]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iommu/exynos-iommu.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-bionic-kernel.git] / drivers / iommu / exynos-iommu.c
1 /*
2 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
11 #define DEBUG
12 #endif
13
14 #include <linux/clk.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/iommu.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/of.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/slab.h>
27 #include <linux/dma-iommu.h>
28
29 typedef u32 sysmmu_iova_t;
30 typedef u32 sysmmu_pte_t;
31
32 /* We do not consider super section mapping (16MB) */
33 #define SECT_ORDER 20
34 #define LPAGE_ORDER 16
35 #define SPAGE_ORDER 12
36
37 #define SECT_SIZE (1 << SECT_ORDER)
38 #define LPAGE_SIZE (1 << LPAGE_ORDER)
39 #define SPAGE_SIZE (1 << SPAGE_ORDER)
40
41 #define SECT_MASK (~(SECT_SIZE - 1))
42 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
43 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
44
45 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
46 ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
47 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
48 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
49 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
50 ((*(sent) & 3) == 1))
51 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
52
53 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
54 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
55 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
56
57 /*
58 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
59 * v5.0 introduced support for 36bit physical address space by shifting
60 * all page entry values by 4 bits.
61 * All SYSMMU controllers in the system support the address spaces of the same
62 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
63 * value (0 or 4).
64 */
65 static short PG_ENT_SHIFT = -1;
66 #define SYSMMU_PG_ENT_SHIFT 0
67 #define SYSMMU_V5_PG_ENT_SHIFT 4
68
69 static const sysmmu_pte_t *LV1_PROT;
70 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
71 ((0 << 15) | (0 << 10)), /* no access */
72 ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
73 ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
74 ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
75 };
76 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
77 (0 << 4), /* no access */
78 (1 << 4), /* IOMMU_READ only */
79 (2 << 4), /* IOMMU_WRITE only */
80 (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
81 };
82
83 static const sysmmu_pte_t *LV2_PROT;
84 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
85 ((0 << 9) | (0 << 4)), /* no access */
86 ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
87 ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
88 ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
89 };
90 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
91 (0 << 2), /* no access */
92 (1 << 2), /* IOMMU_READ only */
93 (2 << 2), /* IOMMU_WRITE only */
94 (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
95 };
96
97 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
98
99 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
100 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
101 #define section_offs(iova) (iova & (SECT_SIZE - 1))
102 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
103 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
104 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
105 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
106
107 #define NUM_LV1ENTRIES 4096
108 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
109
110 static u32 lv1ent_offset(sysmmu_iova_t iova)
111 {
112 return iova >> SECT_ORDER;
113 }
114
115 static u32 lv2ent_offset(sysmmu_iova_t iova)
116 {
117 return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
118 }
119
120 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
121 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
122
123 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
124 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
125
126 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
127 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
128 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
129 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
130
131 #define CTRL_ENABLE 0x5
132 #define CTRL_BLOCK 0x7
133 #define CTRL_DISABLE 0x0
134
135 #define CFG_LRU 0x1
136 #define CFG_EAP (1 << 2)
137 #define CFG_QOS(n) ((n & 0xF) << 7)
138 #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
139 #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
140 #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
141
142 /* common registers */
143 #define REG_MMU_CTRL 0x000
144 #define REG_MMU_CFG 0x004
145 #define REG_MMU_STATUS 0x008
146 #define REG_MMU_VERSION 0x034
147
148 #define MMU_MAJ_VER(val) ((val) >> 7)
149 #define MMU_MIN_VER(val) ((val) & 0x7F)
150 #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
151
152 #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
153
154 /* v1.x - v3.x registers */
155 #define REG_MMU_FLUSH 0x00C
156 #define REG_MMU_FLUSH_ENTRY 0x010
157 #define REG_PT_BASE_ADDR 0x014
158 #define REG_INT_STATUS 0x018
159 #define REG_INT_CLEAR 0x01C
160
161 #define REG_PAGE_FAULT_ADDR 0x024
162 #define REG_AW_FAULT_ADDR 0x028
163 #define REG_AR_FAULT_ADDR 0x02C
164 #define REG_DEFAULT_SLAVE_ADDR 0x030
165
166 /* v5.x registers */
167 #define REG_V5_PT_BASE_PFN 0x00C
168 #define REG_V5_MMU_FLUSH_ALL 0x010
169 #define REG_V5_MMU_FLUSH_ENTRY 0x014
170 #define REG_V5_MMU_FLUSH_RANGE 0x018
171 #define REG_V5_MMU_FLUSH_START 0x020
172 #define REG_V5_MMU_FLUSH_END 0x024
173 #define REG_V5_INT_STATUS 0x060
174 #define REG_V5_INT_CLEAR 0x064
175 #define REG_V5_FAULT_AR_VA 0x070
176 #define REG_V5_FAULT_AW_VA 0x080
177
178 #define has_sysmmu(dev) (dev->archdata.iommu != NULL)
179
180 static struct device *dma_dev;
181 static struct kmem_cache *lv2table_kmem_cache;
182 static sysmmu_pte_t *zero_lv2_table;
183 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
184
185 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
186 {
187 return pgtable + lv1ent_offset(iova);
188 }
189
190 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
191 {
192 return (sysmmu_pte_t *)phys_to_virt(
193 lv2table_base(sent)) + lv2ent_offset(iova);
194 }
195
196 /*
197 * IOMMU fault information register
198 */
199 struct sysmmu_fault_info {
200 unsigned int bit; /* bit number in STATUS register */
201 unsigned short addr_reg; /* register to read VA fault address */
202 const char *name; /* human readable fault name */
203 unsigned int type; /* fault type for report_iommu_fault */
204 };
205
206 static const struct sysmmu_fault_info sysmmu_faults[] = {
207 { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
208 { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
209 { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
210 { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
211 { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
212 { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
213 { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
214 { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
215 };
216
217 static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
218 { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
219 { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
220 { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
221 { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
222 { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
223 { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
224 { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
225 { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
226 { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
227 { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
228 };
229
230 /*
231 * This structure is attached to dev.archdata.iommu of the master device
232 * on device add, contains a list of SYSMMU controllers defined by device tree,
233 * which are bound to given master device. It is usually referenced by 'owner'
234 * pointer.
