462 }
1463
1464 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1465 dma_addr_t iova)
1466 {
1467 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1468 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1469
1470 if (domain->type == IOMMU_DOMAIN_IDENTITY)
1471 return iova;
1472
1473 if (!ops)
1474 return 0;
1475
1476 if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1477 smmu_domain->stage == ARM_SMMU_DOMAIN_S1)
1478 return arm_smmu_iova_to_phys_hard(domain, iova);
1479
1480 return ops->iova_to_phys(ops, iova);
1481 }
1482
1483 static bool arm_smmu_capable(enum iommu_cap cap)
1484 {
1485 switch (cap) {
1486 case IOMMU_CAP_CACHE_COHERENCY:
1487 /*
1488 * Return true here as the SMMU can always send out coherent
1489 * requests.
1490 */
1491 return true;
1492 case IOMMU_CAP_NOEXEC:
1493 return true;
1494 default:
1495 return false;
1496 }
1497 }
1498
1499 static int arm_smmu_match_node(struct device *dev, void *data)
1500 {
1501 return dev->fwnode == data;
1502 }
1503
1504 static
1505 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1506 {
1507 struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1508 fwnode, arm_smmu_match_node);
1509 put_device(dev);
1510 return dev ? dev_get_drvdata(dev) : NULL;
1511 }
1512
1513 static int arm_smmu_add_device(struct device *dev)
1514 {
1515 struct arm_smmu_device *smmu;
1516 struct arm_smmu_master_cfg *cfg;
1517 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1518 int i, ret;
1519
1520 if (using_legacy_binding) {
1521 ret = arm_smmu_register_legacy_master(dev, &smmu);
1522
1523 /*
1524 * If dev->iommu_fwspec is initally NULL, arm_smmu_register_legacy_master()
1525 * will allocate/initialise a new one. Thus we need to update fwspec for
1526 * later use.
1527 */
1528 fwspec = dev->iommu_fwspec;
1529 if (ret)
1530 goto out_free;
1531 } else if (fwspec && fwspec->ops == &arm_smmu_ops) {
1532 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1533 } else {
1534 return -ENODEV;
1535 }
1536
1537 ret = -EINVAL;
1538 for (i = 0; i < fwspec->num_ids; i++) {
1539 u16 sid = fwspec->ids[i];
1540 u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1541
1542 if (sid & ~smmu->streamid_mask) {
1543 dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
1544 sid, smmu->streamid_mask);
1545 goto out_free;
1546 }
1547 if (mask & ~smmu->smr_mask_mask) {
1548 dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n",
1549 mask, smmu->smr_mask_mask);
1550 goto out_free;
1551 }
1552 }
1553
1554 ret = -ENOMEM;
1555 cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]),
1556 GFP_KERNEL);
1557 if (!cfg)
1558 goto out_free;
1559
1560 cfg->smmu = smmu;
1561 fwspec->iommu_priv = cfg;
1562 while (i--)
1563 cfg->smendx[i] = INVALID_SMENDX;
1564
1565 ret = arm_smmu_master_alloc_smes(dev);
1566 if (ret)
1567 goto out_cfg_free;
1568
1569 iommu_device_link(&smmu->iommu, dev);
1570
1571 return 0;
1572
1573 out_cfg_free:
1574 kfree(cfg);
1575 out_free:
1576 iommu_fwspec_free(dev);
1577 return ret;
1578 }
1579
1580 static void arm_smmu_remove_device(struct device *dev)
1581 {
1582 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1583 struct arm_smmu_master_cfg *cfg;
1584 struct arm_smmu_device *smmu;
1585
1586
1587 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1588 return;
1589
1590 cfg = fwspec->iommu_priv;
1591 smmu = cfg->smmu;
1592
1593 iommu_device_unlink(&smmu->iommu, dev);
1594 arm_smmu_master_free_smes(fwspec);
1595 iommu_group_remove_device(dev);
1596 kfree(fwspec->iommu_priv);
1597 iommu_fwspec_free(dev);
1598 }
1599
1600 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1601 {
1602 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1603 struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1604 struct iommu_group *group = NULL;
1605 int i, idx;
1606
1607 for_each_cfg_sme(fwspec, i, idx) {
1608 if (group && smmu->s2crs[idx].group &&
