]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iommu/dma-iommu.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / dma-iommu.c
1 /*
2 * A fairly generic DMA-API to IOMMU-API glue layer.
3 *
4 * Copyright (C) 2014-2015 ARM Ltd.
5 *
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include <linux/device.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/gfp.h>
25 #include <linux/huge_mm.h>
26 #include <linux/iommu.h>
27 #include <linux/iova.h>
28 #include <linux/irq.h>
29 #include <linux/mm.h>
30 #include <linux/pci.h>
31 #include <linux/scatterlist.h>
32 #include <linux/vmalloc.h>
33
34 struct iommu_dma_msi_page {
35 struct list_head list;
36 dma_addr_t iova;
37 phys_addr_t phys;
38 };
39
40 enum iommu_dma_cookie_type {
41 IOMMU_DMA_IOVA_COOKIE,
42 IOMMU_DMA_MSI_COOKIE,
43 };
44
45 struct iommu_dma_cookie {
46 enum iommu_dma_cookie_type type;
47 union {
48 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
49 struct iova_domain iovad;
50 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
51 dma_addr_t msi_iova;
52 };
53 struct list_head msi_page_list;
54 spinlock_t msi_lock;
55 };
56
57 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
58 {
59 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
60 return cookie->iovad.granule;
61 return PAGE_SIZE;
62 }
63
64 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
65 {
66 struct iommu_dma_cookie *cookie;
67
68 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
69 if (cookie) {
70 spin_lock_init(&cookie->msi_lock);
71 INIT_LIST_HEAD(&cookie->msi_page_list);
72 cookie->type = type;
73 }
74 return cookie;
75 }
76
77 int iommu_dma_init(void)
78 {
79 return iova_cache_get();
80 }
81
82 /**
83 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
84 * @domain: IOMMU domain to prepare for DMA-API usage
85 *
86 * IOMMU drivers should normally call this from their domain_alloc
87 * callback when domain->type == IOMMU_DOMAIN_DMA.
88 */
89 int iommu_get_dma_cookie(struct iommu_domain *domain)
90 {
91 if (domain->iova_cookie)
92 return -EEXIST;
93
94 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
95 if (!domain->iova_cookie)
96 return -ENOMEM;
97
98 return 0;
99 }
100 EXPORT_SYMBOL(iommu_get_dma_cookie);
101
102 /**
103 * iommu_get_msi_cookie - Acquire just MSI remapping resources
104 * @domain: IOMMU domain to prepare
105 * @base: Start address of IOVA region for MSI mappings
106 *
107 * Users who manage their own IOVA allocation and do not want DMA API support,
108 * but would still like to take advantage of automatic MSI remapping, can use
109 * this to initialise their own domain appropriately. Users should reserve a
110 * contiguous IOVA region, starting at @base, large enough to accommodate the
111 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
112 * used by the devices attached to @domain.
113 */
114 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
115 {
116 struct iommu_dma_cookie *cookie;
117
118 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
119 return -EINVAL;
120
121 if (domain->iova_cookie)
122 return -EEXIST;
123
124 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
125 if (!cookie)
126 return -ENOMEM;
127
128 cookie->msi_iova = base;
129 domain->iova_cookie = cookie;
130 return 0;
131 }
132 EXPORT_SYMBOL(iommu_get_msi_cookie);
133
134 /**
135 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
136 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
137 * iommu_get_msi_cookie()
138 *
139 * IOMMU drivers should normally call this from their domain_free callback.
140 */
141 void iommu_put_dma_cookie(struct iommu_domain *domain)
142 {
143 struct iommu_dma_cookie *cookie = domain->iova_cookie;
144 struct iommu_dma_msi_page *msi, *tmp;
145
146 if (!cookie)
147 return;
148
149 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
150 put_iova_domain(&cookie->iovad);
151
152 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
153 list_del(&msi->list);
154 kfree(msi);
155 }
156 kfree(cookie);
157 domain->iova_cookie = NULL;
158 }
159 EXPORT_SYMBOL(iommu_put_dma_cookie);
160
161 /**
162 * iommu_dma_get_resv_regions - Reserved region driver helper
163 * @dev: Device from iommu_get_resv_regions()
164 * @list: Reserved region list from iommu_get_resv_regions()
165 *
166 * IOMMU drivers can use this to implement their .get_resv_regions callback
167 * for general non-IOMMU-specific reservations. Currently, this covers host
168 * bridge windows for PCI devices.
