]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iommu/exynos-iommu.c
Merge branches 'arm/exynos', 'arm/omap', 'arm/rockchip', 'arm/mediatek', 'arm/smmu...
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / exynos-iommu.c
1 /*
2 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
11 #define DEBUG
12 #endif
13
14 #include <linux/clk.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/iommu.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/of.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/slab.h>
27 #include <linux/dma-iommu.h>
28
29 typedef u32 sysmmu_iova_t;
30 typedef u32 sysmmu_pte_t;
31
32 /* We do not consider super section mapping (16MB) */
33 #define SECT_ORDER 20
34 #define LPAGE_ORDER 16
35 #define SPAGE_ORDER 12
36
37 #define SECT_SIZE (1 << SECT_ORDER)
38 #define LPAGE_SIZE (1 << LPAGE_ORDER)
39 #define SPAGE_SIZE (1 << SPAGE_ORDER)
40
41 #define SECT_MASK (~(SECT_SIZE - 1))
42 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
43 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
44
45 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
46 ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
47 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
48 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
49 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
50 ((*(sent) & 3) == 1))
51 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
52
53 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
54 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
55 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
56
57 #ifdef CONFIG_BIG_ENDIAN
58 #warning "revisit driver if we can enable big-endian ptes"
59 #endif
60
61 /*
62 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
63 * v5.0 introduced support for 36bit physical address space by shifting
64 * all page entry values by 4 bits.
65 * All SYSMMU controllers in the system support the address spaces of the same
66 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
67 * value (0 or 4).
68 */
69 static short PG_ENT_SHIFT = -1;
70 #define SYSMMU_PG_ENT_SHIFT 0
71 #define SYSMMU_V5_PG_ENT_SHIFT 4
72
73 static const sysmmu_pte_t *LV1_PROT;
74 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
75 ((0 << 15) | (0 << 10)), /* no access */
76 ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
77 ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
78 ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
79 };
80 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
81 (0 << 4), /* no access */
82 (1 << 4), /* IOMMU_READ only */
83 (2 << 4), /* IOMMU_WRITE only */
84 (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
85 };
86
87 static const sysmmu_pte_t *LV2_PROT;
88 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
89 ((0 << 9) | (0 << 4)), /* no access */
90 ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
91 ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
92 ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
93 };
94 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
95 (0 << 2), /* no access */
96 (1 << 2), /* IOMMU_READ only */
97 (2 << 2), /* IOMMU_WRITE only */
98 (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
99 };
100
101 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
102
103 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
104 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
105 #define section_offs(iova) (iova & (SECT_SIZE - 1))
106 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
107 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
108 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
109 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
110
111 #define NUM_LV1ENTRIES 4096
112 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
113
114 static u32 lv1ent_offset(sysmmu_iova_t iova)
115 {
116 return iova >> SECT_ORDER;
117 }
118
119 static u32 lv2ent_offset(sysmmu_iova_t iova)
120 {
121 return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
122 }
123
124 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
125 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
126
127 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
128 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
129
130 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
131 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
132 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
133 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
134
135 #define CTRL_ENABLE 0x5
136 #define CTRL_BLOCK 0x7
137 #define CTRL_DISABLE 0x0
138
139 #define CFG_LRU 0x1
140 #define CFG_EAP (1 << 2)
141 #define CFG_QOS(n) ((n & 0xF) << 7)
142 #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
143 #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
144 #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
145
146 /* common registers */
147 #define REG_MMU_CTRL 0x000
148 #define REG_MMU_CFG 0x004
149 #define REG_MMU_STATUS 0x008
150 #define REG_MMU_VERSION 0x034
151
152 #define MMU_MAJ_VER(val) ((val) >> 7)
153 #define MMU_MIN_VER(val) ((val) & 0x7F)
154 #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
155
156 #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
157
158 /* v1.x - v3.x registers */
159 #define REG_MMU_FLUSH 0x00C
160 #define REG_MMU_FLUSH_ENTRY 0x010
161 #define REG_PT_BASE_ADDR 0x014
162 #define REG_INT_STATUS 0x018
163 #define REG_INT_CLEAR 0x01C
164
165 #define REG_PAGE_FAULT_ADDR 0x024
166 #define REG_AW_FAULT_ADDR 0x028
167 #define REG_AR_FAULT_ADDR 0x02C
168 #define REG_DEFAULT_SLAVE_ADDR 0x030
169
170 /* v5.x registers */
171 #define REG_V5_PT_BASE_PFN 0x00C
172 #define REG_V5_MMU_FLUSH_ALL 0x010
173 #define REG_V5_MMU_FLUSH_ENTRY 0x014
174 #define REG_V5_MMU_FLUSH_RANGE 0x018
175 #define REG_V5_MMU_FLUSH_START 0x020
176 #define REG_V5_MMU_FLUSH_END 0x024
177 #define REG_V5_INT_STATUS 0x060
178 #define REG_V5_INT_CLEAR 0x064
179 #define REG_V5_FAULT_AR_VA 0x070
180 #define REG_V5_FAULT_AW_VA 0x080
181
182 #define has_sysmmu(dev) (dev->archdata.iommu != NULL)
183
184 static struct device *dma_dev;
185 static struct kmem_cache *lv2table_kmem_cache;
186 static sysmmu_pte_t *zero_lv2_table;
187 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
188
189 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
190 {
191 return pgtable + lv1ent_offset(iova);
192 }
193
194 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
195 {
196 return (sysmmu_pte_t *)phys_to_virt(
197 lv2table_base(sent)) + lv2ent_offset(iova);
198 }
199
200 /*
201 * IOMMU fault information register
202 */
203 struct sysmmu_fault_info {
204 unsigned int bit; /* bit number in STATUS register */
205 unsigned short addr_reg; /* register to read VA fault address */
206 const char *name; /* human readable fault name */
207 unsigned int type; /* fault type for report_iommu_fault */
208 };
209
210 static const struct sysmmu_fault_info sysmmu_faults[] = {
211 { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
212 { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
213 { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
214 { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
215 { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
216 { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
217 { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
218 { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
219 };
220
221 static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
222 { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
223 { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
224 { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
225 { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
226 { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
227 { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
228 { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
229 { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
230 { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
231 { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
232 };
233
234 /*
235 * This structure is attached to dev.archdata.iommu of the master device
236 * on device add, contains a list of SYSMMU controllers defined by device tree,
237 * which are bound to given master device. It is usually referenced by 'owner'
238 * pointer.
