]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iommu/intel-iommu.c
Merge git://git.infradead.org/intel-iommu
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 * Joerg Roedel <jroedel@suse.de>
19 */
20
21 #define pr_fmt(fmt) "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <linux/dma-contiguous.h>
46 #include <linux/crash_dump.h>
47 #include <asm/irq_remapping.h>
48 #include <asm/cacheflush.h>
49 #include <asm/iommu.h>
50
51 #include "irq_remapping.h"
52
53 #define ROOT_SIZE VTD_PAGE_SIZE
54 #define CONTEXT_SIZE VTD_PAGE_SIZE
55
56 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60
61 #define IOAPIC_RANGE_START (0xfee00000)
62 #define IOAPIC_RANGE_END (0xfeefffff)
63 #define IOVA_START_ADDR (0x1000)
64
65 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
66
67 #define MAX_AGAW_WIDTH 64
68 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
69
70 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
71 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
72
73 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
74 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
75 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
76 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
77 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78
79 /* IO virtual address start page frame number */
80 #define IOVA_START_PFN (1)
81
82 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
83 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
84 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
85
86 /* page table handling */
87 #define LEVEL_STRIDE (9)
88 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
89
90 /*
91 * This bitmap is used to advertise the page sizes our hardware support
92 * to the IOMMU core, which will then use this information to split
93 * physically contiguous memory regions it is mapping into page sizes
94 * that we support.
95 *
96 * Traditionally the IOMMU core just handed us the mappings directly,
97 * after making sure the size is an order of a 4KiB page and that the
98 * mapping has natural alignment.
99 *
100 * To retain this behavior, we currently advertise that we support
101 * all page sizes that are an order of 4KiB.
102 *
103 * If at some point we'd like to utilize the IOMMU core's new behavior,
104 * we could change this to advertise the real page sizes we support.
105 */
106 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
107
108 static inline int agaw_to_level(int agaw)
109 {
110 return agaw + 2;
111 }
112
113 static inline int agaw_to_width(int agaw)
114 {
115 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
116 }
117
118 static inline int width_to_agaw(int width)
119 {
120 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
121 }
122
123 static inline unsigned int level_to_offset_bits(int level)
124 {
125 return (level - 1) * LEVEL_STRIDE;
126 }
127
128 static inline int pfn_level_offset(unsigned long pfn, int level)
129 {
130 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
131 }
132
133 static inline unsigned long level_mask(int level)
134 {
135 return -1UL << level_to_offset_bits(level);
136 }
137
138 static inline unsigned long level_size(int level)
139 {
140 return 1UL << level_to_offset_bits(level);
141 }
142
143 static inline unsigned long align_to_level(unsigned long pfn, int level)
144 {
145 return (pfn + level_size(level) - 1) & level_mask(level);
146 }
147
148 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
149 {
150 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
151 }
152
153 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
154 are never going to work. */
155 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
156 {
157 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 }
159
160 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
161 {
162 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
163 }
164 static inline unsigned long page_to_dma_pfn(struct page *pg)
165 {
166 return mm_to_dma_pfn(page_to_pfn(pg));
167 }
168 static inline unsigned long virt_to_dma_pfn(void *p)
169 {
170 return page_to_dma_pfn(virt_to_page(p));
171 }
172
173 /* global iommu list, set NULL for ignored DMAR units */
174 static struct intel_iommu **g_iommus;
175
176 static void __init check_tylersburg_isoch(void);
177 static int rwbf_quirk;
178
179 /*
180 * set to 1 to panic kernel if can't successfully enable VT-d
181 * (used when kernel is launched w/ TXT)
182 */
183 static int force_on = 0;
184
185 /*
186 * 0: Present
187 * 1-11: Reserved
188 * 12-63: Context Ptr (12 - (haw-1))
189 * 64-127: Reserved
190 */
191 struct root_entry {
192 u64 lo;
193 u64 hi;
194 };
195 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
196
197 /*
198 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
199 * if marked present.
200 */
201 static phys_addr_t root_entry_lctp(struct root_entry *re)
202 {
203 if (!(re->lo & 1))
204 return 0;
205
206 return re->lo & VTD_PAGE_MASK;
207 }
208
209 /*
210 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
211 * if marked present.
212 */
213 static phys_addr_t root_entry_uctp(struct root_entry *re)
214 {
215 if (!(re->hi & 1))
216 return 0;
217
218 return re->hi & VTD_PAGE_MASK;
219 }
220 /*
221 * low 64 bits:
222 * 0: present
223 * 1: fault processing disable
224 * 2-3: translation type
225 * 12-63: address space root
226 * high 64 bits:
227 * 0-2: address width
228 * 3-6: aval
229 * 8-23: domain id
230 */
231 struct context_entry {
232 u64 lo;
233 u64 hi;
234 };
235
236 static inline void context_clear_pasid_enable(struct context_entry *context)
237 {
238 context->lo &= ~(1ULL << 11);
239 }
240
241 static inline bool context_pasid_enabled(struct context_entry *context)
242 {
243 return !!(context->lo & (1ULL << 11));
244 }
245
246 static inline void context_set_copied(struct context_entry *context)
247 {
248 context->hi |= (1ull << 3);
249 }
250
251 static inline bool context_copied(struct context_entry *context)
252 {
253 return !!(context->hi & (1ULL << 3));
254 }
255
256 static inline bool __context_present(struct context_entry *context)
257 {
258 return (context->lo & 1);
259 }
260
261 static inline bool context_present(struct context_entry *context)
262 {
263 return context_pasid_enabled(context) ?
264 __context_present(context) :
265 __context_present(context) && !context_copied(context);
266 }
267
268 static inline void context_set_present(struct context_entry *context)
269 {
270 context->lo |= 1;
271 }
272
273 static inline void context_set_fault_enable(struct context_entry *context)
274 {
275 context->lo &= (((u64)-1) << 2) | 1;
276 }
277
278 static inline void context_set_translation_type(struct context_entry *context,
279 unsigned long value)
280 {
281 context->lo &= (((u64)-1) << 4) | 3;
282 context->lo |= (value & 3) << 2;
283 }
284
285 static inline void context_set_address_root(struct context_entry *context,
286 unsigned long value)
287 {
288 context->lo &= ~VTD_PAGE_MASK;
289 context->lo |= value & VTD_PAGE_MASK;
290 }
291
292 static inline void context_set_address_width(struct context_entry *context,
293 unsigned long value)
294 {
295 context->hi |= value & 7;
296 }
297
298 static inline void context_set_domain_id(struct context_entry *context,
299 unsigned long value)
300 {
301 context->hi |= (value & ((1 << 16) - 1)) << 8;
302 }
303
304 static inline int context_domain_id(struct context_entry *c)
305 {
306 return((c->hi >> 8) & 0xffff);
307 }
308
309 static inline void context_clear_entry(struct context_entry *context)
310 {
311 context->lo = 0;
312 context->hi = 0;
313 }
314
315 /*
316 * 0: readable
317 * 1: writable
318 * 2-6: reserved
319 * 7: super page
320 * 8-10: available
321 * 11: snoop behavior
322 * 12-63: Host physcial address
323 */
324 struct dma_pte {
325 u64 val;
326 };
327
328 static inline void dma_clear_pte(struct dma_pte *pte)
329 {
330 pte->val = 0;
331 }
332
333 static inline u64 dma_pte_addr(struct dma_pte *pte)
334 {
335 #ifdef CONFIG_64BIT
336 return pte->val & VTD_PAGE_MASK;
337 #else
338 /* Must have a full atomic 64-bit read */
339 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
340 #endif
341 }
342
343 static inline bool dma_pte_present(struct dma_pte *pte)
344 {
345 return (pte->val & 3) != 0;
346 }
347
348 static inline bool dma_pte_superpage(struct dma_pte *pte)
349 {
350 return (pte->val & DMA_PTE_LARGE_PAGE);
351 }
352
353 static inline int first_pte_in_page(struct dma_pte *pte)
354 {
355 return !((unsigned long)pte & ~VTD_PAGE_MASK);
356 }
357
358 /*
359 * This domain is a statically identity mapping domain.
360 * 1. This domain creats a static 1:1 mapping to all usable memory.
361 * 2. It maps to each iommu if successful.
362 * 3. Each iommu mapps to this domain if successful.
363 */
364 static struct dmar_domain *si_domain;
365 static int hw_pass_through = 1;
366
367 /*
368 * Domain represents a virtual machine, more than one devices
369 * across iommus may be owned in one domain, e.g. kvm guest.
370 */
371 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
372
373 /* si_domain contains mulitple devices */
374 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
375
376 #define for_each_domain_iommu(idx, domain) \
377 for (idx = 0; idx < g_num_of_iommus; idx++) \
378 if (domain->iommu_refcnt[idx])
379
380 struct dmar_domain {
381 int nid; /* node id */
382
383 unsigned iommu_refcnt[DMAR_UNITS_SUPPORTED];
384 /* Refcount of devices per iommu */
385
386
387 u16 iommu_did[DMAR_UNITS_SUPPORTED];
388 /* Domain ids per IOMMU. Use u16 since
389 * domain ids are 16 bit wide according
390 * to VT-d spec, section 9.3 */
391
392 struct list_head devices; /* all devices' list */
393 struct iova_domain iovad; /* iova's that belong to this domain */
394
395 struct dma_pte *pgd; /* virtual address */
396 int gaw; /* max guest address width */
397
398 /* adjusted guest address width, 0 is level 2 30-bit */
399 int agaw;
400
401 int flags; /* flags to find out type of domain */
402
403 int iommu_coherency;/* indicate coherency of iommu access */
404 int iommu_snooping; /* indicate snooping control feature*/
405 int iommu_count; /* reference count of iommu */
406 int iommu_superpage;/* Level of superpages supported:
407 0 == 4KiB (no superpages), 1 == 2MiB,
408 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
409 u64 max_addr; /* maximum mapped address */
410
411 struct iommu_domain domain; /* generic domain data structure for
412 iommu core */
413 };
414
415 /* PCI domain-device relationship */
416 struct device_domain_info {
417 struct list_head link; /* link to domain siblings */
418 struct list_head global; /* link to global list */
419 u8 bus; /* PCI bus number */
420 u8 devfn; /* PCI devfn number */
421 struct {
422 u8 enabled:1;
423 u8 qdep;
424 } ats; /* ATS state */
425 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
426 struct intel_iommu *iommu; /* IOMMU used by this device */
427 struct dmar_domain *domain; /* pointer to domain */
428 };
429
430 struct dmar_rmrr_unit {
431 struct list_head list; /* list of rmrr units */
432 struct acpi_dmar_header *hdr; /* ACPI header */
433 u64 base_address; /* reserved base address*/
434 u64 end_address; /* reserved end address */
435 struct dmar_dev_scope *devices; /* target devices */
436 int devices_cnt; /* target device count */
437 };
438
439 struct dmar_atsr_unit {
440 struct list_head list; /* list of ATSR units */
441 struct acpi_dmar_header *hdr; /* ACPI header */
442 struct dmar_dev_scope *devices; /* target devices */
443 int devices_cnt; /* target device count */
444 u8 include_all:1; /* include all ports */
445 };
446
447 static LIST_HEAD(dmar_atsr_units);
448 static LIST_HEAD(dmar_rmrr_units);
449
450 #define for_each_rmrr_units(rmrr) \
451 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
452
453 static void flush_unmaps_timeout(unsigned long data);
454
455 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
456
457 #define HIGH_WATER_MARK 250
458 struct deferred_flush_tables {
459 int next;
460 struct iova *iova[HIGH_WATER_MARK];
461 struct dmar_domain *domain[HIGH_WATER_MARK];
462 struct page *freelist[HIGH_WATER_MARK];
463 };
464
465 static struct deferred_flush_tables *deferred_flush;
466
467 /* bitmap for indexing intel_iommus */
468 static int g_num_of_iommus;
469
470 static DEFINE_SPINLOCK(async_umap_flush_lock);
471 static LIST_HEAD(unmaps_to_do);
472
473 static int timer_on;
474 static long list_size;
475
476 static void domain_exit(struct dmar_domain *domain);
477 static void domain_remove_dev_info(struct dmar_domain *domain);
478 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
479 struct device *dev);
480 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
481 static void domain_context_clear(struct intel_iommu *iommu,
482 struct device *dev);
483 static int domain_detach_iommu(struct dmar_domain *domain,
484 struct intel_iommu *iommu);
485
486 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
487 int dmar_disabled = 0;
488 #else
489 int dmar_disabled = 1;
490 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
491
492 int intel_iommu_enabled = 0;
493 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
494
495 static int dmar_map_gfx = 1;
496 static int dmar_forcedac;
497 static int intel_iommu_strict;
498 static int intel_iommu_superpage = 1;
499 static int intel_iommu_ecs = 1;
500
501 /* We only actually use ECS when PASID support (on the new bit 40)
502 * is also advertised. Some early implementations — the ones with
503 * PASID support on bit 28 — have issues even when we *only* use
504 * extended root/context tables. */
505 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
506 ecap_pasid(iommu->ecap))
507
508 int intel_iommu_gfx_mapped;
509 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
510
511 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
512 static DEFINE_SPINLOCK(device_domain_lock);
513 static LIST_HEAD(device_domain_list);
514
515 static const struct iommu_ops intel_iommu_ops;
516
517 static bool translation_pre_enabled(struct intel_iommu *iommu)
518 {
519 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
520 }
521
522 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
523 {
524 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
525 }
526
527 static void init_translation_status(struct intel_iommu *iommu)
528 {
529 u32 gsts;
530
531 gsts = readl(iommu->reg + DMAR_GSTS_REG);
532 if (gsts & DMA_GSTS_TES)
533 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
534 }
535
536 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
537 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
538 {
539 return container_of(dom, struct dmar_domain, domain);
540 }
541
542 static int __init intel_iommu_setup(char *str)
543 {
544 if (!str)
545 return -EINVAL;
546 while (*str) {
547 if (!strncmp(str, "on", 2)) {
548 dmar_disabled = 0;
549 pr_info("IOMMU enabled\n");
550 } else if (!strncmp(str, "off", 3)) {
551 dmar_disabled = 1;
552 pr_info("IOMMU disabled\n");
553 } else if (!strncmp(str, "igfx_off", 8)) {
554 dmar_map_gfx = 0;
555 pr_info("Disable GFX device mapping\n");
556 } else if (!strncmp(str, "forcedac", 8)) {
557 pr_info("Forcing DAC for PCI devices\n");
558 dmar_forcedac = 1;
559 } else if (!strncmp(str, "strict", 6)) {
560 pr_info("Disable batched IOTLB flush\n");
561 intel_iommu_strict = 1;
562 } else if (!strncmp(str, "sp_off", 6)) {
563 pr_info("Disable supported super page\n");
564 intel_iommu_superpage = 0;
565 } else if (!strncmp(str, "ecs_off", 7)) {
566 printk(KERN_INFO
567 "Intel-IOMMU: disable extended context table support\n");
568 intel_iommu_ecs = 0;
569 }
570
571 str += strcspn(str, ",");
572 while (*str == ',')
573 str++;
574 }
575 return 0;
576 }
577 __setup("intel_iommu=", intel_iommu_setup);
578
579 static struct kmem_cache *iommu_domain_cache;
580 static struct kmem_cache *iommu_devinfo_cache;
581
582 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
583 {
584 struct dmar_domain **domains;
585 int idx = did >> 8;
586
587 domains = iommu->domains[idx];
588 if (!domains)
589 return NULL;
590
591 return domains[did & 0xff];
592 }
593
594 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
595 struct dmar_domain *domain)
596 {
597 struct dmar_domain **domains;
598 int idx = did >> 8;
599
600 if (!iommu->domains[idx]) {
601 size_t size = 256 * sizeof(struct dmar_domain *);
602 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
603 }
604
605 domains = iommu->domains[idx];
606 if (WARN_ON(!domains))
607 return;
608 else
609 domains[did & 0xff] = domain;
610 }
611
612 static inline void *alloc_pgtable_page(int node)
613 {
614 struct page *page;
615 void *vaddr = NULL;
616
617 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
618 if (page)
619 vaddr = page_address(page);
620 return vaddr;
621 }
622
623 static inline void free_pgtable_page(void *vaddr)
624 {
625 free_page((unsigned long)vaddr);
626 }
627
628 static inline void *alloc_domain_mem(void)
629 {
630 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
631 }
632
633 static void free_domain_mem(void *vaddr)
634 {
635 kmem_cache_free(iommu_domain_cache, vaddr);
636 }
637
638 static inline void * alloc_devinfo_mem(void)
639 {
640 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
641 }
642
643 static inline void free_devinfo_mem(void *vaddr)
644 {
645 kmem_cache_free(iommu_devinfo_cache, vaddr);
646 }
647
648 static inline int domain_type_is_vm(struct dmar_domain *domain)
649 {
650 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
651 }
652
653 static inline int domain_type_is_si(struct dmar_domain *domain)
654 {
655 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
656 }
657
658 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
659 {
660 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
661 DOMAIN_FLAG_STATIC_IDENTITY);
662 }
663
664 static inline int domain_pfn_supported(struct dmar_domain *domain,
665 unsigned long pfn)
666 {
667 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
668
669 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
670 }
671
672 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
673 {
674 unsigned long sagaw;
675 int agaw = -1;
676
677 sagaw = cap_sagaw(iommu->cap);
678 for (agaw = width_to_agaw(max_gaw);
679 agaw >= 0; agaw--) {
680 if (test_bit(agaw, &sagaw))
681 break;
682 }
683
684 return agaw;
685 }
686
687 /*
688 * Calculate max SAGAW for each iommu.