169 */
170 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
171 {
172 struct pci_host_bridge *bridge;
173 struct resource_entry *window;
174
175 if (!dev_is_pci(dev))
176 return;
177
178 bridge = pci_find_host_bridge(to_pci_dev(dev)->bus);
179 resource_list_for_each_entry(window, &bridge->windows) {
180 struct iommu_resv_region *region;
181 phys_addr_t start;
182 size_t length;
183
184 if (resource_type(window->res) != IORESOURCE_MEM)
185 continue;
186
187 start = window->res->start - window->offset;
188 length = window->res->end - window->res->start + 1;
189 region = iommu_alloc_resv_region(start, length, 0,
190 IOMMU_RESV_RESERVED);
191 if (!region)
192 return;
193
194 list_add_tail(&region->list, list);
195 }
196 }
197 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
198
199 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
200 phys_addr_t start, phys_addr_t end)
201 {
202 struct iova_domain *iovad = &cookie->iovad;
203 struct iommu_dma_msi_page *msi_page;
204 int i, num_pages;
205
206 start -= iova_offset(iovad, start);
207 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
208
209 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
210 if (!msi_page)
211 return -ENOMEM;
212
213 for (i = 0; i < num_pages; i++) {
214 msi_page[i].phys = start;
215 msi_page[i].iova = start;
216 INIT_LIST_HEAD(&msi_page[i].list);
217 list_add(&msi_page[i].list, &cookie->msi_page_list);
218 start += iovad->granule;
219 }
220
221 return 0;
222 }
223
224 static int iova_reserve_iommu_regions(struct device *dev,
225 struct iommu_domain *domain)
226 {
227 struct iommu_dma_cookie *cookie = domain->iova_cookie;
228 struct iova_domain *iovad = &cookie->iovad;
229 struct iommu_resv_region *region;
230 LIST_HEAD(resv_regions);
231 int ret = 0;
232
233 iommu_get_resv_regions(dev, &resv_regions);
234 list_for_each_entry(region, &resv_regions, list) {
235 unsigned long lo, hi;
236
237 /* We ARE the software that manages these! */
238 if (region->type == IOMMU_RESV_SW_MSI)
239 continue;
240
241 lo = iova_pfn(iovad, region->start);
242 hi = iova_pfn(iovad, region->start + region->length - 1);
243 reserve_iova(iovad, lo, hi);
244
245 if (region->type == IOMMU_RESV_MSI)
246 ret = cookie_init_hw_msi_region(cookie, region->start,
247 region->start + region->length);
248 if (ret)
249 break;
250 }
251 iommu_put_resv_regions(dev, &resv_regions);
252
253 return ret;
254 }
255
256 /**
257 * iommu_dma_init_domain - Initialise a DMA mapping domain
258 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
259 * @base: IOVA at which the mappable address space starts
260 * @size: Size of IOVA space
261 * @dev: Device the domain is being initialised for
262 *
263 * @base and @size should be exact multiples of IOMMU page granularity to
264 * avoid rounding surprises. If necessary, we reserve the page at address 0
265 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
266 * any change which could make prior IOVAs invalid will fail.