235 */
236 struct exynos_iommu_owner {
237 struct list_head controllers; /* list of sysmmu_drvdata.owner_node */
238 struct iommu_domain *domain; /* domain this device is attached */
239 struct mutex rpm_lock; /* for runtime pm of all sysmmus */
240 };
241
242 /*
243 * This structure exynos specific generalization of struct iommu_domain.
244 * It contains list of SYSMMU controllers from all master devices, which has
245 * been attached to this domain and page tables of IO address space defined by
246 * it. It is usually referenced by 'domain' pointer.
247 */
248 struct exynos_iommu_domain {
249 struct list_head clients; /* list of sysmmu_drvdata.domain_node */
250 sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
251 short *lv2entcnt; /* free lv2 entry counter for each section */
252 spinlock_t lock; /* lock for modyfying list of clients */
253 spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
254 struct iommu_domain domain; /* generic domain data structure */
255 };
256
257 /*
258 * This structure hold all data of a single SYSMMU controller, this includes
259 * hw resources like registers and clocks, pointers and list nodes to connect
260 * it to all other structures, internal state and parameters read from device
261 * tree. It is usually referenced by 'data' pointer.
262 */
263 struct sysmmu_drvdata {
264 struct device *sysmmu; /* SYSMMU controller device */
265 struct device *master; /* master device (owner) */
266 void __iomem *sfrbase; /* our registers */
267 struct clk *clk; /* SYSMMU's clock */
268 struct clk *aclk; /* SYSMMU's aclk clock */
269 struct clk *pclk; /* SYSMMU's pclk clock */
270 struct clk *clk_master; /* master's device clock */
271 spinlock_t lock; /* lock for modyfying state */
272 bool active; /* current status */
273 struct exynos_iommu_domain *domain; /* domain we belong to */
274 struct list_head domain_node; /* node for domain clients list */
275 struct list_head owner_node; /* node for owner controllers list */
276 phys_addr_t pgtable; /* assigned page table structure */
277 unsigned int version; /* our version */
278
279 struct iommu_device iommu; /* IOMMU core handle */
280 };
281
282 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
283 {
284 return container_of(dom, struct exynos_iommu_domain, domain);
285 }
286
287 static void sysmmu_unblock(struct sysmmu_drvdata *data)
288 {
289 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
290 }
291
292 static bool sysmmu_block(struct sysmmu_drvdata *data)
293 {
294 int i = 120;
295
296 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
297 while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
298 --i;
299
300 if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
301 sysmmu_unblock(data);
302 return false;
303 }
304
305 return true;
306 }
307
308 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
309 {
310 if (MMU_MAJ_VER(data->version) < 5)
311 writel(0x1, data->sfrbase + REG_MMU_FLUSH);
312 else
313 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
314 }
315
316 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
317 sysmmu_iova_t iova, unsigned int num_inv)
318 {
319 unsigned int i;
320
321 if (MMU_MAJ_VER(data->version) < 5) {
322 for (i = 0; i < num_inv; i++) {
323 writel((iova & SPAGE_MASK) | 1,
324 data->sfrbase + REG_MMU_FLUSH_ENTRY);
325 iova += SPAGE_SIZE;
326 }
327 } else {
328 if (num_inv == 1) {
329 writel((iova & SPAGE_MASK) | 1,
330 data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
331 } else {
332 writel((iova & SPAGE_MASK),
333 data->sfrbase + REG_V5_MMU_FLUSH_START);
334 writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
335 data->sfrbase + REG_V5_MMU_FLUSH_END);
336 writel(1, data->sfrbase + REG_V5_MMU_FLUSH_RANGE);
337 }
338 }
339 }
340
341 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
342 {
343 if (MMU_MAJ_VER(data->version) < 5)
344 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
345 else
346 writel(pgd >> PAGE_SHIFT,
347 data->sfrbase + REG_V5_PT_BASE_PFN);
348
349 __sysmmu_tlb_invalidate(data);
350 }
351
352 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
353 {
354 BUG_ON(clk_prepare_enable(data->clk_master));
355 BUG_ON(clk_prepare_enable(data->clk));
356 BUG_ON(clk_prepare_enable(data->pclk));
357 BUG_ON(clk_prepare_enable(data->aclk));
358 }
359
360 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
361 {
362 clk_disable_unprepare(data->aclk);
363 clk_disable_unprepare(data->pclk);
364 clk_disable_unprepare(data->clk);
365 clk_disable_unprepare(data->clk_master);
366 }
367
368 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
369 {
370 u32 ver;
371
372 __sysmmu_enable_clocks(data);
373
374 ver = readl(data->sfrbase + REG_MMU_VERSION);
375
376 /* controllers on some SoCs don't report proper version */
377 if (ver == 0x80000001u)
378 data->version = MAKE_MMU_VER(1, 0);
379 else
380 data->version = MMU_RAW_VER(ver);
381