689 */
690 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
691 {
692 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
693 }
694
695 /*
696 * calculate agaw for each iommu.
697 * "SAGAW" may be different across iommus, use a default agaw, and
698 * get a supported less agaw for iommus that don't support the default agaw.
699 */
700 int iommu_calculate_agaw(struct intel_iommu *iommu)
701 {
702 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
703 }
704
705 /* This functionin only returns single iommu in a domain */
706 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
707 {
708 int iommu_id;
709
710 /* si_domain and vm domain should not get here. */
711 BUG_ON(domain_type_is_vm_or_si(domain));
712 for_each_domain_iommu(iommu_id, domain)
713 break;
714
715 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
716 return NULL;
717
718 return g_iommus[iommu_id];
719 }
720
721 static void domain_update_iommu_coherency(struct dmar_domain *domain)
722 {
723 struct dmar_drhd_unit *drhd;
724 struct intel_iommu *iommu;
725 bool found = false;
726 int i;
727
728 domain->iommu_coherency = 1;
729
730 for_each_domain_iommu(i, domain) {
731 found = true;
732 if (!ecap_coherent(g_iommus[i]->ecap)) {
733 domain->iommu_coherency = 0;
734 break;
735 }
736 }
737 if (found)
738 return;
739
740 /* No hardware attached; use lowest common denominator */
741 rcu_read_lock();
742 for_each_active_iommu(iommu, drhd) {
743 if (!ecap_coherent(iommu->ecap)) {
744 domain->iommu_coherency = 0;
745 break;
746 }
747 }
748 rcu_read_unlock();
749 }
750
751 static int domain_update_iommu_snooping(struct intel_iommu *skip)
752 {
753 struct dmar_drhd_unit *drhd;
754 struct intel_iommu *iommu;
755 int ret = 1;
756
757 rcu_read_lock();
758 for_each_active_iommu(iommu, drhd) {
759 if (iommu != skip) {
760 if (!ecap_sc_support(iommu->ecap)) {
761 ret = 0;
762 break;
763 }
764 }
765 }
766 rcu_read_unlock();
767
768 return ret;
769 }
770
771 static int domain_update_iommu_superpage(struct intel_iommu *skip)
772 {
773 struct dmar_drhd_unit *drhd;
774 struct intel_iommu *iommu;
775 int mask = 0xf;
776
777 if (!intel_iommu_superpage) {
778 return 0;
779 }
780
781 /* set iommu_superpage to the smallest common denominator */
782 rcu_read_lock();
783 for_each_active_iommu(iommu, drhd) {
784 if (iommu != skip) {
785 mask &= cap_super_page_val(iommu->cap);
786 if (!mask)
787 break;
788 }
789 }
790 rcu_read_unlock();
791
792 return fls(mask);
793 }
794
795 /* Some capabilities may be different across iommus */
796 static void domain_update_iommu_cap(struct dmar_domain *domain)
797 {
798 domain_update_iommu_coherency(domain);
799 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
800 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
801 }
802
803 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
804 u8 bus, u8 devfn, int alloc)
805 {
806 struct root_entry *root = &iommu->root_entry[bus];
807 struct context_entry *context;
808 u64 *entry;
809
810 entry = &root->lo;
811 if (ecs_enabled(iommu)) {
812 if (devfn >= 0x80) {
813 devfn -= 0x80;
814 entry = &root->hi;
815 }
816 devfn *= 2;
817 }
818 if (*entry & 1)
819 context = phys_to_virt(*entry & VTD_PAGE_MASK);
820 else {
821 unsigned long phy_addr;
822 if (!alloc)
823 return NULL;
824
825 context = alloc_pgtable_page(iommu->node);
826 if (!context)
827 return NULL;
828
829 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
830 phy_addr = virt_to_phys((void *)context);
831 *entry = phy_addr | 1;
832 __iommu_flush_cache(iommu, entry, sizeof(*entry));
833 }
834 return &context[devfn];
835 }
836
837 static int iommu_dummy(struct device *dev)
838 {
839 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
840 }
841
842 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
843 {
844 struct dmar_drhd_unit *drhd = NULL;
845 struct intel_iommu *iommu;
846 struct device *tmp;
847 struct pci_dev *ptmp, *pdev = NULL;
848 u16 segment = 0;
849 int i;
850
851 if (iommu_dummy(dev))
852 return NULL;
853
854 if (dev_is_pci(dev)) {
855 pdev = to_pci_dev(dev);
856 segment = pci_domain_nr(pdev->bus);
857 } else if (has_acpi_companion(dev))
858 dev = &ACPI_COMPANION(dev)->dev;
859
860 rcu_read_lock();
861 for_each_active_iommu(iommu, drhd) {
862 if (pdev && segment != drhd->segment)
863 continue;
864
865 for_each_active_dev_scope(drhd->devices,
866 drhd->devices_cnt, i, tmp) {
867 if (tmp == dev) {
868 *bus = drhd->devices[i].bus;
869 *devfn = drhd->devices[i].devfn;
870 goto out;
871 }
872
873 if (!pdev || !dev_is_pci(tmp))
874 continue;
875
876 ptmp = to_pci_dev(tmp);
877 if (ptmp->subordinate &&
878 ptmp->subordinate->number <= pdev->bus->number &&
879 ptmp->subordinate->busn_res.end >= pdev->bus->number)
880 goto got_pdev;
881 }
882
883 if (pdev && drhd->include_all) {
884 got_pdev:
885 *bus = pdev->bus->number;
886 *devfn = pdev->devfn;
887 goto out;
888 }
889 }
890 iommu = NULL;
891 out:
892 rcu_read_unlock();
893
894 return iommu;
895 }
896
897 static void domain_flush_cache(struct dmar_domain *domain,
898 void *addr, int size)
899 {
900 if (!domain->iommu_coherency)
901 clflush_cache_range(addr, size);
902 }
903
904 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
905 {
906 struct context_entry *context;
907 int ret = 0;
908 unsigned long flags;
909
910 spin_lock_irqsave(&iommu->lock, flags);
911 context = iommu_context_addr(iommu, bus, devfn, 0);
912 if (context)
913 ret = context_present(context);
914 spin_unlock_irqrestore(&iommu->lock, flags);
915 return ret;
916 }
917
918 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
919 {
920 struct context_entry *context;
921 unsigned long flags;
922
923 spin_lock_irqsave(&iommu->lock, flags);
924 context = iommu_context_addr(iommu, bus, devfn, 0);
925 if (context) {
926 context_clear_entry(context);
927 __iommu_flush_cache(iommu, context, sizeof(*context));
928 }
929 spin_unlock_irqrestore(&iommu->lock, flags);
930 }
931
932 static void free_context_table(struct intel_iommu *iommu)
933 {
934 int i;
935 unsigned long flags;
936 struct context_entry *context;
937
938 spin_lock_irqsave(&iommu->lock, flags);
939 if (!iommu->root_entry) {
940 goto out;
941 }
942 for (i = 0; i < ROOT_ENTRY_NR; i++) {
943 context = iommu_context_addr(iommu, i, 0, 0);
944 if (context)
945 free_pgtable_page(context);
946
947 if (!ecs_enabled(iommu))
948 continue;
949
950 context = iommu_context_addr(iommu, i, 0x80, 0);
951 if (context)
952 free_pgtable_page(context);
953
954 }
955 free_pgtable_page(iommu->root_entry);
956 iommu->root_entry = NULL;
957 out:
958 spin_unlock_irqrestore(&iommu->lock, flags);
959 }
960
961 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
962 unsigned long pfn, int *target_level)
963 {
964 struct dma_pte *parent, *pte = NULL;
965 int level = agaw_to_level(domain->agaw);
966 int offset;
967
968 BUG_ON(!domain->pgd);
969
970 if (!domain_pfn_supported(domain, pfn))
971 /* Address beyond IOMMU's addressing capabilities. */
972 return NULL;
973
974 parent = domain->pgd;
975
976 while (1) {
977 void *tmp_page;
978
979 offset = pfn_level_offset(pfn, level);
980 pte = &parent[offset];
981 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
982 break;
983 if (level == *target_level)
984 break;
985
986 if (!dma_pte_present(pte)) {
987 uint64_t pteval;
988
989 tmp_page = alloc_pgtable_page(domain->nid);
990
991 if (!tmp_page)
992 return NULL;
993
994 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
995 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
996 if (cmpxchg64(&pte->val, 0ULL, pteval))
997 /* Someone else set it while we were thinking; use theirs. */
998 free_pgtable_page(tmp_page);
999 else
1000 domain_flush_cache(domain, pte, sizeof(*pte));
1001 }
1002 if (level == 1)
1003 break;
1004
1005 parent = phys_to_virt(dma_pte_addr(pte));
1006 level--;
1007 }
1008
1009 if (!*target_level)
1010 *target_level = level;
1011
1012 return pte;
1013 }
1014
1015
1016 /* return address's pte at specific level */
1017 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1018 unsigned long pfn,
1019 int level, int *large_page)
1020 {
1021 struct dma_pte *parent, *pte = NULL;
1022 int total = agaw_to_level(domain->agaw);
1023 int offset;
1024
1025 parent = domain->pgd;
1026 while (level <= total) {
1027 offset = pfn_level_offset(pfn, total);
1028 pte = &parent[offset];
1029 if (level == total)
1030 return pte;
1031
1032 if (!dma_pte_present(pte)) {
1033 *large_page = total;
1034 break;
1035 }
1036
1037 if (dma_pte_superpage(pte)) {
1038 *large_page = total;
1039 return pte;
1040 }
1041
1042 parent = phys_to_virt(dma_pte_addr(pte));
1043 total--;
1044 }
1045 return NULL;
1046 }
1047
1048 /* clear last level pte, a tlb flush should be followed */
1049 static void dma_pte_clear_range(struct dmar_domain *domain,
1050 unsigned long start_pfn,
1051 unsigned long last_pfn)
1052 {
1053 unsigned int large_page = 1;
1054 struct dma_pte *first_pte, *pte;
1055
1056 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1057 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1058 BUG_ON(start_pfn > last_pfn);
1059
1060 /* we don't need lock here; nobody else touches the iova range */
1061 do {
1062 large_page = 1;
1063 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1064 if (!pte) {
1065 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1066 continue;
1067 }
1068 do {
1069 dma_clear_pte(pte);
1070 start_pfn += lvl_to_nr_pages(large_page);
1071 pte++;
1072 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1073
1074 domain_flush_cache(domain, first_pte,
1075 (void *)pte - (void *)first_pte);
1076
1077 } while (start_pfn && start_pfn <= last_pfn);
1078 }
1079
1080 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1081 struct dma_pte *pte, unsigned long pfn,
1082 unsigned long start_pfn, unsigned long last_pfn)
1083 {
1084 pfn = max(start_pfn, pfn);
1085 pte = &pte[pfn_level_offset(pfn, level)];
1086
1087 do {
1088 unsigned long level_pfn;
1089 struct dma_pte *level_pte;
1090
1091 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1092 goto next;
1093
1094 level_pfn = pfn & level_mask(level - 1);
1095 level_pte = phys_to_virt(dma_pte_addr(pte));
1096
1097 if (level > 2)
1098 dma_pte_free_level(domain, level - 1, level_pte,
1099 level_pfn, start_pfn, last_pfn);
1100
1101 /* If range covers entire pagetable, free it */
1102 if (!(start_pfn > level_pfn ||
1103 last_pfn < level_pfn + level_size(level) - 1)) {
1104 dma_clear_pte(pte);
1105 domain_flush_cache(domain, pte, sizeof(*pte));
1106 free_pgtable_page(level_pte);
1107 }
1108 next:
1109 pfn += level_size(level);
1110 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1111 }
1112
1113 /* free page table pages. last level pte should already be cleared */
1114 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1115 unsigned long start_pfn,
1116 unsigned long last_pfn)
1117 {
1118 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1119 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1120 BUG_ON(start_pfn > last_pfn);
1121
1122 dma_pte_clear_range(domain, start_pfn, last_pfn);
1123
1124 /* We don't need lock here; nobody else touches the iova range */
1125 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1126 domain->pgd, 0, start_pfn, last_pfn);
1127
1128 /* free pgd */
1129 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1130 free_pgtable_page(domain->pgd);
1131 domain->pgd = NULL;
1132 }
1133 }
1134
1135 /* When a page at a given level is being unlinked from its parent, we don't
1136 need to *modify* it at all. All we need to do is make a list of all the
1137 pages which can be freed just as soon as we've flushed the IOTLB and we
1138 know the hardware page-walk will no longer touch them.
