]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/iommu/dma-iommu.c
Documentation: Add documentation for Processor MMIO Stale Data
[mirror_ubuntu-jammy-kernel.git] / drivers / iommu / dma-iommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
10
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/swiotlb.h>
24 #include <linux/scatterlist.h>
25 #include <linux/vmalloc.h>
26 #include <linux/crash_dump.h>
27 #include <linux/dma-direct.h>
28
29 struct iommu_dma_msi_page {
30 struct list_head list;
31 dma_addr_t iova;
32 phys_addr_t phys;
33 };
34
35 enum iommu_dma_cookie_type {
36 IOMMU_DMA_IOVA_COOKIE,
37 IOMMU_DMA_MSI_COOKIE,
38 };
39
40 struct iommu_dma_cookie {
41 enum iommu_dma_cookie_type type;
42 union {
43 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
44 struct iova_domain iovad;
45 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
46 dma_addr_t msi_iova;
47 };
48 struct list_head msi_page_list;
49
50 /* Domain for flush queue callback; NULL if flush queue not in use */
51 struct iommu_domain *fq_domain;
52 };
53
54 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
55 bool iommu_dma_forcedac __read_mostly;
56
57 static int __init iommu_dma_forcedac_setup(char *str)
58 {
59 int ret = kstrtobool(str, &iommu_dma_forcedac);
60
61 if (!ret && iommu_dma_forcedac)
62 pr_info("Forcing DAC for PCI devices\n");
63 return ret;
64 }
65 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
66
67 static void iommu_dma_entry_dtor(unsigned long data)
68 {
69 struct page *freelist = (struct page *)data;
70
71 while (freelist) {
72 unsigned long p = (unsigned long)page_address(freelist);
73
74 freelist = freelist->freelist;
75 free_page(p);
76 }
77 }
78
79 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
80 {
81 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
82 return cookie->iovad.granule;
83 return PAGE_SIZE;
84 }
85
86 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
87 {
88 struct iommu_dma_cookie *cookie;
89
90 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
91 if (cookie) {
92 INIT_LIST_HEAD(&cookie->msi_page_list);
93 cookie->type = type;
94 }
95 return cookie;
96 }
97
98 /**
99 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
100 * @domain: IOMMU domain to prepare for DMA-API usage
101 *
102 * IOMMU drivers should normally call this from their domain_alloc
103 * callback when domain->type == IOMMU_DOMAIN_DMA.
104 */
105 int iommu_get_dma_cookie(struct iommu_domain *domain)
106 {
107 if (domain->iova_cookie)
108 return -EEXIST;
109
110 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
111 if (!domain->iova_cookie)
112 return -ENOMEM;
113
114 return 0;
115 }
116 EXPORT_SYMBOL(iommu_get_dma_cookie);
117
118 /**
119 * iommu_get_msi_cookie - Acquire just MSI remapping resources
120 * @domain: IOMMU domain to prepare
121 * @base: Start address of IOVA region for MSI mappings
122 *
123 * Users who manage their own IOVA allocation and do not want DMA API support,
124 * but would still like to take advantage of automatic MSI remapping, can use
125 * this to initialise their own domain appropriately. Users should reserve a
126 * contiguous IOVA region, starting at @base, large enough to accommodate the
127 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
128 * used by the devices attached to @domain.
129 */
130 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
131 {
132 struct iommu_dma_cookie *cookie;
133
134 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
135 return -EINVAL;
136
137 if (domain->iova_cookie)
138 return -EEXIST;
139
140 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
141 if (!cookie)
142 return -ENOMEM;
143
144 cookie->msi_iova = base;
145 domain->iova_cookie = cookie;
146 return 0;
147 }
148 EXPORT_SYMBOL(iommu_get_msi_cookie);
149
150 /**
151 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
152 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
153 * iommu_get_msi_cookie()
154 *
155 * IOMMU drivers should normally call this from their domain_free callback.
156 */
157 void iommu_put_dma_cookie(struct iommu_domain *domain)
158 {
159 struct iommu_dma_cookie *cookie = domain->iova_cookie;
160 struct iommu_dma_msi_page *msi, *tmp;
161
162 if (!cookie)
163 return;
164
165 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
166 put_iova_domain(&cookie->iovad);
167
168 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
169 list_del(&msi->list);
170 kfree(msi);
171 }
172 kfree(cookie);
173 domain->iova_cookie = NULL;
174 }
175 EXPORT_SYMBOL(iommu_put_dma_cookie);
176
177 /**
178 * iommu_dma_get_resv_regions - Reserved region driver helper
179 * @dev: Device from iommu_get_resv_regions()
180 * @list: Reserved region list from iommu_get_resv_regions()
181 *
182 * IOMMU drivers can use this to implement their .get_resv_regions callback
183 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
184 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
185 * reservation.
