]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iommu/exynos-iommu.c
Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / exynos-iommu.c
1 /*
2 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
11 #define DEBUG
12 #endif
13
14 #include <linux/clk.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/iommu.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/of.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/slab.h>
27 #include <linux/dma-iommu.h>
28
29 typedef u32 sysmmu_iova_t;
30 typedef u32 sysmmu_pte_t;
31
32 /* We do not consider super section mapping (16MB) */
33 #define SECT_ORDER 20
34 #define LPAGE_ORDER 16
35 #define SPAGE_ORDER 12
36
37 #define SECT_SIZE (1 << SECT_ORDER)
38 #define LPAGE_SIZE (1 << LPAGE_ORDER)
39 #define SPAGE_SIZE (1 << SPAGE_ORDER)
40
41 #define SECT_MASK (~(SECT_SIZE - 1))
42 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
43 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
44
45 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
46 ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
47 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
48 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
49 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
50 ((*(sent) & 3) == 1))
51 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
52
53 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
54 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
55 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
56
57 #ifdef CONFIG_BIG_ENDIAN
58 #warning "revisit driver if we can enable big-endian ptes"
59 #endif
60
61 /*
62 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
63 * v5.0 introduced support for 36bit physical address space by shifting
64 * all page entry values by 4 bits.
65 * All SYSMMU controllers in the system support the address spaces of the same
66 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
67 * value (0 or 4).
68 */
69 static short PG_ENT_SHIFT = -1;
70 #define SYSMMU_PG_ENT_SHIFT 0
71 #define SYSMMU_V5_PG_ENT_SHIFT 4
72
73 static const sysmmu_pte_t *LV1_PROT;
74 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
75 ((0 << 15) | (0 << 10)), /* no access */
76 ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
77 ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
78 ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
79 };
80 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
81 (0 << 4), /* no access */
82 (1 << 4), /* IOMMU_READ only */
83 (2 << 4), /* IOMMU_WRITE only */
84 (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
85 };
86
87 static const sysmmu_pte_t *LV2_PROT;
88 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
89 ((0 << 9) | (0 << 4)), /* no access */
90 ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
91 ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
92 ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
93 };
94 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
95 (0 << 2), /* no access */
96 (1 << 2), /* IOMMU_READ only */
97 (2 << 2), /* IOMMU_WRITE only */
98 (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
99 };
100
101 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
102
103 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
104 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
105 #define section_offs(iova) (iova & (SECT_SIZE - 1))
106 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
107 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
108 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
109 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
110
111 #define NUM_LV1ENTRIES 4096
112 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
113
114 static u32 lv1ent_offset(sysmmu_iova_t iova)
115 {
116 return iova >> SECT_ORDER;
117 }
118
119 static u32 lv2ent_offset(sysmmu_iova_t iova)
120 {
121 return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
122 }
123
124 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
125 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
126
127 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
128 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
129
130 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
131 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
132 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
133 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
134
135 #define CTRL_ENABLE 0x5
136 #define CTRL_BLOCK 0x7
137 #define CTRL_DISABLE 0x0
138
139 #define CFG_LRU 0x1
140 #define CFG_EAP (1 << 2)
141 #define CFG_QOS(n) ((n & 0xF) << 7)
142 #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
143 #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
144 #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
145
146 /* common registers */
147 #define REG_MMU_CTRL 0x000
148 #define REG_MMU_CFG 0x004
149 #define REG_MMU_STATUS 0x008
150 #define REG_MMU_VERSION 0x034
151
152 #define MMU_MAJ_VER(val) ((val) >> 7)
153 #define MMU_MIN_VER(val) ((val) & 0x7F)
154 #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
155
156 #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
157
158 /* v1.x - v3.x registers */
159 #define REG_MMU_FLUSH 0x00C
160 #define REG_MMU_FLUSH_ENTRY 0x010
161 #define REG_PT_BASE_ADDR 0x014
162 #define REG_INT_STATUS 0x018
163 #define REG_INT_CLEAR 0x01C
164
165 #define REG_PAGE_FAULT_ADDR 0x024
166 #define REG_AW_FAULT_ADDR 0x028
167 #define REG_AR_FAULT_ADDR 0x02C
168 #define REG_DEFAULT_SLAVE_ADDR 0x030
169
170 /* v5.x registers */
171 #define REG_V5_PT_BASE_PFN 0x00C
172 #define REG_V5_MMU_FLUSH_ALL 0x010
173 #define REG_V5_MMU_FLUSH_ENTRY 0x014
174 #define REG_V5_INT_STATUS 0x060
175 #define REG_V5_INT_CLEAR 0x064
176 #define REG_V5_FAULT_AR_VA 0x070
177 #define REG_V5_FAULT_AW_VA 0x080
178
179 #define has_sysmmu(dev) (dev->archdata.iommu != NULL)
180
181 static struct device *dma_dev;
182 static struct kmem_cache *lv2table_kmem_cache;
183 static sysmmu_pte_t *zero_lv2_table;
184 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
185
186 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
187 {
188 return pgtable + lv1ent_offset(iova);
189 }
190
191 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
192 {
193 return (sysmmu_pte_t *)phys_to_virt(
194 lv2table_base(sent)) + lv2ent_offset(iova);
195 }
196
197 /*
198 * IOMMU fault information register
199 */
200 struct sysmmu_fault_info {
201 unsigned int bit; /* bit number in STATUS register */
202 unsigned short addr_reg; /* register to read VA fault address */
203 const char *name; /* human readable fault name */
204 unsigned int type; /* fault type for report_iommu_fault */
205 };
206
207 static const struct sysmmu_fault_info sysmmu_faults[] = {
208 { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
209 { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
210 { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
211 { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
212 { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
213 { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
214 { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
215 { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
216 };
217
218 static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
219 { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
220 { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
221 { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
222 { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
223 { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
224 { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
225 { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
226 { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
227 { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
228 { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
229 };
230
231 /*
232 * This structure is attached to dev.archdata.iommu of the master device
233 * on device add, contains a list of SYSMMU controllers defined by device tree,
234 * which are bound to given master device. It is usually referenced by 'owner'
235 * pointer.
