]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/iommu/dmar.c
mmc: dw_mmc-pltfm: deploy runtime PM facilities
[mirror_ubuntu-zesty-kernel.git] / drivers / iommu / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #define pr_fmt(fmt) "DMAR: " fmt
30
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/iova.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/timer.h>
36 #include <linux/irq.h>
37 #include <linux/interrupt.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/slab.h>
41 #include <linux/iommu.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/iommu_table.h>
44
45 #include "irq_remapping.h"
46
47 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
48 struct dmar_res_callback {
49 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
50 void *arg[ACPI_DMAR_TYPE_RESERVED];
51 bool ignore_unhandled;
52 bool print_entry;
53 };
54
55 /*
56 * Assumptions:
57 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
58 * before IO devices managed by that unit.
59 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
60 * after IO devices managed by that unit.
61 * 3) Hotplug events are rare.
62 *
63 * Locking rules for DMA and interrupt remapping related global data structures:
64 * 1) Use dmar_global_lock in process context
65 * 2) Use RCU in interrupt context
66 */
67 DECLARE_RWSEM(dmar_global_lock);
68 LIST_HEAD(dmar_drhd_units);
69
70 struct acpi_table_header * __initdata dmar_tbl;
71 static acpi_size dmar_tbl_size;
72 static int dmar_dev_scope_status = 1;
73 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
74
75 static int alloc_iommu(struct dmar_drhd_unit *drhd);
76 static void free_iommu(struct intel_iommu *iommu);
77
78 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
79 {
80 /*
81 * add INCLUDE_ALL at the tail, so scan the list will find it at
82 * the very end.
83 */
84 if (drhd->include_all)
85 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
86 else
87 list_add_rcu(&drhd->list, &dmar_drhd_units);
88 }
89
90 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
91 {
92 struct acpi_dmar_device_scope *scope;
93
94 *cnt = 0;
95 while (start < end) {
96 scope = start;
97 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
98 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
99 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
100 (*cnt)++;
101 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
102 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
103 pr_warn("Unsupported device scope\n");
104 }
105 start += scope->length;
106 }
107 if (*cnt == 0)
108 return NULL;
109
110 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
111 }
112
113 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
114 {
115 int i;
116 struct device *tmp_dev;
117
118 if (*devices && *cnt) {
119 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
120 put_device(tmp_dev);
121 kfree(*devices);
122 }
123
124 *devices = NULL;
125 *cnt = 0;
126 }
127
128 /* Optimize out kzalloc()/kfree() for normal cases */
129 static char dmar_pci_notify_info_buf[64];
130
131 static struct dmar_pci_notify_info *
132 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
133 {
134 int level = 0;
135 size_t size;
136 struct pci_dev *tmp;
137 struct dmar_pci_notify_info *info;
138
139 BUG_ON(dev->is_virtfn);
140
141 /* Only generate path[] for device addition event */
142 if (event == BUS_NOTIFY_ADD_DEVICE)
143 for (tmp = dev; tmp; tmp = tmp->bus->self)
144 level++;
145
146 size = sizeof(*info) + level * sizeof(struct acpi_dmar_pci_path);
147 if (size <= sizeof(dmar_pci_notify_info_buf)) {
148 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
149 } else {
150 info = kzalloc(size, GFP_KERNEL);
151 if (!info) {
152 pr_warn("Out of memory when allocating notify_info "
153 "for %s.\n", pci_name(dev));
154 if (dmar_dev_scope_status == 0)
155 dmar_dev_scope_status = -ENOMEM;
156 return NULL;
157 }
158 }
159
160 info->event = event;
161 info->dev = dev;
162 info->seg = pci_domain_nr(dev->bus);
163 info->level = level;
164 if (event == BUS_NOTIFY_ADD_DEVICE) {
165 for (tmp = dev; tmp; tmp = tmp->bus->self) {
166 level--;
167 info->path[level].bus = tmp->bus->number;
168 info->path[level].device = PCI_SLOT(tmp->devfn);
169 info->path[level].function = PCI_FUNC(tmp->devfn);
170 if (pci_is_root_bus(tmp->bus))
171 info->bus = tmp->bus->number;
172 }
173 }
174
175 return info;
176 }
177
178 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
179 {
180 if ((void *)info != dmar_pci_notify_info_buf)
181 kfree(info);
182 }
183
184 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
185 struct acpi_dmar_pci_path *path, int count)
186 {
187 int i;
188
189 if (info->bus != bus)
190 goto fallback;
191 if (info->level != count)
192 goto fallback;
193
194 for (i = 0; i < count; i++) {
195 if (path[i].device != info->path[i].device ||
196 path[i].function != info->path[i].function)
197 goto fallback;
198 }
199
200 return true;
201
202 fallback:
203
204 if (count != 1)
205 return false;
206
207 i = info->level - 1;
208 if (bus == info->path[i].bus &&
209 path[0].device == info->path[i].device &&
210 path[0].function == info->path[i].function) {
211 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
212 bus, path[0].device, path[0].function);
213 return true;
214 }
215
216 return false;
217 }
218
219 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
220 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
221 void *start, void*end, u16 segment,
222 struct dmar_dev_scope *devices,
223 int devices_cnt)
224 {
225 int i, level;
226 struct device *tmp, *dev = &info->dev->dev;
227 struct acpi_dmar_device_scope *scope;
228 struct acpi_dmar_pci_path *path;
229
230 if (segment != info->seg)
231 return 0;
232
233 for (; start < end; start += scope->length) {
234 scope = start;
235 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
236 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
237 continue;
238
239 path = (struct acpi_dmar_pci_path *)(scope + 1);
240 level = (scope->length - sizeof(*scope)) / sizeof(*path);
241 if (!dmar_match_pci_path(info, scope->bus, path, level))
242 continue;
243
244 /*
245 * We expect devices with endpoint scope to have normal PCI
246 * headers, and devices with bridge scope to have bridge PCI
247 * headers. However PCI NTB devices may be listed in the
248 * DMAR table with bridge scope, even though they have a
249 * normal PCI header. NTB devices are identified by class
250 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
251 * for this special case.