239 */
240 struct exynos_iommu_owner {
241 struct list_head controllers; /* list of sysmmu_drvdata.owner_node */
242 struct iommu_domain *domain; /* domain this device is attached */
243 struct mutex rpm_lock; /* for runtime pm of all sysmmus */
244 };
245
246 /*
247 * This structure exynos specific generalization of struct iommu_domain.
248 * It contains list of SYSMMU controllers from all master devices, which has
249 * been attached to this domain and page tables of IO address space defined by
250 * it. It is usually referenced by 'domain' pointer.
251 */
252 struct exynos_iommu_domain {
253 struct list_head clients; /* list of sysmmu_drvdata.domain_node */
254 sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
255 short *lv2entcnt; /* free lv2 entry counter for each section */
256 spinlock_t lock; /* lock for modyfying list of clients */
257 spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
258 struct iommu_domain domain; /* generic domain data structure */
259 };
260
261 /*
262 * This structure hold all data of a single SYSMMU controller, this includes
263 * hw resources like registers and clocks, pointers and list nodes to connect
264 * it to all other structures, internal state and parameters read from device
265 * tree. It is usually referenced by 'data' pointer.
266 */
267 struct sysmmu_drvdata {
268 struct device *sysmmu; /* SYSMMU controller device */
269 struct device *master; /* master device (owner) */
270 void __iomem *sfrbase; /* our registers */
271 struct clk *clk; /* SYSMMU's clock */
272 struct clk *aclk; /* SYSMMU's aclk clock */
273 struct clk *pclk; /* SYSMMU's pclk clock */
274 struct clk *clk_master; /* master's device clock */
275 spinlock_t lock; /* lock for modyfying state */
276 bool active; /* current status */
277 struct exynos_iommu_domain *domain; /* domain we belong to */
278 struct list_head domain_node; /* node for domain clients list */
279 struct list_head owner_node; /* node for owner controllers list */
280 phys_addr_t pgtable; /* assigned page table structure */
281 unsigned int version; /* our version */
282
283 struct iommu_device iommu; /* IOMMU core handle */
284 };
285
286 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
287 {
288 return container_of(dom, struct exynos_iommu_domain, domain);
289 }
290
291 static void sysmmu_unblock(struct sysmmu_drvdata *data)
292 {
293 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
294 }
295
296 static bool sysmmu_block(struct sysmmu_drvdata *data)
297 {
298 int i = 120;
299
300 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
301 while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
302 --i;
303
304 if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
305 sysmmu_unblock(data);
306 return false;
307 }
308
309 return true;
310 }
311
312 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
313 {
314 if (MMU_MAJ_VER(data->version) < 5)
315 writel(0x1, data->sfrbase + REG_MMU_FLUSH);
316 else
317 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
318 }
319
320 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
321 sysmmu_iova_t iova, unsigned int num_inv)
322 {
323 unsigned int i;
324
325 if (MMU_MAJ_VER(data->version) < 5) {
326 for (i = 0; i < num_inv; i++) {
327 writel((iova & SPAGE_MASK) | 1,
328 data->sfrbase + REG_MMU_FLUSH_ENTRY);
329 iova += SPAGE_SIZE;
330 }
331 } else {
332 if (num_inv == 1) {
333 writel((iova & SPAGE_MASK) | 1,
334 data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
335 } else {
336 writel((iova & SPAGE_MASK),
337 data->sfrbase + REG_V5_MMU_FLUSH_START);
338 writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
339 data->sfrbase + REG_V5_MMU_FLUSH_END);
340 writel(1, data->sfrbase + REG_V5_MMU_FLUSH_RANGE);
341 }
342 }
343 }
344
345 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
346 {
347 if (MMU_MAJ_VER(data->version) < 5)
348 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
349 else
350 writel(pgd >> PAGE_SHIFT,
351 data->sfrbase + REG_V5_PT_BASE_PFN);
352
353 __sysmmu_tlb_invalidate(data);
354 }
355
356 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
357 {
358 BUG_ON(clk_prepare_enable(data->clk_master));
359 BUG_ON(clk_prepare_enable(data->clk));
360 BUG_ON(clk_prepare_enable(data->pclk));
361 BUG_ON(clk_prepare_enable(data->aclk));
362 }
363
364 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
365 {
366 clk_disable_unprepare(data->aclk);
367 clk_disable_unprepare(data->pclk);
368 clk_disable_unprepare(data->clk);
369 clk_disable_unprepare(data->clk_master);
370 }
371
372 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
373 {
374 u32 ver;
375
376 __sysmmu_enable_clocks(data);
377
378 ver = readl(data->sfrbase + REG_MMU_VERSION);
379
380 /* controllers on some SoCs don't report proper version */
381 if (ver == 0x80000001u)
382 data->version = MAKE_MMU_VER(1, 0);
383 else
384 data->version = MMU_RAW_VER(ver);
385