267 */
268 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
269 u64 size, struct device *dev)
270 {
271 struct iommu_dma_cookie *cookie = domain->iova_cookie;
272 struct iova_domain *iovad = &cookie->iovad;
273 unsigned long order, base_pfn, end_pfn;
274
275 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
276 return -EINVAL;
277
278 /* Use the smallest supported page size for IOVA granularity */
279 order = __ffs(domain->pgsize_bitmap);
280 base_pfn = max_t(unsigned long, 1, base >> order);
281 end_pfn = (base + size - 1) >> order;
282
283 /* Check the domain allows at least some access to the device... */
284 if (domain->geometry.force_aperture) {
285 if (base > domain->geometry.aperture_end ||
286 base + size <= domain->geometry.aperture_start) {
287 pr_warn("specified DMA range outside IOMMU capability\n");
288 return -EFAULT;
289 }
290 /* ...then finally give it a kicking to make sure it fits */
291 base_pfn = max_t(unsigned long, base_pfn,
292 domain->geometry.aperture_start >> order);
293 end_pfn = min_t(unsigned long, end_pfn,
294 domain->geometry.aperture_end >> order);
295 }
296 /*
297 * PCI devices may have larger DMA masks, but still prefer allocating
298 * within a 32-bit mask to avoid DAC addressing. Such limitations don't
299 * apply to the typical platform device, so for those we may as well
300 * leave the cache limit at the top of their range to save an rb_last()
301 * traversal on every allocation.
302 */
303 if (dev && dev_is_pci(dev))
304 end_pfn &= DMA_BIT_MASK(32) >> order;
305
306 /* start_pfn is always nonzero for an already-initialised domain */
307 if (iovad->start_pfn) {
308 if (1UL << order != iovad->granule ||
309 base_pfn != iovad->start_pfn) {
310 pr_warn("Incompatible range for DMA domain\n");
311 return -EFAULT;
312 }
313 /*
314 * If we have devices with different DMA masks, move the free
315 * area cache limit down for the benefit of the smaller one.
316 */
317 iovad->dma_32bit_pfn = min(end_pfn, iovad->dma_32bit_pfn);
318
319 return 0;
320 }
321
322 init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
323 if (!dev)
324 return 0;
325
326 return iova_reserve_iommu_regions(dev, domain);
327 }
328 EXPORT_SYMBOL(iommu_dma_init_domain);
329
330 /**
331 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
332 * page flags.
333 * @dir: Direction of DMA transfer
334 * @coherent: Is the DMA master cache-coherent?
335 * @attrs: DMA attributes for the mapping
336 *
337 * Return: corresponding IOMMU API page protection flags
338 */
339 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
340 unsigned long attrs)
341 {
342 int prot = coherent ? IOMMU_CACHE : 0;
343
344 if (attrs & DMA_ATTR_PRIVILEGED)
345 prot |= IOMMU_PRIV;
346
347 switch (dir) {
348 case DMA_BIDIRECTIONAL:
349 return prot | IOMMU_READ | IOMMU_WRITE;
350 case DMA_TO_DEVICE:
351 return prot | IOMMU_READ;
352 case DMA_FROM_DEVICE:
353 return prot | IOMMU_WRITE;
354 default:
355 return 0;
356 }
357 }
358
359 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
360 size_t size, dma_addr_t dma_limit, struct device *dev)
361 {
362 struct iommu_dma_cookie *cookie = domain->iova_cookie;
363 struct iova_domain *iovad = &cookie->iovad;
364 unsigned long shift, iova_len, iova = 0;
365
366 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
367 cookie->msi_iova += size;
368 return cookie->msi_iova - size;
369 }
370
371 shift = iova_shift(iovad);
372 iova_len = size >> shift;
373 /*
374 * Freeing non-power-of-two-sized allocations back into the IOVA caches
375 * will come back to bite us badly, so we have to waste a bit of space
376 * rounding up anything cacheable to make sure that can't happen. The
377 * order of the unadjusted size will still match upon freeing.