382 dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
383 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
384
385 __sysmmu_disable_clocks(data);
386 }
387
388 static void show_fault_information(struct sysmmu_drvdata *data,
389 const struct sysmmu_fault_info *finfo,
390 sysmmu_iova_t fault_addr)
391 {
392 sysmmu_pte_t *ent;
393
394 dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
395 dev_name(data->master), finfo->name, fault_addr);
396 dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
397 ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
398 dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
399 if (lv1ent_page(ent)) {
400 ent = page_entry(ent, fault_addr);
401 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
402 }
403 }
404
405 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
406 {
407 /* SYSMMU is in blocked state when interrupt occurred. */
408 struct sysmmu_drvdata *data = dev_id;
409 const struct sysmmu_fault_info *finfo;
410 unsigned int i, n, itype;
411 sysmmu_iova_t fault_addr = -1;
412 unsigned short reg_status, reg_clear;
413 int ret = -ENOSYS;
414
415 WARN_ON(!data->active);
416
417 if (MMU_MAJ_VER(data->version) < 5) {
418 reg_status = REG_INT_STATUS;
419 reg_clear = REG_INT_CLEAR;
420 finfo = sysmmu_faults;
421 n = ARRAY_SIZE(sysmmu_faults);
422 } else {
423 reg_status = REG_V5_INT_STATUS;
424 reg_clear = REG_V5_INT_CLEAR;
425 finfo = sysmmu_v5_faults;
426 n = ARRAY_SIZE(sysmmu_v5_faults);
427 }
428
429 spin_lock(&data->lock);
430
431 clk_enable(data->clk_master);
432
433 itype = __ffs(readl(data->sfrbase + reg_status));
434 for (i = 0; i < n; i++, finfo++)
435 if (finfo->bit == itype)
436 break;
437 /* unknown/unsupported fault */
438 BUG_ON(i == n);
439
440 /* print debug message */
441 fault_addr = readl(data->sfrbase + finfo->addr_reg);
442 show_fault_information(data, finfo, fault_addr);
443
444 if (data->domain)
445 ret = report_iommu_fault(&data->domain->domain,
446 data->master, fault_addr, finfo->type);
447 /* fault is not recovered by fault handler */
448 BUG_ON(ret != 0);
449
450 writel(1 << itype, data->sfrbase + reg_clear);
451
452 sysmmu_unblock(data);
453
454 clk_disable(data->clk_master);
455
456 spin_unlock(&data->lock);
457
458 return IRQ_HANDLED;
459 }
460
461 static void __sysmmu_disable(struct sysmmu_drvdata *data)
462 {
463 unsigned long flags;
464
465 clk_enable(data->clk_master);
466
467 spin_lock_irqsave(&data->lock, flags);
468 writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
469 writel(0, data->sfrbase + REG_MMU_CFG);
470 data->active = false;
471 spin_unlock_irqrestore(&data->lock, flags);
472
473 __sysmmu_disable_clocks(data);
474 }
475
476 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
477 {
478 unsigned int cfg;
479
480 if (data->version <= MAKE_MMU_VER(3, 1))
481 cfg = CFG_LRU | CFG_QOS(15);
482 else if (data->version <= MAKE_MMU_VER(3, 2))
483 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
484 else
485 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
486
487 cfg |= CFG_EAP; /* enable access protection bits check */
488
489 writel(cfg, data->sfrbase + REG_MMU_CFG);
490 }
491
492 static void __sysmmu_enable(struct sysmmu_drvdata *data)
493 {
494 unsigned long flags;
495
496 __sysmmu_enable_clocks(data);
497
498 spin_lock_irqsave(&data->lock, flags);
499 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
500 __sysmmu_init_config(data);
501 __sysmmu_set_ptbase(data, data->pgtable);
502 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
503 data->active = true;
504 spin_unlock_irqrestore(&data->lock, flags);
505
506 /*
507 * SYSMMU driver keeps master's clock enabled only for the short
508 * time, while accessing the registers. For performing address
509 * translation during DMA transaction it relies on the client
510 * driver to enable it.
511 */
512 clk_disable(data->clk_master);
513 }
514
515 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
516 sysmmu_iova_t iova)
517 {
518 unsigned long flags;
519
520 spin_lock_irqsave(&data->lock, flags);
521 if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
522 clk_enable(data->clk_master);
523 if (sysmmu_block(data)) {
524 if (data->version >= MAKE_MMU_VER(5, 0))
525 __sysmmu_tlb_invalidate(data);
526 else
527 __sysmmu_tlb_invalidate_entry(data, iova, 1);
528 sysmmu_unblock(data);
529 }
530 clk_disable(data->clk_master);
531 }
532 spin_unlock_irqrestore(&data->lock, flags);
533 }
534
535 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
536 sysmmu_iova_t iova, size_t size)
537 {
538 unsigned long flags;
539
540 spin_lock_irqsave(&data->lock, flags);
541 if (data->active) {
542 unsigned int num_inv = 1;
543
544 clk_enable(data->clk_master);
545
546 /*
547 * L2TLB invalidation required
548 * 4KB page: 1 invalidation
549 * 64KB page: 16 invalidations
550 * 1MB page: 64 invalidations
551 * because it is set-associative TLB
552 * with 8-way and 64 sets.