186 */
187 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
188 {
189
190 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
191 iort_iommu_msi_get_resv_regions(dev, list);
192
193 }
194 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
195
196 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
197 phys_addr_t start, phys_addr_t end)
198 {
199 struct iova_domain *iovad = &cookie->iovad;
200 struct iommu_dma_msi_page *msi_page;
201 int i, num_pages;
202
203 start -= iova_offset(iovad, start);
204 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
205
206 for (i = 0; i < num_pages; i++) {
207 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
208 if (!msi_page)
209 return -ENOMEM;
210
211 msi_page->phys = start;
212 msi_page->iova = start;
213 INIT_LIST_HEAD(&msi_page->list);
214 list_add(&msi_page->list, &cookie->msi_page_list);
215 start += iovad->granule;
216 }
217
218 return 0;
219 }
220
221 static int iova_reserve_pci_windows(struct pci_dev *dev,
222 struct iova_domain *iovad)
223 {
224 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
225 struct resource_entry *window;
226 unsigned long lo, hi;
227 phys_addr_t start = 0, end;
228
229 resource_list_for_each_entry(window, &bridge->windows) {
230 if (resource_type(window->res) != IORESOURCE_MEM)
231 continue;
232
233 lo = iova_pfn(iovad, window->res->start - window->offset);
234 hi = iova_pfn(iovad, window->res->end - window->offset);
235 reserve_iova(iovad, lo, hi);
236 }
237
238 /* Get reserved DMA windows from host bridge */
239 resource_list_for_each_entry(window, &bridge->dma_ranges) {
240 end = window->res->start - window->offset;
241 resv_iova:
242 if (end > start) {
243 lo = iova_pfn(iovad, start);
244 hi = iova_pfn(iovad, end);
245 reserve_iova(iovad, lo, hi);
246 } else if (end < start) {
247 /* dma_ranges list should be sorted */
248 dev_err(&dev->dev,
249 "Failed to reserve IOVA [%pa-%pa]\n",
250 &start, &end);
251 return -EINVAL;
252 }
253
254 start = window->res->end - window->offset + 1;
255 /* If window is last entry */
256 if (window->node.next == &bridge->dma_ranges &&
257 end != ~(phys_addr_t)0) {
258 end = ~(phys_addr_t)0;
259 goto resv_iova;
260 }
261 }
262
263 return 0;
264 }
265
266 static int iova_reserve_iommu_regions(struct device *dev,
267 struct iommu_domain *domain)
268 {
269 struct iommu_dma_cookie *cookie = domain->iova_cookie;
270 struct iova_domain *iovad = &cookie->iovad;
271 struct iommu_resv_region *region;
272 LIST_HEAD(resv_regions);
273 int ret = 0;
274
275 if (dev_is_pci(dev)) {
276 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
277 if (ret)
278 return ret;
279 }
280
281 iommu_get_resv_regions(dev, &resv_regions);
282 list_for_each_entry(region, &resv_regions, list) {
283 unsigned long lo, hi;
284
285 /* We ARE the software that manages these! */
286 if (region->type == IOMMU_RESV_SW_MSI)
287 continue;
288
289 lo = iova_pfn(iovad, region->start);
290 hi = iova_pfn(iovad, region->start + region->length - 1);
291 reserve_iova(iovad, lo, hi);
292
293 if (region->type == IOMMU_RESV_MSI)
294 ret = cookie_init_hw_msi_region(cookie, region->start,
295 region->start + region->length);
296 if (ret)
297 break;
298 }
299 iommu_put_resv_regions(dev, &resv_regions);
300
301 return ret;
302 }
303
304 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
305 {
306 struct iommu_dma_cookie *cookie;
307 struct iommu_domain *domain;
308
309 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
310 domain = cookie->fq_domain;
311
312 domain->ops->flush_iotlb_all(domain);
313 }
314
315 static bool dev_is_untrusted(struct device *dev)
316 {
317 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
318 }
319
320 static bool dev_use_swiotlb(struct device *dev)
321 {
322 return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev);
323 }
324
325 /* sysfs updates are serialised by the mutex of the group owning @domain */
326 int iommu_dma_init_fq(struct iommu_domain *domain)
327 {
328 struct iommu_dma_cookie *cookie = domain->iova_cookie;
329 int ret;
330
331 if (cookie->fq_domain)
332 return 0;
333
334 ret = init_iova_flush_queue(&cookie->iovad, iommu_dma_flush_iotlb_all,
335 iommu_dma_entry_dtor);
336 if (ret) {
337 pr_warn("iova flush queue initialization failed\n");
338 return ret;
339 }
340 /*
341 * Prevent incomplete iovad->fq being observable. Pairs with path from
342 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
343 */
344 smp_wmb();
345 WRITE_ONCE(cookie->fq_domain, domain);
346 return 0;
347 }
348
349 /**
350 * iommu_dma_init_domain - Initialise a DMA mapping domain
351 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
352 * @base: IOVA at which the mappable address space starts
353 * @limit: Last address of the IOVA space
354 * @dev: Device the domain is being initialised for
355 *
356 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
357 * avoid rounding surprises. If necessary, we reserve the page at address 0
358 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
359 * any change which could make prior IOVAs invalid will fail.