378 */
379 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
380 iova_len = roundup_pow_of_two(iova_len);
381
382 if (domain->geometry.force_aperture)
383 dma_limit = min(dma_limit, domain->geometry.aperture_end);
384
385 /* Try to get PCI devices a SAC address */
386 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
387 iova = alloc_iova_fast(iovad, iova_len, DMA_BIT_MASK(32) >> shift);
388
389 if (!iova)
390 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift);
391
392 return (dma_addr_t)iova << shift;
393 }
394
395 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
396 dma_addr_t iova, size_t size)
397 {
398 struct iova_domain *iovad = &cookie->iovad;
399 unsigned long shift = iova_shift(iovad);
400
401 /* The MSI case is only ever cleaning up its most recent allocation */
402 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
403 cookie->msi_iova -= size;
404 else
405 free_iova_fast(iovad, iova >> shift, size >> shift);
406 }
407
408 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
409 size_t size)
410 {
411 struct iommu_dma_cookie *cookie = domain->iova_cookie;
412 struct iova_domain *iovad = &cookie->iovad;
413 size_t iova_off = iova_offset(iovad, dma_addr);
414
415 dma_addr -= iova_off;
416 size = iova_align(iovad, size + iova_off);
417
418 WARN_ON(iommu_unmap(domain, dma_addr, size) != size);
419 iommu_dma_free_iova(cookie, dma_addr, size);
420 }
421
422 static void __iommu_dma_free_pages(struct page **pages, int count)
423 {
424 while (count--)
425 __free_page(pages[count]);
426 kvfree(pages);
427 }
428
429 static struct page **__iommu_dma_alloc_pages(unsigned int count,
430 unsigned long order_mask, gfp_t gfp)
431 {
432 struct page **pages;
433 unsigned int i = 0, array_size = count * sizeof(*pages);
434
435 order_mask &= (2U << MAX_ORDER) - 1;
436 if (!order_mask)
437 return NULL;
438
439 if (array_size <= PAGE_SIZE)
440 pages = kzalloc(array_size, GFP_KERNEL);
441 else
442 pages = vzalloc(array_size);
443 if (!pages)
444 return NULL;
445
446 /* IOMMU can map any pages, so himem can also be used here */
447 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
448
449 while (count) {
450 struct page *page = NULL;
451 unsigned int order_size;
452
453 /*
454 * Higher-order allocations are a convenience rather
455 * than a necessity, hence using __GFP_NORETRY until
456 * falling back to minimum-order allocations.
457 */
458 for (order_mask &= (2U << __fls(count)) - 1;
459 order_mask; order_mask &= ~order_size) {
460 unsigned int order = __fls(order_mask);
461
462 order_size = 1U << order;
463 page = alloc_pages((order_mask - order_size) ?
464 gfp | __GFP_NORETRY : gfp, order);
465 if (!page)
466 continue;
467 if (!order)
468 break;
469 if (!PageCompound(page)) {
470 split_page(page, order);
471 break;
472 } else if (!split_huge_page(page)) {
473 break;
474 }
475 __free_pages(page, order);
476 }
477 if (!page) {
478 __iommu_dma_free_pages(pages, i);
479 return NULL;
480 }
481 count -= order_size;
482 while (order_size--)
483 pages[i++] = page++;
484 }
485 return pages;
486 }
487
488 /**
489 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
490 * @dev: Device which owns this buffer
491 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
492 * @size: Size of buffer in bytes
493 * @handle: DMA address of buffer
494 *
495 * Frees both the pages associated with the buffer, and the array
496 * describing them
497 */
498 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
499 dma_addr_t *handle)
500 {
501 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle, size);
502 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
503 *handle = DMA_ERROR_CODE;
504 }
505
506 /**
507 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
508 * @dev: Device to allocate memory for. Must be a real device
509 * attached to an iommu_dma_domain
510 * @size: Size of buffer in bytes
511 * @gfp: Allocation flags
512 * @attrs: DMA attributes for this allocation
513 * @prot: IOMMU mapping flags
514 * @handle: Out argument for allocated DMA handle
515 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
516 * given VA/PA are visible to the given non-coherent device.
517 *
518 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
519 * but an IOMMU which supports smaller pages might not map the whole thing.
520 *
521 * Return: Array of struct page pointers describing the buffer,
522 * or NULL on failure.