236 */
237 struct exynos_iommu_owner {
238 struct list_head controllers; /* list of sysmmu_drvdata.owner_node */
239 struct iommu_domain *domain; /* domain this device is attached */
240 struct mutex rpm_lock; /* for runtime pm of all sysmmus */
241 };
242
243 /*
244 * This structure exynos specific generalization of struct iommu_domain.
245 * It contains list of SYSMMU controllers from all master devices, which has
246 * been attached to this domain and page tables of IO address space defined by
247 * it. It is usually referenced by 'domain' pointer.
248 */
249 struct exynos_iommu_domain {
250 struct list_head clients; /* list of sysmmu_drvdata.domain_node */
251 sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
252 short *lv2entcnt; /* free lv2 entry counter for each section */
253 spinlock_t lock; /* lock for modyfying list of clients */
254 spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
255 struct iommu_domain domain; /* generic domain data structure */
256 };
257
258 /*
259 * This structure hold all data of a single SYSMMU controller, this includes
260 * hw resources like registers and clocks, pointers and list nodes to connect
261 * it to all other structures, internal state and parameters read from device
262 * tree. It is usually referenced by 'data' pointer.
263 */
264 struct sysmmu_drvdata {
265 struct device *sysmmu; /* SYSMMU controller device */
266 struct device *master; /* master device (owner) */
267 void __iomem *sfrbase; /* our registers */
268 struct clk *clk; /* SYSMMU's clock */
269 struct clk *aclk; /* SYSMMU's aclk clock */
270 struct clk *pclk; /* SYSMMU's pclk clock */
271 struct clk *clk_master; /* master's device clock */
272 spinlock_t lock; /* lock for modyfying state */
273 bool active; /* current status */
274 struct exynos_iommu_domain *domain; /* domain we belong to */
275 struct list_head domain_node; /* node for domain clients list */
276 struct list_head owner_node; /* node for owner controllers list */
277 phys_addr_t pgtable; /* assigned page table structure */
278 unsigned int version; /* our version */
279
280 struct iommu_device iommu; /* IOMMU core handle */
281 };
282
283 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
284 {
285 return container_of(dom, struct exynos_iommu_domain, domain);
286 }
287
288 static void sysmmu_unblock(struct sysmmu_drvdata *data)
289 {
290 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
291 }
292
293 static bool sysmmu_block(struct sysmmu_drvdata *data)
294 {
295 int i = 120;
296
297 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
298 while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
299 --i;
300
301 if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
302 sysmmu_unblock(data);
303 return false;
304 }
305
306 return true;
307 }
308
309 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
310 {
311 if (MMU_MAJ_VER(data->version) < 5)
312 writel(0x1, data->sfrbase + REG_MMU_FLUSH);
313 else
314 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
315 }
316
317 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
318 sysmmu_iova_t iova, unsigned int num_inv)
319 {
320 unsigned int i;
321
322 for (i = 0; i < num_inv; i++) {
323 if (MMU_MAJ_VER(data->version) < 5)
324 writel((iova & SPAGE_MASK) | 1,
325 data->sfrbase + REG_MMU_FLUSH_ENTRY);
326 else
327 writel((iova & SPAGE_MASK) | 1,
328 data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
329 iova += SPAGE_SIZE;
330 }
331 }
332
333 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
334 {
335 if (MMU_MAJ_VER(data->version) < 5)
336 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
337 else
338 writel(pgd >> PAGE_SHIFT,
339 data->sfrbase + REG_V5_PT_BASE_PFN);
340
341 __sysmmu_tlb_invalidate(data);
342 }
343
344 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
345 {
346 BUG_ON(clk_prepare_enable(data->clk_master));
347 BUG_ON(clk_prepare_enable(data->clk));
348 BUG_ON(clk_prepare_enable(data->pclk));
349 BUG_ON(clk_prepare_enable(data->aclk));
350 }
351
352 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
353 {
354 clk_disable_unprepare(data->aclk);
355 clk_disable_unprepare(data->pclk);
356 clk_disable_unprepare(data->clk);
357 clk_disable_unprepare(data->clk_master);
358 }
359
360 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
361 {
362 u32 ver;
363
364 __sysmmu_enable_clocks(data);
365
366 ver = readl(data->sfrbase + REG_MMU_VERSION);
367
368 /* controllers on some SoCs don't report proper version */
369 if (ver == 0x80000001u)
370 data->version = MAKE_MMU_VER(1, 0);
371 else
372 data->version = MMU_RAW_VER(ver);
373
374 dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
375 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
376