360 */
361 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
362 dma_addr_t limit, struct device *dev)
363 {
364 struct iommu_dma_cookie *cookie = domain->iova_cookie;
365 unsigned long order, base_pfn;
366 struct iova_domain *iovad;
367
368 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
369 return -EINVAL;
370
371 iovad = &cookie->iovad;
372
373 /* Use the smallest supported page size for IOVA granularity */
374 order = __ffs(domain->pgsize_bitmap);
375 base_pfn = max_t(unsigned long, 1, base >> order);
376
377 /* Check the domain allows at least some access to the device... */
378 if (domain->geometry.force_aperture) {
379 if (base > domain->geometry.aperture_end ||
380 limit < domain->geometry.aperture_start) {
381 pr_warn("specified DMA range outside IOMMU capability\n");
382 return -EFAULT;
383 }
384 /* ...then finally give it a kicking to make sure it fits */
385 base_pfn = max_t(unsigned long, base_pfn,
386 domain->geometry.aperture_start >> order);
387 }
388
389 /* start_pfn is always nonzero for an already-initialised domain */
390 if (iovad->start_pfn) {
391 if (1UL << order != iovad->granule ||
392 base_pfn != iovad->start_pfn) {
393 pr_warn("Incompatible range for DMA domain\n");
394 return -EFAULT;
395 }
396
397 return 0;
398 }
399
400 init_iova_domain(iovad, 1UL << order, base_pfn);
401
402 /* If the FQ fails we can simply fall back to strict mode */
403 if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
404 domain->type = IOMMU_DOMAIN_DMA;
405
406 return iova_reserve_iommu_regions(dev, domain);
407 }
408
409 /**
410 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
411 * page flags.
412 * @dir: Direction of DMA transfer
413 * @coherent: Is the DMA master cache-coherent?
414 * @attrs: DMA attributes for the mapping
415 *
416 * Return: corresponding IOMMU API page protection flags
417 */
418 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
419 unsigned long attrs)
420 {
421 int prot = coherent ? IOMMU_CACHE : 0;
422
423 if (attrs & DMA_ATTR_PRIVILEGED)
424 prot |= IOMMU_PRIV;
425
426 switch (dir) {
427 case DMA_BIDIRECTIONAL:
428 return prot | IOMMU_READ | IOMMU_WRITE;
429 case DMA_TO_DEVICE:
430 return prot | IOMMU_READ;
431 case DMA_FROM_DEVICE:
432 return prot | IOMMU_WRITE;
433 default:
434 return 0;
435 }
436 }
437
438 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
439 size_t size, u64 dma_limit, struct device *dev)
440 {
441 struct iommu_dma_cookie *cookie = domain->iova_cookie;
442 struct iova_domain *iovad = &cookie->iovad;
443 unsigned long shift, iova_len, iova = 0;
444
445 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
446 cookie->msi_iova += size;
447 return cookie->msi_iova - size;
448 }
449
450 shift = iova_shift(iovad);
451 iova_len = size >> shift;
452 /*
453 * Freeing non-power-of-two-sized allocations back into the IOVA caches
454 * will come back to bite us badly, so we have to waste a bit of space
455 * rounding up anything cacheable to make sure that can't happen. The
456 * order of the unadjusted size will still match upon freeing.
457 */
458 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
459 iova_len = roundup_pow_of_two(iova_len);
460
461 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
462
463 if (domain->geometry.force_aperture)
464 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
465
466 /* Try to get PCI devices a SAC address */
467 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
468 iova = alloc_iova_fast(iovad, iova_len,
469 DMA_BIT_MASK(32) >> shift, false);
470
471 if (!iova)
472 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
473 true);
474
475 return (dma_addr_t)iova << shift;
476 }
477
478 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
479 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
480 {
481 struct iova_domain *iovad = &cookie->iovad;
482
483 /* The MSI case is only ever cleaning up its most recent allocation */
484 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
485 cookie->msi_iova -= size;
486 else if (gather && gather->queued)
487 queue_iova(iovad, iova_pfn(iovad, iova),
488 size >> iova_shift(iovad),
489 (unsigned long)gather->freelist);
490 else
491 free_iova_fast(iovad, iova_pfn(iovad, iova),
492 size >> iova_shift(iovad));
493 }
494
495 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
496 size_t size)
497 {
498 struct iommu_domain *domain = iommu_get_dma_domain(dev);
499 struct iommu_dma_cookie *cookie = domain->iova_cookie;
500 struct iova_domain *iovad = &cookie->iovad;
501 size_t iova_off = iova_offset(iovad, dma_addr);
502 struct iommu_iotlb_gather iotlb_gather;
503 size_t unmapped;
504
505 dma_addr -= iova_off;
506 size = iova_align(iovad, size + iova_off);
507 iommu_iotlb_gather_init(&iotlb_gather);
508 iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
509
510 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
511 WARN_ON(unmapped != size);
512
513 if (!iotlb_gather.queued)
514 iommu_iotlb_sync(domain, &iotlb_gather);
515 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
516 }
517
518 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
519 size_t size, int prot, u64 dma_mask)
520 {
521 struct iommu_domain *domain = iommu_get_dma_domain(dev);
522 struct iommu_dma_cookie *cookie = domain->iova_cookie;
523 struct iova_domain *iovad = &cookie->iovad;
524 size_t iova_off = iova_offset(iovad, phys);
525 dma_addr_t iova;
526
527 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
528 iommu_deferred_attach(dev, domain))
529 return DMA_MAPPING_ERROR;
530
531 size = iova_align(iovad, size + iova_off);
532
533 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
534 if (!iova)
535 return DMA_MAPPING_ERROR;
536
537 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
538 iommu_dma_free_iova(cookie, iova, size, NULL);
539 return DMA_MAPPING_ERROR;
540 }
541 return iova + iova_off;
542 }
543
544 static void __iommu_dma_free_pages(struct page **pages, int count)
545 {
546 while (count--)
547 __free_page(pages[count]);
548 kvfree(pages);
549 }
550
551 static struct page **__iommu_dma_alloc_pages(struct device *dev,
552 unsigned int count, unsigned long order_mask, gfp_t gfp)
553 {
554 struct page **pages;
555 unsigned int i = 0, nid = dev_to_node(dev);
556
557 order_mask &= (2U << MAX_ORDER) - 1;
558 if (!order_mask)
559 return NULL;
560
561 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
562 if (!pages)
563 return NULL;
564
565 /* IOMMU can map any pages, so himem can also be used here */
566 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
567
568 /* It makes no sense to muck about with huge pages */
569 gfp &= ~__GFP_COMP;
570
571 while (count) {
572 struct page *page = NULL;
573 unsigned int order_size;
574
575 /*
576 * Higher-order allocations are a convenience rather
577 * than a necessity, hence using __GFP_NORETRY until
578 * falling back to minimum-order allocations.