1139 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1140 be freed. */
1141 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1142 int level, struct dma_pte *pte,
1143 struct page *freelist)
1144 {
1145 struct page *pg;
1146
1147 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1148 pg->freelist = freelist;
1149 freelist = pg;
1150
1151 if (level == 1)
1152 return freelist;
1153
1154 pte = page_address(pg);
1155 do {
1156 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1157 freelist = dma_pte_list_pagetables(domain, level - 1,
1158 pte, freelist);
1159 pte++;
1160 } while (!first_pte_in_page(pte));
1161
1162 return freelist;
1163 }
1164
1165 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1166 struct dma_pte *pte, unsigned long pfn,
1167 unsigned long start_pfn,
1168 unsigned long last_pfn,
1169 struct page *freelist)
1170 {
1171 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1172
1173 pfn = max(start_pfn, pfn);
1174 pte = &pte[pfn_level_offset(pfn, level)];
1175
1176 do {
1177 unsigned long level_pfn;
1178
1179 if (!dma_pte_present(pte))
1180 goto next;
1181
1182 level_pfn = pfn & level_mask(level);
1183
1184 /* If range covers entire pagetable, free it */
1185 if (start_pfn <= level_pfn &&
1186 last_pfn >= level_pfn + level_size(level) - 1) {
1187 /* These suborbinate page tables are going away entirely. Don't
1188 bother to clear them; we're just going to *free* them. */
1189 if (level > 1 && !dma_pte_superpage(pte))
1190 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1191
1192 dma_clear_pte(pte);
1193 if (!first_pte)
1194 first_pte = pte;
1195 last_pte = pte;
1196 } else if (level > 1) {
1197 /* Recurse down into a level that isn't *entirely* obsolete */
1198 freelist = dma_pte_clear_level(domain, level - 1,
1199 phys_to_virt(dma_pte_addr(pte)),
1200 level_pfn, start_pfn, last_pfn,
1201 freelist);
1202 }
1203 next:
1204 pfn += level_size(level);
1205 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1206
1207 if (first_pte)
1208 domain_flush_cache(domain, first_pte,
1209 (void *)++last_pte - (void *)first_pte);
1210
1211 return freelist;
1212 }
1213
1214 /* We can't just free the pages because the IOMMU may still be walking
1215 the page tables, and may have cached the intermediate levels. The
1216 pages can only be freed after the IOTLB flush has been done. */
1217 static struct page *domain_unmap(struct dmar_domain *domain,
1218 unsigned long start_pfn,
1219 unsigned long last_pfn)
1220 {
1221 struct page *freelist = NULL;
1222
1223 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1224 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1225 BUG_ON(start_pfn > last_pfn);
1226
1227 /* we don't need lock here; nobody else touches the iova range */
1228 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1229 domain->pgd, 0, start_pfn, last_pfn, NULL);
1230
1231 /* free pgd */
1232 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1233 struct page *pgd_page = virt_to_page(domain->pgd);
1234 pgd_page->freelist = freelist;
1235 freelist = pgd_page;
1236
1237 domain->pgd = NULL;
1238 }
1239
1240 return freelist;
1241 }
1242
1243 static void dma_free_pagelist(struct page *freelist)
1244 {
1245 struct page *pg;
1246
1247 while ((pg = freelist)) {
1248 freelist = pg->freelist;
1249 free_pgtable_page(page_address(pg));
1250 }
1251 }
1252
1253 /* iommu handling */
1254 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1255 {
1256 struct root_entry *root;
1257 unsigned long flags;
1258
1259 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1260 if (!root) {
1261 pr_err("Allocating root entry for %s failed\n",
1262 iommu->name);
1263 return -ENOMEM;
1264 }
1265
1266 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1267
1268 spin_lock_irqsave(&iommu->lock, flags);
1269 iommu->root_entry = root;
1270 spin_unlock_irqrestore(&iommu->lock, flags);
1271
1272 return 0;
1273 }
1274
1275 static void iommu_set_root_entry(struct intel_iommu *iommu)
1276 {
1277 u64 addr;
1278 u32 sts;
1279 unsigned long flag;
1280
1281 addr = virt_to_phys(iommu->root_entry);
1282 if (ecs_enabled(iommu))
1283 addr |= DMA_RTADDR_RTT;
1284
1285 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1286 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1287
1288 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1289
1290 /* Make sure hardware complete it */
1291 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1292 readl, (sts & DMA_GSTS_RTPS), sts);
1293
1294 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1295 }
1296
1297 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1298 {
1299 u32 val;
1300 unsigned long flag;
1301
1302 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1303 return;
1304
1305 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1306 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1307
1308 /* Make sure hardware complete it */
1309 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1310 readl, (!(val & DMA_GSTS_WBFS)), val);
1311
1312 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1313 }
1314
1315 /* return value determine if we need a write buffer flush */
1316 static void __iommu_flush_context(struct intel_iommu *iommu,
1317 u16 did, u16 source_id, u8 function_mask,
1318 u64 type)
1319 {
1320 u64 val = 0;
1321 unsigned long flag;
1322
1323 switch (type) {
1324 case DMA_CCMD_GLOBAL_INVL:
1325 val = DMA_CCMD_GLOBAL_INVL;
1326 break;
1327 case DMA_CCMD_DOMAIN_INVL:
1328 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1329 break;
1330 case DMA_CCMD_DEVICE_INVL:
1331 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1332 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1333 break;
1334 default:
1335 BUG();
1336 }
1337 val |= DMA_CCMD_ICC;
1338
1339 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1340 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1341
1342 /* Make sure hardware complete it */
1343 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1344 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1345
1346 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1347 }
1348
1349 /* return value determine if we need a write buffer flush */
1350 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1351 u64 addr, unsigned int size_order, u64 type)
1352 {
1353 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1354 u64 val = 0, val_iva = 0;
1355 unsigned long flag;
1356
1357 switch (type) {
1358 case DMA_TLB_GLOBAL_FLUSH:
1359 /* global flush doesn't need set IVA_REG */
1360 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1361 break;
1362 case DMA_TLB_DSI_FLUSH:
1363 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1364 break;
1365 case DMA_TLB_PSI_FLUSH:
1366 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1367 /* IH bit is passed in as part of address */
1368 val_iva = size_order | addr;
1369 break;
1370 default:
1371 BUG();
1372 }
1373 /* Note: set drain read/write */
1374 #if 0
1375 /*
1376 * This is probably to be super secure.. Looks like we can
1377 * ignore it without any impact.
1378 */
1379 if (cap_read_drain(iommu->cap))
1380 val |= DMA_TLB_READ_DRAIN;
1381 #endif
1382 if (cap_write_drain(iommu->cap))
1383 val |= DMA_TLB_WRITE_DRAIN;
1384
1385 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1386 /* Note: Only uses first TLB reg currently */
1387 if (val_iva)
1388 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1389 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1390
1391 /* Make sure hardware complete it */
1392 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1393 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1394
1395 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1396
1397 /* check IOTLB invalidation granularity */
1398 if (DMA_TLB_IAIG(val) == 0)
1399 pr_err("Flush IOTLB failed\n");
1400 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1401 pr_debug("TLB flush request %Lx, actual %Lx\n",
1402 (unsigned long long)DMA_TLB_IIRG(type),
1403 (unsigned long long)DMA_TLB_IAIG(val));
1404 }
1405
1406 static struct device_domain_info *
1407 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1408 u8 bus, u8 devfn)
1409 {
1410 bool found = false;
1411 struct device_domain_info *info;
1412 struct pci_dev *pdev;
1413
1414 assert_spin_locked(&device_domain_lock);
1415
1416 if (!ecap_dev_iotlb_support(iommu->ecap))
1417 return NULL;
1418
1419 if (!iommu->qi)
1420 return NULL;
1421
1422 list_for_each_entry(info, &domain->devices, link)
1423 if (info->iommu == iommu && info->bus == bus &&
1424 info->devfn == devfn) {
1425 found = true;
1426 break;
1427 }
1428
1429 if (!found || !info->dev || !dev_is_pci(info->dev))
1430 return NULL;
1431
1432 pdev = to_pci_dev(info->dev);
1433
1434 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1435 return NULL;
1436
1437 if (!dmar_find_matched_atsr_unit(pdev))
1438 return NULL;
1439
1440 return info;
1441 }
1442
1443 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1444 {
1445 struct pci_dev *pdev;
1446
1447 if (!info || !dev_is_pci(info->dev))
1448 return;
1449
1450 pdev = to_pci_dev(info->dev);
1451 if (pci_enable_ats(pdev, VTD_PAGE_SHIFT))
1452 return;
1453
1454 info->ats.enabled = 1;
1455 info->ats.qdep = pci_ats_queue_depth(pdev);
1456 }
1457
1458 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1459 {
1460 if (!info->ats.enabled)
1461 return;
1462
1463 pci_disable_ats(to_pci_dev(info->dev));
1464 info->ats.enabled = 0;
1465 }
1466
1467 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1468 u64 addr, unsigned mask)
1469 {
1470 u16 sid, qdep;
1471 unsigned long flags;
1472 struct device_domain_info *info;
1473
1474 spin_lock_irqsave(&device_domain_lock, flags);
1475 list_for_each_entry(info, &domain->devices, link) {
1476 if (!info->ats.enabled)
1477 continue;
1478
1479 sid = info->bus << 8 | info->devfn;
1480 qdep = info->ats.qdep;
1481 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1482 }
1483 spin_unlock_irqrestore(&device_domain_lock, flags);
1484 }
1485
1486 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1487 struct dmar_domain *domain,
1488 unsigned long pfn, unsigned int pages,
1489 int ih, int map)
1490 {
1491 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1492 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1493 u16 did = domain->iommu_did[iommu->seq_id];
1494
1495 BUG_ON(pages == 0);
1496
1497 if (ih)
1498 ih = 1 << 6;
1499 /*
1500 * Fallback to domain selective flush if no PSI support or the size is
1501 * too big.
1502 * PSI requires page size to be 2 ^ x, and the base address is naturally
1503 * aligned to the size
1504 */
1505 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1506 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1507 DMA_TLB_DSI_FLUSH);
1508 else
1509 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1510 DMA_TLB_PSI_FLUSH);
1511
1512 /*
1513 * In caching mode, changes of pages from non-present to present require
1514 * flush. However, device IOTLB doesn't need to be flushed in this case.
1515 */
1516 if (!cap_caching_mode(iommu->cap) || !map)
1517 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1518 addr, mask);
1519 }
1520
1521 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1522 {
1523 u32 pmen;
1524 unsigned long flags;
1525
1526 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1527 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1528 pmen &= ~DMA_PMEN_EPM;
1529 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1530
1531 /* wait for the protected region status bit to clear */
1532 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1533 readl, !(pmen & DMA_PMEN_PRS), pmen);
1534
1535 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1536 }
1537
1538 static void iommu_enable_translation(struct intel_iommu *iommu)
1539 {
1540 u32 sts;
1541 unsigned long flags;
1542
1543 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1544 iommu->gcmd |= DMA_GCMD_TE;
1545 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1546
1547 /* Make sure hardware complete it */
1548 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1549 readl, (sts & DMA_GSTS_TES), sts);
1550
1551 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1552 }
1553
1554 static void iommu_disable_translation(struct intel_iommu *iommu)
1555 {
1556 u32 sts;
1557 unsigned long flag;
1558
1559 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1560 iommu->gcmd &= ~DMA_GCMD_TE;
1561 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1562
1563 /* Make sure hardware complete it */
1564 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1565 readl, (!(sts & DMA_GSTS_TES)), sts);
1566
1567 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1568 }
1569
1570
1571 static int iommu_init_domains(struct intel_iommu *iommu)
1572 {
1573 u32 ndomains, nlongs;
1574 size_t size;
1575
1576 ndomains = cap_ndoms(iommu->cap);
1577 pr_debug("%s: Number of Domains supported <%d>\n",
1578 iommu->name, ndomains);
1579 nlongs = BITS_TO_LONGS(ndomains);
1580
1581 spin_lock_init(&iommu->lock);
1582
1583 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1584 if (!iommu->domain_ids) {
1585 pr_err("%s: Allocating domain id array failed\n",
1586 iommu->name);
1587 return -ENOMEM;
1588 }
1589
1590 size = ((ndomains >> 8) + 1) * sizeof(struct dmar_domain **);
1591 iommu->domains = kzalloc(size, GFP_KERNEL);
1592
1593 if (iommu->domains) {
1594 size = 256 * sizeof(struct dmar_domain *);
1595 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1596 }
1597
1598 if (!iommu->domains || !iommu->domains[0]) {
1599 pr_err("%s: Allocating domain array failed\n",
1600 iommu->name);
1601 kfree(iommu->domain_ids);
1602 kfree(iommu->domains);
1603 iommu->domain_ids = NULL;
1604 iommu->domains = NULL;
1605 return -ENOMEM;
1606 }
1607
1608
1609
1610 /*
1611 * If Caching mode is set, then invalid translations are tagged
1612 * with domain-id 0, hence we need to pre-allocate it. We also
1613 * use domain-id 0 as a marker for non-allocated domain-id, so
1614 * make sure it is not used for a real domain.
1615 */
1616 set_bit(0, iommu->domain_ids);
1617
1618 return 0;
1619 }
1620
1621 static void disable_dmar_iommu(struct intel_iommu *iommu)
1622 {
1623 struct device_domain_info *info, *tmp;
1624 unsigned long flags;
1625
1626 if (!iommu->domains || !iommu->domain_ids)
1627 return;
1628
1629 spin_lock_irqsave(&device_domain_lock, flags);
1630 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1631 struct dmar_domain *domain;
1632
1633 if (info->iommu != iommu)
1634 continue;
1635
1636 if (!info->dev || !info->domain)
1637 continue;
1638
1639 domain = info->domain;
1640
1641 dmar_remove_one_dev_info(domain, info->dev);
1642
1643 if (!domain_type_is_vm_or_si(domain))
1644 domain_exit(domain);
1645 }
1646 spin_unlock_irqrestore(&device_domain_lock, flags);
1647
1648 if (iommu->gcmd & DMA_GCMD_TE)
1649 iommu_disable_translation(iommu);
1650 }
1651
1652 static void free_dmar_iommu(struct intel_iommu *iommu)
1653 {
1654 if ((iommu->domains) && (iommu->domain_ids)) {
1655 int elems = (cap_ndoms(iommu->cap) >> 8) + 1;
1656 int i;
1657
1658 for (i = 0; i < elems; i++)
1659 kfree(iommu->domains[i]);
1660 kfree(iommu->domains);
1661 kfree(iommu->domain_ids);
1662 iommu->domains = NULL;
1663 iommu->domain_ids = NULL;
1664 }
1665
1666 g_iommus[iommu->seq_id] = NULL;
1667
1668 /* free context mapping */
1669 free_context_table(iommu);
1670 }
1671
1672 static struct dmar_domain *alloc_domain(int flags)
1673 {
1674 struct dmar_domain *domain;
1675
1676 domain = alloc_domain_mem();
1677 if (!domain)
1678 return NULL;
1679
1680 memset(domain, 0, sizeof(*domain));
1681 domain->nid = -1;
1682 domain->flags = flags;
1683 INIT_LIST_HEAD(&domain->devices);
1684
1685 return domain;
1686 }
1687
1688 /* Must be called with iommu->lock */
1689 static int domain_attach_iommu(struct dmar_domain *domain,
1690 struct intel_iommu *iommu)
1691 {
1692 unsigned long ndomains;
1693 int num;
1694
1695 assert_spin_locked(&device_domain_lock);
1696 assert_spin_locked(&iommu->lock);
1697
1698 domain->iommu_refcnt[iommu->seq_id] += 1;
1699 domain->iommu_count += 1;
1700 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1701 ndomains = cap_ndoms(iommu->cap);
1702 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1703
1704 if (num >= ndomains) {
1705 pr_err("%s: No free domain ids\n", iommu->name);
1706 domain->iommu_refcnt[iommu->seq_id] -= 1;
1707 domain->iommu_count -= 1;
1708 return -ENOSPC;
1709 }
1710
1711 set_bit(num, iommu->domain_ids);
1712 set_iommu_domain(iommu, num, domain);
1713
1714 domain->iommu_did[iommu->seq_id] = num;
1715 domain->nid = iommu->node;
1716
1717 domain_update_iommu_cap(domain);
1718 }
1719
1720 return 0;
1721 }
1722
1723 static int domain_detach_iommu(struct dmar_domain *domain,
1724 struct intel_iommu *iommu)
1725 {
1726 int num, count = INT_MAX;
1727
1728 assert_spin_locked(&device_domain_lock);
1729 assert_spin_locked(&iommu->lock);
1730
1731 domain->iommu_refcnt[iommu->seq_id] -= 1;
1732 count = --domain->iommu_count;
1733 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1734 num = domain->iommu_did[iommu->seq_id];
1735 clear_bit(num, iommu->domain_ids);
1736 set_iommu_domain(iommu, num, NULL);
1737
1738 domain_update_iommu_cap(domain);
1739 domain->iommu_did[iommu->seq_id] = 0;
1740 }
1741
1742 return count;
1743 }
1744
1745 static struct iova_domain reserved_iova_list;
1746 static struct lock_class_key reserved_rbtree_key;
1747
1748 static int dmar_init_reserved_ranges(void)
1749 {
1750 struct pci_dev *pdev = NULL;
1751 struct iova *iova;
1752 int i;
1753
1754 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1755 DMA_32BIT_PFN);
1756
1757 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1758 &reserved_rbtree_key);
1759
1760 /* IOAPIC ranges shouldn't be accessed by DMA */
1761 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1762 IOVA_PFN(IOAPIC_RANGE_END));
1763 if (!iova) {
1764 pr_err("Reserve IOAPIC range failed\n");
1765 return -ENODEV;
1766 }
1767
1768 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1769 for_each_pci_dev(pdev) {
1770 struct resource *r;
1771
1772 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1773 r = &pdev->resource[i];
1774 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1775 continue;
1776 iova = reserve_iova(&reserved_iova_list,
1777 IOVA_PFN(r->start),
1778 IOVA_PFN(r->end));
1779 if (!iova) {
1780 pr_err("Reserve iova failed\n");
1781 return -ENODEV;
1782 }
1783 }
1784 }
1785 return 0;
1786 }
1787
1788 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1789 {
1790 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1791 }
1792
1793 static inline int guestwidth_to_adjustwidth(int gaw)
1794 {
1795 int agaw;
1796 int r = (gaw - 12) % 9;
1797
1798 if (r == 0)
1799 agaw = gaw;
1800 else
1801 agaw = gaw + 9 - r;
1802 if (agaw > 64)
1803 agaw = 64;
1804 return agaw;
1805 }
1806
1807 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1808 int guest_width)
1809 {
1810 int adjust_width, agaw;
1811 unsigned long sagaw;
1812
1813 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1814 DMA_32BIT_PFN);
1815 domain_reserve_special_ranges(domain);
1816
1817 /* calculate AGAW */
1818 if (guest_width > cap_mgaw(iommu->cap))
1819 guest_width = cap_mgaw(iommu->cap);
1820 domain->gaw = guest_width;
1821 adjust_width = guestwidth_to_adjustwidth(guest_width);
1822 agaw = width_to_agaw(adjust_width);
1823 sagaw = cap_sagaw(iommu->cap);
1824 if (!test_bit(agaw, &sagaw)) {
1825 /* hardware doesn't support it, choose a bigger one */
1826 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1827 agaw = find_next_bit(&sagaw, 5, agaw);
1828 if (agaw >= 5)
1829 return -ENODEV;
1830 }
1831 domain->agaw = agaw;
1832
1833 if (ecap_coherent(iommu->ecap))
1834 domain->iommu_coherency = 1;
1835 else
1836 domain->iommu_coherency = 0;
1837
1838 if (ecap_sc_support(iommu->ecap))
1839 domain->iommu_snooping = 1;
1840 else
1841 domain->iommu_snooping = 0;
1842
1843 if (intel_iommu_superpage)
1844 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1845 else
1846 domain->iommu_superpage = 0;
1847
1848 domain->nid = iommu->node;
1849
1850 /* always allocate the top pgd */
1851 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1852 if (!domain->pgd)
1853 return -ENOMEM;
1854 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1855 return 0;
1856 }
1857
1858 static void domain_exit(struct dmar_domain *domain)
1859 {
1860 struct page *freelist = NULL;
1861
1862 /* Domain 0 is reserved, so dont process it */
1863 if (!domain)
1864 return;
1865
1866 /* Flush any lazy unmaps that may reference this domain */
1867 if (!intel_iommu_strict)
1868 flush_unmaps_timeout(0);
1869
1870 /* Remove associated devices and clear attached or cached domains */
1871 rcu_read_lock();
1872 domain_remove_dev_info(domain);
1873 rcu_read_unlock();
1874
1875 /* destroy iovas */
1876 put_iova_domain(&domain->iovad);
1877
1878 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1879
1880 dma_free_pagelist(freelist);
1881
1882 free_domain_mem(domain);
1883 }
1884
1885 static int domain_context_mapping_one(struct dmar_domain *domain,
1886 struct intel_iommu *iommu,
1887 u8 bus, u8 devfn)
1888 {
1889 u16 did = domain->iommu_did[iommu->seq_id];
1890 int translation = CONTEXT_TT_MULTI_LEVEL;
1891 struct device_domain_info *info = NULL;
1892 struct context_entry *context;
1893 unsigned long flags;
1894 struct dma_pte *pgd;
1895 int ret, agaw;
1896
1897 WARN_ON(did == 0);
1898
1899 if (hw_pass_through && domain_type_is_si(domain))
1900 translation = CONTEXT_TT_PASS_THROUGH;
1901
1902 pr_debug("Set context mapping for %02x:%02x.%d\n",
1903 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1904
1905 BUG_ON(!domain->pgd);
1906
1907 spin_lock_irqsave(&device_domain_lock, flags);
1908 spin_lock(&iommu->lock);
1909
1910 ret = -ENOMEM;
1911 context = iommu_context_addr(iommu, bus, devfn, 1);
1912 if (!context)
1913 goto out_unlock;
1914
1915 ret = 0;
1916 if (context_present(context))
1917 goto out_unlock;
1918
1919 pgd = domain->pgd;
1920
1921 context_clear_entry(context);
1922 context_set_domain_id(context, did);
1923
1924 /*
1925 * Skip top levels of page tables for iommu which has less agaw
1926 * than default. Unnecessary for PT mode.