386 dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
387 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
388
389 __sysmmu_disable_clocks(data);
390 }
391
392 static void show_fault_information(struct sysmmu_drvdata *data,
393 const struct sysmmu_fault_info *finfo,
394 sysmmu_iova_t fault_addr)
395 {
396 sysmmu_pte_t *ent;
397
398 dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
399 dev_name(data->master), finfo->name, fault_addr);
400 dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
401 ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
402 dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
403 if (lv1ent_page(ent)) {
404 ent = page_entry(ent, fault_addr);
405 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
406 }
407 }
408
409 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
410 {
411 /* SYSMMU is in blocked state when interrupt occurred. */
412 struct sysmmu_drvdata *data = dev_id;
413 const struct sysmmu_fault_info *finfo;
414 unsigned int i, n, itype;
415 sysmmu_iova_t fault_addr = -1;
416 unsigned short reg_status, reg_clear;
417 int ret = -ENOSYS;
418
419 WARN_ON(!data->active);
420
421 if (MMU_MAJ_VER(data->version) < 5) {
422 reg_status = REG_INT_STATUS;
423 reg_clear = REG_INT_CLEAR;
424 finfo = sysmmu_faults;
425 n = ARRAY_SIZE(sysmmu_faults);
426 } else {
427 reg_status = REG_V5_INT_STATUS;
428 reg_clear = REG_V5_INT_CLEAR;
429 finfo = sysmmu_v5_faults;
430 n = ARRAY_SIZE(sysmmu_v5_faults);
431 }
432
433 spin_lock(&data->lock);
434
435 clk_enable(data->clk_master);
436
437 itype = __ffs(readl(data->sfrbase + reg_status));
438 for (i = 0; i < n; i++, finfo++)
439 if (finfo->bit == itype)
440 break;
441 /* unknown/unsupported fault */
442 BUG_ON(i == n);
443
444 /* print debug message */
445 fault_addr = readl(data->sfrbase + finfo->addr_reg);
446 show_fault_information(data, finfo, fault_addr);
447
448 if (data->domain)
449 ret = report_iommu_fault(&data->domain->domain,
450 data->master, fault_addr, finfo->type);
451 /* fault is not recovered by fault handler */
452 BUG_ON(ret != 0);
453
454 writel(1 << itype, data->sfrbase + reg_clear);
455
456 sysmmu_unblock(data);
457
458 clk_disable(data->clk_master);
459
460 spin_unlock(&data->lock);
461
462 return IRQ_HANDLED;
463 }
464
465 static void __sysmmu_disable(struct sysmmu_drvdata *data)
466 {
467 unsigned long flags;
468
469 clk_enable(data->clk_master);
470
471 spin_lock_irqsave(&data->lock, flags);
472 writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
473 writel(0, data->sfrbase + REG_MMU_CFG);
474 data->active = false;
475 spin_unlock_irqrestore(&data->lock, flags);
476
477 __sysmmu_disable_clocks(data);
478 }
479
480 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
481 {
482 unsigned int cfg;
483
484 if (data->version <= MAKE_MMU_VER(3, 1))
485 cfg = CFG_LRU | CFG_QOS(15);
486 else if (data->version <= MAKE_MMU_VER(3, 2))
487 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
488 else
489 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
490
491 cfg |= CFG_EAP; /* enable access protection bits check */
492
493 writel(cfg, data->sfrbase + REG_MMU_CFG);
494 }
495
496 static void __sysmmu_enable(struct sysmmu_drvdata *data)
497 {
498 unsigned long flags;
499
500 __sysmmu_enable_clocks(data);
501
502 spin_lock_irqsave(&data->lock, flags);
503 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
504 __sysmmu_init_config(data);
505 __sysmmu_set_ptbase(data, data->pgtable);
506 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
507 data->active = true;
508 spin_unlock_irqrestore(&data->lock, flags);
509
510 /*
511 * SYSMMU driver keeps master's clock enabled only for the short
512 * time, while accessing the registers. For performing address
513 * translation during DMA transaction it relies on the client
514 * driver to enable it.
515 */
516 clk_disable(data->clk_master);
517 }
518
519 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
520 sysmmu_iova_t iova)
521 {
522 unsigned long flags;
523
524 spin_lock_irqsave(&data->lock, flags);
525 if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
526 clk_enable(data->clk_master);
527 if (sysmmu_block(data)) {
528 if (data->version >= MAKE_MMU_VER(5, 0))
529 __sysmmu_tlb_invalidate(data);
530 else
531 __sysmmu_tlb_invalidate_entry(data, iova, 1);
532 sysmmu_unblock(data);
533 }
534 clk_disable(data->clk_master);
535 }
536 spin_unlock_irqrestore(&data->lock, flags);
537 }
538
539 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
540 sysmmu_iova_t iova, size_t size)
541 {
542 unsigned long flags;
543
544 spin_lock_irqsave(&data->lock, flags);
545 if (data->active) {
546 unsigned int num_inv = 1;
547
548 clk_enable(data->clk_master);
549
550 /*
551 * L2TLB invalidation required
552 * 4KB page: 1 invalidation
553 * 64KB page: 16 invalidations
554 * 1MB page: 64 invalidations
555 * because it is set-associative TLB
556 * with 8-way and 64 sets.
