]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/iommu/dmar.c
Merge tag 'for-linus-urgent' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-hirsute-kernel.git] / drivers / iommu / dmar.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2006, Intel Corporation.
4 *
5 * Copyright (C) 2006-2008 Intel Corporation
6 * Author: Ashok Raj <ashok.raj@intel.com>
7 * Author: Shaohua Li <shaohua.li@intel.com>
8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12 * tables.
13 *
14 * These routines are used by both DMA-remapping and Interrupt-remapping
15 */
16
17 #define pr_fmt(fmt) "DMAR: " fmt
18
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/intel-iommu.h>
23 #include <linux/timer.h>
24 #include <linux/irq.h>
25 #include <linux/interrupt.h>
26 #include <linux/tboot.h>
27 #include <linux/dmi.h>
28 #include <linux/slab.h>
29 #include <linux/iommu.h>
30 #include <linux/numa.h>
31 #include <asm/irq_remapping.h>
32 #include <asm/iommu_table.h>
33
34 #include "irq_remapping.h"
35
36 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
37 struct dmar_res_callback {
38 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
39 void *arg[ACPI_DMAR_TYPE_RESERVED];
40 bool ignore_unhandled;
41 bool print_entry;
42 };
43
44 /*
45 * Assumptions:
46 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
47 * before IO devices managed by that unit.
48 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
49 * after IO devices managed by that unit.
50 * 3) Hotplug events are rare.
51 *
52 * Locking rules for DMA and interrupt remapping related global data structures:
53 * 1) Use dmar_global_lock in process context
54 * 2) Use RCU in interrupt context
55 */
56 DECLARE_RWSEM(dmar_global_lock);
57 LIST_HEAD(dmar_drhd_units);
58
59 struct acpi_table_header * __initdata dmar_tbl;
60 static int dmar_dev_scope_status = 1;
61 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
62
63 static int alloc_iommu(struct dmar_drhd_unit *drhd);
64 static void free_iommu(struct intel_iommu *iommu);
65
66 extern const struct iommu_ops intel_iommu_ops;
67
68 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
69 {
70 /*
71 * add INCLUDE_ALL at the tail, so scan the list will find it at
72 * the very end.
73 */
74 if (drhd->include_all)
75 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
76 else
77 list_add_rcu(&drhd->list, &dmar_drhd_units);
78 }
79
80 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
81 {
82 struct acpi_dmar_device_scope *scope;
83
84 *cnt = 0;
85 while (start < end) {
86 scope = start;
87 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
88 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
90 (*cnt)++;
91 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
92 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
93 pr_warn("Unsupported device scope\n");
94 }
95 start += scope->length;
96 }
97 if (*cnt == 0)
98 return NULL;
99
100 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
101 }
102
103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
104 {
105 int i;
106 struct device *tmp_dev;
107
108 if (*devices && *cnt) {
109 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
110 put_device(tmp_dev);
111 kfree(*devices);
112 }
113
114 *devices = NULL;
115 *cnt = 0;
116 }
117
118 /* Optimize out kzalloc()/kfree() for normal cases */
119 static char dmar_pci_notify_info_buf[64];
120
121 static struct dmar_pci_notify_info *
122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
123 {
124 int level = 0;
125 size_t size;
126 struct pci_dev *tmp;
127 struct dmar_pci_notify_info *info;
128
129 BUG_ON(dev->is_virtfn);
130
131 /* Only generate path[] for device addition event */
132 if (event == BUS_NOTIFY_ADD_DEVICE)
133 for (tmp = dev; tmp; tmp = tmp->bus->self)
134 level++;
135
136 size = struct_size(info, path, level);
137 if (size <= sizeof(dmar_pci_notify_info_buf)) {
138 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
139 } else {
140 info = kzalloc(size, GFP_KERNEL);
141 if (!info) {
142 pr_warn("Out of memory when allocating notify_info "
143 "for %s.\n", pci_name(dev));
144 if (dmar_dev_scope_status == 0)
145 dmar_dev_scope_status = -ENOMEM;
146 return NULL;
147 }
148 }
149
150 info->event = event;
151 info->dev = dev;
152 info->seg = pci_domain_nr(dev->bus);
153 info->level = level;
154 if (event == BUS_NOTIFY_ADD_DEVICE) {
155 for (tmp = dev; tmp; tmp = tmp->bus->self) {
156 level--;
157 info->path[level].bus = tmp->bus->number;
158 info->path[level].device = PCI_SLOT(tmp->devfn);
159 info->path[level].function = PCI_FUNC(tmp->devfn);
160 if (pci_is_root_bus(tmp->bus))
161 info->bus = tmp->bus->number;
162 }
163 }
164
165 return info;
166 }
167
168 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
169 {
170 if ((void *)info != dmar_pci_notify_info_buf)
171 kfree(info);
172 }
173
174 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
175 struct acpi_dmar_pci_path *path, int count)
176 {
177 int i;
178
179 if (info->bus != bus)
180 goto fallback;
181 if (info->level != count)
182 goto fallback;
183
184 for (i = 0; i < count; i++) {
185 if (path[i].device != info->path[i].device ||
186 path[i].function != info->path[i].function)
187 goto fallback;
188 }
189
190 return true;
191
192 fallback:
193
194 if (count != 1)
195 return false;
196
197 i = info->level - 1;
198 if (bus == info->path[i].bus &&
199 path[0].device == info->path[i].device &&
200 path[0].function == info->path[i].function) {
201 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
202 bus, path[0].device, path[0].function);
203 return true;
204 }
205
206 return false;
207 }
208
209 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
210 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
211 void *start, void*end, u16 segment,
212 struct dmar_dev_scope *devices,
213 int devices_cnt)
214 {
215 int i, level;
216 struct device *tmp, *dev = &info->dev->dev;
217 struct acpi_dmar_device_scope *scope;
218 struct acpi_dmar_pci_path *path;
219
220 if (segment != info->seg)
221 return 0;
222
223 for (; start < end; start += scope->length) {
224 scope = start;
225 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
226 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
227 continue;
228
229 path = (struct acpi_dmar_pci_path *)(scope + 1);
230 level = (scope->length - sizeof(*scope)) / sizeof(*path);
231 if (!dmar_match_pci_path(info, scope->bus, path, level))
232 continue;
233
234 /*
235 * We expect devices with endpoint scope to have normal PCI
236 * headers, and devices with bridge scope to have bridge PCI
237 * headers. However PCI NTB devices may be listed in the
238 * DMAR table with bridge scope, even though they have a
239 * normal PCI header. NTB devices are identified by class
240 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
241 * for this special case.