553 * 1MB page can be cached in one of all sets.
554 * 64KB page can be one of 16 consecutive sets.
555 */
556 if (MMU_MAJ_VER(data->version) == 2)
557 num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
558
559 if (sysmmu_block(data)) {
560 __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
561 sysmmu_unblock(data);
562 }
563 clk_disable(data->clk_master);
564 }
565 spin_unlock_irqrestore(&data->lock, flags);
566 }
567
568 static const struct iommu_ops exynos_iommu_ops;
569
570 static int __init exynos_sysmmu_probe(struct platform_device *pdev)
571 {
572 int irq, ret;
573 struct device *dev = &pdev->dev;
574 struct sysmmu_drvdata *data;
575 struct resource *res;
576
577 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
578 if (!data)
579 return -ENOMEM;
580
581 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
582 data->sfrbase = devm_ioremap_resource(dev, res);
583 if (IS_ERR(data->sfrbase))
584 return PTR_ERR(data->sfrbase);
585
586 irq = platform_get_irq(pdev, 0);
587 if (irq <= 0) {
588 dev_err(dev, "Unable to find IRQ resource\n");
589 return irq;
590 }
591
592 ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
593 dev_name(dev), data);
594 if (ret) {
595 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
596 return ret;
597 }
598
599 data->clk = devm_clk_get(dev, "sysmmu");
600 if (PTR_ERR(data->clk) == -ENOENT)
601 data->clk = NULL;
602 else if (IS_ERR(data->clk))
603 return PTR_ERR(data->clk);
604
605 data->aclk = devm_clk_get(dev, "aclk");
606 if (PTR_ERR(data->aclk) == -ENOENT)
607 data->aclk = NULL;
608 else if (IS_ERR(data->aclk))
609 return PTR_ERR(data->aclk);
610
611 data->pclk = devm_clk_get(dev, "pclk");
612 if (PTR_ERR(data->pclk) == -ENOENT)
613 data->pclk = NULL;
614 else if (IS_ERR(data->pclk))
615 return PTR_ERR(data->pclk);
616
617 if (!data->clk && (!data->aclk || !data->pclk)) {
618 dev_err(dev, "Failed to get device clock(s)!\n");
619 return -ENOSYS;
620 }
621
622 data->clk_master = devm_clk_get(dev, "master");
623 if (PTR_ERR(data->clk_master) == -ENOENT)
624 data->clk_master = NULL;
625 else if (IS_ERR(data->clk_master))
626 return PTR_ERR(data->clk_master);
627
628 data->sysmmu = dev;
629 spin_lock_init(&data->lock);
630
631 ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
632 dev_name(data->sysmmu));
633 if (ret)
634 return ret;
635
636 iommu_device_set_ops(&data->iommu, &exynos_iommu_ops);
637 iommu_device_set_fwnode(&data->iommu, &dev->of_node->fwnode);
638
639 ret = iommu_device_register(&data->iommu);
640 if (ret)
641 return ret;
642
643 platform_set_drvdata(pdev, data);
644
645 __sysmmu_get_version(data);
646 if (PG_ENT_SHIFT < 0) {
647 if (MMU_MAJ_VER(data->version) < 5) {
648 PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
649 LV1_PROT = SYSMMU_LV1_PROT;
650 LV2_PROT = SYSMMU_LV2_PROT;
651 } else {
652 PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
653 LV1_PROT = SYSMMU_V5_LV1_PROT;
654 LV2_PROT = SYSMMU_V5_LV2_PROT;
655 }
656 }
657
658 /*
659 * use the first registered sysmmu device for performing
660 * dma mapping operations on iommu page tables (cpu cache flush)
661 */
662 if (!dma_dev)
663 dma_dev = &pdev->dev;
664
665 pm_runtime_enable(dev);
666
667 return 0;
668 }
669
670 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
671 {
672 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
673 struct device *master = data->master;
674
675 if (master) {
676 struct exynos_iommu_owner *owner = master->archdata.iommu;
677
678 mutex_lock(&owner->rpm_lock);
679 if (data->domain) {
680 dev_dbg(data->sysmmu, "saving state\n");
681 __sysmmu_disable(data);
682 }
683 mutex_unlock(&owner->rpm_lock);
684 }
685 return 0;
686 }
687
688 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
689 {
690 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
691 struct device *master = data->master;
692
693 if (master) {
694 struct exynos_iommu_owner *owner = master->archdata.iommu;
695
696 mutex_lock(&owner->rpm_lock);
697 if (data->domain) {
698 dev_dbg(data->sysmmu, "restoring state\n");
699 __sysmmu_enable(data);
700 }
701 mutex_unlock(&owner->rpm_lock);
702 }
703 return 0;
704 }
705
706 static const struct dev_pm_ops sysmmu_pm_ops = {
707 SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
708 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
709 pm_runtime_force_resume)
710 };
711
712 static const struct of_device_id sysmmu_of_match[] __initconst = {
713 { .compatible = "samsung,exynos-sysmmu", },
714 { },
715 };
716
717 static struct platform_driver exynos_sysmmu_driver __refdata = {
718 .probe = exynos_sysmmu_probe,
719 .driver = {
720 .name = "exynos-sysmmu",
721 .of_match_table = sysmmu_of_match,
722 .pm = &sysmmu_pm_ops,
723 .suppress_bind_attrs = true,
724 }
725 };
726
727 static inline void update_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
728 {