557 * 1MB page can be cached in one of all sets.
558 * 64KB page can be one of 16 consecutive sets.
559 */
560 if (MMU_MAJ_VER(data->version) == 2)
561 num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
562
563 if (sysmmu_block(data)) {
564 __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
565 sysmmu_unblock(data);
566 }
567 clk_disable(data->clk_master);
568 }
569 spin_unlock_irqrestore(&data->lock, flags);
570 }
571
572 static struct iommu_ops exynos_iommu_ops;
573
574 static int __init exynos_sysmmu_probe(struct platform_device *pdev)
575 {
576 int irq, ret;
577 struct device *dev = &pdev->dev;
578 struct sysmmu_drvdata *data;
579 struct resource *res;
580
581 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
582 if (!data)
583 return -ENOMEM;
584
585 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
586 data->sfrbase = devm_ioremap_resource(dev, res);
587 if (IS_ERR(data->sfrbase))
588 return PTR_ERR(data->sfrbase);
589
590 irq = platform_get_irq(pdev, 0);
591 if (irq <= 0) {
592 dev_err(dev, "Unable to find IRQ resource\n");
593 return irq;
594 }
595
596 ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
597 dev_name(dev), data);
598 if (ret) {
599 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
600 return ret;
601 }
602
603 data->clk = devm_clk_get(dev, "sysmmu");
604 if (PTR_ERR(data->clk) == -ENOENT)
605 data->clk = NULL;
606 else if (IS_ERR(data->clk))
607 return PTR_ERR(data->clk);
608
609 data->aclk = devm_clk_get(dev, "aclk");
610 if (PTR_ERR(data->aclk) == -ENOENT)
611 data->aclk = NULL;
612 else if (IS_ERR(data->aclk))
613 return PTR_ERR(data->aclk);
614
615 data->pclk = devm_clk_get(dev, "pclk");
616 if (PTR_ERR(data->pclk) == -ENOENT)
617 data->pclk = NULL;
618 else if (IS_ERR(data->pclk))
619 return PTR_ERR(data->pclk);
620
621 if (!data->clk && (!data->aclk || !data->pclk)) {
622 dev_err(dev, "Failed to get device clock(s)!\n");
623 return -ENOSYS;
624 }
625
626 data->clk_master = devm_clk_get(dev, "master");
627 if (PTR_ERR(data->clk_master) == -ENOENT)
628 data->clk_master = NULL;
629 else if (IS_ERR(data->clk_master))
630 return PTR_ERR(data->clk_master);
631
632 data->sysmmu = dev;
633 spin_lock_init(&data->lock);
634
635 ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
636 dev_name(data->sysmmu));
637 if (ret)
638 return ret;
639
640 iommu_device_set_ops(&data->iommu, &exynos_iommu_ops);
641 iommu_device_set_fwnode(&data->iommu, &dev->of_node->fwnode);
642
643 ret = iommu_device_register(&data->iommu);
644 if (ret)
645 return ret;
646
647 platform_set_drvdata(pdev, data);
648
649 __sysmmu_get_version(data);
650 if (PG_ENT_SHIFT < 0) {
651 if (MMU_MAJ_VER(data->version) < 5) {
652 PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
653 LV1_PROT = SYSMMU_LV1_PROT;
654 LV2_PROT = SYSMMU_LV2_PROT;
655 } else {
656 PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
657 LV1_PROT = SYSMMU_V5_LV1_PROT;
658 LV2_PROT = SYSMMU_V5_LV2_PROT;
659 }
660 }
661
662 pm_runtime_enable(dev);
663
664 return 0;
665 }
666
667 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
668 {
669 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
670 struct device *master = data->master;
671
672 if (master) {
673 struct exynos_iommu_owner *owner = master->archdata.iommu;
674
675 mutex_lock(&owner->rpm_lock);
676 if (data->domain) {
677 dev_dbg(data->sysmmu, "saving state\n");
678 __sysmmu_disable(data);
679 }
680 mutex_unlock(&owner->rpm_lock);
681 }
682 return 0;
683 }
684
685 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
686 {
687 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
688 struct device *master = data->master;
689
690 if (master) {
691 struct exynos_iommu_owner *owner = master->archdata.iommu;
692
693 mutex_lock(&owner->rpm_lock);
694 if (data->domain) {
695 dev_dbg(data->sysmmu, "restoring state\n");
696 __sysmmu_enable(data);
697 }
698 mutex_unlock(&owner->rpm_lock);
699 }
700 return 0;
701 }
702
703 static const struct dev_pm_ops sysmmu_pm_ops = {
704 SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
705 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
706 pm_runtime_force_resume)
707 };
708
709 static const struct of_device_id sysmmu_of_match[] __initconst = {
710 { .compatible = "samsung,exynos-sysmmu", },
711 { },
712 };
713
714 static struct platform_driver exynos_sysmmu_driver __refdata = {
715 .probe = exynos_sysmmu_probe,
716 .driver = {
717 .name = "exynos-sysmmu",
718 .of_match_table = sysmmu_of_match,
719 .pm = &sysmmu_pm_ops,
720 .suppress_bind_attrs = true,
721 }
722 };
723
724 static inline void update_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
725 {
726 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
727 DMA_TO_DEVICE);
728 *ent = cpu_to_le32(val);
729 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
730 DMA_TO_DEVICE);
731 }
732
733 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
734 {
735 struct exynos_iommu_domain *domain;
736 dma_addr_t handle;
737 int i;
738
739 /* Check if correct PTE offsets are initialized */
740 BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
741
742 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
743 if (!domain)
744 return NULL;
745
746 if (type == IOMMU_DOMAIN_DMA) {
747 if (iommu_get_dma_cookie(&domain->domain) != 0)
748 goto err_pgtable;
749 } else if (type != IOMMU_DOMAIN_UNMANAGED) {
750 goto err_pgtable;
751 }
752
753 domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
754 if (!domain->pgtable)
755 goto err_dma_cookie;
756
757 domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
758 if (!domain->lv2entcnt)
759 goto err_counter;
760
761 /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