242 */
243 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
244 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
245 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
246 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
247 info->dev->class >> 8 != PCI_CLASS_BRIDGE_OTHER))) {
248 pr_warn("Device scope type does not match for %s\n",
249 pci_name(info->dev));
250 return -EINVAL;
251 }
252
253 for_each_dev_scope(devices, devices_cnt, i, tmp)
254 if (tmp == NULL) {
255 devices[i].bus = info->dev->bus->number;
256 devices[i].devfn = info->dev->devfn;
257 rcu_assign_pointer(devices[i].dev,
258 get_device(dev));
259 return 1;
260 }
261 BUG_ON(i >= devices_cnt);
262 }
263
264 return 0;
265 }
266
267 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
268 struct dmar_dev_scope *devices, int count)
269 {
270 int index;
271 struct device *tmp;
272
273 if (info->seg != segment)
274 return 0;
275
276 for_each_active_dev_scope(devices, count, index, tmp)
277 if (tmp == &info->dev->dev) {
278 RCU_INIT_POINTER(devices[index].dev, NULL);
279 synchronize_rcu();
280 put_device(tmp);
281 return 1;
282 }
283
284 return 0;
285 }
286
287 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
288 {
289 int ret = 0;
290 struct dmar_drhd_unit *dmaru;
291 struct acpi_dmar_hardware_unit *drhd;
292
293 for_each_drhd_unit(dmaru) {
294 if (dmaru->include_all)
295 continue;
296
297 drhd = container_of(dmaru->hdr,
298 struct acpi_dmar_hardware_unit, header);
299 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
300 ((void *)drhd) + drhd->header.length,
301 dmaru->segment,
302 dmaru->devices, dmaru->devices_cnt);
303 if (ret)
304 break;
305 }
306 if (ret >= 0)
307 ret = dmar_iommu_notify_scope_dev(info);
308 if (ret < 0 && dmar_dev_scope_status == 0)
309 dmar_dev_scope_status = ret;
310
311 return ret;
312 }
313
314 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
315 {
316 struct dmar_drhd_unit *dmaru;
317
318 for_each_drhd_unit(dmaru)
319 if (dmar_remove_dev_scope(info, dmaru->segment,
320 dmaru->devices, dmaru->devices_cnt))
321 break;
322 dmar_iommu_notify_scope_dev(info);
323 }
324
325 static int dmar_pci_bus_notifier(struct notifier_block *nb,
326 unsigned long action, void *data)
327 {
328 struct pci_dev *pdev = to_pci_dev(data);
329 struct dmar_pci_notify_info *info;
330
331 /* Only care about add/remove events for physical functions.
332 * For VFs we actually do the lookup based on the corresponding
333 * PF in device_to_iommu() anyway. */
334 if (pdev->is_virtfn)
335 return NOTIFY_DONE;
336 if (action != BUS_NOTIFY_ADD_DEVICE &&
337 action != BUS_NOTIFY_REMOVED_DEVICE)
338 return NOTIFY_DONE;
339
340 info = dmar_alloc_pci_notify_info(pdev, action);
341 if (!info)
342 return NOTIFY_DONE;
343
344 down_write(&dmar_global_lock);
345 if (action == BUS_NOTIFY_ADD_DEVICE)
346 dmar_pci_bus_add_dev(info);
347 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
348 dmar_pci_bus_del_dev(info);
349 up_write(&dmar_global_lock);
350
351 dmar_free_pci_notify_info(info);
352
353 return NOTIFY_OK;
354 }
355
356 static struct notifier_block dmar_pci_bus_nb = {
357 .notifier_call = dmar_pci_bus_notifier,
358 .priority = INT_MIN,
359 };
360
361 static struct dmar_drhd_unit *
362 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
363 {
364 struct dmar_drhd_unit *dmaru;
365
366 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list)
367 if (dmaru->segment == drhd->segment &&
368 dmaru->reg_base_addr == drhd->address)
369 return dmaru;
370
371 return NULL;
372 }
373
374 /**
375 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
376 * structure which uniquely represent one DMA remapping hardware unit
377 * present in the platform
378 */
379 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
380 {
381 struct acpi_dmar_hardware_unit *drhd;
382 struct dmar_drhd_unit *dmaru;
383 int ret;
384
385 drhd = (struct acpi_dmar_hardware_unit *)header;
386 dmaru = dmar_find_dmaru(drhd);
387 if (dmaru)
388 goto out;
389
390 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
391 if (!dmaru)
392 return -ENOMEM;
393
394 /*
395 * If header is allocated from slab by ACPI _DSM method, we need to
396 * copy the content because the memory buffer will be freed on return.
397 */
398 dmaru->hdr = (void *)(dmaru + 1);
399 memcpy(dmaru->hdr, header, header->length);
400 dmaru->reg_base_addr = drhd->address;
401 dmaru->segment = drhd->segment;
402 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
403 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
404 ((void *)drhd) + drhd->header.length,
405 &dmaru->devices_cnt);
406 if (dmaru->devices_cnt && dmaru->devices == NULL) {
407 kfree(dmaru);
408 return -ENOMEM;
409 }
410
411 ret = alloc_iommu(dmaru);
412 if (ret) {
413 dmar_free_dev_scope(&dmaru->devices,
414 &dmaru->devices_cnt);
415 kfree(dmaru);
416 return ret;
417 }
418 dmar_register_drhd_unit(dmaru);
419
420 out:
421 if (arg)
422 (*(int *)arg)++;
423
424 return 0;
425 }
426
427 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
428 {
429 if (dmaru->devices && dmaru->devices_cnt)
430 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
431 if (dmaru->iommu)
432 free_iommu(dmaru->iommu);
433 kfree(dmaru);
434 }
435
436 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
437 void *arg)
438 {
439 struct acpi_dmar_andd *andd = (void *)header;
440
441 /* Check for NUL termination within the designated length */
442 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
443 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
444 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
445 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
446 dmi_get_system_info(DMI_BIOS_VENDOR),
447 dmi_get_system_info(DMI_BIOS_VERSION),
448 dmi_get_system_info(DMI_PRODUCT_VERSION));
449 return -EINVAL;
450 }
451 pr_info("ANDD device: %x name: %s\n", andd->device_number,
452 andd->device_name);
453
454 return 0;
455 }
456
457 #ifdef CONFIG_ACPI_NUMA
458 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
459 {
460 struct acpi_dmar_rhsa *rhsa;
461 struct dmar_drhd_unit *drhd;
462
463 rhsa = (struct acpi_dmar_rhsa *)header;
464 for_each_drhd_unit(drhd) {
465 if (drhd->reg_base_addr == rhsa->base_address) {
466 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
467
468 if (!node_online(node))
469 node = NUMA_NO_NODE;
470 drhd->iommu->node = node;
471 return 0;
472 }
473 }
474 WARN_TAINT(
475 1, TAINT_FIRMWARE_WORKAROUND,
476 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
477 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
478 drhd->reg_base_addr,
479 dmi_get_system_info(DMI_BIOS_VENDOR),
480 dmi_get_system_info(DMI_BIOS_VERSION),
481 dmi_get_system_info(DMI_PRODUCT_VERSION));
482
483 return 0;
484 }
485 #else
486 #define dmar_parse_one_rhsa dmar_res_noop
487 #endif
488
489 static void
490 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
491 {
492 struct acpi_dmar_hardware_unit *drhd;
493 struct acpi_dmar_reserved_memory *rmrr;
494 struct acpi_dmar_atsr *atsr;
495 struct acpi_dmar_rhsa *rhsa;
496
497 switch (header->type) {
498 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
499 drhd = container_of(header, struct acpi_dmar_hardware_unit,
500 header);
501 pr_info("DRHD base: %#016Lx flags: %#x\n",
502 (unsigned long long)drhd->address, drhd->flags);
503 break;
504 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
505 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
506 header);
507 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
508 (unsigned long long)rmrr->base_address,
509 (unsigned long long)rmrr->end_address);
510 break;
511 case ACPI_DMAR_TYPE_ROOT_ATS:
512 atsr = container_of(header, struct acpi_dmar_atsr, header);
513 pr_info("ATSR flags: %#x\n", atsr->flags);
514 break;
515 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
516 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
517 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
518 (unsigned long long)rhsa->base_address,
519 rhsa->proximity_domain);
520 break;
521 case ACPI_DMAR_TYPE_NAMESPACE:
522 /* We don't print this here because we need to sanity-check
523 it first. So print it in dmar_parse_one_andd() instead. */
524 break;
525 }
526 }
527
528 /**
529 * dmar_table_detect - checks to see if the platform supports DMAR devices
530 */
531 static int __init dmar_table_detect(void)
532 {
533 acpi_status status = AE_OK;
534
535 /* if we could find DMAR table, then there are DMAR devices */
536 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
537
538 if (ACPI_SUCCESS(status) && !dmar_tbl) {
539 pr_warn("Unable to map DMAR\n");
540 status = AE_NOT_FOUND;
541 }
542
543 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
544 }
545
546 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
547 size_t len, struct dmar_res_callback *cb)
548 {
549 struct acpi_dmar_header *iter, *next;
550 struct acpi_dmar_header *end = ((void *)start) + len;
551
552 for (iter = start; iter < end; iter = next) {
553 next = (void *)iter + iter->length;
554 if (iter->length == 0) {
555 /* Avoid looping forever on bad ACPI tables */
556 pr_debug(FW_BUG "Invalid 0-length structure\n");
557 break;
558 } else if (next > end) {
559 /* Avoid passing table end */
560 pr_warn(FW_BUG "Record passes table end\n");
561 return -EINVAL;
562 }
563
564 if (cb->print_entry)
565 dmar_table_print_dmar_entry(iter);
566
567 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
568 /* continue for forward compatibility */
569 pr_debug("Unknown DMAR structure type %d\n",
570 iter->type);
571 } else if (cb->cb[iter->type]) {
572 int ret;
573
574 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
575 if (ret)
576 return ret;
577 } else if (!cb->ignore_unhandled) {
578 pr_warn("No handler for DMAR structure type %d\n",
579 iter->type);
580 return -EINVAL;
581 }
582 }
583
584 return 0;
585 }
586
587 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
588 struct dmar_res_callback *cb)
589 {
590 return dmar_walk_remapping_entries((void *)(dmar + 1),
591 dmar->header.length - sizeof(*dmar), cb);
592 }
593
594 /**
595 * parse_dmar_table - parses the DMA reporting table
596 */
597 static int __init
598 parse_dmar_table(void)
599 {
600 struct acpi_table_dmar *dmar;
601 int drhd_count = 0;
602 int ret;
603 struct dmar_res_callback cb = {
604 .print_entry = true,
605 .ignore_unhandled = true,
606 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
607 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
608 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
609 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
610 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
611 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
612 };
613
614 /*
615 * Do it again, earlier dmar_tbl mapping could be mapped with
616 * fixed map.