1609 group != smmu->s2crs[idx].group)
1610 return ERR_PTR(-EINVAL);
1611
1612 group = smmu->s2crs[idx].group;
1613 }
1614
1615 if (group)
1616 return iommu_group_ref_get(group);
1617
1618 if (dev_is_pci(dev))
1619 group = pci_device_group(dev);
1620 else
1621 group = generic_device_group(dev);
1622
1623 return group;
1624 }
1625
1626 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1627 enum iommu_attr attr, void *data)
1628 {
1629 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1630
1631 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1632 return -EINVAL;
1633
1634 switch (attr) {
1635 case DOMAIN_ATTR_NESTING:
1636 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1637 return 0;
1638 default:
1639 return -ENODEV;
1640 }
1641 }
1642
1643 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1644 enum iommu_attr attr, void *data)
1645 {
1646 int ret = 0;
1647 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1648
1649 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1650 return -EINVAL;
1651
1652 mutex_lock(&smmu_domain->init_mutex);
1653
1654 switch (attr) {
1655 case DOMAIN_ATTR_NESTING:
1656 if (smmu_domain->smmu) {
1657 ret = -EPERM;
1658 goto out_unlock;
1659 }
1660
1661 if (*(int *)data)
1662 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1663 else
1664 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1665
1666 break;
1667 default:
1668 ret = -ENODEV;
1669 }
1670
1671 out_unlock:
1672 mutex_unlock(&smmu_domain->init_mutex);
1673 return ret;
1674 }
1675
1676 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1677 {
1678 u32 mask, fwid = 0;
1679
1680 if (args->args_count > 0)
1681 fwid |= (u16)args->args[0];
1682
1683 if (args->args_count > 1)
1684 fwid |= (u16)args->args[1] << SMR_MASK_SHIFT;
1685 else if (!of_property_read_u32(args->np, "stream-match-mask", &mask))
1686 fwid |= (u16)mask << SMR_MASK_SHIFT;
1687
1688 return iommu_fwspec_add_ids(dev, &fwid, 1);
1689 }
1690
1691 static void arm_smmu_get_resv_regions(struct device *dev,
1692 struct list_head *head)
1693 {
1694 struct iommu_resv_region *region;
1695 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1696
1697 region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1698 prot, IOMMU_RESV_SW_MSI);
1699 if (!region)
1700 return;
1701
1702 list_add_tail(&region->list, head);
1703
1704 iommu_dma_get_resv_regions(dev, head);
1705 }
1706
1707 static void arm_smmu_put_resv_regions(struct device *dev,
1708 struct list_head *head)
1709 {
1710 struct iommu_resv_region *entry, *next;
1711
1712 list_for_each_entry_safe(entry, next, head, list)
1713 kfree(entry);
1714 }
1715
1716 static struct iommu_ops arm_smmu_ops = {
1717 .capable = arm_smmu_capable,
1718 .domain_alloc = arm_smmu_domain_alloc,
1719 .domain_free = arm_smmu_domain_free,
1720 .attach_dev = arm_smmu_attach_dev,
1721 .map = arm_smmu_map,
1722 .unmap = arm_smmu_unmap,
1723 .map_sg = default_iommu_map_sg,
1724 .iova_to_phys = arm_smmu_iova_to_phys,
1725 .add_device = arm_smmu_add_device,
1726 .remove_device = arm_smmu_remove_device,
1727 .device_group = arm_smmu_device_group,
1728 .domain_get_attr = arm_smmu_domain_get_attr,
1729 .domain_set_attr = arm_smmu_domain_set_attr,
1730 .of_xlate = arm_smmu_of_xlate,
1731 .get_resv_regions = arm_smmu_get_resv_regions,
1732 .put_resv_regions = arm_smmu_put_resv_regions,
1733 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1734 };
1735
1736 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1737 {
1738 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1739 void __iomem *cb_base;
1740 int i;
1741 u32 reg, major;
1742
1743 /* clear global FSR */
1744 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1745 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1746
1747 /*
1748 * Reset stream mapping groups: Initial values mark all SMRn as
1749 * invalid and all S2CRn as bypass unless overridden.