762 for (i = 0; i < NUM_LV1ENTRIES; i++)
763 domain->pgtable[i] = ZERO_LV2LINK;
764
765 handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
766 DMA_TO_DEVICE);
767 /* For mapping page table entries we rely on dma == phys */
768 BUG_ON(handle != virt_to_phys(domain->pgtable));
769 if (dma_mapping_error(dma_dev, handle))
770 goto err_lv2ent;
771
772 spin_lock_init(&domain->lock);
773 spin_lock_init(&domain->pgtablelock);
774 INIT_LIST_HEAD(&domain->clients);
775
776 domain->domain.geometry.aperture_start = 0;
777 domain->domain.geometry.aperture_end = ~0UL;
778 domain->domain.geometry.force_aperture = true;
779
780 return &domain->domain;
781
782 err_lv2ent:
783 free_pages((unsigned long)domain->lv2entcnt, 1);
784 err_counter:
785 free_pages((unsigned long)domain->pgtable, 2);
786 err_dma_cookie:
787 if (type == IOMMU_DOMAIN_DMA)
788 iommu_put_dma_cookie(&domain->domain);
789 err_pgtable:
790 kfree(domain);
791 return NULL;
792 }
793
794 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
795 {
796 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
797 struct sysmmu_drvdata *data, *next;
798 unsigned long flags;
799 int i;
800
801 WARN_ON(!list_empty(&domain->clients));
802
803 spin_lock_irqsave(&domain->lock, flags);
804
805 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
806 spin_lock(&data->lock);
807 __sysmmu_disable(data);
808 data->pgtable = 0;
809 data->domain = NULL;
810 list_del_init(&data->domain_node);
811 spin_unlock(&data->lock);
812 }
813
814 spin_unlock_irqrestore(&domain->lock, flags);
815
816 if (iommu_domain->type == IOMMU_DOMAIN_DMA)
817 iommu_put_dma_cookie(iommu_domain);
818
819 dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
820 DMA_TO_DEVICE);
821
822 for (i = 0; i < NUM_LV1ENTRIES; i++)
823 if (lv1ent_page(domain->pgtable + i)) {
824 phys_addr_t base = lv2table_base(domain->pgtable + i);
825
826 dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
827 DMA_TO_DEVICE);
828 kmem_cache_free(lv2table_kmem_cache,
829 phys_to_virt(base));
830 }
831
832 free_pages((unsigned long)domain->pgtable, 2);
833 free_pages((unsigned long)domain->lv2entcnt, 1);
834 kfree(domain);
835 }
836
837 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
838 struct device *dev)
839 {
840 struct exynos_iommu_owner *owner = dev->archdata.iommu;
841 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
842 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
843 struct sysmmu_drvdata *data, *next;
844 unsigned long flags;
845
846 if (!has_sysmmu(dev) || owner->domain != iommu_domain)
847 return;
848
849 mutex_lock(&owner->rpm_lock);
850
851 list_for_each_entry(data, &owner->controllers, owner_node) {
852 pm_runtime_get_noresume(data->sysmmu);
853 if (pm_runtime_active(data->sysmmu))
854 __sysmmu_disable(data);
855 pm_runtime_put(data->sysmmu);
856 }
857
858 spin_lock_irqsave(&domain->lock, flags);
859 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
860 spin_lock(&data->lock);
861 data->pgtable = 0;
862 data->domain = NULL;
863 list_del_init(&data->domain_node);
864 spin_unlock(&data->lock);
865 }
866 owner->domain = NULL;
867 spin_unlock_irqrestore(&domain->lock, flags);
868
869 mutex_unlock(&owner->rpm_lock);
870
871 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
872 &pagetable);
873 }
874
875 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
876 struct device *dev)
877 {
878 struct exynos_iommu_owner *owner = dev->archdata.iommu;
879 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
880 struct sysmmu_drvdata *data;
881 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
882 unsigned long flags;
883
884 if (!has_sysmmu(dev))
885 return -ENODEV;
886
887 if (owner->domain)
888 exynos_iommu_detach_device(owner->domain, dev);
889
890 mutex_lock(&owner->rpm_lock);
891
892 spin_lock_irqsave(&domain->lock, flags);
893 list_for_each_entry(data, &owner->controllers, owner_node) {
894 spin_lock(&data->lock);
895 data->pgtable = pagetable;
896 data->domain = domain;
897 list_add_tail(&data->domain_node, &domain->clients);
898 spin_unlock(&data->lock);
899 }
900 owner->domain = iommu_domain;
901 spin_unlock_irqrestore(&domain->lock, flags);
902
903 list_for_each_entry(data, &owner->controllers, owner_node) {
904 pm_runtime_get_noresume(data->sysmmu);
905 if (pm_runtime_active(data->sysmmu))
906 __sysmmu_enable(data);
907 pm_runtime_put(data->sysmmu);
908 }
909
910 mutex_unlock(&owner->rpm_lock);
911
912 dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
913 &pagetable);
914
915 return 0;
916 }
917
918 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
919 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
920 {
921 if (lv1ent_section(sent)) {
922 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
923 return ERR_PTR(-EADDRINUSE);
924 }
925
926 if (lv1ent_fault(sent)) {
927 dma_addr_t handle;
928 sysmmu_pte_t *pent;
929 bool need_flush_flpd_cache = lv1ent_zero(sent);
930
931 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
932 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
933 if (!pent)
934 return ERR_PTR(-ENOMEM);
935
936 update_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
937 kmemleak_ignore(pent);
938 *pgcounter = NUM_LV2ENTRIES;
939 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
940 DMA_TO_DEVICE);
941 if (dma_mapping_error(dma_dev, handle)) {
942 kmem_cache_free(lv2table_kmem_cache, pent);
943 return ERR_PTR(-EADDRINUSE);
944 }
945
946 /*
947 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
948 * FLPD cache may cache the address of zero_l2_table. This
949 * function replaces the zero_l2_table with new L2 page table
950 * to write valid mappings.
