]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/iommu/dma-iommu.c
Merge tag 'powerpc-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-hirsute-kernel.git] / drivers / iommu / dma-iommu.c
1 /*
2 * A fairly generic DMA-API to IOMMU-API glue layer.
3 *
4 * Copyright (C) 2014-2015 ARM Ltd.
5 *
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include <linux/acpi_iort.h>
23 #include <linux/device.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/gfp.h>
26 #include <linux/huge_mm.h>
27 #include <linux/iommu.h>
28 #include <linux/iova.h>
29 #include <linux/irq.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/scatterlist.h>
33 #include <linux/vmalloc.h>
34
35 struct iommu_dma_msi_page {
36 struct list_head list;
37 dma_addr_t iova;
38 phys_addr_t phys;
39 };
40
41 enum iommu_dma_cookie_type {
42 IOMMU_DMA_IOVA_COOKIE,
43 IOMMU_DMA_MSI_COOKIE,
44 };
45
46 struct iommu_dma_cookie {
47 enum iommu_dma_cookie_type type;
48 union {
49 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
50 struct iova_domain iovad;
51 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
52 dma_addr_t msi_iova;
53 };
54 struct list_head msi_page_list;
55 spinlock_t msi_lock;
56
57 /* Domain for flush queue callback; NULL if flush queue not in use */
58 struct iommu_domain *fq_domain;
59 };
60
61 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
62 {
63 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
64 return cookie->iovad.granule;
65 return PAGE_SIZE;
66 }
67
68 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
69 {
70 struct iommu_dma_cookie *cookie;
71
72 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
73 if (cookie) {
74 spin_lock_init(&cookie->msi_lock);
75 INIT_LIST_HEAD(&cookie->msi_page_list);
76 cookie->type = type;
77 }
78 return cookie;
79 }
80
81 int iommu_dma_init(void)
82 {
83 return iova_cache_get();
84 }
85
86 /**
87 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
88 * @domain: IOMMU domain to prepare for DMA-API usage
89 *
90 * IOMMU drivers should normally call this from their domain_alloc
91 * callback when domain->type == IOMMU_DOMAIN_DMA.
92 */
93 int iommu_get_dma_cookie(struct iommu_domain *domain)
94 {
95 if (domain->iova_cookie)
96 return -EEXIST;
97
98 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
99 if (!domain->iova_cookie)
100 return -ENOMEM;
101
102 return 0;
103 }
104 EXPORT_SYMBOL(iommu_get_dma_cookie);
105
106 /**
107 * iommu_get_msi_cookie - Acquire just MSI remapping resources
108 * @domain: IOMMU domain to prepare
109 * @base: Start address of IOVA region for MSI mappings
110 *
111 * Users who manage their own IOVA allocation and do not want DMA API support,
112 * but would still like to take advantage of automatic MSI remapping, can use
113 * this to initialise their own domain appropriately. Users should reserve a
114 * contiguous IOVA region, starting at @base, large enough to accommodate the
115 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
116 * used by the devices attached to @domain.
117 */
118 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
119 {
120 struct iommu_dma_cookie *cookie;
121
122 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
123 return -EINVAL;
124
125 if (domain->iova_cookie)
126 return -EEXIST;
127
128 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
129 if (!cookie)
130 return -ENOMEM;
131
132 cookie->msi_iova = base;
133 domain->iova_cookie = cookie;
134 return 0;
135 }
136 EXPORT_SYMBOL(iommu_get_msi_cookie);
137
138 /**
139 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
140 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
141 * iommu_get_msi_cookie()
142 *
143 * IOMMU drivers should normally call this from their domain_free callback.
144 */
145 void iommu_put_dma_cookie(struct iommu_domain *domain)
146 {
147 struct iommu_dma_cookie *cookie = domain->iova_cookie;
148 struct iommu_dma_msi_page *msi, *tmp;
149
150 if (!cookie)
151 return;
152
153 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
154 put_iova_domain(&cookie->iovad);
155
156 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
157 list_del(&msi->list);
158 kfree(msi);
159 }
160 kfree(cookie);
161 domain->iova_cookie = NULL;
162 }
163 EXPORT_SYMBOL(iommu_put_dma_cookie);
164
165 /**
166 * iommu_dma_get_resv_regions - Reserved region driver helper
167 * @dev: Device from iommu_get_resv_regions()
168 * @list: Reserved region list from iommu_get_resv_regions()
169 *
170 * IOMMU drivers can use this to implement their .get_resv_regions callback
171 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
172 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
173 * reservation.