1927 */
1928 if (translation != CONTEXT_TT_PASS_THROUGH) {
1929 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1930 ret = -ENOMEM;
1931 pgd = phys_to_virt(dma_pte_addr(pgd));
1932 if (!dma_pte_present(pgd))
1933 goto out_unlock;
1934 }
1935
1936 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1937 translation = info ? CONTEXT_TT_DEV_IOTLB :
1938 CONTEXT_TT_MULTI_LEVEL;
1939
1940 context_set_address_root(context, virt_to_phys(pgd));
1941 context_set_address_width(context, iommu->agaw);
1942 } else {
1943 /*
1944 * In pass through mode, AW must be programmed to
1945 * indicate the largest AGAW value supported by
1946 * hardware. And ASR is ignored by hardware.
1947 */
1948 context_set_address_width(context, iommu->msagaw);
1949 }
1950
1951 context_set_translation_type(context, translation);
1952 context_set_fault_enable(context);
1953 context_set_present(context);
1954 domain_flush_cache(domain, context, sizeof(*context));
1955
1956 /*
1957 * It's a non-present to present mapping. If hardware doesn't cache
1958 * non-present entry we only need to flush the write-buffer. If the
1959 * _does_ cache non-present entries, then it does so in the special
1960 * domain #0, which we have to flush:
1961 */
1962 if (cap_caching_mode(iommu->cap)) {
1963 iommu->flush.flush_context(iommu, 0,
1964 (((u16)bus) << 8) | devfn,
1965 DMA_CCMD_MASK_NOBIT,
1966 DMA_CCMD_DEVICE_INVL);
1967 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1968 } else {
1969 iommu_flush_write_buffer(iommu);
1970 }
1971 iommu_enable_dev_iotlb(info);
1972
1973 ret = 0;
1974
1975 out_unlock:
1976 spin_unlock(&iommu->lock);
1977 spin_unlock_irqrestore(&device_domain_lock, flags);
1978
1979 return 0;
1980 }
1981
1982 struct domain_context_mapping_data {
1983 struct dmar_domain *domain;
1984 struct intel_iommu *iommu;
1985 };
1986
1987 static int domain_context_mapping_cb(struct pci_dev *pdev,
1988 u16 alias, void *opaque)
1989 {
1990 struct domain_context_mapping_data *data = opaque;
1991
1992 return domain_context_mapping_one(data->domain, data->iommu,
1993 PCI_BUS_NUM(alias), alias & 0xff);
1994 }
1995
1996 static int
1997 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
1998 {
1999 struct intel_iommu *iommu;
2000 u8 bus, devfn;
2001 struct domain_context_mapping_data data;
2002
2003 iommu = device_to_iommu(dev, &bus, &devfn);
2004 if (!iommu)
2005 return -ENODEV;
2006
2007 if (!dev_is_pci(dev))
2008 return domain_context_mapping_one(domain, iommu, bus, devfn);
2009
2010 data.domain = domain;
2011 data.iommu = iommu;
2012
2013 return pci_for_each_dma_alias(to_pci_dev(dev),
2014 &domain_context_mapping_cb, &data);
2015 }
2016
2017 static int domain_context_mapped_cb(struct pci_dev *pdev,
2018 u16 alias, void *opaque)
2019 {
2020 struct intel_iommu *iommu = opaque;
2021
2022 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2023 }
2024
2025 static int domain_context_mapped(struct device *dev)
2026 {
2027 struct intel_iommu *iommu;
2028 u8 bus, devfn;
2029
2030 iommu = device_to_iommu(dev, &bus, &devfn);
2031 if (!iommu)
2032 return -ENODEV;
2033
2034 if (!dev_is_pci(dev))
2035 return device_context_mapped(iommu, bus, devfn);
2036
2037 return !pci_for_each_dma_alias(to_pci_dev(dev),
2038 domain_context_mapped_cb, iommu);
2039 }
2040
2041 /* Returns a number of VTD pages, but aligned to MM page size */
2042 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2043 size_t size)
2044 {
2045 host_addr &= ~PAGE_MASK;
2046 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2047 }
2048
2049 /* Return largest possible superpage level for a given mapping */
2050 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2051 unsigned long iov_pfn,
2052 unsigned long phy_pfn,
2053 unsigned long pages)
2054 {
2055 int support, level = 1;
2056 unsigned long pfnmerge;
2057
2058 support = domain->iommu_superpage;
2059
2060 /* To use a large page, the virtual *and* physical addresses
2061 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2062 of them will mean we have to use smaller pages. So just
2063 merge them and check both at once. */
2064 pfnmerge = iov_pfn | phy_pfn;
2065
2066 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2067 pages >>= VTD_STRIDE_SHIFT;
2068 if (!pages)
2069 break;
2070 pfnmerge >>= VTD_STRIDE_SHIFT;
2071 level++;
2072 support--;
2073 }
2074 return level;
2075 }
2076
2077 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2078 struct scatterlist *sg, unsigned long phys_pfn,
2079 unsigned long nr_pages, int prot)
2080 {
2081 struct dma_pte *first_pte = NULL, *pte = NULL;
2082 phys_addr_t uninitialized_var(pteval);
2083 unsigned long sg_res = 0;
2084 unsigned int largepage_lvl = 0;
2085 unsigned long lvl_pages = 0;
2086
2087 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2088
2089 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2090 return -EINVAL;
2091
2092 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2093
2094 if (!sg) {
2095 sg_res = nr_pages;
2096 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2097 }
2098
2099 while (nr_pages > 0) {
2100 uint64_t tmp;
2101
2102 if (!sg_res) {
2103 sg_res = aligned_nrpages(sg->offset, sg->length);
2104 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2105 sg->dma_length = sg->length;
2106 pteval = (sg_phys(sg) & PAGE_MASK) | prot;
2107 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2108 }
2109
2110 if (!pte) {
2111 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2112
2113 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2114 if (!pte)
2115 return -ENOMEM;
2116 /* It is large page*/
2117 if (largepage_lvl > 1) {
2118 pteval |= DMA_PTE_LARGE_PAGE;
2119 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2120 /*
2121 * Ensure that old small page tables are
2122 * removed to make room for superpage,
2123 * if they exist.
2124 */
2125 dma_pte_free_pagetable(domain, iov_pfn,
2126 iov_pfn + lvl_pages - 1);
2127 } else {
2128 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2129 }
2130
2131 }
2132 /* We don't need lock here, nobody else
2133 * touches the iova range
2134 */
2135 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2136 if (tmp) {
2137 static int dumps = 5;
2138 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2139 iov_pfn, tmp, (unsigned long long)pteval);
2140 if (dumps) {
2141 dumps--;
2142 debug_dma_dump_mappings(NULL);
2143 }
2144 WARN_ON(1);
2145 }
2146
2147 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2148
2149 BUG_ON(nr_pages < lvl_pages);
2150 BUG_ON(sg_res < lvl_pages);
2151
2152 nr_pages -= lvl_pages;
2153 iov_pfn += lvl_pages;
2154 phys_pfn += lvl_pages;
2155 pteval += lvl_pages * VTD_PAGE_SIZE;
2156 sg_res -= lvl_pages;
2157
2158 /* If the next PTE would be the first in a new page, then we
2159 need to flush the cache on the entries we've just written.
2160 And then we'll need to recalculate 'pte', so clear it and
2161 let it get set again in the if (!pte) block above.
2162
2163 If we're done (!nr_pages) we need to flush the cache too.
2164
2165 Also if we've been setting superpages, we may need to
2166 recalculate 'pte' and switch back to smaller pages for the
2167 end of the mapping, if the trailing size is not enough to
2168 use another superpage (i.e. sg_res < lvl_pages). */
2169 pte++;
2170 if (!nr_pages || first_pte_in_page(pte) ||
2171 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2172 domain_flush_cache(domain, first_pte,
2173 (void *)pte - (void *)first_pte);
2174 pte = NULL;
2175 }
2176
2177 if (!sg_res && nr_pages)
2178 sg = sg_next(sg);
2179 }
2180 return 0;
2181 }
2182
2183 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2184 struct scatterlist *sg, unsigned long nr_pages,
2185 int prot)
2186 {
2187 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2188 }
2189
2190 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2191 unsigned long phys_pfn, unsigned long nr_pages,
2192 int prot)
2193 {
2194 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2195 }
2196
2197 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2198 {
2199 if (!iommu)
2200 return;
2201
2202 clear_context_table(iommu, bus, devfn);
2203 iommu->flush.flush_context(iommu, 0, 0, 0,
2204 DMA_CCMD_GLOBAL_INVL);
2205 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2206 }
2207
2208 static inline void unlink_domain_info(struct device_domain_info *info)
2209 {
2210 assert_spin_locked(&device_domain_lock);
2211 list_del(&info->link);
2212 list_del(&info->global);
2213 if (info->dev)
2214 info->dev->archdata.iommu = NULL;
2215 }
2216
2217 static void domain_remove_dev_info(struct dmar_domain *domain)
2218 {
2219 struct device_domain_info *info, *tmp;
2220 unsigned long flags;
2221
2222 spin_lock_irqsave(&device_domain_lock, flags);
2223 list_for_each_entry_safe(info, tmp, &domain->devices, link)
2224 __dmar_remove_one_dev_info(info);
2225 spin_unlock_irqrestore(&device_domain_lock, flags);
2226 }
2227
2228 /*
2229 * find_domain
2230 * Note: we use struct device->archdata.iommu stores the info
2231 */
2232 static struct dmar_domain *find_domain(struct device *dev)
2233 {
2234 struct device_domain_info *info;
2235
2236 /* No lock here, assumes no domain exit in normal case */
2237 info = dev->archdata.iommu;
2238 if (info)
2239 return info->domain;
2240 return NULL;
2241 }
2242
2243 static inline struct device_domain_info *
2244 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2245 {
2246 struct device_domain_info *info;
2247
2248 list_for_each_entry(info, &device_domain_list, global)
2249 if (info->iommu->segment == segment && info->bus == bus &&
2250 info->devfn == devfn)
2251 return info;
2252
2253 return NULL;
2254 }
2255
2256 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2257 int bus, int devfn,
2258 struct device *dev,
2259 struct dmar_domain *domain)
2260 {
2261 struct dmar_domain *found = NULL;
2262 struct device_domain_info *info;
2263 unsigned long flags;
2264 int ret;
2265
2266 info = alloc_devinfo_mem();
2267 if (!info)
2268 return NULL;
2269
2270 info->bus = bus;
2271 info->devfn = devfn;
2272 info->ats.enabled = 0;
2273 info->ats.qdep = 0;
2274 info->dev = dev;
2275 info->domain = domain;
2276 info->iommu = iommu;
2277
2278 spin_lock_irqsave(&device_domain_lock, flags);
2279 if (dev)
2280 found = find_domain(dev);
2281
2282 if (!found) {
2283 struct device_domain_info *info2;
2284 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2285 if (info2) {
2286 found = info2->domain;
2287 info2->dev = dev;
2288 }
2289 }
2290
2291 if (found) {
2292 spin_unlock_irqrestore(&device_domain_lock, flags);
2293 free_devinfo_mem(info);
2294 /* Caller must free the original domain */
2295 return found;
2296 }
2297
2298 spin_lock(&iommu->lock);
2299 ret = domain_attach_iommu(domain, iommu);
2300 spin_unlock(&iommu->lock);
2301
2302 if (ret) {
2303 spin_unlock_irqrestore(&device_domain_lock, flags);
2304 return NULL;
2305 }
2306
2307 list_add(&info->link, &domain->devices);
2308 list_add(&info->global, &device_domain_list);
2309 if (dev)
2310 dev->archdata.iommu = info;
2311 spin_unlock_irqrestore(&device_domain_lock, flags);
2312
2313 if (dev && domain_context_mapping(domain, dev)) {
2314 pr_err("Domain context map for %s failed\n", dev_name(dev));
2315 dmar_remove_one_dev_info(domain, dev);
2316 return NULL;
2317 }
2318
2319 return domain;
2320 }
2321
2322 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2323 {
2324 *(u16 *)opaque = alias;
2325 return 0;
2326 }
2327
2328 /* domain is initialized */
2329 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2330 {
2331 struct device_domain_info *info = NULL;
2332 struct dmar_domain *domain, *tmp;
2333 struct intel_iommu *iommu;
2334 u16 req_id, dma_alias;
2335 unsigned long flags;
2336 u8 bus, devfn;
2337
2338 domain = find_domain(dev);
2339 if (domain)
2340 return domain;
2341
2342 iommu = device_to_iommu(dev, &bus, &devfn);
2343 if (!iommu)
2344 return NULL;
2345
2346 req_id = ((u16)bus << 8) | devfn;
2347
2348 if (dev_is_pci(dev)) {
2349 struct pci_dev *pdev = to_pci_dev(dev);
2350
2351 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2352
2353 spin_lock_irqsave(&device_domain_lock, flags);
2354 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2355 PCI_BUS_NUM(dma_alias),
2356 dma_alias & 0xff);
2357 if (info) {
2358 iommu = info->iommu;
2359 domain = info->domain;
2360 }
2361 spin_unlock_irqrestore(&device_domain_lock, flags);
2362
2363 /* DMA alias already has a domain, uses it */
2364 if (info)
2365 goto found_domain;
2366 }
2367
2368 /* Allocate and initialize new domain for the device */
2369 domain = alloc_domain(0);
2370 if (!domain)
2371 return NULL;
2372 if (domain_init(domain, iommu, gaw)) {
2373 domain_exit(domain);
2374 return NULL;
2375 }
2376
2377 /* register PCI DMA alias device */
2378 if (req_id != dma_alias && dev_is_pci(dev)) {
2379 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2380 dma_alias & 0xff, NULL, domain);
2381
2382 if (!tmp || tmp != domain) {
2383 domain_exit(domain);
2384 domain = tmp;
2385 }
2386
2387 if (!domain)
2388 return NULL;
2389 }
2390
2391 found_domain:
2392 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2393
2394 if (!tmp || tmp != domain) {
2395 domain_exit(domain);
2396 domain = tmp;
2397 }
2398
2399 return domain;
2400 }
2401
2402 static int iommu_identity_mapping;
2403 #define IDENTMAP_ALL 1
2404 #define IDENTMAP_GFX 2
2405 #define IDENTMAP_AZALIA 4
2406
2407 static int iommu_domain_identity_map(struct dmar_domain *domain,
2408 unsigned long long start,
2409 unsigned long long end)
2410 {
2411 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2412 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2413
2414 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2415 dma_to_mm_pfn(last_vpfn))) {
2416 pr_err("Reserving iova failed\n");
2417 return -ENOMEM;
2418 }
2419
2420 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2421 /*
2422 * RMRR range might have overlap with physical memory range,
2423 * clear it first
2424 */
2425 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2426
2427 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2428 last_vpfn - first_vpfn + 1,
2429 DMA_PTE_READ|DMA_PTE_WRITE);
2430 }
2431