252 */
253 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
254 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
255 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
256 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
257 info->dev->class >> 8 != PCI_CLASS_BRIDGE_OTHER))) {
258 pr_warn("Device scope type does not match for %s\n",
259 pci_name(info->dev));
260 return -EINVAL;
261 }
262
263 for_each_dev_scope(devices, devices_cnt, i, tmp)
264 if (tmp == NULL) {
265 devices[i].bus = info->dev->bus->number;
266 devices[i].devfn = info->dev->devfn;
267 rcu_assign_pointer(devices[i].dev,
268 get_device(dev));
269 return 1;
270 }
271 BUG_ON(i >= devices_cnt);
272 }
273
274 return 0;
275 }
276
277 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
278 struct dmar_dev_scope *devices, int count)
279 {
280 int index;
281 struct device *tmp;
282
283 if (info->seg != segment)
284 return 0;
285
286 for_each_active_dev_scope(devices, count, index, tmp)
287 if (tmp == &info->dev->dev) {
288 RCU_INIT_POINTER(devices[index].dev, NULL);
289 synchronize_rcu();
290 put_device(tmp);
291 return 1;
292 }
293
294 return 0;
295 }
296
297 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
298 {
299 int ret = 0;
300 struct dmar_drhd_unit *dmaru;
301 struct acpi_dmar_hardware_unit *drhd;
302
303 for_each_drhd_unit(dmaru) {
304 if (dmaru->include_all)
305 continue;
306
307 drhd = container_of(dmaru->hdr,
308 struct acpi_dmar_hardware_unit, header);
309 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
310 ((void *)drhd) + drhd->header.length,
311 dmaru->segment,
312 dmaru->devices, dmaru->devices_cnt);
313 if (ret != 0)
314 break;
315 }
316 if (ret >= 0)
317 ret = dmar_iommu_notify_scope_dev(info);
318 if (ret < 0 && dmar_dev_scope_status == 0)
319 dmar_dev_scope_status = ret;
320
321 return ret;
322 }
323
324 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
325 {
326 struct dmar_drhd_unit *dmaru;
327
328 for_each_drhd_unit(dmaru)
329 if (dmar_remove_dev_scope(info, dmaru->segment,
330 dmaru->devices, dmaru->devices_cnt))
331 break;
332 dmar_iommu_notify_scope_dev(info);
333 }
334
335 static int dmar_pci_bus_notifier(struct notifier_block *nb,
336 unsigned long action, void *data)
337 {
338 struct pci_dev *pdev = to_pci_dev(data);
339 struct dmar_pci_notify_info *info;
340
341 /* Only care about add/remove events for physical functions.
342 * For VFs we actually do the lookup based on the corresponding
343 * PF in device_to_iommu() anyway. */
344 if (pdev->is_virtfn)
345 return NOTIFY_DONE;
346 if (action != BUS_NOTIFY_ADD_DEVICE &&
347 action != BUS_NOTIFY_REMOVED_DEVICE)
348 return NOTIFY_DONE;
349
350 info = dmar_alloc_pci_notify_info(pdev, action);
351 if (!info)
352 return NOTIFY_DONE;
353
354 down_write(&dmar_global_lock);
355 if (action == BUS_NOTIFY_ADD_DEVICE)
356 dmar_pci_bus_add_dev(info);
357 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
358 dmar_pci_bus_del_dev(info);
359 up_write(&dmar_global_lock);
360
361 dmar_free_pci_notify_info(info);
362
363 return NOTIFY_OK;
364 }
365
366 static struct notifier_block dmar_pci_bus_nb = {
367 .notifier_call = dmar_pci_bus_notifier,
368 .priority = INT_MIN,
369 };
370
371 static struct dmar_drhd_unit *
372 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
373 {
374 struct dmar_drhd_unit *dmaru;
375
376 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list)
377 if (dmaru->segment == drhd->segment &&
378 dmaru->reg_base_addr == drhd->address)
379 return dmaru;
380
381 return NULL;
382 }
383
384 /**
385 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
386 * structure which uniquely represent one DMA remapping hardware unit
387 * present in the platform
388 */
389 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
390 {
391 struct acpi_dmar_hardware_unit *drhd;
392 struct dmar_drhd_unit *dmaru;
393 int ret = 0;
394
395 drhd = (struct acpi_dmar_hardware_unit *)header;
396 dmaru = dmar_find_dmaru(drhd);
397 if (dmaru)
398 goto out;
399
400 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
401 if (!dmaru)
402 return -ENOMEM;
403
404 /*
405 * If header is allocated from slab by ACPI _DSM method, we need to
406 * copy the content because the memory buffer will be freed on return.
407 */
408 dmaru->hdr = (void *)(dmaru + 1);
409 memcpy(dmaru->hdr, header, header->length);
410 dmaru->reg_base_addr = drhd->address;
411 dmaru->segment = drhd->segment;
412 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
413 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
414 ((void *)drhd) + drhd->header.length,
415 &dmaru->devices_cnt);
416 if (dmaru->devices_cnt && dmaru->devices == NULL) {
417 kfree(dmaru);
418 return -ENOMEM;
419 }
420
421 ret = alloc_iommu(dmaru);
422 if (ret) {
423 dmar_free_dev_scope(&dmaru->devices,
424 &dmaru->devices_cnt);
425 kfree(dmaru);
426 return ret;
427 }
428 dmar_register_drhd_unit(dmaru);
429
430 out:
431 if (arg)
432 (*(int *)arg)++;
433
434 return 0;
435 }
436
437 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
438 {
439 if (dmaru->devices && dmaru->devices_cnt)
440 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
441 if (dmaru->iommu)
442 free_iommu(dmaru->iommu);
443 kfree(dmaru);
444 }
445
446 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
447 void *arg)
448 {
449 struct acpi_dmar_andd *andd = (void *)header;
450
451 /* Check for NUL termination within the designated length */
452 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
453 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
454 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
455 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
456 dmi_get_system_info(DMI_BIOS_VENDOR),
457 dmi_get_system_info(DMI_BIOS_VERSION),
458 dmi_get_system_info(DMI_PRODUCT_VERSION));
459 return -EINVAL;
460 }
461 pr_info("ANDD device: %x name: %s\n", andd->device_number,
462 andd->device_name);
463
464 return 0;
465 }
466
467 #ifdef CONFIG_ACPI_NUMA
468 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
469 {
470 struct acpi_dmar_rhsa *rhsa;
471 struct dmar_drhd_unit *drhd;
472
473 rhsa = (struct acpi_dmar_rhsa *)header;
474 for_each_drhd_unit(drhd) {
475 if (drhd->reg_base_addr == rhsa->base_address) {
476 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
477
478 if (!node_online(node))
479 node = -1;
480 drhd->iommu->node = node;
481 return 0;
482 }
483 }
484 WARN_TAINT(
485 1, TAINT_FIRMWARE_WORKAROUND,
486 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
487 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
488 drhd->reg_base_addr,
489 dmi_get_system_info(DMI_BIOS_VENDOR),
490 dmi_get_system_info(DMI_BIOS_VERSION),
491 dmi_get_system_info(DMI_PRODUCT_VERSION));
492
493 return 0;
494 }
495 #else
496 #define dmar_parse_one_rhsa dmar_res_noop
497 #endif
498
499 static void __init
500 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
501 {
502 struct acpi_dmar_hardware_unit *drhd;
503 struct acpi_dmar_reserved_memory *rmrr;