579 */
580 for (order_mask &= (2U << __fls(count)) - 1;
581 order_mask; order_mask &= ~order_size) {
582 unsigned int order = __fls(order_mask);
583 gfp_t alloc_flags = gfp;
584
585 order_size = 1U << order;
586 if (order_mask > order_size)
587 alloc_flags |= __GFP_NORETRY;
588 page = alloc_pages_node(nid, alloc_flags, order);
589 if (!page)
590 continue;
591 if (order)
592 split_page(page, order);
593 break;
594 }
595 if (!page) {
596 __iommu_dma_free_pages(pages, i);
597 return NULL;
598 }
599 count -= order_size;
600 while (order_size--)
601 pages[i++] = page++;
602 }
603 return pages;
604 }
605
606 /*
607 * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
608 * but an IOMMU which supports smaller pages might not map the whole thing.
609 */
610 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
611 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
612 unsigned long attrs)
613 {
614 struct iommu_domain *domain = iommu_get_dma_domain(dev);
615 struct iommu_dma_cookie *cookie = domain->iova_cookie;
616 struct iova_domain *iovad = &cookie->iovad;
617 bool coherent = dev_is_dma_coherent(dev);
618 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
619 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
620 struct page **pages;
621 dma_addr_t iova;
622
623 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
624 iommu_deferred_attach(dev, domain))
625 return NULL;
626
627 min_size = alloc_sizes & -alloc_sizes;
628 if (min_size < PAGE_SIZE) {
629 min_size = PAGE_SIZE;
630 alloc_sizes |= PAGE_SIZE;
631 } else {
632 size = ALIGN(size, min_size);
633 }
634 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
635 alloc_sizes = min_size;
636
637 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
638 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
639 gfp);
640 if (!pages)
641 return NULL;
642
643 size = iova_align(iovad, size);
644 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
645 if (!iova)
646 goto out_free_pages;
647
648 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
649 goto out_free_iova;
650
651 if (!(ioprot & IOMMU_CACHE)) {
652 struct scatterlist *sg;
653 int i;
654
655 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
656 arch_dma_prep_coherent(sg_page(sg), sg->length);
657 }
658
659 if (iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot)
660 < size)
661 goto out_free_sg;
662
663 sgt->sgl->dma_address = iova;
664 sgt->sgl->dma_length = size;
665 return pages;
666
667 out_free_sg:
668 sg_free_table(sgt);
669 out_free_iova:
670 iommu_dma_free_iova(cookie, iova, size, NULL);
671 out_free_pages:
672 __iommu_dma_free_pages(pages, count);
673 return NULL;
674 }
675
676 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
677 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
678 unsigned long attrs)
679 {
680 struct page **pages;
681 struct sg_table sgt;
682 void *vaddr;
683
684 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
685 attrs);
686 if (!pages)
687 return NULL;
688 *dma_handle = sgt.sgl->dma_address;
689 sg_free_table(&sgt);
690 vaddr = dma_common_pages_remap(pages, size, prot,
691 __builtin_return_address(0));
692 if (!vaddr)
693 goto out_unmap;
694 return vaddr;
695
696 out_unmap:
697 __iommu_dma_unmap(dev, *dma_handle, size);
698 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
699 return NULL;
700 }
701
702 #ifdef CONFIG_DMA_REMAP
703 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
704 size_t size, enum dma_data_direction dir, gfp_t gfp,
705 unsigned long attrs)
706 {
707 struct dma_sgt_handle *sh;
708
709 sh = kmalloc(sizeof(*sh), gfp);
710 if (!sh)
711 return NULL;
712
713 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
714 PAGE_KERNEL, attrs);
715 if (!sh->pages) {
716 kfree(sh);
717 return NULL;
718 }
719 return &sh->sgt;
720 }
721
722 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
723 struct sg_table *sgt, enum dma_data_direction dir)
724 {
725 struct dma_sgt_handle *sh = sgt_handle(sgt);
726
727 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
728 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
729 sg_free_table(&sh->sgt);
730 kfree(sh);
731 }
732 #endif /* CONFIG_DMA_REMAP */
733
734 static void iommu_dma_sync_single_for_cpu(struct device *dev,
735 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
736 {
737 phys_addr_t phys;
738
739 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
740 return;
741
742 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
743 if (!dev_is_dma_coherent(dev))
744 arch_sync_dma_for_cpu(phys, size, dir);
745
746 if (is_swiotlb_buffer(dev, phys))
747 swiotlb_sync_single_for_cpu(dev, phys, size, dir);
748 }
749