377 __sysmmu_disable_clocks(data);
378 }
379
380 static void show_fault_information(struct sysmmu_drvdata *data,
381 const struct sysmmu_fault_info *finfo,
382 sysmmu_iova_t fault_addr)
383 {
384 sysmmu_pte_t *ent;
385
386 dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
387 dev_name(data->master), finfo->name, fault_addr);
388 dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
389 ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
390 dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
391 if (lv1ent_page(ent)) {
392 ent = page_entry(ent, fault_addr);
393 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
394 }
395 }
396
397 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
398 {
399 /* SYSMMU is in blocked state when interrupt occurred. */
400 struct sysmmu_drvdata *data = dev_id;
401 const struct sysmmu_fault_info *finfo;
402 unsigned int i, n, itype;
403 sysmmu_iova_t fault_addr = -1;
404 unsigned short reg_status, reg_clear;
405 int ret = -ENOSYS;
406
407 WARN_ON(!data->active);
408
409 if (MMU_MAJ_VER(data->version) < 5) {
410 reg_status = REG_INT_STATUS;
411 reg_clear = REG_INT_CLEAR;
412 finfo = sysmmu_faults;
413 n = ARRAY_SIZE(sysmmu_faults);
414 } else {
415 reg_status = REG_V5_INT_STATUS;
416 reg_clear = REG_V5_INT_CLEAR;
417 finfo = sysmmu_v5_faults;
418 n = ARRAY_SIZE(sysmmu_v5_faults);
419 }
420
421 spin_lock(&data->lock);
422
423 clk_enable(data->clk_master);
424
425 itype = __ffs(readl(data->sfrbase + reg_status));
426 for (i = 0; i < n; i++, finfo++)
427 if (finfo->bit == itype)
428 break;
429 /* unknown/unsupported fault */
430 BUG_ON(i == n);
431
432 /* print debug message */
433 fault_addr = readl(data->sfrbase + finfo->addr_reg);
434 show_fault_information(data, finfo, fault_addr);
435
436 if (data->domain)
437 ret = report_iommu_fault(&data->domain->domain,
438 data->master, fault_addr, finfo->type);
439 /* fault is not recovered by fault handler */
440 BUG_ON(ret != 0);
441
442 writel(1 << itype, data->sfrbase + reg_clear);
443
444 sysmmu_unblock(data);
445
446 clk_disable(data->clk_master);
447
448 spin_unlock(&data->lock);
449
450 return IRQ_HANDLED;
451 }
452
453 static void __sysmmu_disable(struct sysmmu_drvdata *data)
454 {
455 unsigned long flags;
456
457 clk_enable(data->clk_master);
458
459 spin_lock_irqsave(&data->lock, flags);
460 writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
461 writel(0, data->sfrbase + REG_MMU_CFG);
462 data->active = false;
463 spin_unlock_irqrestore(&data->lock, flags);
464
465 __sysmmu_disable_clocks(data);
466 }
467
468 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
469 {
470 unsigned int cfg;
471
472 if (data->version <= MAKE_MMU_VER(3, 1))
473 cfg = CFG_LRU | CFG_QOS(15);
474 else if (data->version <= MAKE_MMU_VER(3, 2))
475 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
476 else
477 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
478
479 cfg |= CFG_EAP; /* enable access protection bits check */
480
481 writel(cfg, data->sfrbase + REG_MMU_CFG);
482 }
483
484 static void __sysmmu_enable(struct sysmmu_drvdata *data)
485 {
486 unsigned long flags;
487
488 __sysmmu_enable_clocks(data);
489
490 spin_lock_irqsave(&data->lock, flags);
491 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
492 __sysmmu_init_config(data);
493 __sysmmu_set_ptbase(data, data->pgtable);
494 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
495 data->active = true;
496 spin_unlock_irqrestore(&data->lock, flags);
497
498 /*
499 * SYSMMU driver keeps master's clock enabled only for the short
500 * time, while accessing the registers. For performing address
501 * translation during DMA transaction it relies on the client
502 * driver to enable it.
503 */
504 clk_disable(data->clk_master);
505 }
506
507 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
508 sysmmu_iova_t iova)
509 {
510 unsigned long flags;
511
512 spin_lock_irqsave(&data->lock, flags);
513 if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
514 clk_enable(data->clk_master);
515 __sysmmu_tlb_invalidate_entry(data, iova, 1);
516 clk_disable(data->clk_master);
517 }
518 spin_unlock_irqrestore(&data->lock, flags);
519 }
520
521 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
522 sysmmu_iova_t iova, size_t size)
523 {
524 unsigned long flags;
525
526 spin_lock_irqsave(&data->lock, flags);
527 if (data->active) {
528 unsigned int num_inv = 1;
529
530 clk_enable(data->clk_master);
531
532 /*
533 * L2TLB invalidation required
534 * 4KB page: 1 invalidation
535 * 64KB page: 16 invalidations
536 * 1MB page: 64 invalidations
537 * because it is set-associative TLB
538 * with 8-way and 64 sets.
539 * 1MB page can be cached in one of all sets.
540 * 64KB page can be one of 16 consecutive sets.