523 */
524 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
525 unsigned long attrs, int prot, dma_addr_t *handle,
526 void (*flush_page)(struct device *, const void *, phys_addr_t))
527 {
528 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
529 struct iommu_dma_cookie *cookie = domain->iova_cookie;
530 struct iova_domain *iovad = &cookie->iovad;
531 struct page **pages;
532 struct sg_table sgt;
533 dma_addr_t iova;
534 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
535
536 *handle = DMA_ERROR_CODE;
537
538 min_size = alloc_sizes & -alloc_sizes;
539 if (min_size < PAGE_SIZE) {
540 min_size = PAGE_SIZE;
541 alloc_sizes |= PAGE_SIZE;
542 } else {
543 size = ALIGN(size, min_size);
544 }
545 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
546 alloc_sizes = min_size;
547
548 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
549 pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
550 if (!pages)
551 return NULL;
552
553 size = iova_align(iovad, size);
554 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
555 if (!iova)
556 goto out_free_pages;
557
558 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
559 goto out_free_iova;
560
561 if (!(prot & IOMMU_CACHE)) {
562 struct sg_mapping_iter miter;
563 /*
564 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
565 * sufficient here, so skip it by using the "wrong" direction.
566 */
567 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
568 while (sg_miter_next(&miter))
569 flush_page(dev, miter.addr, page_to_phys(miter.page));
570 sg_miter_stop(&miter);
571 }
572
573 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
574 < size)
575 goto out_free_sg;
576
577 *handle = iova;
578 sg_free_table(&sgt);
579 return pages;
580
581 out_free_sg:
582 sg_free_table(&sgt);
583 out_free_iova:
584 iommu_dma_free_iova(cookie, iova, size);
585 out_free_pages:
586 __iommu_dma_free_pages(pages, count);
587 return NULL;
588 }
589
590 /**
591 * iommu_dma_mmap - Map a buffer into provided user VMA
592 * @pages: Array representing buffer from iommu_dma_alloc()
593 * @size: Size of buffer in bytes
594 * @vma: VMA describing requested userspace mapping
595 *
596 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
597 * for verifying the correct size and protection of @vma beforehand.
598 */
599
600 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
601 {
602 unsigned long uaddr = vma->vm_start;
603 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
604 int ret = -ENXIO;
605
606 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
607 ret = vm_insert_page(vma, uaddr, pages[i]);
608 if (ret)
609 break;
610 uaddr += PAGE_SIZE;
611 }
612 return ret;
613 }
614
615 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
616 size_t size, int prot)
617 {
618 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
619 struct iommu_dma_cookie *cookie = domain->iova_cookie;
620 struct iova_domain *iovad = &cookie->iovad;
621 size_t iova_off = iova_offset(iovad, phys);
622 dma_addr_t iova;
623
624 size = iova_align(iovad, size + iova_off);
625 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
626 if (!iova)
627 return DMA_ERROR_CODE;
628
629 if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
630 iommu_dma_free_iova(cookie, iova, size);
631 return DMA_ERROR_CODE;
632 }
633 return iova + iova_off;
634 }
635
636 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
637 unsigned long offset, size_t size, int prot)
638 {
639 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
640 }
641
642 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
643 enum dma_data_direction dir, unsigned long attrs)
644 {
645 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
646 }
647
648 /*
649 * Prepare a successfully-mapped scatterlist to give back to the caller.
650 *
651 * At this point the segments are already laid out by iommu_dma_map_sg() to
652 * avoid individually crossing any boundaries, so we merely need to check a
653 * segment's start address to avoid concatenating across one.
654 */
655 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
656 dma_addr_t dma_addr)
657 {
658 struct scatterlist *s, *cur = sg;
659 unsigned long seg_mask = dma_get_seg_boundary(dev);
660 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
661 int i, count = 0;
662
663 for_each_sg(sg, s, nents, i) {
664 /* Restore this segment's original unaligned fields first */
665 unsigned int s_iova_off = sg_dma_address(s);
666 unsigned int s_length = sg_dma_len(s);
667 unsigned int s_iova_len = s->length;
668
669 s->offset += s_iova_off;
670 s->length = s_length;
671 sg_dma_address(s) = DMA_ERROR_CODE;
672 sg_dma_len(s) = 0;
673
674 /*
675 * Now fill in the real DMA data. If...