174 */
175 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
176 {
177
178 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
179 iort_iommu_msi_get_resv_regions(dev, list);
180
181 }
182 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
183
184 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
185 phys_addr_t start, phys_addr_t end)
186 {
187 struct iova_domain *iovad = &cookie->iovad;
188 struct iommu_dma_msi_page *msi_page;
189 int i, num_pages;
190
191 start -= iova_offset(iovad, start);
192 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
193
194 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
195 if (!msi_page)
196 return -ENOMEM;
197
198 for (i = 0; i < num_pages; i++) {
199 msi_page[i].phys = start;
200 msi_page[i].iova = start;
201 INIT_LIST_HEAD(&msi_page[i].list);
202 list_add(&msi_page[i].list, &cookie->msi_page_list);
203 start += iovad->granule;
204 }
205
206 return 0;
207 }
208
209 static int iova_reserve_pci_windows(struct pci_dev *dev,
210 struct iova_domain *iovad)
211 {
212 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
213 struct resource_entry *window;
214 unsigned long lo, hi;
215 phys_addr_t start = 0, end;
216
217 resource_list_for_each_entry(window, &bridge->windows) {
218 if (resource_type(window->res) != IORESOURCE_MEM)
219 continue;
220
221 lo = iova_pfn(iovad, window->res->start - window->offset);
222 hi = iova_pfn(iovad, window->res->end - window->offset);
223 reserve_iova(iovad, lo, hi);
224 }
225
226 /* Get reserved DMA windows from host bridge */
227 resource_list_for_each_entry(window, &bridge->dma_ranges) {
228 end = window->res->start - window->offset;
229 resv_iova:
230 if (end > start) {
231 lo = iova_pfn(iovad, start);
232 hi = iova_pfn(iovad, end);
233 reserve_iova(iovad, lo, hi);
234 } else {
235 /* dma_ranges list should be sorted */
236 dev_err(&dev->dev, "Failed to reserve IOVA\n");
237 return -EINVAL;
238 }
239
240 start = window->res->end - window->offset + 1;
241 /* If window is last entry */
242 if (window->node.next == &bridge->dma_ranges &&
243 end != ~(dma_addr_t)0) {
244 end = ~(dma_addr_t)0;
245 goto resv_iova;
246 }
247 }
248
249 return 0;
250 }
251
252 static int iova_reserve_iommu_regions(struct device *dev,
253 struct iommu_domain *domain)
254 {
255 struct iommu_dma_cookie *cookie = domain->iova_cookie;
256 struct iova_domain *iovad = &cookie->iovad;
257 struct iommu_resv_region *region;
258 LIST_HEAD(resv_regions);
259 int ret = 0;
260
261 if (dev_is_pci(dev)) {
262 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
263 if (ret)
264 return ret;
265 }
266
267 iommu_get_resv_regions(dev, &resv_regions);
268 list_for_each_entry(region, &resv_regions, list) {
269 unsigned long lo, hi;
270
271 /* We ARE the software that manages these! */
272 if (region->type == IOMMU_RESV_SW_MSI)
273 continue;
274
275 lo = iova_pfn(iovad, region->start);
276 hi = iova_pfn(iovad, region->start + region->length - 1);
277 reserve_iova(iovad, lo, hi);
278
279 if (region->type == IOMMU_RESV_MSI)
280 ret = cookie_init_hw_msi_region(cookie, region->start,
281 region->start + region->length);
282 if (ret)
283 break;
284 }
285 iommu_put_resv_regions(dev, &resv_regions);
286
287 return ret;
288 }
289
290 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
291 {
292 struct iommu_dma_cookie *cookie;
293 struct iommu_domain *domain;
294
295 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
296 domain = cookie->fq_domain;
297 /*
298 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
299 * implies that ops->flush_iotlb_all must be non-NULL.