541 */
542 if (MMU_MAJ_VER(data->version) == 2)
543 num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
544
545 if (sysmmu_block(data)) {
546 __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
547 sysmmu_unblock(data);
548 }
549 clk_disable(data->clk_master);
550 }
551 spin_unlock_irqrestore(&data->lock, flags);
552 }
553
554 static struct iommu_ops exynos_iommu_ops;
555
556 static int __init exynos_sysmmu_probe(struct platform_device *pdev)
557 {
558 int irq, ret;
559 struct device *dev = &pdev->dev;
560 struct sysmmu_drvdata *data;
561 struct resource *res;
562
563 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
564 if (!data)
565 return -ENOMEM;
566
567 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
568 data->sfrbase = devm_ioremap_resource(dev, res);
569 if (IS_ERR(data->sfrbase))
570 return PTR_ERR(data->sfrbase);
571
572 irq = platform_get_irq(pdev, 0);
573 if (irq <= 0) {
574 dev_err(dev, "Unable to find IRQ resource\n");
575 return irq;
576 }
577
578 ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
579 dev_name(dev), data);
580 if (ret) {
581 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
582 return ret;
583 }
584
585 data->clk = devm_clk_get(dev, "sysmmu");
586 if (PTR_ERR(data->clk) == -ENOENT)
587 data->clk = NULL;
588 else if (IS_ERR(data->clk))
589 return PTR_ERR(data->clk);
590
591 data->aclk = devm_clk_get(dev, "aclk");
592 if (PTR_ERR(data->aclk) == -ENOENT)
593 data->aclk = NULL;
594 else if (IS_ERR(data->aclk))
595 return PTR_ERR(data->aclk);
596
597 data->pclk = devm_clk_get(dev, "pclk");
598 if (PTR_ERR(data->pclk) == -ENOENT)
599 data->pclk = NULL;
600 else if (IS_ERR(data->pclk))
601 return PTR_ERR(data->pclk);
602
603 if (!data->clk && (!data->aclk || !data->pclk)) {
604 dev_err(dev, "Failed to get device clock(s)!\n");
605 return -ENOSYS;
606 }
607
608 data->clk_master = devm_clk_get(dev, "master");
609 if (PTR_ERR(data->clk_master) == -ENOENT)
610 data->clk_master = NULL;
611 else if (IS_ERR(data->clk_master))
612 return PTR_ERR(data->clk_master);
613
614 data->sysmmu = dev;
615 spin_lock_init(&data->lock);
616
617 ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
618 dev_name(data->sysmmu));
619 if (ret)
620 return ret;
621
622 iommu_device_set_ops(&data->iommu, &exynos_iommu_ops);
623 iommu_device_set_fwnode(&data->iommu, &dev->of_node->fwnode);
624
625 ret = iommu_device_register(&data->iommu);
626 if (ret)
627 return ret;
628
629 platform_set_drvdata(pdev, data);
630
631 __sysmmu_get_version(data);
632 if (PG_ENT_SHIFT < 0) {
633 if (MMU_MAJ_VER(data->version) < 5) {
634 PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
635 LV1_PROT = SYSMMU_LV1_PROT;
636 LV2_PROT = SYSMMU_LV2_PROT;
637 } else {
638 PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
639 LV1_PROT = SYSMMU_V5_LV1_PROT;
640 LV2_PROT = SYSMMU_V5_LV2_PROT;
641 }
642 }
643
644 pm_runtime_enable(dev);
645
646 return 0;
647 }
648
649 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
650 {
651 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
652 struct device *master = data->master;
653
654 if (master) {
655 struct exynos_iommu_owner *owner = master->archdata.iommu;
656
657 mutex_lock(&owner->rpm_lock);
658 if (data->domain) {
659 dev_dbg(data->sysmmu, "saving state\n");
660 __sysmmu_disable(data);
661 }
662 mutex_unlock(&owner->rpm_lock);
663 }
664 return 0;
665 }
666
667 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
668 {
669 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
670 struct device *master = data->master;
671
672 if (master) {
673 struct exynos_iommu_owner *owner = master->archdata.iommu;
674
675 mutex_lock(&owner->rpm_lock);
676 if (data->domain) {
677 dev_dbg(data->sysmmu, "restoring state\n");
678 __sysmmu_enable(data);
679 }
680 mutex_unlock(&owner->rpm_lock);
681 }
682 return 0;
683 }
684
685 static const struct dev_pm_ops sysmmu_pm_ops = {
686 SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
687 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
688 pm_runtime_force_resume)
689 };
690
691 static const struct of_device_id sysmmu_of_match[] __initconst = {
692 { .compatible = "samsung,exynos-sysmmu", },
693 { },
694 };
695
696 static struct platform_driver exynos_sysmmu_driver __refdata = {
697 .probe = exynos_sysmmu_probe,
698 .driver = {
699 .name = "exynos-sysmmu",
700 .of_match_table = sysmmu_of_match,
701 .pm = &sysmmu_pm_ops,
702 .suppress_bind_attrs = true,
703 }
704 };
705
706 static inline void update_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
707 {
708 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
709 DMA_TO_DEVICE);
710 *ent = cpu_to_le32(val);
711 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
712 DMA_TO_DEVICE);
713 }
714
715 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
716 {
717 struct exynos_iommu_domain *domain;
718 dma_addr_t handle;
719 int i;
720
721 /* Check if correct PTE offsets are initialized */
722 BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
723
724 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
725 if (!domain)
726 return NULL;
727
728 if (type == IOMMU_DOMAIN_DMA) {
729 if (iommu_get_dma_cookie(&domain->domain) != 0)
730 goto err_pgtable;
731 } else if (type != IOMMU_DOMAIN_UNMANAGED) {
732 goto err_pgtable;
733 }
734
735 domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
736 if (!domain->pgtable)
737 goto err_dma_cookie;
738
739 domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
740 if (!domain->lv2entcnt)
741 goto err_counter;
742
743 /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
744 for (i = 0; i < NUM_LV1ENTRIES; i += 8) {
745 domain->pgtable[i + 0] = ZERO_LV2LINK;
746 domain->pgtable[i + 1] = ZERO_LV2LINK;
747 domain->pgtable[i + 2] = ZERO_LV2LINK;