617 */
618 dmar_table_detect();
619
620 /*
621 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
622 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
623 */
624 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
625
626 dmar = (struct acpi_table_dmar *)dmar_tbl;
627 if (!dmar)
628 return -ENODEV;
629
630 if (dmar->width < PAGE_SHIFT - 1) {
631 pr_warn("Invalid DMAR haw\n");
632 return -EINVAL;
633 }
634
635 pr_info("Host address width %d\n", dmar->width + 1);
636 ret = dmar_walk_dmar_table(dmar, &cb);
637 if (ret == 0 && drhd_count == 0)
638 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
639
640 return ret;
641 }
642
643 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
644 int cnt, struct pci_dev *dev)
645 {
646 int index;
647 struct device *tmp;
648
649 while (dev) {
650 for_each_active_dev_scope(devices, cnt, index, tmp)
651 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
652 return 1;
653
654 /* Check our parent */
655 dev = dev->bus->self;
656 }
657
658 return 0;
659 }
660
661 struct dmar_drhd_unit *
662 dmar_find_matched_drhd_unit(struct pci_dev *dev)
663 {
664 struct dmar_drhd_unit *dmaru;
665 struct acpi_dmar_hardware_unit *drhd;
666
667 dev = pci_physfn(dev);
668
669 rcu_read_lock();
670 for_each_drhd_unit(dmaru) {
671 drhd = container_of(dmaru->hdr,
672 struct acpi_dmar_hardware_unit,
673 header);
674
675 if (dmaru->include_all &&
676 drhd->segment == pci_domain_nr(dev->bus))
677 goto out;
678
679 if (dmar_pci_device_match(dmaru->devices,
680 dmaru->devices_cnt, dev))
681 goto out;
682 }
683 dmaru = NULL;
684 out:
685 rcu_read_unlock();
686
687 return dmaru;
688 }
689
690 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
691 struct acpi_device *adev)
692 {
693 struct dmar_drhd_unit *dmaru;
694 struct acpi_dmar_hardware_unit *drhd;
695 struct acpi_dmar_device_scope *scope;
696 struct device *tmp;
697 int i;
698 struct acpi_dmar_pci_path *path;
699
700 for_each_drhd_unit(dmaru) {
701 drhd = container_of(dmaru->hdr,
702 struct acpi_dmar_hardware_unit,
703 header);
704
705 for (scope = (void *)(drhd + 1);
706 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
707 scope = ((void *)scope) + scope->length) {
708 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
709 continue;
710 if (scope->enumeration_id != device_number)
711 continue;
712
713 path = (void *)(scope + 1);
714 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
715 dev_name(&adev->dev), dmaru->reg_base_addr,
716 scope->bus, path->device, path->function);
717 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
718 if (tmp == NULL) {
719 dmaru->devices[i].bus = scope->bus;
720 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
721 path->function);
722 rcu_assign_pointer(dmaru->devices[i].dev,
723 get_device(&adev->dev));
724 return;
725 }
726 BUG_ON(i >= dmaru->devices_cnt);
727 }
728 }
729 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
730 device_number, dev_name(&adev->dev));
731 }
732
733 static int __init dmar_acpi_dev_scope_init(void)
734 {
735 struct acpi_dmar_andd *andd;
736
737 if (dmar_tbl == NULL)
738 return -ENODEV;
739
740 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
741 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
742 andd = ((void *)andd) + andd->header.length) {
743 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
744 acpi_handle h;
745 struct acpi_device *adev;
746
747 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
748 andd->device_name,
749 &h))) {
750 pr_err("Failed to find handle for ACPI object %s\n",
751 andd->device_name);
752 continue;
753 }
754 if (acpi_bus_get_device(h, &adev)) {
755 pr_err("Failed to get device for ACPI object %s\n",
756 andd->device_name);
757 continue;
758 }
759 dmar_acpi_insert_dev_scope(andd->device_number, adev);
760 }
761 }
762 return 0;
763 }
764
765 int __init dmar_dev_scope_init(void)
766 {
767 struct pci_dev *dev = NULL;
768 struct dmar_pci_notify_info *info;
769
770 if (dmar_dev_scope_status != 1)
771 return dmar_dev_scope_status;
772
773 if (list_empty(&dmar_drhd_units)) {
774 dmar_dev_scope_status = -ENODEV;
775 } else {
776 dmar_dev_scope_status = 0;
777
778 dmar_acpi_dev_scope_init();
779
780 for_each_pci_dev(dev) {
781 if (dev->is_virtfn)
782 continue;
783
784 info = dmar_alloc_pci_notify_info(dev,
785 BUS_NOTIFY_ADD_DEVICE);
786 if (!info) {
787 return dmar_dev_scope_status;
788 } else {
789 dmar_pci_bus_add_dev(info);
790 dmar_free_pci_notify_info(info);
791 }
792 }
793 }
794
795 return dmar_dev_scope_status;
796 }
797
798 void __init dmar_register_bus_notifier(void)
799 {
800 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
801 }
802
803
804 int __init dmar_table_init(void)
805 {
806 static int dmar_table_initialized;
807 int ret;
808
809 if (dmar_table_initialized == 0) {
810 ret = parse_dmar_table();
811 if (ret < 0) {
812 if (ret != -ENODEV)
813 pr_info("Parse DMAR table failure.\n");
814 } else if (list_empty(&dmar_drhd_units)) {
815 pr_info("No DMAR devices found\n");
816 ret = -ENODEV;
817 }
818
819 if (ret < 0)
820 dmar_table_initialized = ret;
821 else
822 dmar_table_initialized = 1;
823 }
824
825 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
826 }
827
828 static void warn_invalid_dmar(u64 addr, const char *message)
829 {
830 WARN_TAINT_ONCE(
831 1, TAINT_FIRMWARE_WORKAROUND,
832 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
833 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
834 addr, message,
835 dmi_get_system_info(DMI_BIOS_VENDOR),
836 dmi_get_system_info(DMI_BIOS_VERSION),
837 dmi_get_system_info(DMI_PRODUCT_VERSION));
838 }
839
840 static int __ref
841 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
842 {
843 struct acpi_dmar_hardware_unit *drhd;
844 void __iomem *addr;
845 u64 cap, ecap;
846
847 drhd = (void *)entry;
848 if (!drhd->address) {
849 warn_invalid_dmar(0, "");
850 return -EINVAL;
851 }
852
853 if (arg)
854 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
855 else
856 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
857 if (!addr) {
858 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
859 return -EINVAL;
860 }
861
862 cap = dmar_readq(addr + DMAR_CAP_REG);
863 ecap = dmar_readq(addr + DMAR_ECAP_REG);
864
865 if (arg)
866 iounmap(addr);
867 else
868 early_iounmap(addr, VTD_PAGE_SIZE);
869
870 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
871 warn_invalid_dmar(drhd->address, " returns all ones");
872 return -EINVAL;
873 }
874
875 return 0;
876 }
877
878 int __init detect_intel_iommu(void)