729 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
730 DMA_TO_DEVICE);
731 *ent = cpu_to_le32(val);
732 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
733 DMA_TO_DEVICE);
734 }
735
736 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
737 {
738 struct exynos_iommu_domain *domain;
739 dma_addr_t handle;
740 int i;
741
742 /* Check if correct PTE offsets are initialized */
743 BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
744
745 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
746 if (!domain)
747 return NULL;
748
749 if (type == IOMMU_DOMAIN_DMA) {
750 if (iommu_get_dma_cookie(&domain->domain) != 0)
751 goto err_pgtable;
752 } else if (type != IOMMU_DOMAIN_UNMANAGED) {
753 goto err_pgtable;
754 }
755
756 domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
757 if (!domain->pgtable)
758 goto err_dma_cookie;
759
760 domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
761 if (!domain->lv2entcnt)
762 goto err_counter;
763
764 /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
765 for (i = 0; i < NUM_LV1ENTRIES; i++)
766 domain->pgtable[i] = ZERO_LV2LINK;
767
768 handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
769 DMA_TO_DEVICE);
770 /* For mapping page table entries we rely on dma == phys */
771 BUG_ON(handle != virt_to_phys(domain->pgtable));
772 if (dma_mapping_error(dma_dev, handle))
773 goto err_lv2ent;
774
775 spin_lock_init(&domain->lock);
776 spin_lock_init(&domain->pgtablelock);
777 INIT_LIST_HEAD(&domain->clients);
778
779 domain->domain.geometry.aperture_start = 0;
780 domain->domain.geometry.aperture_end = ~0UL;
781 domain->domain.geometry.force_aperture = true;
782
783 return &domain->domain;
784
785 err_lv2ent:
786 free_pages((unsigned long)domain->lv2entcnt, 1);
787 err_counter:
788 free_pages((unsigned long)domain->pgtable, 2);
789 err_dma_cookie:
790 if (type == IOMMU_DOMAIN_DMA)
791 iommu_put_dma_cookie(&domain->domain);
792 err_pgtable:
793 kfree(domain);
794 return NULL;
795 }
796
797 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
798 {
799 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
800 struct sysmmu_drvdata *data, *next;
801 unsigned long flags;
802 int i;
803
804 WARN_ON(!list_empty(&domain->clients));
805
806 spin_lock_irqsave(&domain->lock, flags);
807
808 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
809 spin_lock(&data->lock);
810 __sysmmu_disable(data);
811 data->pgtable = 0;
812 data->domain = NULL;
813 list_del_init(&data->domain_node);
814 spin_unlock(&data->lock);
815 }
816
817 spin_unlock_irqrestore(&domain->lock, flags);
818
819 if (iommu_domain->type == IOMMU_DOMAIN_DMA)
820 iommu_put_dma_cookie(iommu_domain);
821
822 dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
823 DMA_TO_DEVICE);
824
825 for (i = 0; i < NUM_LV1ENTRIES; i++)
826 if (lv1ent_page(domain->pgtable + i)) {
827 phys_addr_t base = lv2table_base(domain->pgtable + i);
828
829 dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
830 DMA_TO_DEVICE);
831 kmem_cache_free(lv2table_kmem_cache,
832 phys_to_virt(base));
833 }
834
835 free_pages((unsigned long)domain->pgtable, 2);
836 free_pages((unsigned long)domain->lv2entcnt, 1);
837 kfree(domain);
838 }
839
840 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
841 struct device *dev)
842 {
843 struct exynos_iommu_owner *owner = dev->archdata.iommu;
844 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
845 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
846 struct sysmmu_drvdata *data, *next;
847 unsigned long flags;
848
849 if (!has_sysmmu(dev) || owner->domain != iommu_domain)
850 return;
851
852 mutex_lock(&owner->rpm_lock);
853
854 list_for_each_entry(data, &owner->controllers, owner_node) {
855 pm_runtime_get_noresume(data->sysmmu);
856 if (pm_runtime_active(data->sysmmu))
857 __sysmmu_disable(data);
858 pm_runtime_put(data->sysmmu);
859 }
860
861 spin_lock_irqsave(&domain->lock, flags);
862 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
863 spin_lock(&data->lock);
864 data->pgtable = 0;
865 data->domain = NULL;
866 list_del_init(&data->domain_node);
867 spin_unlock(&data->lock);
868 }
869 owner->domain = NULL;
870 spin_unlock_irqrestore(&domain->lock, flags);
871
872 mutex_unlock(&owner->rpm_lock);
873
874 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
875 &pagetable);
876 }
877
878 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
879 struct device *dev)
880 {
881 struct exynos_iommu_owner *owner = dev->archdata.iommu;
882 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
883 struct sysmmu_drvdata *data;
884 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
885 unsigned long flags;
886
887 if (!has_sysmmu(dev))
888 return -ENODEV;
889
890 if (owner->domain)
891 exynos_iommu_detach_device(owner->domain, dev);
892
893 mutex_lock(&owner->rpm_lock);
894
895 spin_lock_irqsave(&domain->lock, flags);