2432 static int iommu_prepare_identity_map(struct device *dev,
2433 unsigned long long start,
2434 unsigned long long end)
2435 {
2436 struct dmar_domain *domain;
2437 int ret;
2438
2439 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2440 if (!domain)
2441 return -ENOMEM;
2442
2443 /* For _hardware_ passthrough, don't bother. But for software
2444 passthrough, we do it anyway -- it may indicate a memory
2445 range which is reserved in E820, so which didn't get set
2446 up to start with in si_domain */
2447 if (domain == si_domain && hw_pass_through) {
2448 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2449 dev_name(dev), start, end);
2450 return 0;
2451 }
2452
2453 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2454 dev_name(dev), start, end);
2455
2456 if (end < start) {
2457 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2458 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2459 dmi_get_system_info(DMI_BIOS_VENDOR),
2460 dmi_get_system_info(DMI_BIOS_VERSION),
2461 dmi_get_system_info(DMI_PRODUCT_VERSION));
2462 ret = -EIO;
2463 goto error;
2464 }
2465
2466 if (end >> agaw_to_width(domain->agaw)) {
2467 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2468 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2469 agaw_to_width(domain->agaw),
2470 dmi_get_system_info(DMI_BIOS_VENDOR),
2471 dmi_get_system_info(DMI_BIOS_VERSION),
2472 dmi_get_system_info(DMI_PRODUCT_VERSION));
2473 ret = -EIO;
2474 goto error;
2475 }
2476
2477 ret = iommu_domain_identity_map(domain, start, end);
2478 if (ret)
2479 goto error;
2480
2481 return 0;
2482
2483 error:
2484 domain_exit(domain);
2485 return ret;
2486 }
2487
2488 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2489 struct device *dev)
2490 {
2491 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2492 return 0;
2493 return iommu_prepare_identity_map(dev, rmrr->base_address,
2494 rmrr->end_address);
2495 }
2496
2497 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2498 static inline void iommu_prepare_isa(void)
2499 {
2500 struct pci_dev *pdev;
2501 int ret;
2502
2503 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2504 if (!pdev)
2505 return;
2506
2507 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2508 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2509
2510 if (ret)
2511 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2512
2513 pci_dev_put(pdev);
2514 }
2515 #else
2516 static inline void iommu_prepare_isa(void)
2517 {
2518 return;
2519 }
2520 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2521
2522 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2523
2524 static int __init si_domain_init(int hw)
2525 {
2526 int nid, ret = 0;
2527
2528 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2529 if (!si_domain)
2530 return -EFAULT;
2531
2532 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2533 domain_exit(si_domain);
2534 return -EFAULT;
2535 }
2536
2537 pr_debug("Identity mapping domain allocated\n");
2538
2539 if (hw)
2540 return 0;
2541
2542 for_each_online_node(nid) {
2543 unsigned long start_pfn, end_pfn;
2544 int i;
2545
2546 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2547 ret = iommu_domain_identity_map(si_domain,
2548 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2549 if (ret)
2550 return ret;
2551 }
2552 }
2553
2554 return 0;
2555 }
2556
2557 static int identity_mapping(struct device *dev)
2558 {
2559 struct device_domain_info *info;
2560
2561 if (likely(!iommu_identity_mapping))
2562 return 0;
2563
2564 info = dev->archdata.iommu;
2565 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2566 return (info->domain == si_domain);
2567
2568 return 0;
2569 }
2570
2571 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2572 {
2573 struct dmar_domain *ndomain;
2574 struct intel_iommu *iommu;
2575 u8 bus, devfn;
2576
2577 iommu = device_to_iommu(dev, &bus, &devfn);
2578 if (!iommu)
2579 return -ENODEV;
2580
2581 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2582 if (ndomain != domain)
2583 return -EBUSY;
2584
2585 return 0;
2586 }
2587
2588 static bool device_has_rmrr(struct device *dev)
2589 {
2590 struct dmar_rmrr_unit *rmrr;
2591 struct device *tmp;
2592 int i;
2593
2594 rcu_read_lock();
2595 for_each_rmrr_units(rmrr) {
2596 /*
2597 * Return TRUE if this RMRR contains the device that
2598 * is passed in.
2599 */
2600 for_each_active_dev_scope(rmrr->devices,
2601 rmrr->devices_cnt, i, tmp)
2602 if (tmp == dev) {
2603 rcu_read_unlock();
2604 return true;
2605 }
2606 }
2607 rcu_read_unlock();
2608 return false;
2609 }
2610
2611 /*
2612 * There are a couple cases where we need to restrict the functionality of
2613 * devices associated with RMRRs. The first is when evaluating a device for
2614 * identity mapping because problems exist when devices are moved in and out
2615 * of domains and their respective RMRR information is lost. This means that
2616 * a device with associated RMRRs will never be in a "passthrough" domain.
2617 * The second is use of the device through the IOMMU API. This interface
2618 * expects to have full control of the IOVA space for the device. We cannot
2619 * satisfy both the requirement that RMRR access is maintained and have an
2620 * unencumbered IOVA space. We also have no ability to quiesce the device's
2621 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2622 * We therefore prevent devices associated with an RMRR from participating in
2623 * the IOMMU API, which eliminates them from device assignment.
2624 *
2625 * In both cases we assume that PCI USB devices with RMRRs have them largely
2626 * for historical reasons and that the RMRR space is not actively used post
2627 * boot. This exclusion may change if vendors begin to abuse it.
2628 *
2629 * The same exception is made for graphics devices, with the requirement that
2630 * any use of the RMRR regions will be torn down before assigning the device
2631 * to a guest.
2632 */
2633 static bool device_is_rmrr_locked(struct device *dev)
2634 {
2635 if (!device_has_rmrr(dev))
2636 return false;
2637
2638 if (dev_is_pci(dev)) {
2639 struct pci_dev *pdev = to_pci_dev(dev);
2640
2641 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2642 return false;
2643 }
2644
2645 return true;
2646 }
2647
2648 static int iommu_should_identity_map(struct device *dev, int startup)
2649 {
2650
2651 if (dev_is_pci(dev)) {
2652 struct pci_dev *pdev = to_pci_dev(dev);
2653
2654 if (device_is_rmrr_locked(dev))
2655 return 0;
2656
2657 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2658 return 1;
2659
2660 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2661 return 1;
2662
2663 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2664 return 0;
2665
2666 /*
2667 * We want to start off with all devices in the 1:1 domain, and
2668 * take them out later if we find they can't access all of memory.
2669 *
2670 * However, we can't do this for PCI devices behind bridges,
2671 * because all PCI devices behind the same bridge will end up
2672 * with the same source-id on their transactions.
2673 *
2674 * Practically speaking, we can't change things around for these
2675 * devices at run-time, because we can't be sure there'll be no
2676 * DMA transactions in flight for any of their siblings.
2677 *
2678 * So PCI devices (unless they're on the root bus) as well as
2679 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2680 * the 1:1 domain, just in _case_ one of their siblings turns out
2681 * not to be able to map all of memory.
2682 */
2683 if (!pci_is_pcie(pdev)) {
2684 if (!pci_is_root_bus(pdev->bus))
2685 return 0;
2686 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2687 return 0;
2688 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2689 return 0;
2690 } else {
2691 if (device_has_rmrr(dev))
2692 return 0;
2693 }
2694
2695 /*
2696 * At boot time, we don't yet know if devices will be 64-bit capable.
2697 * Assume that they will — if they turn out not to be, then we can
2698 * take them out of the 1:1 domain later.
2699 */
2700 if (!startup) {
2701 /*
2702 * If the device's dma_mask is less than the system's memory
2703 * size then this is not a candidate for identity mapping.
2704 */
2705 u64 dma_mask = *dev->dma_mask;
2706
2707 if (dev->coherent_dma_mask &&
2708 dev->coherent_dma_mask < dma_mask)
2709 dma_mask = dev->coherent_dma_mask;
2710
2711 return dma_mask >= dma_get_required_mask(dev);
2712 }
2713
2714 return 1;
2715 }
2716
2717 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2718 {
2719 int ret;
2720
2721 if (!iommu_should_identity_map(dev, 1))
2722 return 0;
2723
2724 ret = domain_add_dev_info(si_domain, dev);
2725 if (!ret)
2726 pr_info("%s identity mapping for device %s\n",
2727 hw ? "Hardware" : "Software", dev_name(dev));
2728 else if (ret == -ENODEV)
2729 /* device not associated with an iommu */
2730 ret = 0;
2731
2732 return ret;
2733 }
2734
2735
2736 static int __init iommu_prepare_static_identity_mapping(int hw)
2737 {
2738 struct pci_dev *pdev = NULL;
2739 struct dmar_drhd_unit *drhd;
2740 struct intel_iommu *iommu;
2741 struct device *dev;
2742 int i;
2743 int ret = 0;
2744
2745 for_each_pci_dev(pdev) {
2746 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2747 if (ret)
2748 return ret;
2749 }
2750
2751 for_each_active_iommu(iommu, drhd)
2752 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2753 struct acpi_device_physical_node *pn;
2754 struct acpi_device *adev;
2755
2756 if (dev->bus != &acpi_bus_type)
2757 continue;
2758
2759 adev= to_acpi_device(dev);
2760 mutex_lock(&adev->physical_node_lock);
2761 list_for_each_entry(pn, &adev->physical_node_list, node) {
2762 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2763 if (ret)
2764 break;
2765 }
2766 mutex_unlock(&adev->physical_node_lock);
2767 if (ret)
2768 return ret;
2769 }
2770
2771 return 0;
2772 }
2773
2774 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2775 {
2776 /*
2777 * Start from the sane iommu hardware state.
2778 * If the queued invalidation is already initialized by us
2779 * (for example, while enabling interrupt-remapping) then
2780 * we got the things already rolling from a sane state.
2781 */
2782 if (!iommu->qi) {
2783 /*
2784 * Clear any previous faults.
2785 */
2786 dmar_fault(-1, iommu);
2787 /*
2788 * Disable queued invalidation if supported and already enabled
2789 * before OS handover.
2790 */
2791 dmar_disable_qi(iommu);
2792 }
2793
2794 if (dmar_enable_qi(iommu)) {
2795 /*
2796 * Queued Invalidate not enabled, use Register Based Invalidate
2797 */
2798 iommu->flush.flush_context = __iommu_flush_context;
2799 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2800 pr_info("%s: Using Register based invalidation\n",
2801 iommu->name);
2802 } else {
2803 iommu->flush.flush_context = qi_flush_context;
2804 iommu->flush.flush_iotlb = qi_flush_iotlb;
2805 pr_info("%s: Using Queued invalidation\n", iommu->name);
2806 }
2807 }
2808
2809 static int copy_context_table(struct intel_iommu *iommu,
2810 struct root_entry __iomem *old_re,
2811 struct context_entry **tbl,
2812 int bus, bool ext)
2813 {
2814 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2815 struct context_entry __iomem *old_ce = NULL;
2816 struct context_entry *new_ce = NULL, ce;
2817 struct root_entry re;
2818 phys_addr_t old_ce_phys;
2819
2820 tbl_idx = ext ? bus * 2 : bus;
2821 memcpy_fromio(&re, old_re, sizeof(re));
2822
2823 for (devfn = 0; devfn < 256; devfn++) {
2824 /* First calculate the correct index */
2825 idx = (ext ? devfn * 2 : devfn) % 256;
2826
2827 if (idx == 0) {
2828 /* First save what we may have and clean up */
2829 if (new_ce) {
2830 tbl[tbl_idx] = new_ce;
2831 __iommu_flush_cache(iommu, new_ce,
2832 VTD_PAGE_SIZE);
2833 pos = 1;
2834 }
2835
2836 if (old_ce)
2837 iounmap(old_ce);
2838
2839 ret = 0;
2840 if (devfn < 0x80)
2841 old_ce_phys = root_entry_lctp(&re);
2842 else
2843 old_ce_phys = root_entry_uctp(&re);
2844
2845 if (!old_ce_phys) {
2846 if (ext && devfn == 0) {
2847 /* No LCTP, try UCTP */
2848 devfn = 0x7f;
2849 continue;
2850 } else {
2851 goto out;
2852 }
2853 }
2854
2855 ret = -ENOMEM;
2856 old_ce = ioremap_cache(old_ce_phys, PAGE_SIZE);
2857 if (!old_ce)
2858 goto out;
2859
2860 new_ce = alloc_pgtable_page(iommu->node);
2861 if (!new_ce)
2862 goto out_unmap;
2863
2864 ret = 0;
2865 }
2866
2867 /* Now copy the context entry */
2868 memcpy_fromio(&ce, old_ce + idx, sizeof(ce));
2869
2870 if (!__context_present(&ce))
2871 continue;
2872
2873 did = context_domain_id(&ce);
2874 if (did >= 0 && did < cap_ndoms(iommu->cap))
2875 set_bit(did, iommu->domain_ids);
2876
2877 /*
2878 * We need a marker for copied context entries. This
2879 * marker needs to work for the old format as well as
2880 * for extended context entries.
2881 *
2882 * Bit 67 of the context entry is used. In the old
2883 * format this bit is available to software, in the
2884 * extended format it is the PGE bit, but PGE is ignored
2885 * by HW if PASIDs are disabled (and thus still
2886 * available).
2887 *
2888 * So disable PASIDs first and then mark the entry
2889 * copied. This means that we don't copy PASID
2890 * translations from the old kernel, but this is fine as
2891 * faults there are not fatal.
2892 */
2893 context_clear_pasid_enable(&ce);
2894 context_set_copied(&ce);
2895
2896 new_ce[idx] = ce;
2897 }
2898
2899 tbl[tbl_idx + pos] = new_ce;
2900
2901 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2902
2903 out_unmap:
2904 iounmap(old_ce);
2905
2906 out:
2907 return ret;
2908 }
2909
2910 static int copy_translation_tables(struct intel_iommu *iommu)
2911 {
2912 struct root_entry __iomem *old_rt;
2913 struct context_entry **ctxt_tbls;
2914 phys_addr_t old_rt_phys;
2915 int ctxt_table_entries;
2916 unsigned long flags;
2917 u64 rtaddr_reg;
2918 int bus, ret;
2919 bool new_ext, ext;
2920
2921 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
2922 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
2923 new_ext = !!ecap_ecs(iommu->ecap);
2924
2925 /*
2926 * The RTT bit can only be changed when translation is disabled,
2927 * but disabling translation means to open a window for data
2928 * corruption. So bail out and don't copy anything if we would
2929 * have to change the bit.