951 * Accessing the valid area may cause page fault since FLPD
952 * cache may still cache zero_l2_table for the valid area
953 * instead of new L2 page table that has the mapping
954 * information of the valid area.
955 * Thus any replacement of zero_l2_table with other valid L2
956 * page table must involve FLPD cache invalidation for System
957 * MMU v3.3.
958 * FLPD cache invalidation is performed with TLB invalidation
959 * by VPN without blocking. It is safe to invalidate TLB without
960 * blocking because the target address of TLB invalidation is
961 * not currently mapped.
962 */
963 if (need_flush_flpd_cache) {
964 struct sysmmu_drvdata *data;
965
966 spin_lock(&domain->lock);
967 list_for_each_entry(data, &domain->clients, domain_node)
968 sysmmu_tlb_invalidate_flpdcache(data, iova);
969 spin_unlock(&domain->lock);
970 }
971 }
972
973 return page_entry(sent, iova);
974 }
975
976 static int lv1set_section(struct exynos_iommu_domain *domain,
977 sysmmu_pte_t *sent, sysmmu_iova_t iova,
978 phys_addr_t paddr, int prot, short *pgcnt)
979 {
980 if (lv1ent_section(sent)) {
981 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
982 iova);
983 return -EADDRINUSE;
984 }
985
986 if (lv1ent_page(sent)) {
987 if (*pgcnt != NUM_LV2ENTRIES) {
988 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
989 iova);
990 return -EADDRINUSE;
991 }
992
993 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
994 *pgcnt = 0;
995 }
996
997 update_pte(sent, mk_lv1ent_sect(paddr, prot));
998
999 spin_lock(&domain->lock);
1000 if (lv1ent_page_zero(sent)) {
1001 struct sysmmu_drvdata *data;
1002 /*
1003 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1004 * entry by speculative prefetch of SLPD which has no mapping.
1005 */
1006 list_for_each_entry(data, &domain->clients, domain_node)
1007 sysmmu_tlb_invalidate_flpdcache(data, iova);
1008 }
1009 spin_unlock(&domain->lock);
1010
1011 return 0;
1012 }
1013
1014 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1015 int prot, short *pgcnt)
1016 {
1017 if (size == SPAGE_SIZE) {
1018 if (WARN_ON(!lv2ent_fault(pent)))
1019 return -EADDRINUSE;
1020
1021 update_pte(pent, mk_lv2ent_spage(paddr, prot));
1022 *pgcnt -= 1;
1023 } else { /* size == LPAGE_SIZE */
1024 int i;
1025 dma_addr_t pent_base = virt_to_phys(pent);
1026
1027 dma_sync_single_for_cpu(dma_dev, pent_base,
1028 sizeof(*pent) * SPAGES_PER_LPAGE,
1029 DMA_TO_DEVICE);
1030 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1031 if (WARN_ON(!lv2ent_fault(pent))) {
1032 if (i > 0)
1033 memset(pent - i, 0, sizeof(*pent) * i);
1034 return -EADDRINUSE;
1035 }
1036
1037 *pent = mk_lv2ent_lpage(paddr, prot);
1038 }
1039 dma_sync_single_for_device(dma_dev, pent_base,
1040 sizeof(*pent) * SPAGES_PER_LPAGE,
1041 DMA_TO_DEVICE);
1042 *pgcnt -= SPAGES_PER_LPAGE;
1043 }
1044
1045 return 0;
1046 }
1047
1048 /*
1049 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1050 *
1051 * System MMU v3.x has advanced logic to improve address translation
1052 * performance with caching more page table entries by a page table walk.
1053 * However, the logic has a bug that while caching faulty page table entries,
1054 * System MMU reports page fault if the cached fault entry is hit even though
1055 * the fault entry is updated to a valid entry after the entry is cached.
1056 * To prevent caching faulty page table entries which may be updated to valid
1057 * entries later, the virtual memory manager should care about the workaround
1058 * for the problem. The following describes the workaround.