1750 */
1751 for (i = 0; i < smmu->num_mapping_groups; ++i)
1752 arm_smmu_write_sme(smmu, i);
1753
1754 if (smmu->model == ARM_MMU500) {
1755 /*
1756 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
1757 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
1758 * bit is only present in MMU-500r2 onwards.
1759 */
1760 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
1761 major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
1762 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
1763 if (major >= 2)
1764 reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
1765 /*
1766 * Allow unmatched Stream IDs to allocate bypass
1767 * TLB entries for reduced latency.
1768 */
1769 reg |= ARM_MMU500_ACR_SMTNMB_TLBEN;
1770 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
1771 }
1772
1773 /* Make sure all context banks are disabled and clear CB_FSR */
1774 for (i = 0; i < smmu->num_context_banks; ++i) {
1775 cb_base = ARM_SMMU_CB(smmu, i);
1776 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1777 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1778 /*
1779 * Disable MMU-500's not-particularly-beneficial next-page
1780 * prefetcher for the sake of errata #841119 and #826419.
1781 */
1782 if (smmu->model == ARM_MMU500) {
1783 reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
1784 reg &= ~ARM_MMU500_ACTLR_CPRE;
1785 writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
1786 }
1787 }
1788
1789 /* Invalidate the TLB, just in case */
1790 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1791 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1792
1793 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1794
1795 /* Enable fault reporting */
1796 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1797
1798 /* Disable TLB broadcasting. */
1799 reg |= (sCR0_VMIDPNE | sCR0_PTM);
1800
1801 /* Enable client access, handling unmatched streams as appropriate */
1802 reg &= ~sCR0_CLIENTPD;
1803 if (disable_bypass)
1804 reg |= sCR0_USFCFG;
1805 else
1806 reg &= ~sCR0_USFCFG;
1807
1808 /* Disable forced broadcasting */
1809 reg &= ~sCR0_FB;
1810
1811 /* Don't upgrade barriers */
1812 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1813
1814 if (smmu->features & ARM_SMMU_FEAT_VMID16)
1815 reg |= sCR0_VMID16EN;
1816
1817 if (smmu->features & ARM_SMMU_FEAT_EXIDS)
1818 reg |= sCR0_EXIDENABLE;
1819
1820 /* Push the button */
1821 arm_smmu_tlb_sync_global(smmu);
1822 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1823 }
1824
1825 static int arm_smmu_id_size_to_bits(int size)
1826 {
1827 switch (size) {
1828 case 0:
1829 return 32;
1830 case 1:
1831 return 36;
1832 case 2:
1833 return 40;
1834 case 3:
1835 return 42;
1836 case 4:
1837 return 44;
1838 case 5:
1839 default:
1840 return 48;
1841 }
1842 }
1843
1844 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1845 {
1846 unsigned long size;
1847 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1848 u32 id;
1849 bool cttw_reg, cttw_fw = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK;
1850 int i;
1851
1852 dev_notice(smmu->dev, "probing hardware configuration...\n");
1853 dev_notice(smmu->dev, "SMMUv%d with:\n",
1854 smmu->version == ARM_SMMU_V2 ? 2 : 1);
1855
1856 /* ID0 */
1857 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1858
1859 /* Restrict available stages based on module parameter */
1860 if (force_stage == 1)
1861 id &= ~(ID0_S2TS | ID0_NTS);
1862 else if (force_stage == 2)
1863 id &= ~(ID0_S1TS | ID0_NTS);
1864
1865 if (id & ID0_S1TS) {
1866 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1867 dev_notice(smmu->dev, "\tstage 1 translation\n");
1868 }
1869
1870 if (id & ID0_S2TS) {
1871 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1872 dev_notice(smmu->dev, "\tstage 2 translation\n");
1873 }
1874
1875 if (id & ID0_NTS) {
1876 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1877 dev_notice(smmu->dev, "\tnested translation\n");
1878 }
1879
1880 if (!(smmu->features &
1881 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1882 dev_err(smmu->dev, "\tno translation support!\n");
1883 return -ENODEV;
1884 }
1885
1886 if ((id & ID0_S1TS) &&
1887 ((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1888 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1889 dev_notice(smmu->dev, "\taddress translation ops\n");
1890 }
1891
1892 /*
1893 * In order for DMA API calls to work properly, we must defer to what
1894 * the FW says about coherency, regardless of what the hardware claims.