504 struct acpi_dmar_atsr *atsr;
505 struct acpi_dmar_rhsa *rhsa;
506
507 switch (header->type) {
508 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
509 drhd = container_of(header, struct acpi_dmar_hardware_unit,
510 header);
511 pr_info("DRHD base: %#016Lx flags: %#x\n",
512 (unsigned long long)drhd->address, drhd->flags);
513 break;
514 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
515 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
516 header);
517 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
518 (unsigned long long)rmrr->base_address,
519 (unsigned long long)rmrr->end_address);
520 break;
521 case ACPI_DMAR_TYPE_ROOT_ATS:
522 atsr = container_of(header, struct acpi_dmar_atsr, header);
523 pr_info("ATSR flags: %#x\n", atsr->flags);
524 break;
525 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
526 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
527 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
528 (unsigned long long)rhsa->base_address,
529 rhsa->proximity_domain);
530 break;
531 case ACPI_DMAR_TYPE_NAMESPACE:
532 /* We don't print this here because we need to sanity-check
533 it first. So print it in dmar_parse_one_andd() instead. */
534 break;
535 }
536 }
537
538 /**
539 * dmar_table_detect - checks to see if the platform supports DMAR devices
540 */
541 static int __init dmar_table_detect(void)
542 {
543 acpi_status status = AE_OK;
544
545 /* if we could find DMAR table, then there are DMAR devices */
546 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
547 (struct acpi_table_header **)&dmar_tbl,
548 &dmar_tbl_size);
549
550 if (ACPI_SUCCESS(status) && !dmar_tbl) {
551 pr_warn("Unable to map DMAR\n");
552 status = AE_NOT_FOUND;
553 }
554
555 return (ACPI_SUCCESS(status) ? 1 : 0);
556 }
557
558 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
559 size_t len, struct dmar_res_callback *cb)
560 {
561 int ret = 0;
562 struct acpi_dmar_header *iter, *next;
563 struct acpi_dmar_header *end = ((void *)start) + len;
564
565 for (iter = start; iter < end && ret == 0; iter = next) {
566 next = (void *)iter + iter->length;
567 if (iter->length == 0) {
568 /* Avoid looping forever on bad ACPI tables */
569 pr_debug(FW_BUG "Invalid 0-length structure\n");
570 break;
571 } else if (next > end) {
572 /* Avoid passing table end */
573 pr_warn(FW_BUG "Record passes table end\n");
574 ret = -EINVAL;
575 break;
576 }
577
578 if (cb->print_entry)
579 dmar_table_print_dmar_entry(iter);
580
581 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
582 /* continue for forward compatibility */
583 pr_debug("Unknown DMAR structure type %d\n",
584 iter->type);
585 } else if (cb->cb[iter->type]) {
586 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
587 } else if (!cb->ignore_unhandled) {
588 pr_warn("No handler for DMAR structure type %d\n",
589 iter->type);
590 ret = -EINVAL;
591 }
592 }
593
594 return ret;
595 }
596
597 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
598 struct dmar_res_callback *cb)
599 {
600 return dmar_walk_remapping_entries((void *)(dmar + 1),
601 dmar->header.length - sizeof(*dmar), cb);
602 }
603
604 /**
605 * parse_dmar_table - parses the DMA reporting table
606 */
607 static int __init
608 parse_dmar_table(void)
609 {
610 struct acpi_table_dmar *dmar;
611 int ret = 0;
612 int drhd_count = 0;
613 struct dmar_res_callback cb = {
614 .print_entry = true,
615 .ignore_unhandled = true,
616 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
617 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
618 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
619 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
620 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
621 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
622 };
623
624 /*
625 * Do it again, earlier dmar_tbl mapping could be mapped with
626 * fixed map.
627 */
628 dmar_table_detect();
629
630 /*
631 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
632 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
633 */
634 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
635
636 dmar = (struct acpi_table_dmar *)dmar_tbl;
637 if (!dmar)
638 return -ENODEV;
639
640 if (dmar->width < PAGE_SHIFT - 1) {
641 pr_warn("Invalid DMAR haw\n");
642 return -EINVAL;
643 }
644
645 pr_info("Host address width %d\n", dmar->width + 1);
646 ret = dmar_walk_dmar_table(dmar, &cb);
647 if (ret == 0 && drhd_count == 0)
648 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
649
650 return ret;
651 }
652
653 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
654 int cnt, struct pci_dev *dev)
655 {
656 int index;
657 struct device *tmp;
658
659 while (dev) {
660 for_each_active_dev_scope(devices, cnt, index, tmp)
661 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
662 return 1;
663
664 /* Check our parent */
665 dev = dev->bus->self;
666 }
667
668 return 0;
669 }
670
671 struct dmar_drhd_unit *
672 dmar_find_matched_drhd_unit(struct pci_dev *dev)
673 {
674 struct dmar_drhd_unit *dmaru;
675 struct acpi_dmar_hardware_unit *drhd;
676
677 dev = pci_physfn(dev);
678
679 rcu_read_lock();
680 for_each_drhd_unit(dmaru) {
681 drhd = container_of(dmaru->hdr,
682 struct acpi_dmar_hardware_unit,
683 header);
684
685 if (dmaru->include_all &&
686 drhd->segment == pci_domain_nr(dev->bus))
687 goto out;
688
689 if (dmar_pci_device_match(dmaru->devices,
690 dmaru->devices_cnt, dev))
691 goto out;
692 }
693 dmaru = NULL;
694 out:
695 rcu_read_unlock();
696
697 return dmaru;
698 }
699
700 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
701 struct acpi_device *adev)
702 {
703 struct dmar_drhd_unit *dmaru;
704 struct acpi_dmar_hardware_unit *drhd;
705 struct acpi_dmar_device_scope *scope;
706 struct device *tmp;
707 int i;
708 struct acpi_dmar_pci_path *path;
709
710 for_each_drhd_unit(dmaru) {
711 drhd = container_of(dmaru->hdr,
712 struct acpi_dmar_hardware_unit,
713 header);
714
715 for (scope = (void *)(drhd + 1);
716 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
717 scope = ((void *)scope) + scope->length) {
718 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
719 continue;
720 if (scope->enumeration_id != device_number)
721 continue;
722
723 path = (void *)(scope + 1);
724 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
725 dev_name(&adev->dev), dmaru->reg_base_addr,
726 scope->bus, path->device, path->function);
727 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
728 if (tmp == NULL) {
729 dmaru->devices[i].bus = scope->bus;
730 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
731 path->function);
732 rcu_assign_pointer(dmaru->devices[i].dev,
733 get_device(&adev->dev));
734 return;
735 }
736 BUG_ON(i >= dmaru->devices_cnt);
737 }
738 }
739 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
740 device_number, dev_name(&adev->dev));
741 }
742
743 static int __init dmar_acpi_dev_scope_init(void)
744 {
745 struct acpi_dmar_andd *andd;
746
747 if (dmar_tbl == NULL)
748 return -ENODEV;
749