676 * - there is a valid output segment to append to
677 * - and this segment starts on an IOVA page boundary
678 * - but doesn't fall at a segment boundary
679 * - and wouldn't make the resulting output segment too long
680 */
681 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
682 (cur_len + s_length <= max_len)) {
683 /* ...then concatenate it with the previous one */
684 cur_len += s_length;
685 } else {
686 /* Otherwise start the next output segment */
687 if (i > 0)
688 cur = sg_next(cur);
689 cur_len = s_length;
690 count++;
691
692 sg_dma_address(cur) = dma_addr + s_iova_off;
693 }
694
695 sg_dma_len(cur) = cur_len;
696 dma_addr += s_iova_len;
697
698 if (s_length + s_iova_off < s_iova_len)
699 cur_len = 0;
700 }
701 return count;
702 }
703
704 /*
705 * If mapping failed, then just restore the original list,
706 * but making sure the DMA fields are invalidated.
707 */
708 static void __invalidate_sg(struct scatterlist *sg, int nents)
709 {
710 struct scatterlist *s;
711 int i;
712
713 for_each_sg(sg, s, nents, i) {
714 if (sg_dma_address(s) != DMA_ERROR_CODE)
715 s->offset += sg_dma_address(s);
716 if (sg_dma_len(s))
717 s->length = sg_dma_len(s);
718 sg_dma_address(s) = DMA_ERROR_CODE;
719 sg_dma_len(s) = 0;
720 }
721 }
722
723 /*
724 * The DMA API client is passing in a scatterlist which could describe
725 * any old buffer layout, but the IOMMU API requires everything to be
726 * aligned to IOMMU pages. Hence the need for this complicated bit of
727 * impedance-matching, to be able to hand off a suitably-aligned list,
728 * but still preserve the original offsets and sizes for the caller.
729 */
730 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
731 int nents, int prot)
732 {
733 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
734 struct iommu_dma_cookie *cookie = domain->iova_cookie;
735 struct iova_domain *iovad = &cookie->iovad;
736 struct scatterlist *s, *prev = NULL;
737 dma_addr_t iova;
738 size_t iova_len = 0;
739 unsigned long mask = dma_get_seg_boundary(dev);
740 int i;
741
742 /*
743 * Work out how much IOVA space we need, and align the segments to
744 * IOVA granules for the IOMMU driver to handle. With some clever
745 * trickery we can modify the list in-place, but reversibly, by
746 * stashing the unaligned parts in the as-yet-unused DMA fields.
747 */
748 for_each_sg(sg, s, nents, i) {
749 size_t s_iova_off = iova_offset(iovad, s->offset);
750 size_t s_length = s->length;
751 size_t pad_len = (mask - iova_len + 1) & mask;
752
753 sg_dma_address(s) = s_iova_off;
754 sg_dma_len(s) = s_length;
755 s->offset -= s_iova_off;
756 s_length = iova_align(iovad, s_length + s_iova_off);
757 s->length = s_length;
758
759 /*
760 * Due to the alignment of our single IOVA allocation, we can
761 * depend on these assumptions about the segment boundary mask:
762 * - If mask size >= IOVA size, then the IOVA range cannot
763 * possibly fall across a boundary, so we don't care.
764 * - If mask size < IOVA size, then the IOVA range must start
765 * exactly on a boundary, therefore we can lay things out
766 * based purely on segment lengths without needing to know
767 * the actual addresses beforehand.
768 * - The mask must be a power of 2, so pad_len == 0 if
769 * iova_len == 0, thus we cannot dereference prev the first
770 * time through here (i.e. before it has a meaningful value).