1895 * Fortunately, this also opens up a workaround for systems where the
1896 * ID register value has ended up configured incorrectly.
1897 */
1898 cttw_reg = !!(id & ID0_CTTW);
1899 if (cttw_fw || cttw_reg)
1900 dev_notice(smmu->dev, "\t%scoherent table walk\n",
1901 cttw_fw ? "" : "non-");
1902 if (cttw_fw != cttw_reg)
1903 dev_notice(smmu->dev,
1904 "\t(IDR0.CTTW overridden by FW configuration)\n");
1905
1906 /* Max. number of entries we have for stream matching/indexing */
1907 if (smmu->version == ARM_SMMU_V2 && id & ID0_EXIDS) {
1908 smmu->features |= ARM_SMMU_FEAT_EXIDS;
1909 size = 1 << 16;
1910 } else {
1911 size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
1912 }
1913 smmu->streamid_mask = size - 1;
1914 if (id & ID0_SMS) {
1915 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1916 size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
1917 if (size == 0) {
1918 dev_err(smmu->dev,
1919 "stream-matching supported, but no SMRs present!\n");
1920 return -ENODEV;
1921 }
1922
1923 /* Zero-initialised to mark as invalid */
1924 smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
1925 GFP_KERNEL);
1926 if (!smmu->smrs)
1927 return -ENOMEM;
1928
1929 dev_notice(smmu->dev,
1930 "\tstream matching with %lu register groups", size);
1931 }
1932 /* s2cr->type == 0 means translation, so initialise explicitly */
1933 smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
1934 GFP_KERNEL);
1935 if (!smmu->s2crs)
1936 return -ENOMEM;
1937 for (i = 0; i < size; i++)
1938 smmu->s2crs[i] = s2cr_init_val;
1939
1940 smmu->num_mapping_groups = size;
1941 mutex_init(&smmu->stream_map_mutex);
1942 spin_lock_init(&smmu->global_sync_lock);
1943
1944 if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
1945 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
1946 if (!(id & ID0_PTFS_NO_AARCH32S))
1947 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
1948 }
1949
1950 /* ID1 */
1951 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1952 smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1953
1954 /* Check for size mismatch of SMMU address space from mapped region */
1955 size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1956 size <<= smmu->pgshift;
1957 if (smmu->cb_base != gr0_base + size)
1958 dev_warn(smmu->dev,
1959 "SMMU address space size (0x%lx) differs from mapped region size (0x%tx)!\n",
1960 size * 2, (smmu->cb_base - gr0_base) * 2);
1961
1962 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1963 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1964 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1965 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1966 return -ENODEV;
1967 }
1968 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1969 smmu->num_context_banks, smmu->num_s2_context_banks);
1970 /*
1971 * Cavium CN88xx erratum #27704.
1972 * Ensure ASID and VMID allocation is unique across all SMMUs in
1973 * the system.
1974 */
1975 if (smmu->model == CAVIUM_SMMUV2) {
1976 smmu->cavium_id_base =
1977 atomic_add_return(smmu->num_context_banks,
1978 &cavium_smmu_context_count);
1979 smmu->cavium_id_base -= smmu->num_context_banks;
1980 dev_notice(smmu->dev, "\tenabling workaround for Cavium erratum 27704\n");
1981 }
1982
1983 /* ID2 */
1984 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1985 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1986 smmu->ipa_size = size;
1987
1988 /* The output mask is also applied for bypass */
1989 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1990 smmu->pa_size = size;
1991
1992 if (id & ID2_VMID16)
1993 smmu->features |= ARM_SMMU_FEAT_VMID16;
1994
1995 /*
1996 * What the page table walker can address actually depends on which
1997 * descriptor format is in use, but since a) we don't know that yet,
1998 * and b) it can vary per context bank, this will have to do...