896 list_for_each_entry(data, &owner->controllers, owner_node) {
897 spin_lock(&data->lock);
898 data->pgtable = pagetable;
899 data->domain = domain;
900 list_add_tail(&data->domain_node, &domain->clients);
901 spin_unlock(&data->lock);
902 }
903 owner->domain = iommu_domain;
904 spin_unlock_irqrestore(&domain->lock, flags);
905
906 list_for_each_entry(data, &owner->controllers, owner_node) {
907 pm_runtime_get_noresume(data->sysmmu);
908 if (pm_runtime_active(data->sysmmu))
909 __sysmmu_enable(data);
910 pm_runtime_put(data->sysmmu);
911 }
912
913 mutex_unlock(&owner->rpm_lock);
914
915 dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
916 &pagetable);
917
918 return 0;
919 }
920
921 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
922 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
923 {
924 if (lv1ent_section(sent)) {
925 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
926 return ERR_PTR(-EADDRINUSE);
927 }
928
929 if (lv1ent_fault(sent)) {
930 dma_addr_t handle;
931 sysmmu_pte_t *pent;
932 bool need_flush_flpd_cache = lv1ent_zero(sent);
933
934 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
935 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
936 if (!pent)
937 return ERR_PTR(-ENOMEM);
938
939 update_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
940 kmemleak_ignore(pent);
941 *pgcounter = NUM_LV2ENTRIES;
942 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
943 DMA_TO_DEVICE);
944 if (dma_mapping_error(dma_dev, handle)) {
945 kmem_cache_free(lv2table_kmem_cache, pent);
946 return ERR_PTR(-EADDRINUSE);
947 }
948
949 /*
950 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
951 * FLPD cache may cache the address of zero_l2_table. This
952 * function replaces the zero_l2_table with new L2 page table
953 * to write valid mappings.
954 * Accessing the valid area may cause page fault since FLPD
955 * cache may still cache zero_l2_table for the valid area
956 * instead of new L2 page table that has the mapping
957 * information of the valid area.
958 * Thus any replacement of zero_l2_table with other valid L2
959 * page table must involve FLPD cache invalidation for System
960 * MMU v3.3.
961 * FLPD cache invalidation is performed with TLB invalidation
962 * by VPN without blocking. It is safe to invalidate TLB without
963 * blocking because the target address of TLB invalidation is
964 * not currently mapped.
965 */
966 if (need_flush_flpd_cache) {
967 struct sysmmu_drvdata *data;
968
969 spin_lock(&domain->lock);
970 list_for_each_entry(data, &domain->clients, domain_node)
971 sysmmu_tlb_invalidate_flpdcache(data, iova);
972 spin_unlock(&domain->lock);
973 }
974 }
975
976 return page_entry(sent, iova);
977 }
978
979 static int lv1set_section(struct exynos_iommu_domain *domain,
980 sysmmu_pte_t *sent, sysmmu_iova_t iova,
981 phys_addr_t paddr, int prot, short *pgcnt)
982 {
983 if (lv1ent_section(sent)) {
984 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
985 iova);
986 return -EADDRINUSE;
987 }
988
989 if (lv1ent_page(sent)) {
990 if (*pgcnt != NUM_LV2ENTRIES) {
991 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
992 iova);
993 return -EADDRINUSE;
994 }
995
996 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
997 *pgcnt = 0;
998 }
999
1000 update_pte(sent, mk_lv1ent_sect(paddr, prot));
1001
1002 spin_lock(&domain->lock);
1003 if (lv1ent_page_zero(sent)) {
1004 struct sysmmu_drvdata *data;
1005 /*
1006 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1007 * entry by speculative prefetch of SLPD which has no mapping.
1008 */
1009 list_for_each_entry(data, &domain->clients, domain_node)
1010 sysmmu_tlb_invalidate_flpdcache(data, iova);
1011 }
1012 spin_unlock(&domain->lock);
1013
1014 return 0;
1015 }
1016
1017 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1018 int prot, short *pgcnt)
1019 {
1020 if (size == SPAGE_SIZE) {
1021 if (WARN_ON(!lv2ent_fault(pent)))
1022 return -EADDRINUSE;
1023
1024 update_pte(pent, mk_lv2ent_spage(paddr, prot));
1025 *pgcnt -= 1;
1026 } else { /* size == LPAGE_SIZE */
1027 int i;
1028 dma_addr_t pent_base = virt_to_phys(pent);
1029
1030 dma_sync_single_for_cpu(dma_dev, pent_base,
1031 sizeof(*pent) * SPAGES_PER_LPAGE,
1032 DMA_TO_DEVICE);
1033 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1034 if (WARN_ON(!lv2ent_fault(pent))) {
1035 if (i > 0)
1036 memset(pent - i, 0, sizeof(*pent) * i);
1037 return -EADDRINUSE;
1038 }
1039
1040 *pent = mk_lv2ent_lpage(paddr, prot);
1041 }
1042 dma_sync_single_for_device(dma_dev, pent_base,
1043 sizeof(*pent) * SPAGES_PER_LPAGE,
1044 DMA_TO_DEVICE);
1045 *pgcnt -= SPAGES_PER_LPAGE;
1046 }
1047
1048 return 0;
1049 }
1050
1051 /*
1052 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1053 *
1054 * System MMU v3.x has advanced logic to improve address translation
1055 * performance with caching more page table entries by a page table walk.