300 */
301 domain->ops->flush_iotlb_all(domain);
302 }
303
304 /**
305 * iommu_dma_init_domain - Initialise a DMA mapping domain
306 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
307 * @base: IOVA at which the mappable address space starts
308 * @size: Size of IOVA space
309 * @dev: Device the domain is being initialised for
310 *
311 * @base and @size should be exact multiples of IOMMU page granularity to
312 * avoid rounding surprises. If necessary, we reserve the page at address 0
313 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
314 * any change which could make prior IOVAs invalid will fail.
315 */
316 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
317 u64 size, struct device *dev)
318 {
319 struct iommu_dma_cookie *cookie = domain->iova_cookie;
320 struct iova_domain *iovad = &cookie->iovad;
321 unsigned long order, base_pfn;
322 int attr;
323
324 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
325 return -EINVAL;
326
327 /* Use the smallest supported page size for IOVA granularity */
328 order = __ffs(domain->pgsize_bitmap);
329 base_pfn = max_t(unsigned long, 1, base >> order);
330
331 /* Check the domain allows at least some access to the device... */
332 if (domain->geometry.force_aperture) {
333 if (base > domain->geometry.aperture_end ||
334 base + size <= domain->geometry.aperture_start) {
335 pr_warn("specified DMA range outside IOMMU capability\n");
336 return -EFAULT;
337 }
338 /* ...then finally give it a kicking to make sure it fits */
339 base_pfn = max_t(unsigned long, base_pfn,
340 domain->geometry.aperture_start >> order);
341 }
342
343 /* start_pfn is always nonzero for an already-initialised domain */
344 if (iovad->start_pfn) {
345 if (1UL << order != iovad->granule ||
346 base_pfn != iovad->start_pfn) {
347 pr_warn("Incompatible range for DMA domain\n");
348 return -EFAULT;
349 }
350
351 return 0;
352 }
353
354 init_iova_domain(iovad, 1UL << order, base_pfn);
355
356 if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
357 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
358 cookie->fq_domain = domain;
359 init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
360 }
361
362 if (!dev)
363 return 0;
364
365 return iova_reserve_iommu_regions(dev, domain);
366 }
367 EXPORT_SYMBOL(iommu_dma_init_domain);
368
369 /**
370 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
371 * page flags.
372 * @dir: Direction of DMA transfer
373 * @coherent: Is the DMA master cache-coherent?
374 * @attrs: DMA attributes for the mapping
375 *
376 * Return: corresponding IOMMU API page protection flags
377 */
378 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
379 unsigned long attrs)
380 {
381 int prot = coherent ? IOMMU_CACHE : 0;
382
383 if (attrs & DMA_ATTR_PRIVILEGED)
384 prot |= IOMMU_PRIV;
385
386 switch (dir) {
387 case DMA_BIDIRECTIONAL:
388 return prot | IOMMU_READ | IOMMU_WRITE;
389 case DMA_TO_DEVICE:
390 return prot | IOMMU_READ;
391 case DMA_FROM_DEVICE:
392 return prot | IOMMU_WRITE;
393 default:
394 return 0;
395 }
396 }
397
398 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
399 size_t size, dma_addr_t dma_limit, struct device *dev)
400 {
401 struct iommu_dma_cookie *cookie = domain->iova_cookie;
402 struct iova_domain *iovad = &cookie->iovad;
403 unsigned long shift, iova_len, iova = 0;
404
405 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
406 cookie->msi_iova += size;
407 return cookie->msi_iova - size;
408 }
409
410 shift = iova_shift(iovad);
411 iova_len = size >> shift;
412 /*
413 * Freeing non-power-of-two-sized allocations back into the IOVA caches
414 * will come back to bite us badly, so we have to waste a bit of space
415 * rounding up anything cacheable to make sure that can't happen. The
416 * order of the unadjusted size will still match upon freeing.