750 static void iommu_dma_sync_single_for_device(struct device *dev,
751 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
752 {
753 phys_addr_t phys;
754
755 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
756 return;
757
758 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
759 if (is_swiotlb_buffer(dev, phys))
760 swiotlb_sync_single_for_device(dev, phys, size, dir);
761
762 if (!dev_is_dma_coherent(dev))
763 arch_sync_dma_for_device(phys, size, dir);
764 }
765
766 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
767 struct scatterlist *sgl, int nelems,
768 enum dma_data_direction dir)
769 {
770 struct scatterlist *sg;
771 int i;
772
773 if (dev_use_swiotlb(dev))
774 for_each_sg(sgl, sg, nelems, i)
775 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
776 sg->length, dir);
777 else if (!dev_is_dma_coherent(dev))
778 for_each_sg(sgl, sg, nelems, i)
779 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
780 }
781
782 static void iommu_dma_sync_sg_for_device(struct device *dev,
783 struct scatterlist *sgl, int nelems,
784 enum dma_data_direction dir)
785 {
786 struct scatterlist *sg;
787 int i;
788
789 if (dev_use_swiotlb(dev))
790 for_each_sg(sgl, sg, nelems, i)
791 iommu_dma_sync_single_for_device(dev,
792 sg_dma_address(sg),
793 sg->length, dir);
794 else if (!dev_is_dma_coherent(dev))
795 for_each_sg(sgl, sg, nelems, i)
796 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
797 }
798
799 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
800 unsigned long offset, size_t size, enum dma_data_direction dir,
801 unsigned long attrs)
802 {
803 phys_addr_t phys = page_to_phys(page) + offset;
804 bool coherent = dev_is_dma_coherent(dev);
805 int prot = dma_info_to_prot(dir, coherent, attrs);
806 struct iommu_domain *domain = iommu_get_dma_domain(dev);
807 struct iommu_dma_cookie *cookie = domain->iova_cookie;
808 struct iova_domain *iovad = &cookie->iovad;
809 dma_addr_t iova, dma_mask = dma_get_mask(dev);
810
811 /*
812 * If both the physical buffer start address and size are
813 * page aligned, we don't need to use a bounce page.
814 */
815 if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) {
816 void *padding_start;
817 size_t padding_size, aligned_size;
818
819 aligned_size = iova_align(iovad, size);
820 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
821 iova_mask(iovad), dir, attrs);
822
823 if (phys == DMA_MAPPING_ERROR)
824 return DMA_MAPPING_ERROR;
825
826 /* Cleanup the padding area. */
827 padding_start = phys_to_virt(phys);
828 padding_size = aligned_size;
829
830 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
831 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
832 padding_start += size;
833 padding_size -= size;
834 }
835
836 memset(padding_start, 0, padding_size);
837 }
838
839 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
840 arch_sync_dma_for_device(phys, size, dir);
841
842 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
843 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
844 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
845 return iova;
846 }
847
848 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
849 size_t size, enum dma_data_direction dir, unsigned long attrs)
850 {
851 struct iommu_domain *domain = iommu_get_dma_domain(dev);
852 phys_addr_t phys;
853
854 phys = iommu_iova_to_phys(domain, dma_handle);
855 if (WARN_ON(!phys))
856 return;
857
858 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
859 arch_sync_dma_for_cpu(phys, size, dir);
860
861 __iommu_dma_unmap(dev, dma_handle, size);
862
863 if (unlikely(is_swiotlb_buffer(dev, phys)))
864 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
865 }
866
867 /*
868 * Prepare a successfully-mapped scatterlist to give back to the caller.
869 *
870 * At this point the segments are already laid out by iommu_dma_map_sg() to
871 * avoid individually crossing any boundaries, so we merely need to check a
872 * segment's start address to avoid concatenating across one.
873 */
874 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
875 dma_addr_t dma_addr)
876 {
877 struct scatterlist *s, *cur = sg;
878 unsigned long seg_mask = dma_get_seg_boundary(dev);
879 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
880 int i, count = 0;
881
882 for_each_sg(sg, s, nents, i) {
883 /* Restore this segment's original unaligned fields first */
884 unsigned int s_iova_off = sg_dma_address(s);
885 unsigned int s_length = sg_dma_len(s);
886 unsigned int s_iova_len = s->length;
887
888 s->offset += s_iova_off;
889 s->length = s_length;
890 sg_dma_address(s) = DMA_MAPPING_ERROR;
891 sg_dma_len(s) = 0;
892
893 /*
894 * Now fill in the real DMA data. If...