1999 */
2000 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
2001 dev_warn(smmu->dev,
2002 "failed to set DMA mask for table walker\n");
2003
2004 if (smmu->version < ARM_SMMU_V2) {
2005 smmu->va_size = smmu->ipa_size;
2006 if (smmu->version == ARM_SMMU_V1_64K)
2007 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
2008 } else {
2009 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
2010 smmu->va_size = arm_smmu_id_size_to_bits(size);
2011 if (id & ID2_PTFS_4K)
2012 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
2013 if (id & ID2_PTFS_16K)
2014 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
2015 if (id & ID2_PTFS_64K)
2016 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
2017 }
2018
2019 /* Now we've corralled the various formats, what'll it do? */
2020 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
2021 smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
2022 if (smmu->features &
2023 (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
2024 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2025 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
2026 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2027 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
2028 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2029
2030 if (arm_smmu_ops.pgsize_bitmap == -1UL)
2031 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2032 else
2033 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2034 dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
2035 smmu->pgsize_bitmap);
2036
2037
2038 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
2039 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
2040 smmu->va_size, smmu->ipa_size);
2041
2042 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
2043 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
2044 smmu->ipa_size, smmu->pa_size);
2045
2046 return 0;
2047 }
2048
2049 struct arm_smmu_match_data {
2050 enum arm_smmu_arch_version version;
2051 enum arm_smmu_implementation model;
2052 };
2053
2054 #define ARM_SMMU_MATCH_DATA(name, ver, imp) \
2055 static struct arm_smmu_match_data name = { .version = ver, .model = imp }
2056
2057 ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
2058 ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
2059 ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
2060 ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
2061 ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
2062
2063 static const struct of_device_id arm_smmu_of_match[] = {
2064 { .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
2065 { .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
2066 { .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
2067 { .compatible = "arm,mmu-401", .data = &arm_mmu401 },
2068 { .compatible = "arm,mmu-500", .data = &arm_mmu500 },
2069 { .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
2070 { },
2071 };
2072 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2073
2074 #ifdef CONFIG_ACPI
2075 static int acpi_smmu_get_data(u32 model, struct arm_smmu_device *smmu)
2076 {
2077 int ret = 0;
2078
2079 switch (model) {
2080 case ACPI_IORT_SMMU_V1:
2081 case ACPI_IORT_SMMU_CORELINK_MMU400:
2082 smmu->version = ARM_SMMU_V1;
2083 smmu->model = GENERIC_SMMU;
2084 break;
2085 case ACPI_IORT_SMMU_CORELINK_MMU401:
2086 smmu->version = ARM_SMMU_V1_64K;
2087 smmu->model = GENERIC_SMMU;
2088 break;
2089 case ACPI_IORT_SMMU_V2:
2090 smmu->version = ARM_SMMU_V2;
2091 smmu->model = GENERIC_SMMU;
2092 break;
2093 case ACPI_IORT_SMMU_CORELINK_MMU500:
2094 smmu->version = ARM_SMMU_V2;
2095 smmu->model = ARM_MMU500;
2096 break;
2097 case ACPI_IORT_SMMU_CAVIUM_THUNDERX:
2098 smmu->version = ARM_SMMU_V2;
2099 smmu->model = CAVIUM_SMMUV2;
2100 break;
2101 default:
2102 ret = -ENODEV;