417 */
418 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
419 iova_len = roundup_pow_of_two(iova_len);
420
421 if (dev->bus_dma_mask)
422 dma_limit &= dev->bus_dma_mask;
423
424 if (domain->geometry.force_aperture)
425 dma_limit = min(dma_limit, domain->geometry.aperture_end);
426
427 /* Try to get PCI devices a SAC address */
428 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
429 iova = alloc_iova_fast(iovad, iova_len,
430 DMA_BIT_MASK(32) >> shift, false);
431
432 if (!iova)
433 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
434 true);
435
436 return (dma_addr_t)iova << shift;
437 }
438
439 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
440 dma_addr_t iova, size_t size)
441 {
442 struct iova_domain *iovad = &cookie->iovad;
443
444 /* The MSI case is only ever cleaning up its most recent allocation */
445 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
446 cookie->msi_iova -= size;
447 else if (cookie->fq_domain) /* non-strict mode */
448 queue_iova(iovad, iova_pfn(iovad, iova),
449 size >> iova_shift(iovad), 0);
450 else
451 free_iova_fast(iovad, iova_pfn(iovad, iova),
452 size >> iova_shift(iovad));
453 }
454
455 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
456 size_t size)
457 {
458 struct iommu_dma_cookie *cookie = domain->iova_cookie;
459 struct iova_domain *iovad = &cookie->iovad;
460 size_t iova_off = iova_offset(iovad, dma_addr);
461
462 dma_addr -= iova_off;
463 size = iova_align(iovad, size + iova_off);
464
465 WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size);
466 if (!cookie->fq_domain)
467 iommu_tlb_sync(domain);
468 iommu_dma_free_iova(cookie, dma_addr, size);
469 }
470
471 static void __iommu_dma_free_pages(struct page **pages, int count)
472 {
473 while (count--)
474 __free_page(pages[count]);
475 kvfree(pages);
476 }
477
478 static struct page **__iommu_dma_alloc_pages(struct device *dev,
479 unsigned int count, unsigned long order_mask, gfp_t gfp)
480 {
481 struct page **pages;
482 unsigned int i = 0, nid = dev_to_node(dev);
483
484 order_mask &= (2U << MAX_ORDER) - 1;
485 if (!order_mask)
486 return NULL;
487
488 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
489 if (!pages)
490 return NULL;
491
492 /* IOMMU can map any pages, so himem can also be used here */
493 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
494
495 while (count) {
496 struct page *page = NULL;
497 unsigned int order_size;
498
499 /*
500 * Higher-order allocations are a convenience rather
501 * than a necessity, hence using __GFP_NORETRY until
502 * falling back to minimum-order allocations.
503 */
504 for (order_mask &= (2U << __fls(count)) - 1;
505 order_mask; order_mask &= ~order_size) {
506 unsigned int order = __fls(order_mask);
507 gfp_t alloc_flags = gfp;
508
509 order_size = 1U << order;
510 if (order_mask > order_size)
511 alloc_flags |= __GFP_NORETRY;
512 page = alloc_pages_node(nid, alloc_flags, order);
513 if (!page)
514 continue;
515 if (!order)
516 break;
517 if (!PageCompound(page)) {
518 split_page(page, order);
519 break;
520 } else if (!split_huge_page(page)) {
521 break;
522 }
523 __free_pages(page, order);
524 }
525 if (!page) {
526 __iommu_dma_free_pages(pages, i);
527 return NULL;
528 }
529 count -= order_size;
530 while (order_size--)
531 pages[i++] = page++;
532 }
533 return pages;
534 }
535
536 /**
537 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
538 * @dev: Device which owns this buffer
539 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
540 * @size: Size of buffer in bytes
541 * @handle: DMA address of buffer
542 *
543 * Frees both the pages associated with the buffer, and the array
544 * describing them
545 */
546 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
547 dma_addr_t *handle)
548 {
549 __iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size);
550 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
551 *handle = DMA_MAPPING_ERROR;
552 }
553
554 /**
555 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
556 * @dev: Device to allocate memory for. Must be a real device
557 * attached to an iommu_dma_domain
558 * @size: Size of buffer in bytes
559 * @gfp: Allocation flags
560 * @attrs: DMA attributes for this allocation
561 * @prot: IOMMU mapping flags
562 * @handle: Out argument for allocated DMA handle
563 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
564 * given VA/PA are visible to the given non-coherent device.