895 * - there is a valid output segment to append to
896 * - and this segment starts on an IOVA page boundary
897 * - but doesn't fall at a segment boundary
898 * - and wouldn't make the resulting output segment too long
899 */
900 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
901 (max_len - cur_len >= s_length)) {
902 /* ...then concatenate it with the previous one */
903 cur_len += s_length;
904 } else {
905 /* Otherwise start the next output segment */
906 if (i > 0)
907 cur = sg_next(cur);
908 cur_len = s_length;
909 count++;
910
911 sg_dma_address(cur) = dma_addr + s_iova_off;
912 }
913
914 sg_dma_len(cur) = cur_len;
915 dma_addr += s_iova_len;
916
917 if (s_length + s_iova_off < s_iova_len)
918 cur_len = 0;
919 }
920 return count;
921 }
922
923 /*
924 * If mapping failed, then just restore the original list,
925 * but making sure the DMA fields are invalidated.
926 */
927 static void __invalidate_sg(struct scatterlist *sg, int nents)
928 {
929 struct scatterlist *s;
930 int i;
931
932 for_each_sg(sg, s, nents, i) {
933 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
934 s->offset += sg_dma_address(s);
935 if (sg_dma_len(s))
936 s->length = sg_dma_len(s);
937 sg_dma_address(s) = DMA_MAPPING_ERROR;
938 sg_dma_len(s) = 0;
939 }
940 }
941
942 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
943 int nents, enum dma_data_direction dir, unsigned long attrs)
944 {
945 struct scatterlist *s;
946 int i;
947
948 for_each_sg(sg, s, nents, i)
949 iommu_dma_unmap_page(dev, sg_dma_address(s),
950 sg_dma_len(s), dir, attrs);
951 }
952
953 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
954 int nents, enum dma_data_direction dir, unsigned long attrs)
955 {
956 struct scatterlist *s;
957 int i;
958
959 for_each_sg(sg, s, nents, i) {
960 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
961 s->offset, s->length, dir, attrs);
962 if (sg_dma_address(s) == DMA_MAPPING_ERROR)
963 goto out_unmap;
964 sg_dma_len(s) = s->length;
965 }
966
967 return nents;
968
969 out_unmap:
970 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
971 return -EIO;
972 }
973
974 /*
975 * The DMA API client is passing in a scatterlist which could describe
976 * any old buffer layout, but the IOMMU API requires everything to be
977 * aligned to IOMMU pages. Hence the need for this complicated bit of
978 * impedance-matching, to be able to hand off a suitably-aligned list,
979 * but still preserve the original offsets and sizes for the caller.
980 */
981 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
982 int nents, enum dma_data_direction dir, unsigned long attrs)
983 {
984 struct iommu_domain *domain = iommu_get_dma_domain(dev);
985 struct iommu_dma_cookie *cookie = domain->iova_cookie;
986 struct iova_domain *iovad = &cookie->iovad;
987 struct scatterlist *s, *prev = NULL;
988 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
989 dma_addr_t iova;
990 size_t iova_len = 0;
991 unsigned long mask = dma_get_seg_boundary(dev);
992 ssize_t ret;
993 int i;
994
995 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
996 ret = iommu_deferred_attach(dev, domain);
997 if (ret)
998 goto out;
999 }
1000
1001 if (dev_use_swiotlb(dev))
1002 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1003
1004 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1005 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1006
1007 /*
1008 * Work out how much IOVA space we need, and align the segments to
1009 * IOVA granules for the IOMMU driver to handle. With some clever
1010 * trickery we can modify the list in-place, but reversibly, by
1011 * stashing the unaligned parts in the as-yet-unused DMA fields.
1012 */
1013 for_each_sg(sg, s, nents, i) {
1014 size_t s_iova_off = iova_offset(iovad, s->offset);
1015 size_t s_length = s->length;
1016 size_t pad_len = (mask - iova_len + 1) & mask;
1017
1018 sg_dma_address(s) = s_iova_off;
1019 sg_dma_len(s) = s_length;
1020 s->offset -= s_iova_off;
1021 s_length = iova_align(iovad, s_length + s_iova_off);
1022 s->length = s_length;
1023
1024 /*
1025 * Due to the alignment of our single IOVA allocation, we can
1026 * depend on these assumptions about the segment boundary mask:
1027 * - If mask size >= IOVA size, then the IOVA range cannot
1028 * possibly fall across a boundary, so we don't care.
1029 * - If mask size < IOVA size, then the IOVA range must start
1030 * exactly on a boundary, therefore we can lay things out
1031 * based purely on segment lengths without needing to know
1032 * the actual addresses beforehand.
1033 * - The mask must be a power of 2, so pad_len == 0 if
1034 * iova_len == 0, thus we cannot dereference prev the first
1035 * time through here (i.e. before it has a meaningful value).
1036 */
1037 if (pad_len && pad_len < s_length - 1) {
1038 prev->length += pad_len;
1039 iova_len += pad_len;
1040 }
1041
1042 iova_len += s_length;
1043 prev = s;
1044 }
1045
1046 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1047 if (!iova) {
1048 ret = -ENOMEM;
1049 goto out_restore_sg;
1050 }
1051
1052 /*
1053 * We'll leave any physical concatenation to the IOMMU driver's
1054 * implementation - it knows better than we do.