2103 }
2104
2105 return ret;
2106 }
2107
2108 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2109 struct arm_smmu_device *smmu)
2110 {
2111 struct device *dev = smmu->dev;
2112 struct acpi_iort_node *node =
2113 *(struct acpi_iort_node **)dev_get_platdata(dev);
2114 struct acpi_iort_smmu *iort_smmu;
2115 int ret;
2116
2117 /* Retrieve SMMU1/2 specific data */
2118 iort_smmu = (struct acpi_iort_smmu *)node->node_data;
2119
2120 ret = acpi_smmu_get_data(iort_smmu->model, smmu);
2121 if (ret < 0)
2122 return ret;
2123
2124 /* Ignore the configuration access interrupt */
2125 smmu->num_global_irqs = 1;
2126
2127 if (iort_smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK)
2128 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
2129
2130 return 0;
2131 }
2132 #else
2133 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2134 struct arm_smmu_device *smmu)
2135 {
2136 return -ENODEV;
2137 }
2138 #endif
2139
2140 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2141 struct arm_smmu_device *smmu)
2142 {
2143 const struct arm_smmu_match_data *data;
2144 struct device *dev = &pdev->dev;
2145 bool legacy_binding;
2146
2147 if (of_property_read_u32(dev->of_node, "#global-interrupts",
2148 &smmu->num_global_irqs)) {
2149 dev_err(dev, "missing #global-interrupts property\n");
2150 return -ENODEV;
2151 }
2152
2153 data = of_device_get_match_data(dev);
2154 smmu->version = data->version;
2155 smmu->model = data->model;
2156
2157 parse_driver_options(smmu);
2158
2159 legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL);
2160 if (legacy_binding && !using_generic_binding) {
2161 if (!using_legacy_binding)
2162 pr_notice("deprecated \"mmu-masters\" DT property in use; DMA API support unavailable\n");
2163 using_legacy_binding = true;
2164 } else if (!legacy_binding && !using_legacy_binding) {
2165 using_generic_binding = true;
2166 } else {
2167 dev_err(dev, "not probing due to mismatched DT properties\n");
2168 return -ENODEV;
2169 }
2170
2171 if (of_dma_is_coherent(dev->of_node))
2172 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
2173
2174 return 0;
2175 }
2176
2177 static void arm_smmu_bus_init(void)
2178 {
2179 /* Oh, for a proper bus abstraction */
2180 if (!iommu_present(&platform_bus_type))
2181 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2182 #ifdef CONFIG_ARM_AMBA
2183 if (!iommu_present(&amba_bustype))
2184 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2185 #endif
2186 #ifdef CONFIG_PCI
2187 if (!iommu_present(&pci_bus_type)) {
2188 pci_request_acs();
2189 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2190 }
2191 #endif
2192 }
2193
2194 static int arm_smmu_device_probe(struct platform_device *pdev)
2195 {
2196 struct resource *res;
2197 resource_size_t ioaddr;
2198 struct arm_smmu_device *smmu;
2199 struct device *dev = &pdev->dev;
2200 int num_irqs, i, err;
2201
2202 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2203 if (!smmu) {
2204 dev_err(dev, "failed to allocate arm_smmu_device\n");
2205 return -ENOMEM;
2206 }
2207 smmu->dev = dev;
2208
2209 if (dev->of_node)
2210 err = arm_smmu_device_dt_probe(pdev, smmu);
2211 else
2212 err = arm_smmu_device_acpi_probe(pdev, smmu);
2213
2214 if (err)
2215 return err;
2216
2217 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2218 ioaddr = res->start;
2219 smmu->base = devm_ioremap_resource(dev, res);
2220 if (IS_ERR(smmu->base))
2221 return PTR_ERR(smmu->base);
2222 smmu->cb_base = smmu->base + resource_size(res) / 2;
2223
2224 num_irqs = 0;
2225 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
2226 num_irqs++;
2227 if (num_irqs > smmu->num_global_irqs)
2228 smmu->num_context_irqs++;
2229 }
2230
2231 if (!smmu->num_context_irqs) {
2232 dev_err(dev, "found %d interrupts but expected at least %d\n",