565 *
566 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
567 * but an IOMMU which supports smaller pages might not map the whole thing.
568 *
569 * Return: Array of struct page pointers describing the buffer,
570 * or NULL on failure.
571 */
572 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
573 unsigned long attrs, int prot, dma_addr_t *handle,
574 void (*flush_page)(struct device *, const void *, phys_addr_t))
575 {
576 struct iommu_domain *domain = iommu_get_dma_domain(dev);
577 struct iommu_dma_cookie *cookie = domain->iova_cookie;
578 struct iova_domain *iovad = &cookie->iovad;
579 struct page **pages;
580 struct sg_table sgt;
581 dma_addr_t iova;
582 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
583
584 *handle = DMA_MAPPING_ERROR;
585
586 min_size = alloc_sizes & -alloc_sizes;
587 if (min_size < PAGE_SIZE) {
588 min_size = PAGE_SIZE;
589 alloc_sizes |= PAGE_SIZE;
590 } else {
591 size = ALIGN(size, min_size);
592 }
593 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
594 alloc_sizes = min_size;
595
596 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
597 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
598 gfp);
599 if (!pages)
600 return NULL;
601
602 size = iova_align(iovad, size);
603 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
604 if (!iova)
605 goto out_free_pages;
606
607 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
608 goto out_free_iova;
609
610 if (!(prot & IOMMU_CACHE)) {
611 struct sg_mapping_iter miter;
612 /*
613 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
614 * sufficient here, so skip it by using the "wrong" direction.
615 */
616 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
617 while (sg_miter_next(&miter))
618 flush_page(dev, miter.addr, page_to_phys(miter.page));
619 sg_miter_stop(&miter);
620 }
621
622 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
623 < size)
624 goto out_free_sg;
625
626 *handle = iova;
627 sg_free_table(&sgt);
628 return pages;
629
630 out_free_sg:
631 sg_free_table(&sgt);
632 out_free_iova:
633 iommu_dma_free_iova(cookie, iova, size);
634 out_free_pages:
635 __iommu_dma_free_pages(pages, count);
636 return NULL;
637 }
638
639 /**
640 * iommu_dma_mmap - Map a buffer into provided user VMA
641 * @pages: Array representing buffer from iommu_dma_alloc()
642 * @size: Size of buffer in bytes
643 * @vma: VMA describing requested userspace mapping
644 *
645 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
646 * for verifying the correct size and protection of @vma beforehand.
647 */
648
649 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
650 {
651 return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
652 }
653
654 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
655 size_t size, int prot, struct iommu_domain *domain)
656 {
657 struct iommu_dma_cookie *cookie = domain->iova_cookie;
658 size_t iova_off = 0;
659 dma_addr_t iova;
660
661 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
662 iova_off = iova_offset(&cookie->iovad, phys);
663 size = iova_align(&cookie->iovad, size + iova_off);
664 }
665
666 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
667 if (!iova)
668 return DMA_MAPPING_ERROR;
669
670 if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
671 iommu_dma_free_iova(cookie, iova, size);
672 return DMA_MAPPING_ERROR;
673 }
674 return iova + iova_off;
675 }
676
677 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
678 unsigned long offset, size_t size, int prot)
679 {
680 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot,
681 iommu_get_dma_domain(dev));
682 }
683
684 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
685 enum dma_data_direction dir, unsigned long attrs)
686 {
687 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
688 }
689
690 /*
691 * Prepare a successfully-mapped scatterlist to give back to the caller.
692 *
693 * At this point the segments are already laid out by iommu_dma_map_sg() to
694 * avoid individually crossing any boundaries, so we merely need to check a
695 * segment's start address to avoid concatenating across one.