2930 */
2931 if (new_ext != ext)
2932 return -EINVAL;
2933
2934 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
2935 if (!old_rt_phys)
2936 return -EINVAL;
2937
2938 old_rt = ioremap_cache(old_rt_phys, PAGE_SIZE);
2939 if (!old_rt)
2940 return -ENOMEM;
2941
2942 /* This is too big for the stack - allocate it from slab */
2943 ctxt_table_entries = ext ? 512 : 256;
2944 ret = -ENOMEM;
2945 ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
2946 if (!ctxt_tbls)
2947 goto out_unmap;
2948
2949 for (bus = 0; bus < 256; bus++) {
2950 ret = copy_context_table(iommu, &old_rt[bus],
2951 ctxt_tbls, bus, ext);
2952 if (ret) {
2953 pr_err("%s: Failed to copy context table for bus %d\n",
2954 iommu->name, bus);
2955 continue;
2956 }
2957 }
2958
2959 spin_lock_irqsave(&iommu->lock, flags);
2960
2961 /* Context tables are copied, now write them to the root_entry table */
2962 for (bus = 0; bus < 256; bus++) {
2963 int idx = ext ? bus * 2 : bus;
2964 u64 val;
2965
2966 if (ctxt_tbls[idx]) {
2967 val = virt_to_phys(ctxt_tbls[idx]) | 1;
2968 iommu->root_entry[bus].lo = val;
2969 }
2970
2971 if (!ext || !ctxt_tbls[idx + 1])
2972 continue;
2973
2974 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
2975 iommu->root_entry[bus].hi = val;
2976 }
2977
2978 spin_unlock_irqrestore(&iommu->lock, flags);
2979
2980 kfree(ctxt_tbls);
2981
2982 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
2983
2984 ret = 0;
2985
2986 out_unmap:
2987 iounmap(old_rt);
2988
2989 return ret;
2990 }
2991
2992 static int __init init_dmars(void)
2993 {
2994 struct dmar_drhd_unit *drhd;
2995 struct dmar_rmrr_unit *rmrr;
2996 bool copied_tables = false;
2997 struct device *dev;
2998 struct intel_iommu *iommu;
2999 int i, ret;
3000
3001 /*
3002 * for each drhd
3003 * allocate root
3004 * initialize and program root entry to not present
3005 * endfor
3006 */
3007 for_each_drhd_unit(drhd) {
3008 /*
3009 * lock not needed as this is only incremented in the single
3010 * threaded kernel __init code path all other access are read
3011 * only
3012 */
3013 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3014 g_num_of_iommus++;
3015 continue;
3016 }
3017 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3018 }
3019
3020 /* Preallocate enough resources for IOMMU hot-addition */
3021 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3022 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3023
3024 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3025 GFP_KERNEL);
3026 if (!g_iommus) {
3027 pr_err("Allocating global iommu array failed\n");
3028 ret = -ENOMEM;
3029 goto error;
3030 }
3031
3032 deferred_flush = kzalloc(g_num_of_iommus *
3033 sizeof(struct deferred_flush_tables), GFP_KERNEL);
3034 if (!deferred_flush) {
3035 ret = -ENOMEM;
3036 goto free_g_iommus;
3037 }
3038
3039 for_each_active_iommu(iommu, drhd) {
3040 g_iommus[iommu->seq_id] = iommu;
3041
3042 intel_iommu_init_qi(iommu);
3043
3044 ret = iommu_init_domains(iommu);
3045 if (ret)
3046 goto free_iommu;
3047
3048 init_translation_status(iommu);
3049
3050 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3051 iommu_disable_translation(iommu);
3052 clear_translation_pre_enabled(iommu);
3053 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3054 iommu->name);
3055 }
3056
3057 /*
3058 * TBD:
3059 * we could share the same root & context tables
3060 * among all IOMMU's. Need to Split it later.
3061 */
3062 ret = iommu_alloc_root_entry(iommu);
3063 if (ret)
3064 goto free_iommu;
3065
3066 if (translation_pre_enabled(iommu)) {
3067 pr_info("Translation already enabled - trying to copy translation structures\n");
3068
3069 ret = copy_translation_tables(iommu);
3070 if (ret) {
3071 /*
3072 * We found the IOMMU with translation
3073 * enabled - but failed to copy over the
3074 * old root-entry table. Try to proceed
3075 * by disabling translation now and
3076 * allocating a clean root-entry table.
3077 * This might cause DMAR faults, but
3078 * probably the dump will still succeed.
3079 */
3080 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3081 iommu->name);
3082 iommu_disable_translation(iommu);
3083 clear_translation_pre_enabled(iommu);
3084 } else {
3085 pr_info("Copied translation tables from previous kernel for %s\n",
3086 iommu->name);
3087 copied_tables = true;
3088 }
3089 }
3090
3091 iommu_flush_write_buffer(iommu);
3092 iommu_set_root_entry(iommu);
3093 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3094 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3095
3096 if (!ecap_pass_through(iommu->ecap))
3097 hw_pass_through = 0;
3098 }
3099
3100 if (iommu_pass_through)
3101 iommu_identity_mapping |= IDENTMAP_ALL;
3102
3103 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3104 iommu_identity_mapping |= IDENTMAP_GFX;
3105 #endif
3106
3107 if (iommu_identity_mapping) {
3108 ret = si_domain_init(hw_pass_through);
3109 if (ret)
3110 goto free_iommu;
3111 }
3112
3113 check_tylersburg_isoch();
3114
3115 /*
3116 * If we copied translations from a previous kernel in the kdump
3117 * case, we can not assign the devices to domains now, as that
3118 * would eliminate the old mappings. So skip this part and defer
3119 * the assignment to device driver initialization time.
3120 */
3121 if (copied_tables)
3122 goto domains_done;
3123
3124 /*
3125 * If pass through is not set or not enabled, setup context entries for
3126 * identity mappings for rmrr, gfx, and isa and may fall back to static
3127 * identity mapping if iommu_identity_mapping is set.
3128 */
3129 if (iommu_identity_mapping) {
3130 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3131 if (ret) {
3132 pr_crit("Failed to setup IOMMU pass-through\n");
3133 goto free_iommu;
3134 }
3135 }
3136 /*
3137 * For each rmrr
3138 * for each dev attached to rmrr
3139 * do
3140 * locate drhd for dev, alloc domain for dev
3141 * allocate free domain
3142 * allocate page table entries for rmrr
3143 * if context not allocated for bus
3144 * allocate and init context
3145 * set present in root table for this bus
3146 * init context with domain, translation etc
3147 * endfor
3148 * endfor
3149 */
3150 pr_info("Setting RMRR:\n");
3151 for_each_rmrr_units(rmrr) {
3152 /* some BIOS lists non-exist devices in DMAR table. */
3153 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3154 i, dev) {
3155 ret = iommu_prepare_rmrr_dev(rmrr, dev);
3156 if (ret)
3157 pr_err("Mapping reserved region failed\n");
3158 }
3159 }
3160
3161 iommu_prepare_isa();
3162
3163 domains_done:
3164
3165 /*
3166 * for each drhd
3167 * enable fault log
3168 * global invalidate context cache
3169 * global invalidate iotlb
3170 * enable translation
3171 */
3172 for_each_iommu(iommu, drhd) {
3173 if (drhd->ignored) {
3174 /*
3175 * we always have to disable PMRs or DMA may fail on
3176 * this device
3177 */
3178 if (force_on)
3179 iommu_disable_protect_mem_regions(iommu);
3180 continue;
3181 }
3182
3183 iommu_flush_write_buffer(iommu);
3184
3185 ret = dmar_set_interrupt(iommu);
3186 if (ret)
3187 goto free_iommu;
3188
3189 if (!translation_pre_enabled(iommu))
3190 iommu_enable_translation(iommu);
3191
3192 iommu_disable_protect_mem_regions(iommu);
3193 }
3194
3195 return 0;
3196
3197 free_iommu:
3198 for_each_active_iommu(iommu, drhd) {
3199 disable_dmar_iommu(iommu);
3200 free_dmar_iommu(iommu);
3201 }
3202 kfree(deferred_flush);
3203 free_g_iommus:
3204 kfree(g_iommus);
3205 error:
3206 return ret;
3207 }
3208
3209 /* This takes a number of _MM_ pages, not VTD pages */
3210 static struct iova *intel_alloc_iova(struct device *dev,
3211 struct dmar_domain *domain,
3212 unsigned long nrpages, uint64_t dma_mask)
3213 {
3214 struct iova *iova = NULL;
3215
3216 /* Restrict dma_mask to the width that the iommu can handle */
3217 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3218 /* Ensure we reserve the whole size-aligned region */
3219 nrpages = __roundup_pow_of_two(nrpages);
3220
3221 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3222 /*
3223 * First try to allocate an io virtual address in
3224 * DMA_BIT_MASK(32) and if that fails then try allocating
3225 * from higher range
3226 */
3227 iova = alloc_iova(&domain->iovad, nrpages,
3228 IOVA_PFN(DMA_BIT_MASK(32)), 1);
3229 if (iova)
3230 return iova;
3231 }
3232 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
3233 if (unlikely(!iova)) {
3234 pr_err("Allocating %ld-page iova for %s failed",
3235 nrpages, dev_name(dev));
3236 return NULL;
3237 }
3238
3239 return iova;
3240 }
3241
3242 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3243 {
3244 struct dmar_domain *domain;
3245
3246 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3247 if (!domain) {
3248 pr_err("Allocating domain for %s failed\n",
3249 dev_name(dev));
3250 return NULL;
3251 }
3252
3253 return domain;
3254 }
3255
3256 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3257 {
3258 struct device_domain_info *info;
3259
3260 /* No lock here, assumes no domain exit in normal case */
3261 info = dev->archdata.iommu;
3262 if (likely(info))
3263 return info->domain;
3264
3265 return __get_valid_domain_for_dev(dev);
3266 }
3267
3268 /* Check if the dev needs to go through non-identity map and unmap process.*/
3269 static int iommu_no_mapping(struct device *dev)
3270 {
3271 int found;
3272
3273 if (iommu_dummy(dev))
3274 return 1;
3275
3276 if (!iommu_identity_mapping)
3277 return 0;
3278
3279 found = identity_mapping(dev);
3280 if (found) {
3281 if (iommu_should_identity_map(dev, 0))
3282 return 1;
3283 else {
3284 /*
3285 * 32 bit DMA is removed from si_domain and fall back
3286 * to non-identity mapping.
3287 */
3288 dmar_remove_one_dev_info(si_domain, dev);
3289 pr_info("32bit %s uses non-identity mapping\n",
3290 dev_name(dev));
3291 return 0;
3292 }
3293 } else {
3294 /*
3295 * In case of a detached 64 bit DMA device from vm, the device
3296 * is put into si_domain for identity mapping.
3297 */
3298 if (iommu_should_identity_map(dev, 0)) {
3299 int ret;
3300 ret = domain_add_dev_info(si_domain, dev);
3301 if (!ret) {
3302 pr_info("64bit %s uses identity mapping\n",
3303 dev_name(dev));
3304 return 1;
3305 }
3306 }
3307 }
3308
3309 return 0;
3310 }
3311
3312 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3313 size_t size, int dir, u64 dma_mask)
3314 {
3315 struct dmar_domain *domain;
3316 phys_addr_t start_paddr;
3317 struct iova *iova;
3318 int prot = 0;
3319 int ret;
3320 struct intel_iommu *iommu;
3321 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3322
3323 BUG_ON(dir == DMA_NONE);
3324
3325 if (iommu_no_mapping(dev))
3326 return paddr;
3327
3328 domain = get_valid_domain_for_dev(dev);
3329 if (!domain)
3330 return 0;
3331
3332 iommu = domain_get_iommu(domain);
3333 size = aligned_nrpages(paddr, size);
3334
3335 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3336 if (!iova)
3337 goto error;
3338
3339 /*
3340 * Check if DMAR supports zero-length reads on write only
3341 * mappings..
3342 */
3343 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3344 !cap_zlr(iommu->cap))
3345 prot |= DMA_PTE_READ;
3346 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3347 prot |= DMA_PTE_WRITE;
3348 /*
3349 * paddr - (paddr + size) might be partial page, we should map the whole
3350 * page. Note: if two part of one page are separately mapped, we
3351 * might have two guest_addr mapping to the same host paddr, but this
3352 * is not a big problem
3353 */
3354 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3355 mm_to_dma_pfn(paddr_pfn), size, prot);
3356 if (ret)
3357 goto error;
3358
3359 /* it's a non-present to present mapping. Only flush if caching mode */
3360 if (cap_caching_mode(iommu->cap))
3361 iommu_flush_iotlb_psi(iommu, domain,
3362 mm_to_dma_pfn(iova->pfn_lo),
3363 size, 0, 1);
3364 else
3365 iommu_flush_write_buffer(iommu);
3366
3367 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3368 start_paddr += paddr & ~PAGE_MASK;
3369 return start_paddr;
3370
3371 error:
3372 if (iova)
3373 __free_iova(&domain->iovad, iova);
3374 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3375 dev_name(dev), size, (unsigned long long)paddr, dir);
3376 return 0;
3377 }
3378
3379 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3380 unsigned long offset, size_t size,
3381 enum dma_data_direction dir,
3382 struct dma_attrs *attrs)
3383 {
3384 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3385 dir, *dev->dma_mask);
3386 }
3387
3388 static void flush_unmaps(void)
3389 {
3390 int i, j;
3391
3392 timer_on = 0;
3393
3394 /* just flush them all */
3395 for (i = 0; i < g_num_of_iommus; i++) {
3396 struct intel_iommu *iommu = g_iommus[i];
3397 if (!iommu)
3398 continue;
3399
3400 if (!deferred_flush[i].next)
3401 continue;
3402
3403 /* In caching mode, global flushes turn emulation expensive */
3404 if (!cap_caching_mode(iommu->cap))
3405 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3406 DMA_TLB_GLOBAL_FLUSH);
3407 for (j = 0; j < deferred_flush[i].next; j++) {
3408 unsigned long mask;
3409 struct iova *iova = deferred_flush[i].iova[j];
3410 struct dmar_domain *domain = deferred_flush[i].domain[j];
3411
3412 /* On real hardware multiple invalidations are expensive */
3413 if (cap_caching_mode(iommu->cap))
3414 iommu_flush_iotlb_psi(iommu, domain,
3415 iova->pfn_lo, iova_size(iova),
3416 !deferred_flush[i].freelist[j], 0);
3417 else {
3418 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
3419 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3420 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3421 }
3422 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3423 if (deferred_flush[i].freelist[j])
3424 dma_free_pagelist(deferred_flush[i].freelist[j]);
3425 }
3426 deferred_flush[i].next = 0;
3427 }
3428
3429 list_size = 0;
3430 }
3431
3432 static void flush_unmaps_timeout(unsigned long data)
3433 {
3434 unsigned long flags;
3435
3436 spin_lock_irqsave(&async_umap_flush_lock, flags);
3437 flush_unmaps();
3438 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3439 }
3440
3441 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3442 {
3443 unsigned long flags;
3444 int next, iommu_id;
3445 struct intel_iommu *iommu;
3446
3447 spin_lock_irqsave(&async_umap_flush_lock, flags);
3448 if (list_size == HIGH_WATER_MARK)
3449 flush_unmaps();
3450
3451 iommu = domain_get_iommu(dom);
3452 iommu_id = iommu->seq_id;
3453
3454 next = deferred_flush[iommu_id].next;
3455 deferred_flush[iommu_id].domain[next] = dom;
3456 deferred_flush[iommu_id].iova[next] = iova;
3457 deferred_flush[iommu_id].freelist[next] = freelist;
3458 deferred_flush[iommu_id].next++;
3459
3460 if (!timer_on) {
3461 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3462 timer_on = 1;
3463 }
3464 list_size++;
3465 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3466 }
3467
3468 static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
3469 {
3470 struct dmar_domain *domain;
3471 unsigned long start_pfn, last_pfn;
3472 struct iova *iova;
3473 struct intel_iommu *iommu;
3474 struct page *freelist;
3475
3476 if (iommu_no_mapping(dev))
3477 return;
3478
3479 domain = find_domain(dev);
3480 BUG_ON(!domain);
3481
3482 iommu = domain_get_iommu(domain);
3483
3484 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3485 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3486 (unsigned long long)dev_addr))
3487 return;
3488
3489 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3490 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3491
3492 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3493 dev_name(dev), start_pfn, last_pfn);
3494
3495 freelist = domain_unmap(domain, start_pfn, last_pfn);
3496
3497 if (intel_iommu_strict) {
3498 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3499 last_pfn - start_pfn + 1, !freelist, 0);
3500 /* free iova */
3501 __free_iova(&domain->iovad, iova);
3502 dma_free_pagelist(freelist);
3503 } else {
3504 add_unmap(domain, iova, freelist);
3505 /*
3506 * queue up the release of the unmap to save the 1/6th of the
3507 * cpu used up by the iotlb flush operation...