750 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
751 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
752 andd = ((void *)andd) + andd->header.length) {
753 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
754 acpi_handle h;
755 struct acpi_device *adev;
756
757 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
758 andd->device_name,
759 &h))) {
760 pr_err("Failed to find handle for ACPI object %s\n",
761 andd->device_name);
762 continue;
763 }
764 if (acpi_bus_get_device(h, &adev)) {
765 pr_err("Failed to get device for ACPI object %s\n",
766 andd->device_name);
767 continue;
768 }
769 dmar_acpi_insert_dev_scope(andd->device_number, adev);
770 }
771 }
772 return 0;
773 }
774
775 int __init dmar_dev_scope_init(void)
776 {
777 struct pci_dev *dev = NULL;
778 struct dmar_pci_notify_info *info;
779
780 if (dmar_dev_scope_status != 1)
781 return dmar_dev_scope_status;
782
783 if (list_empty(&dmar_drhd_units)) {
784 dmar_dev_scope_status = -ENODEV;
785 } else {
786 dmar_dev_scope_status = 0;
787
788 dmar_acpi_dev_scope_init();
789
790 for_each_pci_dev(dev) {
791 if (dev->is_virtfn)
792 continue;
793
794 info = dmar_alloc_pci_notify_info(dev,
795 BUS_NOTIFY_ADD_DEVICE);
796 if (!info) {
797 return dmar_dev_scope_status;
798 } else {
799 dmar_pci_bus_add_dev(info);
800 dmar_free_pci_notify_info(info);
801 }
802 }
803
804 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
805 }
806
807 return dmar_dev_scope_status;
808 }
809
810
811 int __init dmar_table_init(void)
812 {
813 static int dmar_table_initialized;
814 int ret;
815
816 if (dmar_table_initialized == 0) {
817 ret = parse_dmar_table();
818 if (ret < 0) {
819 if (ret != -ENODEV)
820 pr_info("Parse DMAR table failure.\n");
821 } else if (list_empty(&dmar_drhd_units)) {
822 pr_info("No DMAR devices found\n");
823 ret = -ENODEV;
824 }
825
826 if (ret < 0)
827 dmar_table_initialized = ret;
828 else
829 dmar_table_initialized = 1;
830 }
831
832 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
833 }
834
835 static void warn_invalid_dmar(u64 addr, const char *message)
836 {
837 WARN_TAINT_ONCE(
838 1, TAINT_FIRMWARE_WORKAROUND,
839 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
840 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
841 addr, message,
842 dmi_get_system_info(DMI_BIOS_VENDOR),
843 dmi_get_system_info(DMI_BIOS_VERSION),
844 dmi_get_system_info(DMI_PRODUCT_VERSION));
845 }
846
847 static int __ref
848 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
849 {
850 struct acpi_dmar_hardware_unit *drhd;
851 void __iomem *addr;
852 u64 cap, ecap;
853
854 drhd = (void *)entry;
855 if (!drhd->address) {
856 warn_invalid_dmar(0, "");
857 return -EINVAL;
858 }
859
860 if (arg)
861 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
862 else
863 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
864 if (!addr) {
865 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
866 return -EINVAL;
867 }
868
869 cap = dmar_readq(addr + DMAR_CAP_REG);
870 ecap = dmar_readq(addr + DMAR_ECAP_REG);
871
872 if (arg)
873 iounmap(addr);
874 else
875 early_iounmap(addr, VTD_PAGE_SIZE);
876
877 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
878 warn_invalid_dmar(drhd->address, " returns all ones");
879 return -EINVAL;
880 }
881
882 return 0;
883 }
884
885 int __init detect_intel_iommu(void)
886 {
887 int ret;
888 struct dmar_res_callback validate_drhd_cb = {
889 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
890 .ignore_unhandled = true,
891 };
892
893 down_write(&dmar_global_lock);
894 ret = dmar_table_detect();
895 if (ret)
896 ret = !dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
897 &validate_drhd_cb);
898 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
899 iommu_detected = 1;
900 /* Make sure ACS will be enabled */
901 pci_request_acs();
902 }
903
904 #ifdef CONFIG_X86
905 if (ret)
906 x86_init.iommu.iommu_init = intel_iommu_init;
907 #endif
908
909 early_acpi_os_unmap_memory((void __iomem *)dmar_tbl, dmar_tbl_size);
910 dmar_tbl = NULL;
911 up_write(&dmar_global_lock);
912
913 return ret ? 1 : -ENODEV;
914 }
915
916
917 static void unmap_iommu(struct intel_iommu *iommu)
918 {
919 iounmap(iommu->reg);
920 release_mem_region(iommu->reg_phys, iommu->reg_size);
921 }
922
923 /**
924 * map_iommu: map the iommu's registers
925 * @iommu: the iommu to map
926 * @phys_addr: the physical address of the base resgister
927 *
928 * Memory map the iommu's registers. Start w/ a single page, and
929 * possibly expand if that turns out to be insufficent.
930 */
931 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
932 {
933 int map_size, err=0;
934
935 iommu->reg_phys = phys_addr;
936 iommu->reg_size = VTD_PAGE_SIZE;
937
938 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
939 pr_err("Can't reserve memory\n");
940 err = -EBUSY;
941 goto out;
942 }
943
944 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
945 if (!iommu->reg) {
946 pr_err("Can't map the region\n");
947 err = -ENOMEM;
948 goto release;
949 }
950
951 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
952 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
953
954 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
955 err = -EINVAL;
956 warn_invalid_dmar(phys_addr, " returns all ones");
957 goto unmap;
958 }
959
960 /* the registers might be more than one page */
961 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
962 cap_max_fault_reg_offset(iommu->cap));
963 map_size = VTD_PAGE_ALIGN(map_size);
964 if (map_size > iommu->reg_size) {
965 iounmap(iommu->reg);
966 release_mem_region(iommu->reg_phys, iommu->reg_size);
967 iommu->reg_size = map_size;
968 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
969 iommu->name)) {
970 pr_err("Can't reserve memory\n");
971 err = -EBUSY;
972 goto out;
973 }
974 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
975 if (!iommu->reg) {
976 pr_err("Can't map the region\n");
977 err = -ENOMEM;
978 goto release;
979 }
980 }
981 err = 0;
982 goto out;
983
984 unmap:
985 iounmap(iommu->reg);
986 release:
987 release_mem_region(iommu->reg_phys, iommu->reg_size);
988 out:
989 return err;
990 }
991
992 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
993 {
994 iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
995 DMAR_UNITS_SUPPORTED);
996 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
997 iommu->seq_id = -1;
998 } else {
999 set_bit(iommu->seq_id, dmar_seq_ids);
1000 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1001 }
1002
1003 return iommu->seq_id;
1004 }
1005
1006 static void dmar_free_seq_id(struct intel_iommu *iommu)
1007 {
1008 if (iommu->seq_id >= 0) {
1009 clear_bit(iommu->seq_id, dmar_seq_ids);
1010 iommu->seq_id = -1;
1011 }
1012 }
1013
1014 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1015 {
1016 struct intel_iommu *iommu;
1017 u32 ver, sts;
1018 int agaw = 0;
1019 int msagaw = 0;
1020 int err;
1021
1022 if (!drhd->reg_base_addr) {
1023 warn_invalid_dmar(0, "");
1024 return -EINVAL;