879 {
880 int ret;
881 struct dmar_res_callback validate_drhd_cb = {
882 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
883 .ignore_unhandled = true,
884 };
885
886 down_write(&dmar_global_lock);
887 ret = dmar_table_detect();
888 if (!ret)
889 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
890 &validate_drhd_cb);
891 if (!ret && !no_iommu && !iommu_detected && !dmar_disabled) {
892 iommu_detected = 1;
893 /* Make sure ACS will be enabled */
894 pci_request_acs();
895 }
896
897 #ifdef CONFIG_X86
898 if (!ret)
899 x86_init.iommu.iommu_init = intel_iommu_init;
900 #endif
901
902 if (dmar_tbl) {
903 acpi_put_table(dmar_tbl);
904 dmar_tbl = NULL;
905 }
906 up_write(&dmar_global_lock);
907
908 return ret ? ret : 1;
909 }
910
911 static void unmap_iommu(struct intel_iommu *iommu)
912 {
913 iounmap(iommu->reg);
914 release_mem_region(iommu->reg_phys, iommu->reg_size);
915 }
916
917 /**
918 * map_iommu: map the iommu's registers
919 * @iommu: the iommu to map
920 * @phys_addr: the physical address of the base resgister
921 *
922 * Memory map the iommu's registers. Start w/ a single page, and
923 * possibly expand if that turns out to be insufficent.
924 */
925 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
926 {
927 int map_size, err=0;
928
929 iommu->reg_phys = phys_addr;
930 iommu->reg_size = VTD_PAGE_SIZE;
931
932 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
933 pr_err("Can't reserve memory\n");
934 err = -EBUSY;
935 goto out;
936 }
937
938 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
939 if (!iommu->reg) {
940 pr_err("Can't map the region\n");
941 err = -ENOMEM;
942 goto release;
943 }
944
945 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
946 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
947
948 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
949 err = -EINVAL;
950 warn_invalid_dmar(phys_addr, " returns all ones");
951 goto unmap;
952 }
953
954 /* the registers might be more than one page */
955 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
956 cap_max_fault_reg_offset(iommu->cap));
957 map_size = VTD_PAGE_ALIGN(map_size);
958 if (map_size > iommu->reg_size) {
959 iounmap(iommu->reg);
960 release_mem_region(iommu->reg_phys, iommu->reg_size);
961 iommu->reg_size = map_size;
962 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
963 iommu->name)) {
964 pr_err("Can't reserve memory\n");
965 err = -EBUSY;
966 goto out;
967 }
968 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
969 if (!iommu->reg) {
970 pr_err("Can't map the region\n");
971 err = -ENOMEM;
972 goto release;
973 }
974 }
975 err = 0;
976 goto out;
977
978 unmap:
979 iounmap(iommu->reg);
980 release:
981 release_mem_region(iommu->reg_phys, iommu->reg_size);
982 out:
983 return err;
984 }
985
986 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
987 {
988 iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
989 DMAR_UNITS_SUPPORTED);
990 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
991 iommu->seq_id = -1;
992 } else {
993 set_bit(iommu->seq_id, dmar_seq_ids);
994 sprintf(iommu->name, "dmar%d", iommu->seq_id);
995 }
996
997 return iommu->seq_id;
998 }
999
1000 static void dmar_free_seq_id(struct intel_iommu *iommu)
1001 {
1002 if (iommu->seq_id >= 0) {
1003 clear_bit(iommu->seq_id, dmar_seq_ids);
1004 iommu->seq_id = -1;
1005 }
1006 }
1007
1008 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1009 {
1010 struct intel_iommu *iommu;
1011 u32 ver, sts;
1012 int agaw = 0;
1013 int msagaw = 0;
1014 int err;
1015
1016 if (!drhd->reg_base_addr) {
1017 warn_invalid_dmar(0, "");
1018 return -EINVAL;
1019 }
1020
1021 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1022 if (!iommu)
1023 return -ENOMEM;
1024
1025 if (dmar_alloc_seq_id(iommu) < 0) {
1026 pr_err("Failed to allocate seq_id\n");
1027 err = -ENOSPC;
1028 goto error;
1029 }
1030
1031 err = map_iommu(iommu, drhd->reg_base_addr);
1032 if (err) {
1033 pr_err("Failed to map %s\n", iommu->name);
1034 goto error_free_seq_id;
1035 }
1036
1037 err = -EINVAL;
1038 agaw = iommu_calculate_agaw(iommu);
1039 if (agaw < 0) {
1040 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1041 iommu->seq_id);
1042 goto err_unmap;
1043 }
1044 msagaw = iommu_calculate_max_sagaw(iommu);
1045 if (msagaw < 0) {
1046 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1047 iommu->seq_id);
1048 goto err_unmap;
1049 }
1050 iommu->agaw = agaw;
1051 iommu->msagaw = msagaw;
1052 iommu->segment = drhd->segment;
1053
1054 iommu->node = NUMA_NO_NODE;
1055
1056 ver = readl(iommu->reg + DMAR_VER_REG);
1057 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1058 iommu->name,
1059 (unsigned long long)drhd->reg_base_addr,
1060 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1061 (unsigned long long)iommu->cap,
1062 (unsigned long long)iommu->ecap);
1063
1064 /* Reflect status in gcmd */
1065 sts = readl(iommu->reg + DMAR_GSTS_REG);
1066 if (sts & DMA_GSTS_IRES)
1067 iommu->gcmd |= DMA_GCMD_IRE;
1068 if (sts & DMA_GSTS_TES)
1069 iommu->gcmd |= DMA_GCMD_TE;
1070 if (sts & DMA_GSTS_QIES)
1071 iommu->gcmd |= DMA_GCMD_QIE;
1072
1073 raw_spin_lock_init(&iommu->register_lock);
1074
1075 if (intel_iommu_enabled) {
1076 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1077 intel_iommu_groups,
1078 "%s", iommu->name);
1079 if (err)
1080 goto err_unmap;
1081
1082 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1083
1084 err = iommu_device_register(&iommu->iommu);
1085 if (err)
1086 goto err_unmap;
1087 }
1088
1089 drhd->iommu = iommu;
1090
1091 return 0;
1092
1093 err_unmap:
1094 unmap_iommu(iommu);
1095 error_free_seq_id:
1096 dmar_free_seq_id(iommu);
1097 error:
1098 kfree(iommu);
1099 return err;
1100 }
1101
1102 static void free_iommu(struct intel_iommu *iommu)
1103 {
1104 if (intel_iommu_enabled) {
1105 iommu_device_unregister(&iommu->iommu);
1106 iommu_device_sysfs_remove(&iommu->iommu);
1107 }
1108
1109 if (iommu->irq) {
1110 if (iommu->pr_irq) {
1111 free_irq(iommu->pr_irq, iommu);
1112 dmar_free_hwirq(iommu->pr_irq);
1113 iommu->pr_irq = 0;
1114 }
1115 free_irq(iommu->irq, iommu);
1116 dmar_free_hwirq(iommu->irq);
1117 iommu->irq = 0;
1118 }
1119
1120 if (iommu->qi) {
1121 free_page((unsigned long)iommu->qi->desc);
1122 kfree(iommu->qi->desc_status);
1123 kfree(iommu->qi);
1124 }
1125
1126 if (iommu->reg)
1127 unmap_iommu(iommu);
1128
1129 dmar_free_seq_id(iommu);
1130 kfree(iommu);
1131 }
1132
1133 /*
1134 * Reclaim all the submitted descriptors which have completed its work.