771 */
772 if (pad_len && pad_len < s_length - 1) {
773 prev->length += pad_len;
774 iova_len += pad_len;
775 }
776
777 iova_len += s_length;
778 prev = s;
779 }
780
781 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
782 if (!iova)
783 goto out_restore_sg;
784
785 /*
786 * We'll leave any physical concatenation to the IOMMU driver's
787 * implementation - it knows better than we do.
788 */
789 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
790 goto out_free_iova;
791
792 return __finalise_sg(dev, sg, nents, iova);
793
794 out_free_iova:
795 iommu_dma_free_iova(cookie, iova, iova_len);
796 out_restore_sg:
797 __invalidate_sg(sg, nents);
798 return 0;
799 }
800
801 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
802 enum dma_data_direction dir, unsigned long attrs)
803 {
804 dma_addr_t start, end;
805 struct scatterlist *tmp;
806 int i;
807 /*
808 * The scatterlist segments are mapped into a single
809 * contiguous IOVA allocation, so this is incredibly easy.
810 */
811 start = sg_dma_address(sg);
812 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
813 if (sg_dma_len(tmp) == 0)
814 break;
815 sg = tmp;
816 }
817 end = sg_dma_address(sg) + sg_dma_len(sg);
818 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), start, end - start);
819 }
820
821 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
822 size_t size, enum dma_data_direction dir, unsigned long attrs)
823 {
824 return __iommu_dma_map(dev, phys, size,
825 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
826 }
827
828 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
829 size_t size, enum dma_data_direction dir, unsigned long attrs)
830 {
831 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
832 }
833
834 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
835 {
836 return dma_addr == DMA_ERROR_CODE;
837 }
838
839 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
840 phys_addr_t msi_addr, struct iommu_domain *domain)
841 {
842 struct iommu_dma_cookie *cookie = domain->iova_cookie;
843 struct iommu_dma_msi_page *msi_page;
844 dma_addr_t iova;
845 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
846 size_t size = cookie_msi_granule(cookie);
847
848 msi_addr &= ~(phys_addr_t)(size - 1);
849 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
850 if (msi_page->phys == msi_addr)
851 return msi_page;
852
853 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
854 if (!msi_page)
855 return NULL;
856
857 iova = __iommu_dma_map(dev, msi_addr, size, prot);
858 if (iommu_dma_mapping_error(dev, iova))
859 goto out_free_page;
860
861 INIT_LIST_HEAD(&msi_page->list);
862 msi_page->phys = msi_addr;
863 msi_page->iova = iova;
864 list_add(&msi_page->list, &cookie->msi_page_list);
865 return msi_page;
866
867 out_free_page:
868 kfree(msi_page);
869 return NULL;
870 }
871
872 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
873 {
874 struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
875 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
876 struct iommu_dma_cookie *cookie;
877 struct iommu_dma_msi_page *msi_page;
878 phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
879 unsigned long flags;
880
881 if (!domain || !domain->iova_cookie)
882 return;
883
884 cookie = domain->iova_cookie;
885
886 /*
887 * We disable IRQs to rule out a possible inversion against
888 * irq_desc_lock if, say, someone tries to retarget the affinity
889 * of an MSI from within an IPI handler.
890 */
891 spin_lock_irqsave(&cookie->msi_lock, flags);
892 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
893 spin_unlock_irqrestore(&cookie->msi_lock, flags);
894
895 if (WARN_ON(!msi_page)) {
896 /*
897 * We're called from a void callback, so the best we can do is
898 * 'fail' by filling the message with obviously bogus values.
899 * Since we got this far due to an IOMMU being present, it's
900 * not like the existing address would have worked anyway...
901 */
902 msg->address_hi = ~0U;
903 msg->address_lo = ~0U;
904 msg->data = ~0U;
905 } else {
906 msg->address_hi = upper_32_bits(msi_page->iova);
907 msg->address_lo &= cookie_msi_granule(cookie) - 1;
908 msg->address_lo += lower_32_bits(msi_page->iova);
909 }
910 }