1025 }
1026
1027 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1028 if (!iommu)
1029 return -ENOMEM;
1030
1031 if (dmar_alloc_seq_id(iommu) < 0) {
1032 pr_err("Failed to allocate seq_id\n");
1033 err = -ENOSPC;
1034 goto error;
1035 }
1036
1037 err = map_iommu(iommu, drhd->reg_base_addr);
1038 if (err) {
1039 pr_err("Failed to map %s\n", iommu->name);
1040 goto error_free_seq_id;
1041 }
1042
1043 err = -EINVAL;
1044 agaw = iommu_calculate_agaw(iommu);
1045 if (agaw < 0) {
1046 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1047 iommu->seq_id);
1048 goto err_unmap;
1049 }
1050 msagaw = iommu_calculate_max_sagaw(iommu);
1051 if (msagaw < 0) {
1052 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1053 iommu->seq_id);
1054 goto err_unmap;
1055 }
1056 iommu->agaw = agaw;
1057 iommu->msagaw = msagaw;
1058 iommu->segment = drhd->segment;
1059
1060 iommu->node = -1;
1061
1062 ver = readl(iommu->reg + DMAR_VER_REG);
1063 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1064 iommu->name,
1065 (unsigned long long)drhd->reg_base_addr,
1066 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1067 (unsigned long long)iommu->cap,
1068 (unsigned long long)iommu->ecap);
1069
1070 /* Reflect status in gcmd */
1071 sts = readl(iommu->reg + DMAR_GSTS_REG);
1072 if (sts & DMA_GSTS_IRES)
1073 iommu->gcmd |= DMA_GCMD_IRE;
1074 if (sts & DMA_GSTS_TES)
1075 iommu->gcmd |= DMA_GCMD_TE;
1076 if (sts & DMA_GSTS_QIES)
1077 iommu->gcmd |= DMA_GCMD_QIE;
1078
1079 raw_spin_lock_init(&iommu->register_lock);
1080
1081 if (intel_iommu_enabled) {
1082 iommu->iommu_dev = iommu_device_create(NULL, iommu,
1083 intel_iommu_groups,
1084 "%s", iommu->name);
1085
1086 if (IS_ERR(iommu->iommu_dev)) {
1087 err = PTR_ERR(iommu->iommu_dev);
1088 goto err_unmap;
1089 }
1090 }
1091
1092 drhd->iommu = iommu;
1093
1094 return 0;
1095
1096 err_unmap:
1097 unmap_iommu(iommu);
1098 error_free_seq_id:
1099 dmar_free_seq_id(iommu);
1100 error:
1101 kfree(iommu);
1102 return err;
1103 }
1104
1105 static void free_iommu(struct intel_iommu *iommu)
1106 {
1107 iommu_device_destroy(iommu->iommu_dev);
1108
1109 if (iommu->irq) {
1110 if (iommu->pr_irq) {
1111 free_irq(iommu->pr_irq, iommu);
1112 dmar_free_hwirq(iommu->pr_irq);
1113 iommu->pr_irq = 0;
1114 }
1115 free_irq(iommu->irq, iommu);
1116 dmar_free_hwirq(iommu->irq);
1117 iommu->irq = 0;
1118 }
1119
1120 if (iommu->qi) {
1121 free_page((unsigned long)iommu->qi->desc);
1122 kfree(iommu->qi->desc_status);
1123 kfree(iommu->qi);
1124 }
1125
1126 if (iommu->reg)
1127 unmap_iommu(iommu);
1128
1129 dmar_free_seq_id(iommu);
1130 kfree(iommu);
1131 }
1132
1133 /*
1134 * Reclaim all the submitted descriptors which have completed its work.
1135 */
1136 static inline void reclaim_free_desc(struct q_inval *qi)
1137 {
1138 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1139 qi->desc_status[qi->free_tail] == QI_ABORT) {
1140 qi->desc_status[qi->free_tail] = QI_FREE;
1141 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1142 qi->free_cnt++;
1143 }
1144 }
1145
1146 static int qi_check_fault(struct intel_iommu *iommu, int index)
1147 {
1148 u32 fault;
1149 int head, tail;
1150 struct q_inval *qi = iommu->qi;
1151 int wait_index = (index + 1) % QI_LENGTH;
1152
1153 if (qi->desc_status[wait_index] == QI_ABORT)
1154 return -EAGAIN;
1155
1156 fault = readl(iommu->reg + DMAR_FSTS_REG);
1157
1158 /*
1159 * If IQE happens, the head points to the descriptor associated
1160 * with the error. No new descriptors are fetched until the IQE
1161 * is cleared.
1162 */
1163 if (fault & DMA_FSTS_IQE) {
1164 head = readl(iommu->reg + DMAR_IQH_REG);
1165 if ((head >> DMAR_IQ_SHIFT) == index) {
1166 pr_err("VT-d detected invalid descriptor: "
1167 "low=%llx, high=%llx\n",
1168 (unsigned long long)qi->desc[index].low,
1169 (unsigned long long)qi->desc[index].high);
1170 memcpy(&qi->desc[index], &qi->desc[wait_index],
1171 sizeof(struct qi_desc));
1172 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1173 return -EINVAL;
1174 }
1175 }
1176
1177 /*
1178 * If ITE happens, all pending wait_desc commands are aborted.
1179 * No new descriptors are fetched until the ITE is cleared.
1180 */
1181 if (fault & DMA_FSTS_ITE) {
1182 head = readl(iommu->reg + DMAR_IQH_REG);
1183 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1184 head |= 1;
1185 tail = readl(iommu->reg + DMAR_IQT_REG);
1186 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1187
1188 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1189
1190 do {
1191 if (qi->desc_status[head] == QI_IN_USE)
1192 qi->desc_status[head] = QI_ABORT;
1193 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1194 } while (head != tail);
1195
1196 if (qi->desc_status[wait_index] == QI_ABORT)
1197 return -EAGAIN;
1198 }
1199
1200 if (fault & DMA_FSTS_ICE)
1201 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1202
1203 return 0;
1204 }
1205
1206 /*
1207 * Submit the queued invalidation descriptor to the remapping
1208 * hardware unit and wait for its completion.
1209 */
1210 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1211 {
1212 int rc;
1213 struct q_inval *qi = iommu->qi;
1214 struct qi_desc *hw, wait_desc;
1215 int wait_index, index;
1216 unsigned long flags;
1217
1218 if (!qi)
1219 return 0;
1220
1221 hw = qi->desc;
1222
1223 restart:
1224 rc = 0;
1225
1226 raw_spin_lock_irqsave(&qi->q_lock, flags);
1227 while (qi->free_cnt < 3) {
1228 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1229 cpu_relax();
1230 raw_spin_lock_irqsave(&qi->q_lock, flags);
1231 }
1232
1233 index = qi->free_head;
1234 wait_index = (index + 1) % QI_LENGTH;
1235
1236 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1237
1238 hw[index] = *desc;
1239
1240 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
1241 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1242 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
1243
1244 hw[wait_index] = wait_desc;
1245
1246 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1247 qi->free_cnt -= 2;
1248
1249 /*
1250 * update the HW tail register indicating the presence of
1251 * new descriptors.
1252 */
1253 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
1254
1255 while (qi->desc_status[wait_index] != QI_DONE) {
1256 /*
1257 * We will leave the interrupts disabled, to prevent interrupt
1258 * context to queue another cmd while a cmd is already submitted
1259 * and waiting for completion on this cpu. This is to avoid
1260 * a deadlock where the interrupt context can wait indefinitely
1261 * for free slots in the queue.
1262 */
1263 rc = qi_check_fault(iommu, index);
1264 if (rc)
1265 break;
1266
1267 raw_spin_unlock(&qi->q_lock);
1268 cpu_relax();
1269 raw_spin_lock(&qi->q_lock);
1270 }
1271
1272 qi->desc_status[index] = QI_DONE;
1273
1274 reclaim_free_desc(qi);
1275 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1276
1277 if (rc == -EAGAIN)
1278 goto restart;
1279
1280 return rc;
1281 }
1282
1283 /*
1284 * Flush the global interrupt entry cache.