1135 */
1136 static inline void reclaim_free_desc(struct q_inval *qi)
1137 {
1138 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1139 qi->desc_status[qi->free_tail] == QI_ABORT) {
1140 qi->desc_status[qi->free_tail] = QI_FREE;
1141 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1142 qi->free_cnt++;
1143 }
1144 }
1145
1146 static int qi_check_fault(struct intel_iommu *iommu, int index)
1147 {
1148 u32 fault;
1149 int head, tail;
1150 struct q_inval *qi = iommu->qi;
1151 int wait_index = (index + 1) % QI_LENGTH;
1152 int shift = qi_shift(iommu);
1153
1154 if (qi->desc_status[wait_index] == QI_ABORT)
1155 return -EAGAIN;
1156
1157 fault = readl(iommu->reg + DMAR_FSTS_REG);
1158
1159 /*
1160 * If IQE happens, the head points to the descriptor associated
1161 * with the error. No new descriptors are fetched until the IQE
1162 * is cleared.
1163 */
1164 if (fault & DMA_FSTS_IQE) {
1165 head = readl(iommu->reg + DMAR_IQH_REG);
1166 if ((head >> shift) == index) {
1167 struct qi_desc *desc = qi->desc + head;
1168
1169 /*
1170 * desc->qw2 and desc->qw3 are either reserved or
1171 * used by software as private data. We won't print
1172 * out these two qw's for security consideration.
1173 */
1174 pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1175 (unsigned long long)desc->qw0,
1176 (unsigned long long)desc->qw1);
1177 memcpy(desc, qi->desc + (wait_index << shift),
1178 1 << shift);
1179 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1180 return -EINVAL;
1181 }
1182 }
1183
1184 /*
1185 * If ITE happens, all pending wait_desc commands are aborted.
1186 * No new descriptors are fetched until the ITE is cleared.
1187 */
1188 if (fault & DMA_FSTS_ITE) {
1189 head = readl(iommu->reg + DMAR_IQH_REG);
1190 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1191 head |= 1;
1192 tail = readl(iommu->reg + DMAR_IQT_REG);
1193 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1194
1195 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1196
1197 do {
1198 if (qi->desc_status[head] == QI_IN_USE)
1199 qi->desc_status[head] = QI_ABORT;
1200 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1201 } while (head != tail);
1202
1203 if (qi->desc_status[wait_index] == QI_ABORT)
1204 return -EAGAIN;
1205 }
1206
1207 if (fault & DMA_FSTS_ICE)
1208 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1209
1210 return 0;
1211 }
1212
1213 /*
1214 * Submit the queued invalidation descriptor to the remapping
1215 * hardware unit and wait for its completion.
1216 */
1217 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1218 {
1219 int rc;
1220 struct q_inval *qi = iommu->qi;
1221 int offset, shift, length;
1222 struct qi_desc wait_desc;
1223 int wait_index, index;
1224 unsigned long flags;
1225
1226 if (!qi)
1227 return 0;
1228
1229 restart:
1230 rc = 0;
1231
1232 raw_spin_lock_irqsave(&qi->q_lock, flags);
1233 while (qi->free_cnt < 3) {
1234 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1235 cpu_relax();
1236 raw_spin_lock_irqsave(&qi->q_lock, flags);
1237 }
1238
1239 index = qi->free_head;
1240 wait_index = (index + 1) % QI_LENGTH;
1241 shift = qi_shift(iommu);
1242 length = 1 << shift;
1243
1244 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1245
1246 offset = index << shift;
1247 memcpy(qi->desc + offset, desc, length);
1248 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1249 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1250 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1251 wait_desc.qw2 = 0;
1252 wait_desc.qw3 = 0;
1253
1254 offset = wait_index << shift;
1255 memcpy(qi->desc + offset, &wait_desc, length);
1256
1257 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1258 qi->free_cnt -= 2;
1259
1260 /*
1261 * update the HW tail register indicating the presence of
1262 * new descriptors.
1263 */
1264 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1265
1266 while (qi->desc_status[wait_index] != QI_DONE) {
1267 /*
1268 * We will leave the interrupts disabled, to prevent interrupt
1269 * context to queue another cmd while a cmd is already submitted
1270 * and waiting for completion on this cpu. This is to avoid
1271 * a deadlock where the interrupt context can wait indefinitely
1272 * for free slots in the queue.
1273 */
1274 rc = qi_check_fault(iommu, index);
1275 if (rc)
1276 break;
1277
1278 raw_spin_unlock(&qi->q_lock);
1279 cpu_relax();
1280 raw_spin_lock(&qi->q_lock);
1281 }
1282
1283 qi->desc_status[index] = QI_DONE;
1284
1285 reclaim_free_desc(qi);
1286 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1287
1288 if (rc == -EAGAIN)
1289 goto restart;
1290
1291 return rc;
1292 }
1293
1294 /*
1295 * Flush the global interrupt entry cache.
1296 */
1297 void qi_global_iec(struct intel_iommu *iommu)
1298 {
1299 struct qi_desc desc;
1300
1301 desc.qw0 = QI_IEC_TYPE;
1302 desc.qw1 = 0;
1303 desc.qw2 = 0;
1304 desc.qw3 = 0;
1305
1306 /* should never fail */
1307 qi_submit_sync(&desc, iommu);
1308 }
1309
1310 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1311 u64 type)
1312 {
1313 struct qi_desc desc;
1314
1315 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1316 | QI_CC_GRAN(type) | QI_CC_TYPE;
1317 desc.qw1 = 0;
1318 desc.qw2 = 0;
1319 desc.qw3 = 0;
1320
1321 qi_submit_sync(&desc, iommu);
1322 }
1323
1324 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1325 unsigned int size_order, u64 type)
1326 {
1327 u8 dw = 0, dr = 0;
1328
1329 struct qi_desc desc;
1330 int ih = 0;
1331
1332 if (cap_write_drain(iommu->cap))
1333 dw = 1;
1334
1335 if (cap_read_drain(iommu->cap))
1336 dr = 1;
1337
1338 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1339 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1340 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1341 | QI_IOTLB_AM(size_order);
1342 desc.qw2 = 0;
1343 desc.qw3 = 0;
1344
1345 qi_submit_sync(&desc, iommu);
1346 }
1347
1348 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1349 u16 qdep, u64 addr, unsigned mask)
1350 {
1351 struct qi_desc desc;
1352
1353 if (mask) {
1354 WARN_ON_ONCE(addr & ((1ULL << (VTD_PAGE_SHIFT + mask)) - 1));
1355 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1356 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1357 } else
1358 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1359
1360 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1361 qdep = 0;
1362
1363 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1364 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1365 desc.qw2 = 0;
1366 desc.qw3 = 0;
1367
1368 qi_submit_sync(&desc, iommu);
1369 }
1370
1371 /*
1372 * Disable Queued Invalidation interface.