3508 */
3509 }
3510 }
3511
3512 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3513 size_t size, enum dma_data_direction dir,
3514 struct dma_attrs *attrs)
3515 {
3516 intel_unmap(dev, dev_addr);
3517 }
3518
3519 static void *intel_alloc_coherent(struct device *dev, size_t size,
3520 dma_addr_t *dma_handle, gfp_t flags,
3521 struct dma_attrs *attrs)
3522 {
3523 struct page *page = NULL;
3524 int order;
3525
3526 size = PAGE_ALIGN(size);
3527 order = get_order(size);
3528
3529 if (!iommu_no_mapping(dev))
3530 flags &= ~(GFP_DMA | GFP_DMA32);
3531 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3532 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3533 flags |= GFP_DMA;
3534 else
3535 flags |= GFP_DMA32;
3536 }
3537
3538 if (flags & __GFP_WAIT) {
3539 unsigned int count = size >> PAGE_SHIFT;
3540
3541 page = dma_alloc_from_contiguous(dev, count, order);
3542 if (page && iommu_no_mapping(dev) &&
3543 page_to_phys(page) + size > dev->coherent_dma_mask) {
3544 dma_release_from_contiguous(dev, page, count);
3545 page = NULL;
3546 }
3547 }
3548
3549 if (!page)
3550 page = alloc_pages(flags, order);
3551 if (!page)
3552 return NULL;
3553 memset(page_address(page), 0, size);
3554
3555 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3556 DMA_BIDIRECTIONAL,
3557 dev->coherent_dma_mask);
3558 if (*dma_handle)
3559 return page_address(page);
3560 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3561 __free_pages(page, order);
3562
3563 return NULL;
3564 }
3565
3566 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3567 dma_addr_t dma_handle, struct dma_attrs *attrs)
3568 {
3569 int order;
3570 struct page *page = virt_to_page(vaddr);
3571
3572 size = PAGE_ALIGN(size);
3573 order = get_order(size);
3574
3575 intel_unmap(dev, dma_handle);
3576 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3577 __free_pages(page, order);
3578 }
3579
3580 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3581 int nelems, enum dma_data_direction dir,
3582 struct dma_attrs *attrs)
3583 {
3584 intel_unmap(dev, sglist[0].dma_address);
3585 }
3586
3587 static int intel_nontranslate_map_sg(struct device *hddev,
3588 struct scatterlist *sglist, int nelems, int dir)
3589 {
3590 int i;
3591 struct scatterlist *sg;
3592
3593 for_each_sg(sglist, sg, nelems, i) {
3594 BUG_ON(!sg_page(sg));
3595 sg->dma_address = sg_phys(sg);
3596 sg->dma_length = sg->length;
3597 }
3598 return nelems;
3599 }
3600
3601 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3602 enum dma_data_direction dir, struct dma_attrs *attrs)
3603 {
3604 int i;
3605 struct dmar_domain *domain;
3606 size_t size = 0;
3607 int prot = 0;
3608 struct iova *iova = NULL;
3609 int ret;
3610 struct scatterlist *sg;
3611 unsigned long start_vpfn;
3612 struct intel_iommu *iommu;
3613
3614 BUG_ON(dir == DMA_NONE);
3615 if (iommu_no_mapping(dev))
3616 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3617
3618 domain = get_valid_domain_for_dev(dev);
3619 if (!domain)
3620 return 0;
3621
3622 iommu = domain_get_iommu(domain);
3623
3624 for_each_sg(sglist, sg, nelems, i)
3625 size += aligned_nrpages(sg->offset, sg->length);
3626
3627 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3628 *dev->dma_mask);
3629 if (!iova) {
3630 sglist->dma_length = 0;
3631 return 0;
3632 }
3633
3634 /*
3635 * Check if DMAR supports zero-length reads on write only
3636 * mappings..
3637 */
3638 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3639 !cap_zlr(iommu->cap))
3640 prot |= DMA_PTE_READ;
3641 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3642 prot |= DMA_PTE_WRITE;
3643
3644 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3645
3646 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3647 if (unlikely(ret)) {
3648 dma_pte_free_pagetable(domain, start_vpfn,
3649 start_vpfn + size - 1);
3650 __free_iova(&domain->iovad, iova);
3651 return 0;
3652 }
3653
3654 /* it's a non-present to present mapping. Only flush if caching mode */
3655 if (cap_caching_mode(iommu->cap))
3656 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3657 else
3658 iommu_flush_write_buffer(iommu);
3659
3660 return nelems;
3661 }
3662
3663 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3664 {
3665 return !dma_addr;
3666 }
3667
3668 struct dma_map_ops intel_dma_ops = {
3669 .alloc = intel_alloc_coherent,
3670 .free = intel_free_coherent,
3671 .map_sg = intel_map_sg,
3672 .unmap_sg = intel_unmap_sg,
3673 .map_page = intel_map_page,
3674 .unmap_page = intel_unmap_page,
3675 .mapping_error = intel_mapping_error,
3676 };
3677
3678 static inline int iommu_domain_cache_init(void)
3679 {
3680 int ret = 0;
3681
3682 iommu_domain_cache = kmem_cache_create("iommu_domain",
3683 sizeof(struct dmar_domain),
3684 0,
3685 SLAB_HWCACHE_ALIGN,
3686
3687 NULL);
3688 if (!iommu_domain_cache) {
3689 pr_err("Couldn't create iommu_domain cache\n");
3690 ret = -ENOMEM;
3691 }
3692
3693 return ret;
3694 }
3695
3696 static inline int iommu_devinfo_cache_init(void)
3697 {
3698 int ret = 0;
3699
3700 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3701 sizeof(struct device_domain_info),
3702 0,
3703 SLAB_HWCACHE_ALIGN,
3704 NULL);
3705 if (!iommu_devinfo_cache) {
3706 pr_err("Couldn't create devinfo cache\n");
3707 ret = -ENOMEM;
3708 }
3709
3710 return ret;
3711 }
3712
3713 static int __init iommu_init_mempool(void)
3714 {
3715 int ret;
3716 ret = iova_cache_get();
3717 if (ret)
3718 return ret;
3719
3720 ret = iommu_domain_cache_init();
3721 if (ret)
3722 goto domain_error;
3723
3724 ret = iommu_devinfo_cache_init();
3725 if (!ret)
3726 return ret;
3727
3728 kmem_cache_destroy(iommu_domain_cache);
3729 domain_error:
3730 iova_cache_put();
3731
3732 return -ENOMEM;
3733 }
3734
3735 static void __init iommu_exit_mempool(void)
3736 {
3737 kmem_cache_destroy(iommu_devinfo_cache);
3738 kmem_cache_destroy(iommu_domain_cache);
3739 iova_cache_put();
3740 }
3741
3742 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3743 {
3744 struct dmar_drhd_unit *drhd;
3745 u32 vtbar;
3746 int rc;
3747
3748 /* We know that this device on this chipset has its own IOMMU.
3749 * If we find it under a different IOMMU, then the BIOS is lying
3750 * to us. Hope that the IOMMU for this device is actually
3751 * disabled, and it needs no translation...
3752 */
3753 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3754 if (rc) {
3755 /* "can't" happen */
3756 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3757 return;
3758 }
3759 vtbar &= 0xffff0000;
3760
3761 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3762 drhd = dmar_find_matched_drhd_unit(pdev);
3763 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3764 TAINT_FIRMWARE_WORKAROUND,
3765 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3766 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3767 }
3768 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3769
3770 static void __init init_no_remapping_devices(void)
3771 {
3772 struct dmar_drhd_unit *drhd;
3773 struct device *dev;
3774 int i;
3775
3776 for_each_drhd_unit(drhd) {
3777 if (!drhd->include_all) {
3778 for_each_active_dev_scope(drhd->devices,
3779 drhd->devices_cnt, i, dev)
3780 break;
3781 /* ignore DMAR unit if no devices exist */
3782 if (i == drhd->devices_cnt)
3783 drhd->ignored = 1;
3784 }
3785 }
3786
3787 for_each_active_drhd_unit(drhd) {
3788 if (drhd->include_all)
3789 continue;
3790
3791 for_each_active_dev_scope(drhd->devices,
3792 drhd->devices_cnt, i, dev)
3793 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3794 break;
3795 if (i < drhd->devices_cnt)
3796 continue;
3797
3798 /* This IOMMU has *only* gfx devices. Either bypass it or
3799 set the gfx_mapped flag, as appropriate */
3800 if (dmar_map_gfx) {
3801 intel_iommu_gfx_mapped = 1;
3802 } else {
3803 drhd->ignored = 1;
3804 for_each_active_dev_scope(drhd->devices,
3805 drhd->devices_cnt, i, dev)
3806 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3807 }
3808 }
3809 }
3810
3811 #ifdef CONFIG_SUSPEND
3812 static int init_iommu_hw(void)
3813 {
3814 struct dmar_drhd_unit *drhd;
3815 struct intel_iommu *iommu = NULL;
3816
3817 for_each_active_iommu(iommu, drhd)
3818 if (iommu->qi)
3819 dmar_reenable_qi(iommu);
3820
3821 for_each_iommu(iommu, drhd) {
3822 if (drhd->ignored) {
3823 /*
3824 * we always have to disable PMRs or DMA may fail on
3825 * this device
3826 */
3827 if (force_on)
3828 iommu_disable_protect_mem_regions(iommu);
3829 continue;
3830 }
3831
3832 iommu_flush_write_buffer(iommu);
3833
3834 iommu_set_root_entry(iommu);
3835
3836 iommu->flush.flush_context(iommu, 0, 0, 0,
3837 DMA_CCMD_GLOBAL_INVL);
3838 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3839 iommu_enable_translation(iommu);
3840 iommu_disable_protect_mem_regions(iommu);
3841 }
3842
3843 return 0;
3844 }
3845
3846 static void iommu_flush_all(void)
3847 {
3848 struct dmar_drhd_unit *drhd;
3849 struct intel_iommu *iommu;
3850
3851 for_each_active_iommu(iommu, drhd) {
3852 iommu->flush.flush_context(iommu, 0, 0, 0,
3853 DMA_CCMD_GLOBAL_INVL);
3854 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3855 DMA_TLB_GLOBAL_FLUSH);
3856 }
3857 }
3858
3859 static int iommu_suspend(void)
3860 {
3861 struct dmar_drhd_unit *drhd;
3862 struct intel_iommu *iommu = NULL;
3863 unsigned long flag;
3864
3865 for_each_active_iommu(iommu, drhd) {
3866 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3867 GFP_ATOMIC);
3868 if (!iommu->iommu_state)
3869 goto nomem;
3870 }
3871
3872 iommu_flush_all();
3873
3874 for_each_active_iommu(iommu, drhd) {
3875 iommu_disable_translation(iommu);
3876
3877 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3878
3879 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3880 readl(iommu->reg + DMAR_FECTL_REG);
3881 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3882 readl(iommu->reg + DMAR_FEDATA_REG);
3883 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3884 readl(iommu->reg + DMAR_FEADDR_REG);
3885 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3886 readl(iommu->reg + DMAR_FEUADDR_REG);
3887
3888 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3889 }
3890 return 0;
3891
3892 nomem:
3893 for_each_active_iommu(iommu, drhd)
3894 kfree(iommu->iommu_state);
3895
3896 return -ENOMEM;
3897 }
3898
3899 static void iommu_resume(void)
3900 {
3901 struct dmar_drhd_unit *drhd;
3902 struct intel_iommu *iommu = NULL;
3903 unsigned long flag;
3904
3905 if (init_iommu_hw()) {
3906 if (force_on)
3907 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3908 else
3909 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3910 return;
3911 }
3912
3913 for_each_active_iommu(iommu, drhd) {
3914
3915 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3916
3917 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3918 iommu->reg + DMAR_FECTL_REG);
3919 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3920 iommu->reg + DMAR_FEDATA_REG);
3921 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3922 iommu->reg + DMAR_FEADDR_REG);
3923 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3924 iommu->reg + DMAR_FEUADDR_REG);
3925
3926 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3927 }
3928
3929 for_each_active_iommu(iommu, drhd)
3930 kfree(iommu->iommu_state);
3931 }
3932
3933 static struct syscore_ops iommu_syscore_ops = {
3934 .resume = iommu_resume,
3935 .suspend = iommu_suspend,
3936 };
3937
3938 static void __init init_iommu_pm_ops(void)
3939 {
3940 register_syscore_ops(&iommu_syscore_ops);
3941 }
3942
3943 #else
3944 static inline void init_iommu_pm_ops(void) {}
3945 #endif /* CONFIG_PM */
3946
3947
3948 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3949 {
3950 struct acpi_dmar_reserved_memory *rmrr;
3951 struct dmar_rmrr_unit *rmrru;
3952
3953 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3954 if (!rmrru)
3955 return -ENOMEM;
3956
3957 rmrru->hdr = header;
3958 rmrr = (struct acpi_dmar_reserved_memory *)header;
3959 rmrru->base_address = rmrr->base_address;
3960 rmrru->end_address = rmrr->end_address;
3961 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3962 ((void *)rmrr) + rmrr->header.length,
3963 &rmrru->devices_cnt);
3964 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3965 kfree(rmrru);
3966 return -ENOMEM;
3967 }
3968
3969 list_add(&rmrru->list, &dmar_rmrr_units);
3970
3971 return 0;
3972 }
3973
3974 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
3975 {
3976 struct dmar_atsr_unit *atsru;
3977 struct acpi_dmar_atsr *tmp;
3978
3979 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3980 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
3981 if (atsr->segment != tmp->segment)
3982 continue;
3983 if (atsr->header.length != tmp->header.length)
3984 continue;
3985 if (memcmp(atsr, tmp, atsr->header.length) == 0)
3986 return atsru;
3987 }
3988
3989 return NULL;
3990 }
3991
3992 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3993 {
3994 struct acpi_dmar_atsr *atsr;
3995 struct dmar_atsr_unit *atsru;
3996
3997 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
3998 return 0;
3999
4000 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4001 atsru = dmar_find_atsr(atsr);
4002 if (atsru)
4003 return 0;
4004
4005 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4006 if (!atsru)
4007 return -ENOMEM;
4008
4009 /*
4010 * If memory is allocated from slab by ACPI _DSM method, we need to
4011 * copy the memory content because the memory buffer will be freed
4012 * on return.
4013 */
4014 atsru->hdr = (void *)(atsru + 1);
4015 memcpy(atsru->hdr, hdr, hdr->length);
4016 atsru->include_all = atsr->flags & 0x1;
4017 if (!atsru->include_all) {
4018 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4019 (void *)atsr + atsr->header.length,
4020 &atsru->devices_cnt);
4021 if (atsru->devices_cnt && atsru->devices == NULL) {
4022 kfree(atsru);
4023 return -ENOMEM;
4024 }
4025 }
4026
4027 list_add_rcu(&atsru->list, &dmar_atsr_units);
4028
4029 return 0;
4030 }
4031
4032 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4033 {
4034 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4035 kfree(atsru);
4036 }
4037
4038 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4039 {
4040 struct acpi_dmar_atsr *atsr;
4041 struct dmar_atsr_unit *atsru;
4042
4043 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4044 atsru = dmar_find_atsr(atsr);
4045 if (atsru) {
4046 list_del_rcu(&atsru->list);
4047 synchronize_rcu();
4048 intel_iommu_free_atsr(atsru);
4049 }
4050
4051 return 0;
4052 }
4053
4054 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4055 {
4056 int i;
4057 struct device *dev;
4058 struct acpi_dmar_atsr *atsr;
4059 struct dmar_atsr_unit *atsru;
4060
4061 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4062 atsru = dmar_find_atsr(atsr);
4063 if (!atsru)
4064 return 0;
4065
4066 if (!atsru->include_all && atsru->devices && atsru->devices_cnt)
4067 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4068 i, dev)
4069 return -EBUSY;
4070
4071 return 0;
4072 }
4073
4074 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4075 {
4076 int sp, ret = 0;
4077 struct intel_iommu *iommu = dmaru->iommu;
4078
4079 if (g_iommus[iommu->seq_id])
4080 return 0;
4081
4082 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4083 pr_warn("%s: Doesn't support hardware pass through.\n",
4084 iommu->name);
4085 return -ENXIO;
4086 }
4087 if (!ecap_sc_support(iommu->ecap) &&
4088 domain_update_iommu_snooping(iommu)) {
4089 pr_warn("%s: Doesn't support snooping.\n",
4090 iommu->name);
4091 return -ENXIO;
4092 }
4093 sp = domain_update_iommu_superpage(iommu) - 1;
4094 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4095 pr_warn("%s: Doesn't support large page.\n",
4096 iommu->name);
4097 return -ENXIO;
4098 }
4099
4100 /*
4101 * Disable translation if already enabled prior to OS handover.