1285 */
1286 void qi_global_iec(struct intel_iommu *iommu)
1287 {
1288 struct qi_desc desc;
1289
1290 desc.low = QI_IEC_TYPE;
1291 desc.high = 0;
1292
1293 /* should never fail */
1294 qi_submit_sync(&desc, iommu);
1295 }
1296
1297 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1298 u64 type)
1299 {
1300 struct qi_desc desc;
1301
1302 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1303 | QI_CC_GRAN(type) | QI_CC_TYPE;
1304 desc.high = 0;
1305
1306 qi_submit_sync(&desc, iommu);
1307 }
1308
1309 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1310 unsigned int size_order, u64 type)
1311 {
1312 u8 dw = 0, dr = 0;
1313
1314 struct qi_desc desc;
1315 int ih = 0;
1316
1317 if (cap_write_drain(iommu->cap))
1318 dw = 1;
1319
1320 if (cap_read_drain(iommu->cap))
1321 dr = 1;
1322
1323 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1324 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1325 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1326 | QI_IOTLB_AM(size_order);
1327
1328 qi_submit_sync(&desc, iommu);
1329 }
1330
1331 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1332 u64 addr, unsigned mask)
1333 {
1334 struct qi_desc desc;
1335
1336 if (mask) {
1337 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1338 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1339 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1340 } else
1341 desc.high = QI_DEV_IOTLB_ADDR(addr);
1342
1343 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1344 qdep = 0;
1345
1346 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1347 QI_DIOTLB_TYPE;
1348
1349 qi_submit_sync(&desc, iommu);
1350 }
1351
1352 /*
1353 * Disable Queued Invalidation interface.
1354 */
1355 void dmar_disable_qi(struct intel_iommu *iommu)
1356 {
1357 unsigned long flags;
1358 u32 sts;
1359 cycles_t start_time = get_cycles();
1360
1361 if (!ecap_qis(iommu->ecap))
1362 return;
1363
1364 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1365
1366 sts = readl(iommu->reg + DMAR_GSTS_REG);
1367 if (!(sts & DMA_GSTS_QIES))
1368 goto end;
1369
1370 /*
1371 * Give a chance to HW to complete the pending invalidation requests.
1372 */
1373 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1374 readl(iommu->reg + DMAR_IQH_REG)) &&
1375 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1376 cpu_relax();
1377
1378 iommu->gcmd &= ~DMA_GCMD_QIE;
1379 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1380
1381 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1382 !(sts & DMA_GSTS_QIES), sts);
1383 end:
1384 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1385 }
1386
1387 /*
1388 * Enable queued invalidation.
1389 */
1390 static void __dmar_enable_qi(struct intel_iommu *iommu)
1391 {
1392 u32 sts;
1393 unsigned long flags;
1394 struct q_inval *qi = iommu->qi;
1395
1396 qi->free_head = qi->free_tail = 0;
1397 qi->free_cnt = QI_LENGTH;
1398
1399 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1400
1401 /* write zero to the tail reg */
1402 writel(0, iommu->reg + DMAR_IQT_REG);
1403
1404 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1405
1406 iommu->gcmd |= DMA_GCMD_QIE;
1407 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1408
1409 /* Make sure hardware complete it */
1410 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1411
1412 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1413 }
1414
1415 /*
1416 * Enable Queued Invalidation interface. This is a must to support
1417 * interrupt-remapping. Also used by DMA-remapping, which replaces
1418 * register based IOTLB invalidation.
1419 */
1420 int dmar_enable_qi(struct intel_iommu *iommu)
1421 {
1422 struct q_inval *qi;
1423 struct page *desc_page;
1424
1425 if (!ecap_qis(iommu->ecap))
1426 return -ENOENT;
1427
1428 /*
1429 * queued invalidation is already setup and enabled.
1430 */
1431 if (iommu->qi)
1432 return 0;
1433
1434 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1435 if (!iommu->qi)
1436 return -ENOMEM;
1437
1438 qi = iommu->qi;
1439
1440
1441 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1442 if (!desc_page) {
1443 kfree(qi);
1444 iommu->qi = NULL;
1445 return -ENOMEM;
1446 }
1447
1448 qi->desc = page_address(desc_page);
1449
1450 qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1451 if (!qi->desc_status) {
1452 free_page((unsigned long) qi->desc);
1453 kfree(qi);
1454 iommu->qi = NULL;
1455 return -ENOMEM;
1456 }
1457
1458 raw_spin_lock_init(&qi->q_lock);
1459
1460 __dmar_enable_qi(iommu);
1461
1462 return 0;
1463 }
1464
1465 /* iommu interrupt handling. Most stuff are MSI-like. */
1466
1467 enum faulttype {
1468 DMA_REMAP,
1469 INTR_REMAP,
1470 UNKNOWN,
1471 };
1472
1473 static const char *dma_remap_fault_reasons[] =
1474 {
1475 "Software",
1476 "Present bit in root entry is clear",
1477 "Present bit in context entry is clear",
1478 "Invalid context entry",
1479 "Access beyond MGAW",
1480 "PTE Write access is not set",
1481 "PTE Read access is not set",
1482 "Next page table ptr is invalid",
1483 "Root table address invalid",
1484 "Context table ptr is invalid",
1485 "non-zero reserved fields in RTP",
1486 "non-zero reserved fields in CTP",
1487 "non-zero reserved fields in PTE",
1488 "PCE for translation request specifies blocking",
1489 };
1490
1491 static const char *irq_remap_fault_reasons[] =
1492 {
1493 "Detected reserved fields in the decoded interrupt-remapped request",
1494 "Interrupt index exceeded the interrupt-remapping table size",
1495 "Present field in the IRTE entry is clear",
1496 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1497 "Detected reserved fields in the IRTE entry",
1498 "Blocked a compatibility format interrupt request",
1499 "Blocked an interrupt request due to source-id verification failure",
1500 };
1501
1502 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1503 {
1504 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1505 ARRAY_SIZE(irq_remap_fault_reasons))) {
1506 *fault_type = INTR_REMAP;
1507 return irq_remap_fault_reasons[fault_reason - 0x20];
1508 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1509 *fault_type = DMA_REMAP;
1510 return dma_remap_fault_reasons[fault_reason];
1511 } else {
1512 *fault_type = UNKNOWN;
1513 return "Unknown";
1514 }
1515 }
1516
1517
1518 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1519 {
1520 if (iommu->irq == irq)
1521 return DMAR_FECTL_REG;
1522 else if (iommu->pr_irq == irq)
1523 return DMAR_PECTL_REG;
1524 else
1525 BUG();
1526 }
1527
1528 void dmar_msi_unmask(struct irq_data *data)
1529 {
1530 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1531 int reg = dmar_msi_reg(iommu, data->irq);
1532 unsigned long flag;
1533
1534 /* unmask it */
1535 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1536 writel(0, iommu->reg + reg);
1537 /* Read a reg to force flush the post write */
1538 readl(iommu->reg + reg);
1539 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1540 }
1541
1542 void dmar_msi_mask(struct irq_data *data)
1543 {
1544 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1545 int reg = dmar_msi_reg(iommu, data->irq);
1546 unsigned long flag;
1547
1548 /* mask it */
1549 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1550 writel(DMA_FECTL_IM, iommu->reg + reg);