748 domain->pgtable[i + 3] = ZERO_LV2LINK;
749 domain->pgtable[i + 4] = ZERO_LV2LINK;
750 domain->pgtable[i + 5] = ZERO_LV2LINK;
751 domain->pgtable[i + 6] = ZERO_LV2LINK;
752 domain->pgtable[i + 7] = ZERO_LV2LINK;
753 }
754
755 handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
756 DMA_TO_DEVICE);
757 /* For mapping page table entries we rely on dma == phys */
758 BUG_ON(handle != virt_to_phys(domain->pgtable));
759 if (dma_mapping_error(dma_dev, handle))
760 goto err_lv2ent;
761
762 spin_lock_init(&domain->lock);
763 spin_lock_init(&domain->pgtablelock);
764 INIT_LIST_HEAD(&domain->clients);
765
766 domain->domain.geometry.aperture_start = 0;
767 domain->domain.geometry.aperture_end = ~0UL;
768 domain->domain.geometry.force_aperture = true;
769
770 return &domain->domain;
771
772 err_lv2ent:
773 free_pages((unsigned long)domain->lv2entcnt, 1);
774 err_counter:
775 free_pages((unsigned long)domain->pgtable, 2);
776 err_dma_cookie:
777 if (type == IOMMU_DOMAIN_DMA)
778 iommu_put_dma_cookie(&domain->domain);
779 err_pgtable:
780 kfree(domain);
781 return NULL;
782 }
783
784 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
785 {
786 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
787 struct sysmmu_drvdata *data, *next;
788 unsigned long flags;
789 int i;
790
791 WARN_ON(!list_empty(&domain->clients));
792
793 spin_lock_irqsave(&domain->lock, flags);
794
795 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
796 spin_lock(&data->lock);
797 __sysmmu_disable(data);
798 data->pgtable = 0;
799 data->domain = NULL;
800 list_del_init(&data->domain_node);
801 spin_unlock(&data->lock);
802 }
803
804 spin_unlock_irqrestore(&domain->lock, flags);
805
806 if (iommu_domain->type == IOMMU_DOMAIN_DMA)
807 iommu_put_dma_cookie(iommu_domain);
808
809 dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
810 DMA_TO_DEVICE);
811
812 for (i = 0; i < NUM_LV1ENTRIES; i++)
813 if (lv1ent_page(domain->pgtable + i)) {
814 phys_addr_t base = lv2table_base(domain->pgtable + i);
815
816 dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
817 DMA_TO_DEVICE);
818 kmem_cache_free(lv2table_kmem_cache,
819 phys_to_virt(base));
820 }
821
822 free_pages((unsigned long)domain->pgtable, 2);
823 free_pages((unsigned long)domain->lv2entcnt, 1);
824 kfree(domain);
825 }
826
827 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
828 struct device *dev)
829 {
830 struct exynos_iommu_owner *owner = dev->archdata.iommu;
831 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
832 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
833 struct sysmmu_drvdata *data, *next;
834 unsigned long flags;
835
836 if (!has_sysmmu(dev) || owner->domain != iommu_domain)
837 return;
838
839 mutex_lock(&owner->rpm_lock);
840
841 list_for_each_entry(data, &owner->controllers, owner_node) {
842 pm_runtime_get_noresume(data->sysmmu);
843 if (pm_runtime_active(data->sysmmu))
844 __sysmmu_disable(data);
845 pm_runtime_put(data->sysmmu);
846 }
847
848 spin_lock_irqsave(&domain->lock, flags);
849 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
850 spin_lock(&data->lock);
851 data->pgtable = 0;
852 data->domain = NULL;
853 list_del_init(&data->domain_node);
854 spin_unlock(&data->lock);
855 }
856 owner->domain = NULL;
857 spin_unlock_irqrestore(&domain->lock, flags);
858
859 mutex_unlock(&owner->rpm_lock);
860
861 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
862 &pagetable);
863 }
864
865 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
866 struct device *dev)
867 {
868 struct exynos_iommu_owner *owner = dev->archdata.iommu;
869 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
870 struct sysmmu_drvdata *data;
871 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
872 unsigned long flags;
873
874 if (!has_sysmmu(dev))
875 return -ENODEV;
876
877 if (owner->domain)
878 exynos_iommu_detach_device(owner->domain, dev);
879
880 mutex_lock(&owner->rpm_lock);
881
882 spin_lock_irqsave(&domain->lock, flags);
883 list_for_each_entry(data, &owner->controllers, owner_node) {
884 spin_lock(&data->lock);
885 data->pgtable = pagetable;
886 data->domain = domain;
887 list_add_tail(&data->domain_node, &domain->clients);
888 spin_unlock(&data->lock);
889 }
890 owner->domain = iommu_domain;
891 spin_unlock_irqrestore(&domain->lock, flags);
892
893 list_for_each_entry(data, &owner->controllers, owner_node) {
894 pm_runtime_get_noresume(data->sysmmu);
895 if (pm_runtime_active(data->sysmmu))
896 __sysmmu_enable(data);
897 pm_runtime_put(data->sysmmu);
898 }
899
900 mutex_unlock(&owner->rpm_lock);
901
902 dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
903 &pagetable);
904
905 return 0;
906 }
907
908 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
909 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
910 {
911 if (lv1ent_section(sent)) {
912 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
913 return ERR_PTR(-EADDRINUSE);
914 }
915
916 if (lv1ent_fault(sent)) {
917 dma_addr_t handle;
918 sysmmu_pte_t *pent;
919 bool need_flush_flpd_cache = lv1ent_zero(sent);
920
921 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
922 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
923 if (!pent)
924 return ERR_PTR(-ENOMEM);
925
926 update_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
927 kmemleak_ignore(pent);
928 *pgcounter = NUM_LV2ENTRIES;
929 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
930 DMA_TO_DEVICE);
931 if (dma_mapping_error(dma_dev, handle)) {
932 kmem_cache_free(lv2table_kmem_cache, pent);
933 return ERR_PTR(-EADDRINUSE);
934 }
935
936 /*
937 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
938 * FLPD cache may cache the address of zero_l2_table. This
939 * function replaces the zero_l2_table with new L2 page table
940 * to write valid mappings.