1055 */
1056 ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot);
1057 if (ret < iova_len)
1058 goto out_free_iova;
1059
1060 return __finalise_sg(dev, sg, nents, iova);
1061
1062 out_free_iova:
1063 iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1064 out_restore_sg:
1065 __invalidate_sg(sg, nents);
1066 out:
1067 if (ret != -ENOMEM)
1068 return -EINVAL;
1069 return ret;
1070 }
1071
1072 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1073 int nents, enum dma_data_direction dir, unsigned long attrs)
1074 {
1075 dma_addr_t start, end;
1076 struct scatterlist *tmp;
1077 int i;
1078
1079 if (dev_use_swiotlb(dev)) {
1080 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1081 return;
1082 }
1083
1084 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1085 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1086
1087 /*
1088 * The scatterlist segments are mapped into a single
1089 * contiguous IOVA allocation, so this is incredibly easy.
1090 */
1091 start = sg_dma_address(sg);
1092 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1093 if (sg_dma_len(tmp) == 0)
1094 break;
1095 sg = tmp;
1096 }
1097 end = sg_dma_address(sg) + sg_dma_len(sg);
1098 __iommu_dma_unmap(dev, start, end - start);
1099 }
1100
1101 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1102 size_t size, enum dma_data_direction dir, unsigned long attrs)
1103 {
1104 return __iommu_dma_map(dev, phys, size,
1105 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1106 dma_get_mask(dev));
1107 }
1108
1109 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1110 size_t size, enum dma_data_direction dir, unsigned long attrs)
1111 {
1112 __iommu_dma_unmap(dev, handle, size);
1113 }
1114
1115 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1116 {
1117 size_t alloc_size = PAGE_ALIGN(size);
1118 int count = alloc_size >> PAGE_SHIFT;
1119 struct page *page = NULL, **pages = NULL;
1120
1121 /* Non-coherent atomic allocation? Easy */
1122 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1123 dma_free_from_pool(dev, cpu_addr, alloc_size))
1124 return;
1125
1126 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1127 /*
1128 * If it the address is remapped, then it's either non-coherent
1129 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1130 */
1131 pages = dma_common_find_pages(cpu_addr);
1132 if (!pages)
1133 page = vmalloc_to_page(cpu_addr);
1134 dma_common_free_remap(cpu_addr, alloc_size);
1135 } else {
1136 /* Lowmem means a coherent atomic or CMA allocation */
1137 page = virt_to_page(cpu_addr);
1138 }
1139
1140 if (pages)
1141 __iommu_dma_free_pages(pages, count);
1142 if (page)
1143 dma_free_contiguous(dev, page, alloc_size);
1144 }
1145
1146 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1147 dma_addr_t handle, unsigned long attrs)
1148 {
1149 __iommu_dma_unmap(dev, handle, size);
1150 __iommu_dma_free(dev, size, cpu_addr);
1151 }
1152
1153 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1154 struct page **pagep, gfp_t gfp, unsigned long attrs)
1155 {
1156 bool coherent = dev_is_dma_coherent(dev);
1157 size_t alloc_size = PAGE_ALIGN(size);
1158 int node = dev_to_node(dev);
1159 struct page *page = NULL;
1160 void *cpu_addr;
1161
1162 page = dma_alloc_contiguous(dev, alloc_size, gfp);
1163 if (!page)
1164 page = alloc_pages_node(node, gfp, get_order(alloc_size));
1165 if (!page)
1166 return NULL;
1167
1168 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1169 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1170
1171 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1172 prot, __builtin_return_address(0));
1173 if (!cpu_addr)
1174 goto out_free_pages;
1175
1176 if (!coherent)
1177 arch_dma_prep_coherent(page, size);
1178 } else {
1179 cpu_addr = page_address(page);
1180 }
1181
1182 *pagep = page;
1183 memset(cpu_addr, 0, alloc_size);
1184 return cpu_addr;
1185 out_free_pages:
1186 dma_free_contiguous(dev, page, alloc_size);
1187 return NULL;
1188 }
1189
1190 static void *iommu_dma_alloc(struct device *dev, size_t size,
1191 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1192 {
1193 bool coherent = dev_is_dma_coherent(dev);
1194 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1195 struct page *page = NULL;
1196 void *cpu_addr;
1197
1198 gfp |= __GFP_ZERO;
1199
1200 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1201 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1202 return iommu_dma_alloc_remap(dev, size, handle, gfp,
1203 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1204 }
1205
1206 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1207 !gfpflags_allow_blocking(gfp) && !coherent)
1208 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1209 gfp, NULL);
1210 else
1211 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1212 if (!cpu_addr)
1213 return NULL;
1214
1215 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1216 dev->coherent_dma_mask);
1217 if (*handle == DMA_MAPPING_ERROR) {
1218 __iommu_dma_free(dev, size, cpu_addr);
1219 return NULL;
1220 }
1221
1222 return cpu_addr;
1223 }
1224
1225 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1226 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1227 unsigned long attrs)
1228 {
1229 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1230 unsigned long pfn, off = vma->vm_pgoff;
1231 int ret;
1232
1233 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1234
1235 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1236 return ret;
1237
1238 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1239 return -ENXIO;
1240
1241 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1242 struct page **pages = dma_common_find_pages(cpu_addr);
1243
1244 if (pages)
1245 return vm_map_pages(vma, pages, nr_pages);