1056 * However, the logic has a bug that while caching faulty page table entries,
1057 * System MMU reports page fault if the cached fault entry is hit even though
1058 * the fault entry is updated to a valid entry after the entry is cached.
1059 * To prevent caching faulty page table entries which may be updated to valid
1060 * entries later, the virtual memory manager should care about the workaround
1061 * for the problem. The following describes the workaround.
1062 *
1063 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1064 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1065 *
1066 * Precisely, any start address of I/O virtual region must be aligned with
1067 * the following sizes for System MMU v3.1 and v3.2.
1068 * System MMU v3.1: 128KiB
1069 * System MMU v3.2: 256KiB
1070 *
1071 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1072 * more workarounds.
1073 * - Any two consecutive I/O virtual regions must have a hole of size larger
1074 * than or equal to 128KiB.
1075 * - Start address of an I/O virtual region must be aligned by 128KiB.
1076 */
1077 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1078 unsigned long l_iova, phys_addr_t paddr, size_t size,
1079 int prot)
1080 {
1081 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1082 sysmmu_pte_t *entry;
1083 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1084 unsigned long flags;
1085 int ret = -ENOMEM;
1086
1087 BUG_ON(domain->pgtable == NULL);
1088 prot &= SYSMMU_SUPPORTED_PROT_BITS;
1089
1090 spin_lock_irqsave(&domain->pgtablelock, flags);
1091
1092 entry = section_entry(domain->pgtable, iova);
1093
1094 if (size == SECT_SIZE) {
1095 ret = lv1set_section(domain, entry, iova, paddr, prot,
1096 &domain->lv2entcnt[lv1ent_offset(iova)]);
1097 } else {
1098 sysmmu_pte_t *pent;
1099
1100 pent = alloc_lv2entry(domain, entry, iova,
1101 &domain->lv2entcnt[lv1ent_offset(iova)]);
1102
1103 if (IS_ERR(pent))
1104 ret = PTR_ERR(pent);
1105 else
1106 ret = lv2set_page(pent, paddr, size, prot,
1107 &domain->lv2entcnt[lv1ent_offset(iova)]);
1108 }
1109
1110 if (ret)
1111 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1112 __func__, ret, size, iova);
1113
1114 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1115
1116 return ret;
1117 }
1118
1119 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1120 sysmmu_iova_t iova, size_t size)
1121 {
1122 struct sysmmu_drvdata *data;
1123 unsigned long flags;
1124
1125 spin_lock_irqsave(&domain->lock, flags);
1126
1127 list_for_each_entry(data, &domain->clients, domain_node)
1128 sysmmu_tlb_invalidate_entry(data, iova, size);
1129
1130 spin_unlock_irqrestore(&domain->lock, flags);
1131 }
1132
1133 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1134 unsigned long l_iova, size_t size)
1135 {
1136 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1137 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1138 sysmmu_pte_t *ent;
1139 size_t err_pgsize;
1140 unsigned long flags;
1141
1142 BUG_ON(domain->pgtable == NULL);
1143
1144 spin_lock_irqsave(&domain->pgtablelock, flags);
1145
1146 ent = section_entry(domain->pgtable, iova);
1147
1148 if (lv1ent_section(ent)) {
1149 if (WARN_ON(size < SECT_SIZE)) {
1150 err_pgsize = SECT_SIZE;
1151 goto err;
1152 }
1153
1154 /* workaround for h/w bug in System MMU v3.3 */
1155 update_pte(ent, ZERO_LV2LINK);
1156 size = SECT_SIZE;
1157 goto done;
1158 }
1159
1160 if (unlikely(lv1ent_fault(ent))) {
1161 if (size > SECT_SIZE)
1162 size = SECT_SIZE;
1163 goto done;
1164 }
1165
1166 /* lv1ent_page(sent) == true here */
1167
1168 ent = page_entry(ent, iova);
1169
1170 if (unlikely(lv2ent_fault(ent))) {
1171 size = SPAGE_SIZE;
1172 goto done;
1173 }
1174
1175 if (lv2ent_small(ent)) {
1176 update_pte(ent, 0);
1177 size = SPAGE_SIZE;
1178 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1179 goto done;
1180 }
1181
1182 /* lv1ent_large(ent) == true here */
1183 if (WARN_ON(size < LPAGE_SIZE)) {
1184 err_pgsize = LPAGE_SIZE;
1185 goto err;
1186 }
1187
1188 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1189 sizeof(*ent) * SPAGES_PER_LPAGE,
1190 DMA_TO_DEVICE);
1191 memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1192 dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1193 sizeof(*ent) * SPAGES_PER_LPAGE,
1194 DMA_TO_DEVICE);
1195 size = LPAGE_SIZE;
1196 domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1197 done:
1198 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1199
1200 exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1201
1202 return size;
1203 err:
1204 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1205
1206 pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1207 __func__, size, iova, err_pgsize);
1208
1209 return 0;
1210 }
1211
1212 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1213 dma_addr_t iova)