941 * Accessing the valid area may cause page fault since FLPD
942 * cache may still cache zero_l2_table for the valid area
943 * instead of new L2 page table that has the mapping
944 * information of the valid area.
945 * Thus any replacement of zero_l2_table with other valid L2
946 * page table must involve FLPD cache invalidation for System
947 * MMU v3.3.
948 * FLPD cache invalidation is performed with TLB invalidation
949 * by VPN without blocking. It is safe to invalidate TLB without
950 * blocking because the target address of TLB invalidation is
951 * not currently mapped.
952 */
953 if (need_flush_flpd_cache) {
954 struct sysmmu_drvdata *data;
955
956 spin_lock(&domain->lock);
957 list_for_each_entry(data, &domain->clients, domain_node)
958 sysmmu_tlb_invalidate_flpdcache(data, iova);
959 spin_unlock(&domain->lock);
960 }
961 }
962
963 return page_entry(sent, iova);
964 }
965
966 static int lv1set_section(struct exynos_iommu_domain *domain,
967 sysmmu_pte_t *sent, sysmmu_iova_t iova,
968 phys_addr_t paddr, int prot, short *pgcnt)
969 {
970 if (lv1ent_section(sent)) {
971 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
972 iova);
973 return -EADDRINUSE;
974 }
975
976 if (lv1ent_page(sent)) {
977 if (*pgcnt != NUM_LV2ENTRIES) {
978 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
979 iova);
980 return -EADDRINUSE;
981 }
982
983 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
984 *pgcnt = 0;
985 }
986
987 update_pte(sent, mk_lv1ent_sect(paddr, prot));
988
989 spin_lock(&domain->lock);
990 if (lv1ent_page_zero(sent)) {
991 struct sysmmu_drvdata *data;
992 /*
993 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
994 * entry by speculative prefetch of SLPD which has no mapping.
995 */
996 list_for_each_entry(data, &domain->clients, domain_node)
997 sysmmu_tlb_invalidate_flpdcache(data, iova);
998 }
999 spin_unlock(&domain->lock);
1000
1001 return 0;
1002 }
1003
1004 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1005 int prot, short *pgcnt)
1006 {
1007 if (size == SPAGE_SIZE) {
1008 if (WARN_ON(!lv2ent_fault(pent)))
1009 return -EADDRINUSE;
1010
1011 update_pte(pent, mk_lv2ent_spage(paddr, prot));
1012 *pgcnt -= 1;
1013 } else { /* size == LPAGE_SIZE */
1014 int i;
1015 dma_addr_t pent_base = virt_to_phys(pent);
1016
1017 dma_sync_single_for_cpu(dma_dev, pent_base,
1018 sizeof(*pent) * SPAGES_PER_LPAGE,
1019 DMA_TO_DEVICE);
1020 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1021 if (WARN_ON(!lv2ent_fault(pent))) {
1022 if (i > 0)
1023 memset(pent - i, 0, sizeof(*pent) * i);
1024 return -EADDRINUSE;
1025 }
1026
1027 *pent = mk_lv2ent_lpage(paddr, prot);
1028 }
1029 dma_sync_single_for_device(dma_dev, pent_base,
1030 sizeof(*pent) * SPAGES_PER_LPAGE,
1031 DMA_TO_DEVICE);
1032 *pgcnt -= SPAGES_PER_LPAGE;
1033 }
1034
1035 return 0;
1036 }
1037
1038 /*
1039 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1040 *
1041 * System MMU v3.x has advanced logic to improve address translation
1042 * performance with caching more page table entries by a page table walk.
1043 * However, the logic has a bug that while caching faulty page table entries,
1044 * System MMU reports page fault if the cached fault entry is hit even though
1045 * the fault entry is updated to a valid entry after the entry is cached.
1046 * To prevent caching faulty page table entries which may be updated to valid
1047 * entries later, the virtual memory manager should care about the workaround
1048 * for the problem. The following describes the workaround.