1551 /* Read a reg to force flush the post write */
1552 readl(iommu->reg + reg);
1553 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1554 }
1555
1556 void dmar_msi_write(int irq, struct msi_msg *msg)
1557 {
1558 struct intel_iommu *iommu = irq_get_handler_data(irq);
1559 int reg = dmar_msi_reg(iommu, irq);
1560 unsigned long flag;
1561
1562 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1563 writel(msg->data, iommu->reg + reg + 4);
1564 writel(msg->address_lo, iommu->reg + reg + 8);
1565 writel(msg->address_hi, iommu->reg + reg + 12);
1566 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1567 }
1568
1569 void dmar_msi_read(int irq, struct msi_msg *msg)
1570 {
1571 struct intel_iommu *iommu = irq_get_handler_data(irq);
1572 int reg = dmar_msi_reg(iommu, irq);
1573 unsigned long flag;
1574
1575 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1576 msg->data = readl(iommu->reg + reg + 4);
1577 msg->address_lo = readl(iommu->reg + reg + 8);
1578 msg->address_hi = readl(iommu->reg + reg + 12);
1579 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1580 }
1581
1582 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1583 u8 fault_reason, u16 source_id, unsigned long long addr)
1584 {
1585 const char *reason;
1586 int fault_type;
1587
1588 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1589
1590 if (fault_type == INTR_REMAP)
1591 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1592 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1593 PCI_FUNC(source_id & 0xFF), addr >> 48,
1594 fault_reason, reason);
1595 else
1596 pr_err("[%s] Request device [%02x:%02x.%d] fault addr %llx [fault reason %02d] %s\n",
1597 type ? "DMA Read" : "DMA Write",
1598 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1599 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1600 return 0;
1601 }
1602
1603 #define PRIMARY_FAULT_REG_LEN (16)
1604 irqreturn_t dmar_fault(int irq, void *dev_id)
1605 {
1606 struct intel_iommu *iommu = dev_id;
1607 int reg, fault_index;
1608 u32 fault_status;
1609 unsigned long flag;
1610 bool ratelimited;
1611 static DEFINE_RATELIMIT_STATE(rs,
1612 DEFAULT_RATELIMIT_INTERVAL,
1613 DEFAULT_RATELIMIT_BURST);
1614
1615 /* Disable printing, simply clear the fault when ratelimited */
1616 ratelimited = !__ratelimit(&rs);
1617
1618 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1619 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1620 if (fault_status && !ratelimited)
1621 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1622
1623 /* TBD: ignore advanced fault log currently */
1624 if (!(fault_status & DMA_FSTS_PPF))
1625 goto unlock_exit;
1626
1627 fault_index = dma_fsts_fault_record_index(fault_status);
1628 reg = cap_fault_reg_offset(iommu->cap);
1629 while (1) {
1630 u8 fault_reason;
1631 u16 source_id;
1632 u64 guest_addr;
1633 int type;
1634 u32 data;
1635
1636 /* highest 32 bits */
1637 data = readl(iommu->reg + reg +
1638 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1639 if (!(data & DMA_FRCD_F))
1640 break;
1641
1642 if (!ratelimited) {
1643 fault_reason = dma_frcd_fault_reason(data);
1644 type = dma_frcd_type(data);
1645
1646 data = readl(iommu->reg + reg +
1647 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1648 source_id = dma_frcd_source_id(data);
1649
1650 guest_addr = dmar_readq(iommu->reg + reg +
1651 fault_index * PRIMARY_FAULT_REG_LEN);
1652 guest_addr = dma_frcd_page_addr(guest_addr);
1653 }
1654
1655 /* clear the fault */
1656 writel(DMA_FRCD_F, iommu->reg + reg +
1657 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1658
1659 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1660
1661 if (!ratelimited)
1662 dmar_fault_do_one(iommu, type, fault_reason,
1663 source_id, guest_addr);
1664
1665 fault_index++;
1666 if (fault_index >= cap_num_fault_regs(iommu->cap))
1667 fault_index = 0;
1668 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1669 }
1670
1671 writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);
1672
1673 unlock_exit:
1674 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1675 return IRQ_HANDLED;
1676 }
1677
1678 int dmar_set_interrupt(struct intel_iommu *iommu)
1679 {
1680 int irq, ret;
1681
1682 /*
1683 * Check if the fault interrupt is already initialized.
1684 */
1685 if (iommu->irq)
1686 return 0;
1687
1688 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1689 if (irq > 0) {
1690 iommu->irq = irq;
1691 } else {
1692 pr_err("No free IRQ vectors\n");
1693 return -EINVAL;
1694 }
1695
1696 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1697 if (ret)
1698 pr_err("Can't request irq\n");
1699 return ret;
1700 }
1701
1702 int __init enable_drhd_fault_handling(void)
1703 {
1704 struct dmar_drhd_unit *drhd;
1705 struct intel_iommu *iommu;
1706
1707 /*
1708 * Enable fault control interrupt.
1709 */
1710 for_each_iommu(iommu, drhd) {
1711 u32 fault_status;
1712 int ret = dmar_set_interrupt(iommu);
1713
1714 if (ret) {
1715 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1716 (unsigned long long)drhd->reg_base_addr, ret);
1717 return -1;
1718 }
1719
1720 /*
1721 * Clear any previous faults.
1722 */
1723 dmar_fault(iommu->irq, iommu);
1724 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1725 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1726 }
1727
1728 return 0;
1729 }
1730
1731 /*
1732 * Re-enable Queued Invalidation interface.
1733 */
1734 int dmar_reenable_qi(struct intel_iommu *iommu)
1735 {
1736 if (!ecap_qis(iommu->ecap))
1737 return -ENOENT;
1738
1739 if (!iommu->qi)
1740 return -ENOENT;
1741
1742 /*
1743 * First disable queued invalidation.
1744 */
1745 dmar_disable_qi(iommu);
1746 /*
1747 * Then enable queued invalidation again. Since there is no pending
1748 * invalidation requests now, it's safe to re-enable queued
1749 * invalidation.
1750 */
1751 __dmar_enable_qi(iommu);
1752
1753 return 0;
1754 }
1755
1756 /*
1757 * Check interrupt remapping support in DMAR table description.
1758 */
1759 int __init dmar_ir_support(void)
1760 {
1761 struct acpi_table_dmar *dmar;
1762 dmar = (struct acpi_table_dmar *)dmar_tbl;
1763 if (!dmar)
1764 return 0;
1765 return dmar->flags & 0x1;
1766 }
1767
1768 /* Check whether DMAR units are in use */
1769 static inline bool dmar_in_use(void)
1770 {
1771 return irq_remapping_enabled || intel_iommu_enabled;
1772 }
1773
1774 static int __init dmar_free_unused_resources(void)
1775 {
1776 struct dmar_drhd_unit *dmaru, *dmaru_n;
1777
1778 if (dmar_in_use())
1779 return 0;
1780
1781 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1782 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1783
1784 down_write(&dmar_global_lock);
1785 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1786 list_del(&dmaru->list);
1787 dmar_free_drhd(dmaru);
1788 }
1789 up_write(&dmar_global_lock);
1790
1791 return 0;
1792 }
1793
1794 late_initcall(dmar_free_unused_resources);
1795 IOMMU_INIT_POST(detect_intel_iommu);
1796
1797 /*
1798 * DMAR Hotplug Support
1799 * For more details, please refer to Intel(R) Virtualization Technology
1800 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
1801 * "Remapping Hardware Unit Hot Plug".