1373 */
1374 void dmar_disable_qi(struct intel_iommu *iommu)
1375 {
1376 unsigned long flags;
1377 u32 sts;
1378 cycles_t start_time = get_cycles();
1379
1380 if (!ecap_qis(iommu->ecap))
1381 return;
1382
1383 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1384
1385 sts = readl(iommu->reg + DMAR_GSTS_REG);
1386 if (!(sts & DMA_GSTS_QIES))
1387 goto end;
1388
1389 /*
1390 * Give a chance to HW to complete the pending invalidation requests.
1391 */
1392 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1393 readl(iommu->reg + DMAR_IQH_REG)) &&
1394 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1395 cpu_relax();
1396
1397 iommu->gcmd &= ~DMA_GCMD_QIE;
1398 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1399
1400 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1401 !(sts & DMA_GSTS_QIES), sts);
1402 end:
1403 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1404 }
1405
1406 /*
1407 * Enable queued invalidation.
1408 */
1409 static void __dmar_enable_qi(struct intel_iommu *iommu)
1410 {
1411 u32 sts;
1412 unsigned long flags;
1413 struct q_inval *qi = iommu->qi;
1414 u64 val = virt_to_phys(qi->desc);
1415
1416 qi->free_head = qi->free_tail = 0;
1417 qi->free_cnt = QI_LENGTH;
1418
1419 /*
1420 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1421 * is present.
1422 */
1423 if (ecap_smts(iommu->ecap))
1424 val |= (1 << 11) | 1;
1425
1426 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1427
1428 /* write zero to the tail reg */
1429 writel(0, iommu->reg + DMAR_IQT_REG);
1430
1431 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1432
1433 iommu->gcmd |= DMA_GCMD_QIE;
1434 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1435
1436 /* Make sure hardware complete it */
1437 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1438
1439 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1440 }
1441
1442 /*
1443 * Enable Queued Invalidation interface. This is a must to support
1444 * interrupt-remapping. Also used by DMA-remapping, which replaces
1445 * register based IOTLB invalidation.
1446 */
1447 int dmar_enable_qi(struct intel_iommu *iommu)
1448 {
1449 struct q_inval *qi;
1450 struct page *desc_page;
1451
1452 if (!ecap_qis(iommu->ecap))
1453 return -ENOENT;
1454
1455 /*
1456 * queued invalidation is already setup and enabled.
1457 */
1458 if (iommu->qi)
1459 return 0;
1460
1461 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1462 if (!iommu->qi)
1463 return -ENOMEM;
1464
1465 qi = iommu->qi;
1466
1467 /*
1468 * Need two pages to accommodate 256 descriptors of 256 bits each
1469 * if the remapping hardware supports scalable mode translation.
1470 */
1471 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1472 !!ecap_smts(iommu->ecap));
1473 if (!desc_page) {
1474 kfree(qi);
1475 iommu->qi = NULL;
1476 return -ENOMEM;
1477 }
1478
1479 qi->desc = page_address(desc_page);
1480
1481 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1482 if (!qi->desc_status) {
1483 free_page((unsigned long) qi->desc);
1484 kfree(qi);
1485 iommu->qi = NULL;
1486 return -ENOMEM;
1487 }
1488
1489 raw_spin_lock_init(&qi->q_lock);
1490
1491 __dmar_enable_qi(iommu);
1492
1493 return 0;
1494 }
1495
1496 /* iommu interrupt handling. Most stuff are MSI-like. */
1497
1498 enum faulttype {
1499 DMA_REMAP,
1500 INTR_REMAP,
1501 UNKNOWN,
1502 };
1503
1504 static const char *dma_remap_fault_reasons[] =
1505 {
1506 "Software",
1507 "Present bit in root entry is clear",
1508 "Present bit in context entry is clear",
1509 "Invalid context entry",
1510 "Access beyond MGAW",
1511 "PTE Write access is not set",
1512 "PTE Read access is not set",
1513 "Next page table ptr is invalid",
1514 "Root table address invalid",
1515 "Context table ptr is invalid",
1516 "non-zero reserved fields in RTP",
1517 "non-zero reserved fields in CTP",
1518 "non-zero reserved fields in PTE",
1519 "PCE for translation request specifies blocking",
1520 };
1521
1522 static const char * const dma_remap_sm_fault_reasons[] = {
1523 "SM: Invalid Root Table Address",
1524 "SM: TTM 0 for request with PASID",
1525 "SM: TTM 0 for page group request",
1526 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1527 "SM: Error attempting to access Root Entry",
1528 "SM: Present bit in Root Entry is clear",
1529 "SM: Non-zero reserved field set in Root Entry",
1530 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1531 "SM: Error attempting to access Context Entry",
1532 "SM: Present bit in Context Entry is clear",
1533 "SM: Non-zero reserved field set in the Context Entry",
1534 "SM: Invalid Context Entry",
1535 "SM: DTE field in Context Entry is clear",
1536 "SM: PASID Enable field in Context Entry is clear",
1537 "SM: PASID is larger than the max in Context Entry",
1538 "SM: PRE field in Context-Entry is clear",
1539 "SM: RID_PASID field error in Context-Entry",
1540 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1541 "SM: Error attempting to access the PASID Directory Entry",
1542 "SM: Present bit in Directory Entry is clear",
1543 "SM: Non-zero reserved field set in PASID Directory Entry",
1544 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1545 "SM: Error attempting to access PASID Table Entry",
1546 "SM: Present bit in PASID Table Entry is clear",
1547 "SM: Non-zero reserved field set in PASID Table Entry",
1548 "SM: Invalid Scalable-Mode PASID Table Entry",
1549 "SM: ERE field is clear in PASID Table Entry",
1550 "SM: SRE field is clear in PASID Table Entry",
1551 "Unknown", "Unknown",/* 0x5E-0x5F */
1552 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1553 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1554 "SM: Error attempting to access first-level paging entry",
1555 "SM: Present bit in first-level paging entry is clear",
1556 "SM: Non-zero reserved field set in first-level paging entry",
1557 "SM: Error attempting to access FL-PML4 entry",
1558 "SM: First-level entry address beyond MGAW in Nested translation",
1559 "SM: Read permission error in FL-PML4 entry in Nested translation",
1560 "SM: Read permission error in first-level paging entry in Nested translation",
1561 "SM: Write permission error in first-level paging entry in Nested translation",
1562 "SM: Error attempting to access second-level paging entry",
1563 "SM: Read/Write permission error in second-level paging entry",
1564 "SM: Non-zero reserved field set in second-level paging entry",
1565 "SM: Invalid second-level page table pointer",
1566 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1567 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1568 "SM: Address in first-level translation is not canonical",
1569 "SM: U/S set 0 for first-level translation with user privilege",
1570 "SM: No execute permission for request with PASID and ER=1",
1571 "SM: Address beyond the DMA hardware max",
1572 "SM: Second-level entry address beyond the max",
1573 "SM: No write permission for Write/AtomicOp request",
1574 "SM: No read permission for Read/AtomicOp request",
1575 "SM: Invalid address-interrupt address",
1576 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1577 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1578 };
1579
1580 static const char *irq_remap_fault_reasons[] =
1581 {
1582 "Detected reserved fields in the decoded interrupt-remapped request",
1583 "Interrupt index exceeded the interrupt-remapping table size",
1584 "Present field in the IRTE entry is clear",
1585 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1586 "Detected reserved fields in the IRTE entry",
1587 "Blocked a compatibility format interrupt request",
1588 "Blocked an interrupt request due to source-id verification failure",
1589 };
1590
1591 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1592 {