1049 *
1050 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1051 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1052 *
1053 * Precisely, any start address of I/O virtual region must be aligned with
1054 * the following sizes for System MMU v3.1 and v3.2.
1055 * System MMU v3.1: 128KiB
1056 * System MMU v3.2: 256KiB
1057 *
1058 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1059 * more workarounds.
1060 * - Any two consecutive I/O virtual regions must have a hole of size larger
1061 * than or equal to 128KiB.
1062 * - Start address of an I/O virtual region must be aligned by 128KiB.
1063 */
1064 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1065 unsigned long l_iova, phys_addr_t paddr, size_t size,
1066 int prot)
1067 {
1068 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1069 sysmmu_pte_t *entry;
1070 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1071 unsigned long flags;
1072 int ret = -ENOMEM;
1073
1074 BUG_ON(domain->pgtable == NULL);
1075 prot &= SYSMMU_SUPPORTED_PROT_BITS;
1076
1077 spin_lock_irqsave(&domain->pgtablelock, flags);
1078
1079 entry = section_entry(domain->pgtable, iova);
1080
1081 if (size == SECT_SIZE) {
1082 ret = lv1set_section(domain, entry, iova, paddr, prot,
1083 &domain->lv2entcnt[lv1ent_offset(iova)]);
1084 } else {
1085 sysmmu_pte_t *pent;
1086
1087 pent = alloc_lv2entry(domain, entry, iova,
1088 &domain->lv2entcnt[lv1ent_offset(iova)]);
1089
1090 if (IS_ERR(pent))
1091 ret = PTR_ERR(pent);
1092 else
1093 ret = lv2set_page(pent, paddr, size, prot,
1094 &domain->lv2entcnt[lv1ent_offset(iova)]);
1095 }
1096
1097 if (ret)
1098 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1099 __func__, ret, size, iova);
1100
1101 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1102
1103 return ret;
1104 }
1105
1106 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1107 sysmmu_iova_t iova, size_t size)
1108 {
1109 struct sysmmu_drvdata *data;
1110 unsigned long flags;
1111
1112 spin_lock_irqsave(&domain->lock, flags);
1113
1114 list_for_each_entry(data, &domain->clients, domain_node)
1115 sysmmu_tlb_invalidate_entry(data, iova, size);
1116
1117 spin_unlock_irqrestore(&domain->lock, flags);
1118 }
1119
1120 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1121 unsigned long l_iova, size_t size)
1122 {
1123 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1124 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1125 sysmmu_pte_t *ent;
1126 size_t err_pgsize;
1127 unsigned long flags;
1128
1129 BUG_ON(domain->pgtable == NULL);
1130
1131 spin_lock_irqsave(&domain->pgtablelock, flags);
1132
1133 ent = section_entry(domain->pgtable, iova);
1134
1135 if (lv1ent_section(ent)) {
1136 if (WARN_ON(size < SECT_SIZE)) {
1137 err_pgsize = SECT_SIZE;
1138 goto err;
1139 }
1140
1141 /* workaround for h/w bug in System MMU v3.3 */
1142 update_pte(ent, ZERO_LV2LINK);
1143 size = SECT_SIZE;
1144 goto done;
1145 }
1146
1147 if (unlikely(lv1ent_fault(ent))) {
1148 if (size > SECT_SIZE)
1149 size = SECT_SIZE;
1150 goto done;
1151 }
1152
1153 /* lv1ent_page(sent) == true here */
1154
1155 ent = page_entry(ent, iova);
1156
1157 if (unlikely(lv2ent_fault(ent))) {
1158 size = SPAGE_SIZE;
1159 goto done;
1160 }
1161
1162 if (lv2ent_small(ent)) {
1163 update_pte(ent, 0);
1164 size = SPAGE_SIZE;
1165 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1166 goto done;
1167 }
1168
1169 /* lv1ent_large(ent) == true here */
1170 if (WARN_ON(size < LPAGE_SIZE)) {
1171 err_pgsize = LPAGE_SIZE;
1172 goto err;
1173 }
1174
1175 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1176 sizeof(*ent) * SPAGES_PER_LPAGE,
1177 DMA_TO_DEVICE);
1178 memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1179 dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1180 sizeof(*ent) * SPAGES_PER_LPAGE,
1181 DMA_TO_DEVICE);
1182 size = LPAGE_SIZE;
1183 domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1184 done:
1185 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1186
1187 exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1188
1189 return size;
1190 err:
1191 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1192
1193 pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1194 __func__, size, iova, err_pgsize);
1195
1196 return 0;
1197 }
1198
1199 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1200 dma_addr_t iova)
1201 {
1202 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1203 sysmmu_pte_t *entry;
1204 unsigned long flags;
1205 phys_addr_t phys = 0;
1206
1207 spin_lock_irqsave(&domain->pgtablelock, flags);
1208
1209 entry = section_entry(domain->pgtable, iova);
1210
1211 if (lv1ent_section(entry)) {
1212 phys = section_phys(entry) + section_offs(iova);
1213 } else if (lv1ent_page(entry)) {
1214 entry = page_entry(entry, iova);
1215
1216 if (lv2ent_large(entry))
1217 phys = lpage_phys(entry) + lpage_offs(iova);