1246 pfn = vmalloc_to_pfn(cpu_addr);
1247 } else {
1248 pfn = page_to_pfn(virt_to_page(cpu_addr));
1249 }
1250
1251 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1252 vma->vm_end - vma->vm_start,
1253 vma->vm_page_prot);
1254 }
1255
1256 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1257 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1258 unsigned long attrs)
1259 {
1260 struct page *page;
1261 int ret;
1262
1263 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1264 struct page **pages = dma_common_find_pages(cpu_addr);
1265
1266 if (pages) {
1267 return sg_alloc_table_from_pages(sgt, pages,
1268 PAGE_ALIGN(size) >> PAGE_SHIFT,
1269 0, size, GFP_KERNEL);
1270 }
1271
1272 page = vmalloc_to_page(cpu_addr);
1273 } else {
1274 page = virt_to_page(cpu_addr);
1275 }
1276
1277 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1278 if (!ret)
1279 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1280 return ret;
1281 }
1282
1283 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1284 {
1285 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1286
1287 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1288 }
1289
1290 static const struct dma_map_ops iommu_dma_ops = {
1291 .alloc = iommu_dma_alloc,
1292 .free = iommu_dma_free,
1293 .alloc_pages = dma_common_alloc_pages,
1294 .free_pages = dma_common_free_pages,
1295 #ifdef CONFIG_DMA_REMAP
1296 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous,
1297 .free_noncontiguous = iommu_dma_free_noncontiguous,
1298 #endif
1299 .mmap = iommu_dma_mmap,
1300 .get_sgtable = iommu_dma_get_sgtable,
1301 .map_page = iommu_dma_map_page,
1302 .unmap_page = iommu_dma_unmap_page,
1303 .map_sg = iommu_dma_map_sg,
1304 .unmap_sg = iommu_dma_unmap_sg,
1305 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1306 .sync_single_for_device = iommu_dma_sync_single_for_device,
1307 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1308 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1309 .map_resource = iommu_dma_map_resource,
1310 .unmap_resource = iommu_dma_unmap_resource,
1311 .get_merge_boundary = iommu_dma_get_merge_boundary,
1312 };
1313
1314 /*
1315 * The IOMMU core code allocates the default DMA domain, which the underlying
1316 * IOMMU driver needs to support via the dma-iommu layer.
1317 */
1318 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1319 {
1320 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1321
1322 if (!domain)
1323 goto out_err;
1324
1325 /*
1326 * The IOMMU core code allocates the default DMA domain, which the
1327 * underlying IOMMU driver needs to support via the dma-iommu layer.
1328 */
1329 if (iommu_is_dma_domain(domain)) {
1330 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1331 goto out_err;
1332 dev->dma_ops = &iommu_dma_ops;
1333 }
1334
1335 return;
1336 out_err:
1337 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1338 dev_name(dev));
1339 }
1340 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1341
1342 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1343 phys_addr_t msi_addr, struct iommu_domain *domain)
1344 {
1345 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1346 struct iommu_dma_msi_page *msi_page;
1347 dma_addr_t iova;
1348 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1349 size_t size = cookie_msi_granule(cookie);
1350
1351 msi_addr &= ~(phys_addr_t)(size - 1);
1352 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1353 if (msi_page->phys == msi_addr)
1354 return msi_page;
1355
1356 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1357 if (!msi_page)
1358 return NULL;
1359
1360 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1361 if (!iova)
1362 goto out_free_page;
1363
1364 if (iommu_map(domain, iova, msi_addr, size, prot))
1365 goto out_free_iova;
1366
1367 INIT_LIST_HEAD(&msi_page->list);
1368 msi_page->phys = msi_addr;
1369 msi_page->iova = iova;
1370 list_add(&msi_page->list, &cookie->msi_page_list);
1371 return msi_page;
1372
1373 out_free_iova:
1374 iommu_dma_free_iova(cookie, iova, size, NULL);
1375 out_free_page:
1376 kfree(msi_page);
1377 return NULL;
1378 }
1379
1380 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1381 {
1382 struct device *dev = msi_desc_to_dev(desc);
1383 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1384 struct iommu_dma_msi_page *msi_page;
1385 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1386
1387 if (!domain || !domain->iova_cookie) {
1388 desc->iommu_cookie = NULL;
1389 return 0;
1390 }
1391
1392 /*
1393 * In fact the whole prepare operation should already be serialised by
1394 * irq_domain_mutex further up the callchain, but that's pretty subtle
1395 * on its own, so consider this locking as failsafe documentation...
1396 */
1397 mutex_lock(&msi_prepare_lock);
1398 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1399 mutex_unlock(&msi_prepare_lock);
1400
1401 msi_desc_set_iommu_cookie(desc, msi_page);
1402
1403 if (!msi_page)
1404 return -ENOMEM;
1405 return 0;
1406 }
1407
1408 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1409 struct msi_msg *msg)
1410 {
1411 struct device *dev = msi_desc_to_dev(desc);
1412 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1413 const struct iommu_dma_msi_page *msi_page;
1414
1415 msi_page = msi_desc_get_iommu_cookie(desc);
1416
1417 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1418 return;
1419
1420 msg->address_hi = upper_32_bits(msi_page->iova);
1421 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1422 msg->address_lo += lower_32_bits(msi_page->iova);
1423 }
1424
1425 static int iommu_dma_init(void)
1426 {
1427 if (is_kdump_kernel())
1428 static_branch_enable(&iommu_deferred_attach_enabled);
1429
1430 return iova_cache_get();
1431 }
1432 arch_initcall(iommu_dma_init);