1214 {
1215 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1216 sysmmu_pte_t *entry;
1217 unsigned long flags;
1218 phys_addr_t phys = 0;
1219
1220 spin_lock_irqsave(&domain->pgtablelock, flags);
1221
1222 entry = section_entry(domain->pgtable, iova);
1223
1224 if (lv1ent_section(entry)) {
1225 phys = section_phys(entry) + section_offs(iova);
1226 } else if (lv1ent_page(entry)) {
1227 entry = page_entry(entry, iova);
1228
1229 if (lv2ent_large(entry))
1230 phys = lpage_phys(entry) + lpage_offs(iova);
1231 else if (lv2ent_small(entry))
1232 phys = spage_phys(entry) + spage_offs(iova);
1233 }
1234
1235 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1236
1237 return phys;
1238 }
1239
1240 static struct iommu_group *get_device_iommu_group(struct device *dev)
1241 {
1242 struct iommu_group *group;
1243
1244 group = iommu_group_get(dev);
1245 if (!group)
1246 group = iommu_group_alloc();
1247
1248 return group;
1249 }
1250
1251 static int exynos_iommu_add_device(struct device *dev)
1252 {
1253 struct iommu_group *group;
1254
1255 if (!has_sysmmu(dev))
1256 return -ENODEV;
1257
1258 group = iommu_group_get_for_dev(dev);
1259
1260 if (IS_ERR(group))
1261 return PTR_ERR(group);
1262
1263 iommu_group_put(group);
1264
1265 return 0;
1266 }
1267
1268 static void exynos_iommu_remove_device(struct device *dev)
1269 {
1270 struct exynos_iommu_owner *owner = dev->archdata.iommu;
1271
1272 if (!has_sysmmu(dev))
1273 return;
1274
1275 if (owner->domain) {
1276 struct iommu_group *group = iommu_group_get(dev);
1277
1278 if (group) {
1279 WARN_ON(owner->domain !=
1280 iommu_group_default_domain(group));
1281 exynos_iommu_detach_device(owner->domain, dev);
1282 iommu_group_put(group);
1283 }
1284 }
1285 iommu_group_remove_device(dev);
1286 }
1287
1288 static int exynos_iommu_of_xlate(struct device *dev,
1289 struct of_phandle_args *spec)
1290 {
1291 struct exynos_iommu_owner *owner = dev->archdata.iommu;
1292 struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1293 struct sysmmu_drvdata *data, *entry;
1294
1295 if (!sysmmu)
1296 return -ENODEV;
1297
1298 data = platform_get_drvdata(sysmmu);
1299 if (!data)
1300 return -ENODEV;
1301
1302 if (!owner) {
1303 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1304 if (!owner)
1305 return -ENOMEM;
1306
1307 INIT_LIST_HEAD(&owner->controllers);
1308 mutex_init(&owner->rpm_lock);
1309 dev->archdata.iommu = owner;
1310 }
1311
1312 list_for_each_entry(entry, &owner->controllers, owner_node)
1313 if (entry == data)
1314 return 0;
1315
1316 list_add_tail(&data->owner_node, &owner->controllers);
1317 data->master = dev;
1318
1319 /*
1320 * SYSMMU will be runtime activated via device link (dependency) to its
1321 * master device, so there are no direct calls to pm_runtime_get/put
1322 * in this driver.
1323 */
1324 device_link_add(dev, data->sysmmu, DL_FLAG_PM_RUNTIME);
1325
1326 return 0;
1327 }
1328
1329 static const struct iommu_ops exynos_iommu_ops = {
1330 .domain_alloc = exynos_iommu_domain_alloc,
1331 .domain_free = exynos_iommu_domain_free,
1332 .attach_dev = exynos_iommu_attach_device,
1333 .detach_dev = exynos_iommu_detach_device,
1334 .map = exynos_iommu_map,
1335 .unmap = exynos_iommu_unmap,
1336 .map_sg = default_iommu_map_sg,
1337 .iova_to_phys = exynos_iommu_iova_to_phys,
1338 .device_group = get_device_iommu_group,
1339 .add_device = exynos_iommu_add_device,
1340 .remove_device = exynos_iommu_remove_device,
1341 .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1342 .of_xlate = exynos_iommu_of_xlate,
1343 };
1344
1345 static int __init exynos_iommu_init(void)
1346 {
1347 int ret;
1348
1349 lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1350 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1351 if (!lv2table_kmem_cache) {
1352 pr_err("%s: Failed to create kmem cache\n", __func__);
1353 return -ENOMEM;
1354 }
1355
1356 ret = platform_driver_register(&exynos_sysmmu_driver);
1357 if (ret) {
1358 pr_err("%s: Failed to register driver\n", __func__);
1359 goto err_reg_driver;
1360 }
1361
1362 zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1363 if (zero_lv2_table == NULL) {
1364 pr_err("%s: Failed to allocate zero level2 page table\n",
1365 __func__);
1366 ret = -ENOMEM;
1367 goto err_zero_lv2;
1368 }
1369
1370 ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1371 if (ret) {
1372 pr_err("%s: Failed to register exynos-iommu driver.\n",
1373 __func__);
1374 goto err_set_iommu;
1375 }
1376
1377 return 0;
1378 err_set_iommu:
1379 kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1380 err_zero_lv2:
1381 platform_driver_unregister(&exynos_sysmmu_driver);
1382 err_reg_driver:
1383 kmem_cache_destroy(lv2table_kmem_cache);
1384 return ret;
1385 }
1386 core_initcall(exynos_iommu_init);
1387
1388 IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu", NULL);