1593 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1594 ARRAY_SIZE(irq_remap_fault_reasons))) {
1595 *fault_type = INTR_REMAP;
1596 return irq_remap_fault_reasons[fault_reason - 0x20];
1597 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1598 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1599 *fault_type = DMA_REMAP;
1600 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1601 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1602 *fault_type = DMA_REMAP;
1603 return dma_remap_fault_reasons[fault_reason];
1604 } else {
1605 *fault_type = UNKNOWN;
1606 return "Unknown";
1607 }
1608 }
1609
1610
1611 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1612 {
1613 if (iommu->irq == irq)
1614 return DMAR_FECTL_REG;
1615 else if (iommu->pr_irq == irq)
1616 return DMAR_PECTL_REG;
1617 else
1618 BUG();
1619 }
1620
1621 void dmar_msi_unmask(struct irq_data *data)
1622 {
1623 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1624 int reg = dmar_msi_reg(iommu, data->irq);
1625 unsigned long flag;
1626
1627 /* unmask it */
1628 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1629 writel(0, iommu->reg + reg);
1630 /* Read a reg to force flush the post write */
1631 readl(iommu->reg + reg);
1632 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1633 }
1634
1635 void dmar_msi_mask(struct irq_data *data)
1636 {
1637 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1638 int reg = dmar_msi_reg(iommu, data->irq);
1639 unsigned long flag;
1640
1641 /* mask it */
1642 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1643 writel(DMA_FECTL_IM, iommu->reg + reg);
1644 /* Read a reg to force flush the post write */
1645 readl(iommu->reg + reg);
1646 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1647 }
1648
1649 void dmar_msi_write(int irq, struct msi_msg *msg)
1650 {
1651 struct intel_iommu *iommu = irq_get_handler_data(irq);
1652 int reg = dmar_msi_reg(iommu, irq);
1653 unsigned long flag;
1654
1655 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1656 writel(msg->data, iommu->reg + reg + 4);
1657 writel(msg->address_lo, iommu->reg + reg + 8);
1658 writel(msg->address_hi, iommu->reg + reg + 12);
1659 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1660 }
1661
1662 void dmar_msi_read(int irq, struct msi_msg *msg)
1663 {
1664 struct intel_iommu *iommu = irq_get_handler_data(irq);
1665 int reg = dmar_msi_reg(iommu, irq);
1666 unsigned long flag;
1667
1668 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1669 msg->data = readl(iommu->reg + reg + 4);
1670 msg->address_lo = readl(iommu->reg + reg + 8);
1671 msg->address_hi = readl(iommu->reg + reg + 12);
1672 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1673 }
1674
1675 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1676 u8 fault_reason, int pasid, u16 source_id,
1677 unsigned long long addr)
1678 {
1679 const char *reason;
1680 int fault_type;
1681
1682 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1683
1684 if (fault_type == INTR_REMAP)
1685 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1686 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1687 PCI_FUNC(source_id & 0xFF), addr >> 48,
1688 fault_reason, reason);
1689 else
1690 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1691 type ? "DMA Read" : "DMA Write",
1692 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1693 PCI_FUNC(source_id & 0xFF), pasid, addr,
1694 fault_reason, reason);
1695 return 0;
1696 }
1697
1698 #define PRIMARY_FAULT_REG_LEN (16)
1699 irqreturn_t dmar_fault(int irq, void *dev_id)
1700 {
1701 struct intel_iommu *iommu = dev_id;
1702 int reg, fault_index;
1703 u32 fault_status;
1704 unsigned long flag;
1705 static DEFINE_RATELIMIT_STATE(rs,
1706 DEFAULT_RATELIMIT_INTERVAL,
1707 DEFAULT_RATELIMIT_BURST);
1708
1709 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1710 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1711 if (fault_status && __ratelimit(&rs))
1712 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1713
1714 /* TBD: ignore advanced fault log currently */
1715 if (!(fault_status & DMA_FSTS_PPF))
1716 goto unlock_exit;
1717
1718 fault_index = dma_fsts_fault_record_index(fault_status);
1719 reg = cap_fault_reg_offset(iommu->cap);
1720 while (1) {
1721 /* Disable printing, simply clear the fault when ratelimited */
1722 bool ratelimited = !__ratelimit(&rs);
1723 u8 fault_reason;
1724 u16 source_id;
1725 u64 guest_addr;
1726 int type, pasid;
1727 u32 data;
1728 bool pasid_present;
1729
1730 /* highest 32 bits */
1731 data = readl(iommu->reg + reg +
1732 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1733 if (!(data & DMA_FRCD_F))
1734 break;
1735
1736 if (!ratelimited) {
1737 fault_reason = dma_frcd_fault_reason(data);
1738 type = dma_frcd_type(data);
1739
1740 pasid = dma_frcd_pasid_value(data);
1741 data = readl(iommu->reg + reg +
1742 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1743 source_id = dma_frcd_source_id(data);
1744
1745 pasid_present = dma_frcd_pasid_present(data);
1746 guest_addr = dmar_readq(iommu->reg + reg +
1747 fault_index * PRIMARY_FAULT_REG_LEN);
1748 guest_addr = dma_frcd_page_addr(guest_addr);
1749 }
1750
1751 /* clear the fault */
1752 writel(DMA_FRCD_F, iommu->reg + reg +
1753 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1754
1755 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1756
1757 if (!ratelimited)
1758 /* Using pasid -1 if pasid is not present */
1759 dmar_fault_do_one(iommu, type, fault_reason,
1760 pasid_present ? pasid : -1,
1761 source_id, guest_addr);
1762
1763 fault_index++;
1764 if (fault_index >= cap_num_fault_regs(iommu->cap))
1765 fault_index = 0;
1766 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1767 }
1768
1769 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1770 iommu->reg + DMAR_FSTS_REG);
1771
1772 unlock_exit:
1773 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1774 return IRQ_HANDLED;
1775 }
1776
1777 int dmar_set_interrupt(struct intel_iommu *iommu)
1778 {
1779 int irq, ret;
1780
1781 /*
1782 * Check if the fault interrupt is already initialized.
1783 */
1784 if (iommu->irq)
1785 return 0;
1786
1787 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1788 if (irq > 0) {
1789 iommu->irq = irq;
1790 } else {
1791 pr_err("No free IRQ vectors\n");
1792 return -EINVAL;
1793 }
1794
1795 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1796 if (ret)
1797 pr_err("Can't request irq\n");
1798 return ret;
1799 }
1800
1801 int __init enable_drhd_fault_handling(void)
1802 {
1803 struct dmar_drhd_unit *drhd;
1804 struct intel_iommu *iommu;
1805
1806 /*
1807 * Enable fault control interrupt.
1808 */
1809 for_each_iommu(iommu, drhd) {
1810 u32 fault_status;
1811 int ret = dmar_set_interrupt(iommu);
1812
1813 if (ret) {
1814 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1815 (unsigned long long)drhd->reg_base_addr, ret);
1816 return -1;
1817 }
1818
1819 /*
1820 * Clear any previous faults.
1821 */
1822 dmar_fault(iommu->irq, iommu);
1823 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1824 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1825 }
1826
1827 return 0;
1828 }
1829
1830 /*
1831 * Re-enable Queued Invalidation interface.
1832 */
1833 int dmar_reenable_qi(struct intel_iommu *iommu)
1834 {
1835 if (!ecap_qis(iommu->ecap))
1836 return -ENOENT;
1837
1838 if (!iommu->qi)
1839 return -ENOENT;
1840
1841 /*
1842 * First disable queued invalidation.
1843 */
1844 dmar_disable_qi(iommu);
1845 /*
1846 * Then enable queued invalidation again. Since there is no pending
1847 * invalidation requests now, it's safe to re-enable queued
1848 * invalidation.
1849 */
1850 __dmar_enable_qi(iommu);
1851
1852 return 0;
1853 }
1854
1855 /*
1856 * Check interrupt remapping support in DMAR table description.