696 */
697 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
698 dma_addr_t dma_addr)
699 {
700 struct scatterlist *s, *cur = sg;
701 unsigned long seg_mask = dma_get_seg_boundary(dev);
702 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
703 int i, count = 0;
704
705 for_each_sg(sg, s, nents, i) {
706 /* Restore this segment's original unaligned fields first */
707 unsigned int s_iova_off = sg_dma_address(s);
708 unsigned int s_length = sg_dma_len(s);
709 unsigned int s_iova_len = s->length;
710
711 s->offset += s_iova_off;
712 s->length = s_length;
713 sg_dma_address(s) = DMA_MAPPING_ERROR;
714 sg_dma_len(s) = 0;
715
716 /*
717 * Now fill in the real DMA data. If...
718 * - there is a valid output segment to append to
719 * - and this segment starts on an IOVA page boundary
720 * - but doesn't fall at a segment boundary
721 * - and wouldn't make the resulting output segment too long
722 */
723 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
724 (cur_len + s_length <= max_len)) {
725 /* ...then concatenate it with the previous one */
726 cur_len += s_length;
727 } else {
728 /* Otherwise start the next output segment */
729 if (i > 0)
730 cur = sg_next(cur);
731 cur_len = s_length;
732 count++;
733
734 sg_dma_address(cur) = dma_addr + s_iova_off;
735 }
736
737 sg_dma_len(cur) = cur_len;
738 dma_addr += s_iova_len;
739
740 if (s_length + s_iova_off < s_iova_len)
741 cur_len = 0;
742 }
743 return count;
744 }
745
746 /*
747 * If mapping failed, then just restore the original list,
748 * but making sure the DMA fields are invalidated.
749 */
750 static void __invalidate_sg(struct scatterlist *sg, int nents)
751 {
752 struct scatterlist *s;
753 int i;
754
755 for_each_sg(sg, s, nents, i) {
756 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
757 s->offset += sg_dma_address(s);
758 if (sg_dma_len(s))
759 s->length = sg_dma_len(s);
760 sg_dma_address(s) = DMA_MAPPING_ERROR;
761 sg_dma_len(s) = 0;
762 }
763 }
764
765 /*
766 * The DMA API client is passing in a scatterlist which could describe
767 * any old buffer layout, but the IOMMU API requires everything to be
768 * aligned to IOMMU pages. Hence the need for this complicated bit of
769 * impedance-matching, to be able to hand off a suitably-aligned list,
770 * but still preserve the original offsets and sizes for the caller.
771 */
772 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
773 int nents, int prot)
774 {
775 struct iommu_domain *domain = iommu_get_dma_domain(dev);
776 struct iommu_dma_cookie *cookie = domain->iova_cookie;
777 struct iova_domain *iovad = &cookie->iovad;
778 struct scatterlist *s, *prev = NULL;
779 dma_addr_t iova;
780 size_t iova_len = 0;
781 unsigned long mask = dma_get_seg_boundary(dev);
782 int i;
783
784 /*
785 * Work out how much IOVA space we need, and align the segments to
786 * IOVA granules for the IOMMU driver to handle. With some clever
787 * trickery we can modify the list in-place, but reversibly, by
788 * stashing the unaligned parts in the as-yet-unused DMA fields.
789 */
790 for_each_sg(sg, s, nents, i) {
791 size_t s_iova_off = iova_offset(iovad, s->offset);
792 size_t s_length = s->length;
793 size_t pad_len = (mask - iova_len + 1) & mask;
794
795 sg_dma_address(s) = s_iova_off;
796 sg_dma_len(s) = s_length;
797 s->offset -= s_iova_off;
798 s_length = iova_align(iovad, s_length + s_iova_off);
799 s->length = s_length;
800
801 /*
802 * Due to the alignment of our single IOVA allocation, we can
803 * depend on these assumptions about the segment boundary mask:
804 * - If mask size >= IOVA size, then the IOVA range cannot
805 * possibly fall across a boundary, so we don't care.
806 * - If mask size < IOVA size, then the IOVA range must start
807 * exactly on a boundary, therefore we can lay things out
808 * based purely on segment lengths without needing to know
809 * the actual addresses beforehand.