1218 else if (lv2ent_small(entry))
1219 phys = spage_phys(entry) + spage_offs(iova);
1220 }
1221
1222 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1223
1224 return phys;
1225 }
1226
1227 static struct iommu_group *get_device_iommu_group(struct device *dev)
1228 {
1229 struct iommu_group *group;
1230
1231 group = iommu_group_get(dev);
1232 if (!group)
1233 group = iommu_group_alloc();
1234
1235 return group;
1236 }
1237
1238 static int exynos_iommu_add_device(struct device *dev)
1239 {
1240 struct iommu_group *group;
1241
1242 if (!has_sysmmu(dev))
1243 return -ENODEV;
1244
1245 group = iommu_group_get_for_dev(dev);
1246
1247 if (IS_ERR(group))
1248 return PTR_ERR(group);
1249
1250 iommu_group_put(group);
1251
1252 return 0;
1253 }
1254
1255 static void exynos_iommu_remove_device(struct device *dev)
1256 {
1257 struct exynos_iommu_owner *owner = dev->archdata.iommu;
1258
1259 if (!has_sysmmu(dev))
1260 return;
1261
1262 if (owner->domain) {
1263 struct iommu_group *group = iommu_group_get(dev);
1264
1265 if (group) {
1266 WARN_ON(owner->domain !=
1267 iommu_group_default_domain(group));
1268 exynos_iommu_detach_device(owner->domain, dev);
1269 iommu_group_put(group);
1270 }
1271 }
1272 iommu_group_remove_device(dev);
1273 }
1274
1275 static int exynos_iommu_of_xlate(struct device *dev,
1276 struct of_phandle_args *spec)
1277 {
1278 struct exynos_iommu_owner *owner = dev->archdata.iommu;
1279 struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1280 struct sysmmu_drvdata *data, *entry;
1281
1282 if (!sysmmu)
1283 return -ENODEV;
1284
1285 data = platform_get_drvdata(sysmmu);
1286 if (!data)
1287 return -ENODEV;
1288
1289 if (!owner) {
1290 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1291 if (!owner)
1292 return -ENOMEM;
1293
1294 INIT_LIST_HEAD(&owner->controllers);
1295 mutex_init(&owner->rpm_lock);
1296 dev->archdata.iommu = owner;
1297 }
1298
1299 list_for_each_entry(entry, &owner->controllers, owner_node)
1300 if (entry == data)
1301 return 0;
1302
1303 list_add_tail(&data->owner_node, &owner->controllers);
1304 data->master = dev;
1305
1306 /*
1307 * SYSMMU will be runtime activated via device link (dependency) to its
1308 * master device, so there are no direct calls to pm_runtime_get/put
1309 * in this driver.
1310 */
1311 device_link_add(dev, data->sysmmu, DL_FLAG_PM_RUNTIME);
1312
1313 return 0;
1314 }
1315
1316 static struct iommu_ops exynos_iommu_ops = {
1317 .domain_alloc = exynos_iommu_domain_alloc,
1318 .domain_free = exynos_iommu_domain_free,
1319 .attach_dev = exynos_iommu_attach_device,
1320 .detach_dev = exynos_iommu_detach_device,
1321 .map = exynos_iommu_map,
1322 .unmap = exynos_iommu_unmap,
1323 .map_sg = default_iommu_map_sg,
1324 .iova_to_phys = exynos_iommu_iova_to_phys,
1325 .device_group = get_device_iommu_group,
1326 .add_device = exynos_iommu_add_device,
1327 .remove_device = exynos_iommu_remove_device,
1328 .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1329 .of_xlate = exynos_iommu_of_xlate,
1330 };
1331
1332 static bool init_done;
1333
1334 static int __init exynos_iommu_init(void)
1335 {
1336 int ret;
1337
1338 lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1339 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1340 if (!lv2table_kmem_cache) {
1341 pr_err("%s: Failed to create kmem cache\n", __func__);
1342 return -ENOMEM;
1343 }
1344
1345 ret = platform_driver_register(&exynos_sysmmu_driver);
1346 if (ret) {
1347 pr_err("%s: Failed to register driver\n", __func__);
1348 goto err_reg_driver;
1349 }
1350
1351 zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1352 if (zero_lv2_table == NULL) {
1353 pr_err("%s: Failed to allocate zero level2 page table\n",
1354 __func__);
1355 ret = -ENOMEM;
1356 goto err_zero_lv2;
1357 }
1358
1359 ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1360 if (ret) {
1361 pr_err("%s: Failed to register exynos-iommu driver.\n",
1362 __func__);
1363 goto err_set_iommu;
1364 }
1365
1366 init_done = true;
1367
1368 return 0;
1369 err_set_iommu:
1370 kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1371 err_zero_lv2:
1372 platform_driver_unregister(&exynos_sysmmu_driver);
1373 err_reg_driver:
1374 kmem_cache_destroy(lv2table_kmem_cache);
1375 return ret;
1376 }
1377
1378 static int __init exynos_iommu_of_setup(struct device_node *np)
1379 {
1380 struct platform_device *pdev;
1381
1382 if (!init_done)
1383 exynos_iommu_init();
1384
1385 pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root);
1386 if (!pdev)
1387 return -ENODEV;
1388
1389 /*
1390 * use the first registered sysmmu device for performing
1391 * dma mapping operations on iommu page tables (cpu cache flush)
1392 */
1393 if (!dma_dev)
1394 dma_dev = &pdev->dev;
1395
1396 return 0;
1397 }
1398
1399 IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu",
1400 exynos_iommu_of_setup);