1857 */
1858 int __init dmar_ir_support(void)
1859 {
1860 struct acpi_table_dmar *dmar;
1861 dmar = (struct acpi_table_dmar *)dmar_tbl;
1862 if (!dmar)
1863 return 0;
1864 return dmar->flags & 0x1;
1865 }
1866
1867 /* Check whether DMAR units are in use */
1868 static inline bool dmar_in_use(void)
1869 {
1870 return irq_remapping_enabled || intel_iommu_enabled;
1871 }
1872
1873 static int __init dmar_free_unused_resources(void)
1874 {
1875 struct dmar_drhd_unit *dmaru, *dmaru_n;
1876
1877 if (dmar_in_use())
1878 return 0;
1879
1880 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1881 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1882
1883 down_write(&dmar_global_lock);
1884 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1885 list_del(&dmaru->list);
1886 dmar_free_drhd(dmaru);
1887 }
1888 up_write(&dmar_global_lock);
1889
1890 return 0;
1891 }
1892
1893 late_initcall(dmar_free_unused_resources);
1894 IOMMU_INIT_POST(detect_intel_iommu);
1895
1896 /*
1897 * DMAR Hotplug Support
1898 * For more details, please refer to Intel(R) Virtualization Technology
1899 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
1900 * "Remapping Hardware Unit Hot Plug".
1901 */
1902 static guid_t dmar_hp_guid =
1903 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
1904 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
1905
1906 /*
1907 * Currently there's only one revision and BIOS will not check the revision id,
1908 * so use 0 for safety.
1909 */
1910 #define DMAR_DSM_REV_ID 0
1911 #define DMAR_DSM_FUNC_DRHD 1
1912 #define DMAR_DSM_FUNC_ATSR 2
1913 #define DMAR_DSM_FUNC_RHSA 3
1914
1915 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
1916 {
1917 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
1918 }
1919
1920 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
1921 dmar_res_handler_t handler, void *arg)
1922 {
1923 int ret = -ENODEV;
1924 union acpi_object *obj;
1925 struct acpi_dmar_header *start;
1926 struct dmar_res_callback callback;
1927 static int res_type[] = {
1928 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
1929 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
1930 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
1931 };
1932
1933 if (!dmar_detect_dsm(handle, func))
1934 return 0;
1935
1936 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
1937 func, NULL, ACPI_TYPE_BUFFER);
1938 if (!obj)
1939 return -ENODEV;
1940
1941 memset(&callback, 0, sizeof(callback));
1942 callback.cb[res_type[func]] = handler;
1943 callback.arg[res_type[func]] = arg;
1944 start = (struct acpi_dmar_header *)obj->buffer.pointer;
1945 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
1946
1947 ACPI_FREE(obj);
1948
1949 return ret;
1950 }
1951
1952 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
1953 {
1954 int ret;
1955 struct dmar_drhd_unit *dmaru;
1956
1957 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1958 if (!dmaru)
1959 return -ENODEV;
1960
1961 ret = dmar_ir_hotplug(dmaru, true);
1962 if (ret == 0)
1963 ret = dmar_iommu_hotplug(dmaru, true);
1964
1965 return ret;
1966 }
1967
1968 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
1969 {
1970 int i, ret;
1971 struct device *dev;
1972 struct dmar_drhd_unit *dmaru;
1973
1974 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1975 if (!dmaru)
1976 return 0;
1977
1978 /*
1979 * All PCI devices managed by this unit should have been destroyed.
1980 */
1981 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
1982 for_each_active_dev_scope(dmaru->devices,
1983 dmaru->devices_cnt, i, dev)
1984 return -EBUSY;
1985 }
1986
1987 ret = dmar_ir_hotplug(dmaru, false);
1988 if (ret == 0)
1989 ret = dmar_iommu_hotplug(dmaru, false);
1990
1991 return ret;
1992 }
1993
1994 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
1995 {
1996 struct dmar_drhd_unit *dmaru;
1997
1998 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1999 if (dmaru) {
2000 list_del_rcu(&dmaru->list);
2001 synchronize_rcu();
2002 dmar_free_drhd(dmaru);
2003 }
2004
2005 return 0;
2006 }
2007
2008 static int dmar_hotplug_insert(acpi_handle handle)
2009 {
2010 int ret;
2011 int drhd_count = 0;
2012
2013 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2014 &dmar_validate_one_drhd, (void *)1);
2015 if (ret)
2016 goto out;
2017
2018 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2019 &dmar_parse_one_drhd, (void *)&drhd_count);
2020 if (ret == 0 && drhd_count == 0) {
2021 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2022 goto out;
2023 } else if (ret) {
2024 goto release_drhd;
2025 }
2026
2027 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2028 &dmar_parse_one_rhsa, NULL);
2029 if (ret)
2030 goto release_drhd;
2031
2032 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2033 &dmar_parse_one_atsr, NULL);
2034 if (ret)
2035 goto release_atsr;
2036
2037 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2038 &dmar_hp_add_drhd, NULL);
2039 if (!ret)
2040 return 0;
2041
2042 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2043 &dmar_hp_remove_drhd, NULL);
2044 release_atsr:
2045 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2046 &dmar_release_one_atsr, NULL);
2047 release_drhd:
2048 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2049 &dmar_hp_release_drhd, NULL);
2050 out:
2051 return ret;
2052 }
2053
2054 static int dmar_hotplug_remove(acpi_handle handle)
2055 {
2056 int ret;
2057
2058 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2059 &dmar_check_one_atsr, NULL);
2060 if (ret)
2061 return ret;
2062
2063 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2064 &dmar_hp_remove_drhd, NULL);
2065 if (ret == 0) {
2066 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2067 &dmar_release_one_atsr, NULL));
2068 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2069 &dmar_hp_release_drhd, NULL));
2070 } else {
2071 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2072 &dmar_hp_add_drhd, NULL);
2073 }
2074
2075 return ret;
2076 }
2077
2078 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2079 void *context, void **retval)
2080 {
2081 acpi_handle *phdl = retval;
2082
2083 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2084 *phdl = handle;
2085 return AE_CTRL_TERMINATE;
2086 }
2087
2088 return AE_OK;
2089 }
2090
2091 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2092 {
2093 int ret;
2094 acpi_handle tmp = NULL;
2095 acpi_status status;
2096
2097 if (!dmar_in_use())
2098 return 0;
2099
2100 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2101 tmp = handle;
2102 } else {
2103 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2104 ACPI_UINT32_MAX,
2105 dmar_get_dsm_handle,
2106 NULL, NULL, &tmp);
2107 if (ACPI_FAILURE(status)) {
2108 pr_warn("Failed to locate _DSM method.\n");
2109 return -ENXIO;
2110 }
2111 }
2112 if (tmp == NULL)
2113 return 0;
2114
2115 down_write(&dmar_global_lock);
2116 if (insert)
2117 ret = dmar_hotplug_insert(tmp);
2118 else
2119 ret = dmar_hotplug_remove(tmp);
2120 up_write(&dmar_global_lock);
2121
2122 return ret;
2123 }
2124
2125 int dmar_device_add(acpi_handle handle)
2126 {
2127 return dmar_device_hotplug(handle, true);
2128 }
2129
2130 int dmar_device_remove(acpi_handle handle)
2131 {
2132 return dmar_device_hotplug(handle, false);
2133 }
2134
2135 /*
2136 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2137 *
2138 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2139 * the ACPI DMAR table. This means that the platform boot firmware has made
2140 * sure no device can issue DMA outside of RMRR regions.
2141 */
2142 bool dmar_platform_optin(void)
2143 {
2144 struct acpi_table_dmar *dmar;
2145 acpi_status status;
2146 bool ret;
2147
2148 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2149 (struct acpi_table_header **)&dmar);
2150 if (ACPI_FAILURE(status))
2151 return false;
2152
2153 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2154 acpi_put_table((struct acpi_table_header *)dmar);
2155
2156 return ret;
2157 }
2158 EXPORT_SYMBOL_GPL(dmar_platform_optin);