1059 *
1060 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1061 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1062 *
1063 * Precisely, any start address of I/O virtual region must be aligned with
1064 * the following sizes for System MMU v3.1 and v3.2.
1065 * System MMU v3.1: 128KiB
1066 * System MMU v3.2: 256KiB
1067 *
1068 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1069 * more workarounds.
1070 * - Any two consecutive I/O virtual regions must have a hole of size larger
1071 * than or equal to 128KiB.
1072 * - Start address of an I/O virtual region must be aligned by 128KiB.
1073 */
1074 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1075 unsigned long l_iova, phys_addr_t paddr, size_t size,
1076 int prot)
1077 {
1078 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1079 sysmmu_pte_t *entry;
1080 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1081 unsigned long flags;
1082 int ret = -ENOMEM;
1083
1084 BUG_ON(domain->pgtable == NULL);
1085 prot &= SYSMMU_SUPPORTED_PROT_BITS;
1086
1087 spin_lock_irqsave(&domain->pgtablelock, flags);
1088
1089 entry = section_entry(domain->pgtable, iova);
1090
1091 if (size == SECT_SIZE) {
1092 ret = lv1set_section(domain, entry, iova, paddr, prot,
1093 &domain->lv2entcnt[lv1ent_offset(iova)]);
1094 } else {
1095 sysmmu_pte_t *pent;
1096
1097 pent = alloc_lv2entry(domain, entry, iova,
1098 &domain->lv2entcnt[lv1ent_offset(iova)]);
1099
1100 if (IS_ERR(pent))
1101 ret = PTR_ERR(pent);
1102 else
1103 ret = lv2set_page(pent, paddr, size, prot,
1104 &domain->lv2entcnt[lv1ent_offset(iova)]);
1105 }
1106
1107 if (ret)
1108 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1109 __func__, ret, size, iova);
1110
1111 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1112
1113 return ret;
1114 }
1115
1116 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1117 sysmmu_iova_t iova, size_t size)
1118 {
1119 struct sysmmu_drvdata *data;
1120 unsigned long flags;
1121
1122 spin_lock_irqsave(&domain->lock, flags);
1123
1124 list_for_each_entry(data, &domain->clients, domain_node)
1125 sysmmu_tlb_invalidate_entry(data, iova, size);
1126
1127 spin_unlock_irqrestore(&domain->lock, flags);
1128 }
1129
1130 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1131 unsigned long l_iova, size_t size)
1132 {
1133 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1134 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1135 sysmmu_pte_t *ent;
1136 size_t err_pgsize;
1137 unsigned long flags;
1138
1139 BUG_ON(domain->pgtable == NULL);
1140
1141 spin_lock_irqsave(&domain->pgtablelock, flags);
1142
1143 ent = section_entry(domain->pgtable, iova);
1144
1145 if (lv1ent_section(ent)) {
1146 if (WARN_ON(size < SECT_SIZE)) {
1147 err_pgsize = SECT_SIZE;
1148 goto err;
1149 }
1150
1151 /* workaround for h/w bug in System MMU v3.3 */
1152 update_pte(ent, ZERO_LV2LINK);
1153 size = SECT_SIZE;
1154 goto done;
1155 }
1156
1157 if (unlikely(lv1ent_fault(ent))) {
1158 if (size > SECT_SIZE)
1159 size = SECT_SIZE;
1160 goto done;
1161 }
1162
1163 /* lv1ent_page(sent) == true here */
1164
1165 ent = page_entry(ent, iova);
1166
1167 if (unlikely(lv2ent_fault(ent))) {
1168 size = SPAGE_SIZE;
1169 goto done;
1170 }
1171
1172 if (lv2ent_small(ent)) {
1173 update_pte(ent, 0);
1174 size = SPAGE_SIZE;
1175 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1176 goto done;
1177 }
1178
1179 /* lv1ent_large(ent) == true here */
1180 if (WARN_ON(size < LPAGE_SIZE)) {
1181 err_pgsize = LPAGE_SIZE;
1182 goto err;
1183 }
1184
1185 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1186 sizeof(*ent) * SPAGES_PER_LPAGE,
1187 DMA_TO_DEVICE);
1188 memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1189 dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1190 sizeof(*ent) * SPAGES_PER_LPAGE,
1191 DMA_TO_DEVICE);
1192 size = LPAGE_SIZE;
1193 domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1194 done:
1195 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1196
1197 exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1198
1199 return size;
1200 err:
1201 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1202
1203 pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1204 __func__, size, iova, err_pgsize);
1205
1206 return 0;
1207 }
1208
1209 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1210 dma_addr_t iova)
1211 {
1212 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1213 sysmmu_pte_t *entry;
1214 unsigned long flags;
1215 phys_addr_t phys = 0;
1216
1217 spin_lock_irqsave(&domain->pgtablelock, flags);
1218
1219 entry = section_entry(domain->pgtable, iova);
1220
1221 if (lv1ent_section(entry)) {
1222 phys = section_phys(entry) + section_offs(iova);
1223 } else if (lv1ent_page(entry)) {
1224 entry = page_entry(entry, iova);
1225
1226 if (lv2ent_large(entry))
1227 phys = lpage_phys(entry) + lpage_offs(iova);