810 * - The mask must be a power of 2, so pad_len == 0 if
811 * iova_len == 0, thus we cannot dereference prev the first
812 * time through here (i.e. before it has a meaningful value).
813 */
814 if (pad_len && pad_len < s_length - 1) {
815 prev->length += pad_len;
816 iova_len += pad_len;
817 }
818
819 iova_len += s_length;
820 prev = s;
821 }
822
823 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
824 if (!iova)
825 goto out_restore_sg;
826
827 /*
828 * We'll leave any physical concatenation to the IOMMU driver's
829 * implementation - it knows better than we do.
830 */
831 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
832 goto out_free_iova;
833
834 return __finalise_sg(dev, sg, nents, iova);
835
836 out_free_iova:
837 iommu_dma_free_iova(cookie, iova, iova_len);
838 out_restore_sg:
839 __invalidate_sg(sg, nents);
840 return 0;
841 }
842
843 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
844 enum dma_data_direction dir, unsigned long attrs)
845 {
846 dma_addr_t start, end;
847 struct scatterlist *tmp;
848 int i;
849 /*
850 * The scatterlist segments are mapped into a single
851 * contiguous IOVA allocation, so this is incredibly easy.
852 */
853 start = sg_dma_address(sg);
854 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
855 if (sg_dma_len(tmp) == 0)
856 break;
857 sg = tmp;
858 }
859 end = sg_dma_address(sg) + sg_dma_len(sg);
860 __iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start);
861 }
862
863 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
864 size_t size, enum dma_data_direction dir, unsigned long attrs)
865 {
866 return __iommu_dma_map(dev, phys, size,
867 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
868 iommu_get_dma_domain(dev));
869 }
870
871 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
872 size_t size, enum dma_data_direction dir, unsigned long attrs)
873 {
874 __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
875 }
876
877 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
878 phys_addr_t msi_addr, struct iommu_domain *domain)
879 {
880 struct iommu_dma_cookie *cookie = domain->iova_cookie;
881 struct iommu_dma_msi_page *msi_page;
882 dma_addr_t iova;
883 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
884 size_t size = cookie_msi_granule(cookie);
885
886 msi_addr &= ~(phys_addr_t)(size - 1);
887 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
888 if (msi_page->phys == msi_addr)
889 return msi_page;
890
891 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
892 if (!msi_page)
893 return NULL;
894
895 iova = __iommu_dma_map(dev, msi_addr, size, prot, domain);
896 if (iova == DMA_MAPPING_ERROR)
897 goto out_free_page;
898
899 INIT_LIST_HEAD(&msi_page->list);
900 msi_page->phys = msi_addr;
901 msi_page->iova = iova;
902 list_add(&msi_page->list, &cookie->msi_page_list);
903 return msi_page;
904
905 out_free_page:
906 kfree(msi_page);
907 return NULL;
908 }
909
910 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
911 {
912 struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
913 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
914 struct iommu_dma_cookie *cookie;
915 struct iommu_dma_msi_page *msi_page;
916 phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
917 unsigned long flags;
918
919 if (!domain || !domain->iova_cookie)
920 return;
921
922 cookie = domain->iova_cookie;
923
924 /*
925 * We disable IRQs to rule out a possible inversion against
926 * irq_desc_lock if, say, someone tries to retarget the affinity
927 * of an MSI from within an IPI handler.
928 */
929 spin_lock_irqsave(&cookie->msi_lock, flags);
930 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
931 spin_unlock_irqrestore(&cookie->msi_lock, flags);
932
933 if (WARN_ON(!msi_page)) {
934 /*
935 * We're called from a void callback, so the best we can do is
936 * 'fail' by filling the message with obviously bogus values.
937 * Since we got this far due to an IOMMU being present, it's
938 * not like the existing address would have worked anyway...
939 */
940 msg->address_hi = ~0U;
941 msg->address_lo = ~0U;
942 msg->data = ~0U;
943 } else {
944 msg->address_hi = upper_32_bits(msi_page->iova);
945 msg->address_lo &= cookie_msi_granule(cookie) - 1;
946 msg->address_lo += lower_32_bits(msi_page->iova);
947 }
948 }