1802 */
1803 static u8 dmar_hp_uuid[] = {
1804 /* 0000 */ 0xA6, 0xA3, 0xC1, 0xD8, 0x9B, 0xBE, 0x9B, 0x4C,
1805 /* 0008 */ 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF
1806 };
1807
1808 /*
1809 * Currently there's only one revision and BIOS will not check the revision id,
1810 * so use 0 for safety.
1811 */
1812 #define DMAR_DSM_REV_ID 0
1813 #define DMAR_DSM_FUNC_DRHD 1
1814 #define DMAR_DSM_FUNC_ATSR 2
1815 #define DMAR_DSM_FUNC_RHSA 3
1816
1817 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
1818 {
1819 return acpi_check_dsm(handle, dmar_hp_uuid, DMAR_DSM_REV_ID, 1 << func);
1820 }
1821
1822 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
1823 dmar_res_handler_t handler, void *arg)
1824 {
1825 int ret = -ENODEV;
1826 union acpi_object *obj;
1827 struct acpi_dmar_header *start;
1828 struct dmar_res_callback callback;
1829 static int res_type[] = {
1830 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
1831 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
1832 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
1833 };
1834
1835 if (!dmar_detect_dsm(handle, func))
1836 return 0;
1837
1838 obj = acpi_evaluate_dsm_typed(handle, dmar_hp_uuid, DMAR_DSM_REV_ID,
1839 func, NULL, ACPI_TYPE_BUFFER);
1840 if (!obj)
1841 return -ENODEV;
1842
1843 memset(&callback, 0, sizeof(callback));
1844 callback.cb[res_type[func]] = handler;
1845 callback.arg[res_type[func]] = arg;
1846 start = (struct acpi_dmar_header *)obj->buffer.pointer;
1847 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
1848
1849 ACPI_FREE(obj);
1850
1851 return ret;
1852 }
1853
1854 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
1855 {
1856 int ret;
1857 struct dmar_drhd_unit *dmaru;
1858
1859 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1860 if (!dmaru)
1861 return -ENODEV;
1862
1863 ret = dmar_ir_hotplug(dmaru, true);
1864 if (ret == 0)
1865 ret = dmar_iommu_hotplug(dmaru, true);
1866
1867 return ret;
1868 }
1869
1870 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
1871 {
1872 int i, ret;
1873 struct device *dev;
1874 struct dmar_drhd_unit *dmaru;
1875
1876 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1877 if (!dmaru)
1878 return 0;
1879
1880 /*
1881 * All PCI devices managed by this unit should have been destroyed.
1882 */
1883 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
1884 for_each_active_dev_scope(dmaru->devices,
1885 dmaru->devices_cnt, i, dev)
1886 return -EBUSY;
1887 }
1888
1889 ret = dmar_ir_hotplug(dmaru, false);
1890 if (ret == 0)
1891 ret = dmar_iommu_hotplug(dmaru, false);
1892
1893 return ret;
1894 }
1895
1896 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
1897 {
1898 struct dmar_drhd_unit *dmaru;
1899
1900 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1901 if (dmaru) {
1902 list_del_rcu(&dmaru->list);
1903 synchronize_rcu();
1904 dmar_free_drhd(dmaru);
1905 }
1906
1907 return 0;
1908 }
1909
1910 static int dmar_hotplug_insert(acpi_handle handle)
1911 {
1912 int ret;
1913 int drhd_count = 0;
1914
1915 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1916 &dmar_validate_one_drhd, (void *)1);
1917 if (ret)
1918 goto out;
1919
1920 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1921 &dmar_parse_one_drhd, (void *)&drhd_count);
1922 if (ret == 0 && drhd_count == 0) {
1923 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
1924 goto out;
1925 } else if (ret) {
1926 goto release_drhd;
1927 }
1928
1929 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
1930 &dmar_parse_one_rhsa, NULL);
1931 if (ret)
1932 goto release_drhd;
1933
1934 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1935 &dmar_parse_one_atsr, NULL);
1936 if (ret)
1937 goto release_atsr;
1938
1939 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1940 &dmar_hp_add_drhd, NULL);
1941 if (!ret)
1942 return 0;
1943
1944 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1945 &dmar_hp_remove_drhd, NULL);
1946 release_atsr:
1947 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1948 &dmar_release_one_atsr, NULL);
1949 release_drhd:
1950 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1951 &dmar_hp_release_drhd, NULL);
1952 out:
1953 return ret;
1954 }
1955
1956 static int dmar_hotplug_remove(acpi_handle handle)
1957 {
1958 int ret;
1959
1960 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1961 &dmar_check_one_atsr, NULL);
1962 if (ret)
1963 return ret;
1964
1965 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1966 &dmar_hp_remove_drhd, NULL);
1967 if (ret == 0) {
1968 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1969 &dmar_release_one_atsr, NULL));
1970 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1971 &dmar_hp_release_drhd, NULL));
1972 } else {
1973 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1974 &dmar_hp_add_drhd, NULL);
1975 }
1976
1977 return ret;
1978 }
1979
1980 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
1981 void *context, void **retval)
1982 {
1983 acpi_handle *phdl = retval;
1984
1985 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
1986 *phdl = handle;
1987 return AE_CTRL_TERMINATE;
1988 }
1989
1990 return AE_OK;
1991 }
1992
1993 static int dmar_device_hotplug(acpi_handle handle, bool insert)
1994 {
1995 int ret;
1996 acpi_handle tmp = NULL;
1997 acpi_status status;
1998
1999 if (!dmar_in_use())
2000 return 0;
2001
2002 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2003 tmp = handle;
2004 } else {
2005 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2006 ACPI_UINT32_MAX,
2007 dmar_get_dsm_handle,
2008 NULL, NULL, &tmp);
2009 if (ACPI_FAILURE(status)) {
2010 pr_warn("Failed to locate _DSM method.\n");
2011 return -ENXIO;
2012 }
2013 }
2014 if (tmp == NULL)
2015 return 0;
2016
2017 down_write(&dmar_global_lock);
2018 if (insert)
2019 ret = dmar_hotplug_insert(tmp);
2020 else
2021 ret = dmar_hotplug_remove(tmp);
2022 up_write(&dmar_global_lock);
2023
2024 return ret;
2025 }
2026
2027 int dmar_device_add(acpi_handle handle)
2028 {
2029 return dmar_device_hotplug(handle, true);
2030 }
2031
2032 int dmar_device_remove(acpi_handle handle)
2033 {
2034 return dmar_device_hotplug(handle, false);
2035 }