1228 else if (lv2ent_small(entry))
1229 phys = spage_phys(entry) + spage_offs(iova);
1230 }
1231
1232 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1233
1234 return phys;
1235 }
1236
1237 static struct iommu_group *get_device_iommu_group(struct device *dev)
1238 {
1239 struct iommu_group *group;
1240
1241 group = iommu_group_get(dev);
1242 if (!group)
1243 group = iommu_group_alloc();
1244
1245 return group;
1246 }
1247
1248 static int exynos_iommu_add_device(struct device *dev)
1249 {
1250 struct iommu_group *group;
1251
1252 if (!has_sysmmu(dev))
1253 return -ENODEV;
1254
1255 group = iommu_group_get_for_dev(dev);
1256
1257 if (IS_ERR(group))
1258 return PTR_ERR(group);
1259
1260 iommu_group_put(group);
1261
1262 return 0;
1263 }
1264
1265 static void exynos_iommu_remove_device(struct device *dev)
1266 {
1267 struct exynos_iommu_owner *owner = dev->archdata.iommu;
1268
1269 if (!has_sysmmu(dev))
1270 return;
1271
1272 if (owner->domain) {
1273 struct iommu_group *group = iommu_group_get(dev);
1274
1275 if (group) {
1276 WARN_ON(owner->domain !=
1277 iommu_group_default_domain(group));
1278 exynos_iommu_detach_device(owner->domain, dev);
1279 iommu_group_put(group);
1280 }
1281 }
1282 iommu_group_remove_device(dev);
1283 }
1284
1285 static int exynos_iommu_of_xlate(struct device *dev,
1286 struct of_phandle_args *spec)
1287 {
1288 struct exynos_iommu_owner *owner = dev->archdata.iommu;
1289 struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1290 struct sysmmu_drvdata *data, *entry;
1291
1292 if (!sysmmu)
1293 return -ENODEV;
1294
1295 data = platform_get_drvdata(sysmmu);
1296 if (!data)
1297 return -ENODEV;
1298
1299 if (!owner) {
1300 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1301 if (!owner)
1302 return -ENOMEM;
1303
1304 INIT_LIST_HEAD(&owner->controllers);
1305 mutex_init(&owner->rpm_lock);
1306 dev->archdata.iommu = owner;
1307 }
1308
1309 list_for_each_entry(entry, &owner->controllers, owner_node)
1310 if (entry == data)
1311 return 0;
1312
1313 list_add_tail(&data->owner_node, &owner->controllers);
1314 data->master = dev;
1315
1316 /*
1317 * SYSMMU will be runtime activated via device link (dependency) to its
1318 * master device, so there are no direct calls to pm_runtime_get/put
1319 * in this driver.
1320 */
1321 device_link_add(dev, data->sysmmu, DL_FLAG_PM_RUNTIME);
1322
1323 return 0;
1324 }
1325
1326 static struct iommu_ops exynos_iommu_ops = {
1327 .domain_alloc = exynos_iommu_domain_alloc,
1328 .domain_free = exynos_iommu_domain_free,
1329 .attach_dev = exynos_iommu_attach_device,
1330 .detach_dev = exynos_iommu_detach_device,
1331 .map = exynos_iommu_map,
1332 .unmap = exynos_iommu_unmap,
1333 .map_sg = default_iommu_map_sg,
1334 .iova_to_phys = exynos_iommu_iova_to_phys,
1335 .device_group = get_device_iommu_group,
1336 .add_device = exynos_iommu_add_device,
1337 .remove_device = exynos_iommu_remove_device,
1338 .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1339 .of_xlate = exynos_iommu_of_xlate,
1340 };
1341
1342 static bool init_done;
1343
1344 static int __init exynos_iommu_init(void)
1345 {
1346 int ret;
1347
1348 lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1349 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1350 if (!lv2table_kmem_cache) {
1351 pr_err("%s: Failed to create kmem cache\n", __func__);
1352 return -ENOMEM;
1353 }
1354
1355 ret = platform_driver_register(&exynos_sysmmu_driver);
1356 if (ret) {
1357 pr_err("%s: Failed to register driver\n", __func__);
1358 goto err_reg_driver;
1359 }
1360
1361 zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1362 if (zero_lv2_table == NULL) {
1363 pr_err("%s: Failed to allocate zero level2 page table\n",
1364 __func__);
1365 ret = -ENOMEM;
1366 goto err_zero_lv2;
1367 }
1368
1369 ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1370 if (ret) {
1371 pr_err("%s: Failed to register exynos-iommu driver.\n",
1372 __func__);
1373 goto err_set_iommu;
1374 }
1375
1376 init_done = true;
1377
1378 return 0;
1379 err_set_iommu:
1380 kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1381 err_zero_lv2:
1382 platform_driver_unregister(&exynos_sysmmu_driver);
1383 err_reg_driver:
1384 kmem_cache_destroy(lv2table_kmem_cache);
1385 return ret;
1386 }
1387
1388 static int __init exynos_iommu_of_setup(struct device_node *np)
1389 {
1390 struct platform_device *pdev;
1391
1392 if (!init_done)
1393 exynos_iommu_init();
1394
1395 pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root);
1396 if (!pdev)
1397 return -ENODEV;
1398
1399 /*
1400 * use the first registered sysmmu device for performing
1401 * dma mapping operations on iommu page tables (cpu cache flush)
1402 */
1403 if (!dma_dev)
1404 dma_dev = &pdev->dev;
1405
1406 return 0;
1407 }
1408
1409 IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu",
1410 exynos_iommu_of_setup);