2233 num_irqs, smmu->num_global_irqs + 1);
2234 return -ENODEV;
2235 }
2236
2237 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
2238 GFP_KERNEL);
2239 if (!smmu->irqs) {
2240 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
2241 return -ENOMEM;
2242 }
2243
2244 for (i = 0; i < num_irqs; ++i) {
2245 int irq = platform_get_irq(pdev, i);
2246
2247 if (irq < 0) {
2248 dev_err(dev, "failed to get irq index %d\n", i);
2249 return -ENODEV;
2250 }
2251 smmu->irqs[i] = irq;
2252 }
2253
2254 err = arm_smmu_device_cfg_probe(smmu);
2255 if (err)
2256 return err;
2257
2258 if (smmu->version == ARM_SMMU_V2 &&
2259 smmu->num_context_banks != smmu->num_context_irqs) {
2260 dev_err(dev,
2261 "found only %d context interrupt(s) but %d required\n",
2262 smmu->num_context_irqs, smmu->num_context_banks);
2263 return -ENODEV;
2264 }
2265
2266 for (i = 0; i < smmu->num_global_irqs; ++i) {
2267 err = devm_request_irq(smmu->dev, smmu->irqs[i],
2268 arm_smmu_global_fault,
2269 IRQF_SHARED,
2270 "arm-smmu global fault",
2271 smmu);
2272 if (err) {
2273 dev_err(dev, "failed to request global IRQ %d (%u)\n",
2274 i, smmu->irqs[i]);
2275 return err;
2276 }
2277 }
2278
2279 err = iommu_device_sysfs_add(&smmu->iommu, smmu->dev, NULL,
2280 "smmu.%pa", &ioaddr);
2281 if (err) {
2282 dev_err(dev, "Failed to register iommu in sysfs\n");
2283 return err;
2284 }
2285
2286 iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2287 iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2288
2289 err = iommu_device_register(&smmu->iommu);
2290 if (err) {
2291 dev_err(dev, "Failed to register iommu\n");
2292 return err;
2293 }
2294
2295 platform_set_drvdata(pdev, smmu);
2296 arm_smmu_device_reset(smmu);
2297 arm_smmu_test_smr_masks(smmu);
2298
2299 /*
2300 * For ACPI and generic DT bindings, an SMMU will be probed before
2301 * any device which might need it, so we want the bus ops in place
2302 * ready to handle default domain setup as soon as any SMMU exists.
2303 */
2304 if (!using_legacy_binding)
2305 arm_smmu_bus_init();
2306
2307 return 0;
2308 }
2309
2310 /*
2311 * With the legacy DT binding in play, though, we have no guarantees about
2312 * probe order, but then we're also not doing default domains, so we can
2313 * delay setting bus ops until we're sure every possible SMMU is ready,
2314 * and that way ensure that no add_device() calls get missed.
2315 */
2316 static int arm_smmu_legacy_bus_init(void)
2317 {
2318 if (using_legacy_binding)
2319 arm_smmu_bus_init();
2320 return 0;
2321 }
2322 device_initcall_sync(arm_smmu_legacy_bus_init);
2323
2324 static int arm_smmu_device_remove(struct platform_device *pdev)
2325 {
2326 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2327
2328 if (!smmu)
2329 return -ENODEV;
2330
2331 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2332 dev_err(&pdev->dev, "removing device with active domains!\n");
2333
2334 /* Turn the thing off */
2335 writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2336 return 0;
2337 }
2338
2339 static struct platform_driver arm_smmu_driver = {
2340 .driver = {
2341 .name = "arm-smmu",
2342 .of_match_table = of_match_ptr(arm_smmu_of_match),
2343 },
2344 .probe = arm_smmu_device_probe,
2345 .remove = arm_smmu_device_remove,
2346 };
2347 module_platform_driver(arm_smmu_driver);
2348
2349 IOMMU_OF_DECLARE(arm_smmuv1, "arm,smmu-v1", NULL);
2350 IOMMU_OF_DECLARE(arm_smmuv2, "arm,smmu-v2", NULL);
2351 IOMMU_OF_DECLARE(arm_mmu400, "arm,mmu-400", NULL);
2352 IOMMU_OF_DECLARE(arm_mmu401, "arm,mmu-401", NULL);
2353 IOMMU_OF_DECLARE(arm_mmu500, "arm,mmu-500", NULL);
2354 IOMMU_OF_DECLARE(cavium_smmuv2, "cavium,smmu-v2", NULL);
2355
2356 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2357 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2358 MODULE_LICENSE("GPL v2");