4102 */
4103 if (iommu->gcmd & DMA_GCMD_TE)
4104 iommu_disable_translation(iommu);
4105
4106 g_iommus[iommu->seq_id] = iommu;
4107 ret = iommu_init_domains(iommu);
4108 if (ret == 0)
4109 ret = iommu_alloc_root_entry(iommu);
4110 if (ret)
4111 goto out;
4112
4113 if (dmaru->ignored) {
4114 /*
4115 * we always have to disable PMRs or DMA may fail on this device
4116 */
4117 if (force_on)
4118 iommu_disable_protect_mem_regions(iommu);
4119 return 0;
4120 }
4121
4122 intel_iommu_init_qi(iommu);
4123 iommu_flush_write_buffer(iommu);
4124 ret = dmar_set_interrupt(iommu);
4125 if (ret)
4126 goto disable_iommu;
4127
4128 iommu_set_root_entry(iommu);
4129 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4130 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4131 iommu_enable_translation(iommu);
4132
4133 iommu_disable_protect_mem_regions(iommu);
4134 return 0;
4135
4136 disable_iommu:
4137 disable_dmar_iommu(iommu);
4138 out:
4139 free_dmar_iommu(iommu);
4140 return ret;
4141 }
4142
4143 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4144 {
4145 int ret = 0;
4146 struct intel_iommu *iommu = dmaru->iommu;
4147
4148 if (!intel_iommu_enabled)
4149 return 0;
4150 if (iommu == NULL)
4151 return -EINVAL;
4152
4153 if (insert) {
4154 ret = intel_iommu_add(dmaru);
4155 } else {
4156 disable_dmar_iommu(iommu);
4157 free_dmar_iommu(iommu);
4158 }
4159
4160 return ret;
4161 }
4162
4163 static void intel_iommu_free_dmars(void)
4164 {
4165 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4166 struct dmar_atsr_unit *atsru, *atsr_n;
4167
4168 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4169 list_del(&rmrru->list);
4170 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4171 kfree(rmrru);
4172 }
4173
4174 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4175 list_del(&atsru->list);
4176 intel_iommu_free_atsr(atsru);
4177 }
4178 }
4179
4180 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4181 {
4182 int i, ret = 1;
4183 struct pci_bus *bus;
4184 struct pci_dev *bridge = NULL;
4185 struct device *tmp;
4186 struct acpi_dmar_atsr *atsr;
4187 struct dmar_atsr_unit *atsru;
4188
4189 dev = pci_physfn(dev);
4190 for (bus = dev->bus; bus; bus = bus->parent) {
4191 bridge = bus->self;
4192 if (!bridge || !pci_is_pcie(bridge) ||
4193 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4194 return 0;
4195 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4196 break;
4197 }
4198 if (!bridge)
4199 return 0;
4200
4201 rcu_read_lock();
4202 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4203 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4204 if (atsr->segment != pci_domain_nr(dev->bus))
4205 continue;
4206
4207 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4208 if (tmp == &bridge->dev)
4209 goto out;
4210
4211 if (atsru->include_all)
4212 goto out;
4213 }
4214 ret = 0;
4215 out:
4216 rcu_read_unlock();
4217
4218 return ret;
4219 }
4220
4221 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4222 {
4223 int ret = 0;
4224 struct dmar_rmrr_unit *rmrru;
4225 struct dmar_atsr_unit *atsru;
4226 struct acpi_dmar_atsr *atsr;
4227 struct acpi_dmar_reserved_memory *rmrr;
4228
4229 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4230 return 0;
4231
4232 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4233 rmrr = container_of(rmrru->hdr,
4234 struct acpi_dmar_reserved_memory, header);
4235 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4236 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4237 ((void *)rmrr) + rmrr->header.length,
4238 rmrr->segment, rmrru->devices,
4239 rmrru->devices_cnt);
4240 if(ret < 0)
4241 return ret;
4242 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4243 dmar_remove_dev_scope(info, rmrr->segment,
4244 rmrru->devices, rmrru->devices_cnt);
4245 }
4246 }
4247
4248 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4249 if (atsru->include_all)
4250 continue;
4251
4252 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4253 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4254 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4255 (void *)atsr + atsr->header.length,
4256 atsr->segment, atsru->devices,
4257 atsru->devices_cnt);
4258 if (ret > 0)
4259 break;
4260 else if(ret < 0)
4261 return ret;
4262 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4263 if (dmar_remove_dev_scope(info, atsr->segment,
4264 atsru->devices, atsru->devices_cnt))
4265 break;
4266 }
4267 }
4268
4269 return 0;
4270 }
4271
4272 /*
4273 * Here we only respond to action of unbound device from driver.
4274 *
4275 * Added device is not attached to its DMAR domain here yet. That will happen
4276 * when mapping the device to iova.
4277 */
4278 static int device_notifier(struct notifier_block *nb,
4279 unsigned long action, void *data)
4280 {
4281 struct device *dev = data;
4282 struct dmar_domain *domain;
4283
4284 if (iommu_dummy(dev))
4285 return 0;
4286
4287 if (action != BUS_NOTIFY_REMOVED_DEVICE)
4288 return 0;
4289
4290 domain = find_domain(dev);
4291 if (!domain)
4292 return 0;
4293
4294 dmar_remove_one_dev_info(domain, dev);
4295 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4296 domain_exit(domain);
4297
4298 return 0;
4299 }
4300
4301 static struct notifier_block device_nb = {
4302 .notifier_call = device_notifier,
4303 };
4304
4305 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4306 unsigned long val, void *v)
4307 {
4308 struct memory_notify *mhp = v;
4309 unsigned long long start, end;
4310 unsigned long start_vpfn, last_vpfn;
4311
4312 switch (val) {
4313 case MEM_GOING_ONLINE:
4314 start = mhp->start_pfn << PAGE_SHIFT;
4315 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4316 if (iommu_domain_identity_map(si_domain, start, end)) {
4317 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4318 start, end);
4319 return NOTIFY_BAD;
4320 }
4321 break;
4322
4323 case MEM_OFFLINE:
4324 case MEM_CANCEL_ONLINE:
4325 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4326 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4327 while (start_vpfn <= last_vpfn) {
4328 struct iova *iova;
4329 struct dmar_drhd_unit *drhd;
4330 struct intel_iommu *iommu;
4331 struct page *freelist;
4332
4333 iova = find_iova(&si_domain->iovad, start_vpfn);
4334 if (iova == NULL) {
4335 pr_debug("Failed get IOVA for PFN %lx\n",
4336 start_vpfn);
4337 break;
4338 }
4339
4340 iova = split_and_remove_iova(&si_domain->iovad, iova,
4341 start_vpfn, last_vpfn);
4342 if (iova == NULL) {
4343 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4344 start_vpfn, last_vpfn);
4345 return NOTIFY_BAD;
4346 }
4347
4348 freelist = domain_unmap(si_domain, iova->pfn_lo,
4349 iova->pfn_hi);
4350
4351 rcu_read_lock();
4352 for_each_active_iommu(iommu, drhd)
4353 iommu_flush_iotlb_psi(iommu, si_domain,
4354 iova->pfn_lo, iova_size(iova),
4355 !freelist, 0);
4356 rcu_read_unlock();
4357 dma_free_pagelist(freelist);
4358
4359 start_vpfn = iova->pfn_hi + 1;
4360 free_iova_mem(iova);
4361 }
4362 break;
4363 }
4364
4365 return NOTIFY_OK;
4366 }
4367
4368 static struct notifier_block intel_iommu_memory_nb = {
4369 .notifier_call = intel_iommu_memory_notifier,
4370 .priority = 0
4371 };
4372
4373
4374 static ssize_t intel_iommu_show_version(struct device *dev,
4375 struct device_attribute *attr,
4376 char *buf)
4377 {
4378 struct intel_iommu *iommu = dev_get_drvdata(dev);
4379 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4380 return sprintf(buf, "%d:%d\n",
4381 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4382 }
4383 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4384
4385 static ssize_t intel_iommu_show_address(struct device *dev,
4386 struct device_attribute *attr,
4387 char *buf)
4388 {
4389 struct intel_iommu *iommu = dev_get_drvdata(dev);
4390 return sprintf(buf, "%llx\n", iommu->reg_phys);
4391 }
4392 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4393
4394 static ssize_t intel_iommu_show_cap(struct device *dev,
4395 struct device_attribute *attr,
4396 char *buf)
4397 {
4398 struct intel_iommu *iommu = dev_get_drvdata(dev);
4399 return sprintf(buf, "%llx\n", iommu->cap);
4400 }
4401 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4402
4403 static ssize_t intel_iommu_show_ecap(struct device *dev,
4404 struct device_attribute *attr,
4405 char *buf)
4406 {
4407 struct intel_iommu *iommu = dev_get_drvdata(dev);
4408 return sprintf(buf, "%llx\n", iommu->ecap);
4409 }
4410 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4411
4412 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4413 struct device_attribute *attr,
4414 char *buf)
4415 {
4416 struct intel_iommu *iommu = dev_get_drvdata(dev);
4417 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4418 }
4419 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4420
4421 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4422 struct device_attribute *attr,
4423 char *buf)
4424 {
4425 struct intel_iommu *iommu = dev_get_drvdata(dev);
4426 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4427 cap_ndoms(iommu->cap)));
4428 }
4429 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4430
4431 static struct attribute *intel_iommu_attrs[] = {
4432 &dev_attr_version.attr,
4433 &dev_attr_address.attr,
4434 &dev_attr_cap.attr,
4435 &dev_attr_ecap.attr,
4436 &dev_attr_domains_supported.attr,
4437 &dev_attr_domains_used.attr,
4438 NULL,
4439 };
4440
4441 static struct attribute_group intel_iommu_group = {
4442 .name = "intel-iommu",
4443 .attrs = intel_iommu_attrs,
4444 };
4445
4446 const struct attribute_group *intel_iommu_groups[] = {
4447 &intel_iommu_group,
4448 NULL,
4449 };
4450
4451 int __init intel_iommu_init(void)
4452 {
4453 int ret = -ENODEV;
4454 struct dmar_drhd_unit *drhd;
4455 struct intel_iommu *iommu;
4456
4457 /* VT-d is required for a TXT/tboot launch, so enforce that */
4458 force_on = tboot_force_iommu();
4459
4460 if (iommu_init_mempool()) {
4461 if (force_on)
4462 panic("tboot: Failed to initialize iommu memory\n");
4463 return -ENOMEM;
4464 }
4465
4466 down_write(&dmar_global_lock);
4467 if (dmar_table_init()) {
4468 if (force_on)
4469 panic("tboot: Failed to initialize DMAR table\n");
4470 goto out_free_dmar;
4471 }
4472
4473 if (dmar_dev_scope_init() < 0) {
4474 if (force_on)
4475 panic("tboot: Failed to initialize DMAR device scope\n");
4476 goto out_free_dmar;
4477 }
4478
4479 if (no_iommu || dmar_disabled)
4480 goto out_free_dmar;
4481
4482 if (list_empty(&dmar_rmrr_units))
4483 pr_info("No RMRR found\n");
4484
4485 if (list_empty(&dmar_atsr_units))
4486 pr_info("No ATSR found\n");
4487
4488 if (dmar_init_reserved_ranges()) {
4489 if (force_on)
4490 panic("tboot: Failed to reserve iommu ranges\n");
4491 goto out_free_reserved_range;
4492 }
4493
4494 init_no_remapping_devices();
4495
4496 ret = init_dmars();
4497 if (ret) {
4498 if (force_on)
4499 panic("tboot: Failed to initialize DMARs\n");
4500 pr_err("Initialization failed\n");
4501 goto out_free_reserved_range;
4502 }
4503 up_write(&dmar_global_lock);
4504 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4505
4506 init_timer(&unmap_timer);
4507 #ifdef CONFIG_SWIOTLB
4508 swiotlb = 0;
4509 #endif
4510 dma_ops = &intel_dma_ops;
4511
4512 init_iommu_pm_ops();
4513
4514 for_each_active_iommu(iommu, drhd)
4515 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4516 intel_iommu_groups,
4517 "%s", iommu->name);
4518
4519 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4520 bus_register_notifier(&pci_bus_type, &device_nb);
4521 if (si_domain && !hw_pass_through)
4522 register_memory_notifier(&intel_iommu_memory_nb);
4523
4524 intel_iommu_enabled = 1;
4525
4526 return 0;
4527
4528 out_free_reserved_range:
4529 put_iova_domain(&reserved_iova_list);
4530 out_free_dmar:
4531 intel_iommu_free_dmars();
4532 up_write(&dmar_global_lock);
4533 iommu_exit_mempool();
4534 return ret;
4535 }
4536
4537 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4538 {
4539 struct intel_iommu *iommu = opaque;
4540
4541 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4542 return 0;
4543 }
4544
4545 /*
4546 * NB - intel-iommu lacks any sort of reference counting for the users of
4547 * dependent devices. If multiple endpoints have intersecting dependent
4548 * devices, unbinding the driver from any one of them will possibly leave
4549 * the others unable to operate.
4550 */
4551 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4552 {
4553 if (!iommu || !dev || !dev_is_pci(dev))
4554 return;
4555
4556 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4557 }
4558
4559 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4560 {
4561 struct intel_iommu *iommu;
4562 unsigned long flags;
4563
4564 assert_spin_locked(&device_domain_lock);
4565
4566 if (WARN_ON(!info))
4567 return;
4568
4569 iommu = info->iommu;
4570
4571 if (info->dev) {
4572 iommu_disable_dev_iotlb(info);
4573 domain_context_clear(iommu, info->dev);
4574 }
4575
4576 unlink_domain_info(info);
4577
4578 spin_lock_irqsave(&iommu->lock, flags);
4579 domain_detach_iommu(info->domain, iommu);
4580 spin_unlock_irqrestore(&iommu->lock, flags);
4581
4582 free_devinfo_mem(info);
4583 }
4584
4585 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4586 struct device *dev)
4587 {
4588 struct device_domain_info *info;
4589 unsigned long flags;
4590
4591 spin_lock_irqsave(&device_domain_lock, flags);
4592 info = dev->archdata.iommu;
4593 __dmar_remove_one_dev_info(info);
4594 spin_unlock_irqrestore(&device_domain_lock, flags);
4595 }
4596
4597 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4598 {
4599 int adjust_width;
4600
4601 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4602 DMA_32BIT_PFN);
4603 domain_reserve_special_ranges(domain);
4604
4605 /* calculate AGAW */
4606 domain->gaw = guest_width;
4607 adjust_width = guestwidth_to_adjustwidth(guest_width);
4608 domain->agaw = width_to_agaw(adjust_width);
4609
4610 domain->iommu_coherency = 0;
4611 domain->iommu_snooping = 0;
4612 domain->iommu_superpage = 0;
4613 domain->max_addr = 0;
4614
4615 /* always allocate the top pgd */
4616 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4617 if (!domain->pgd)
4618 return -ENOMEM;
4619 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4620 return 0;
4621 }
4622
4623 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4624 {
4625 struct dmar_domain *dmar_domain;
4626 struct iommu_domain *domain;
4627
4628 if (type != IOMMU_DOMAIN_UNMANAGED)
4629 return NULL;
4630
4631 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4632 if (!dmar_domain) {
4633 pr_err("Can't allocate dmar_domain\n");
4634 return NULL;
4635 }
4636 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4637 pr_err("Domain initialization failed\n");
4638 domain_exit(dmar_domain);
4639 return NULL;
4640 }
4641 domain_update_iommu_cap(dmar_domain);
4642
4643 domain = &dmar_domain->domain;
4644 domain->geometry.aperture_start = 0;
4645 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4646 domain->geometry.force_aperture = true;
4647
4648 return domain;
4649 }
4650
4651 static void intel_iommu_domain_free(struct iommu_domain *domain)
4652 {
4653 domain_exit(to_dmar_domain(domain));
4654 }
4655
4656 static int intel_iommu_attach_device(struct iommu_domain *domain,
4657 struct device *dev)
4658 {
4659 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4660 struct intel_iommu *iommu;
4661 int addr_width;
4662 u8 bus, devfn;
4663
4664 if (device_is_rmrr_locked(dev)) {
4665 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4666 return -EPERM;
4667 }
4668
4669 /* normally dev is not mapped */
4670 if (unlikely(domain_context_mapped(dev))) {
4671 struct dmar_domain *old_domain;
4672
4673 old_domain = find_domain(dev);
4674 if (old_domain) {
4675 rcu_read_lock();
4676 dmar_remove_one_dev_info(old_domain, dev);
4677 rcu_read_unlock();
4678
4679 if (!domain_type_is_vm_or_si(old_domain) &&
4680 list_empty(&old_domain->devices))
4681 domain_exit(old_domain);
4682 }
4683 }
4684
4685 iommu = device_to_iommu(dev, &bus, &devfn);
4686 if (!iommu)
4687 return -ENODEV;
4688
4689 /* check if this iommu agaw is sufficient for max mapped address */
4690 addr_width = agaw_to_width(iommu->agaw);
4691 if (addr_width > cap_mgaw(iommu->cap))
4692 addr_width = cap_mgaw(iommu->cap);
4693
4694 if (dmar_domain->max_addr > (1LL << addr_width)) {
4695 pr_err("%s: iommu width (%d) is not "
4696 "sufficient for the mapped address (%llx)\n",
4697 __func__, addr_width, dmar_domain->max_addr);
4698 return -EFAULT;
4699 }
4700 dmar_domain->gaw = addr_width;
4701
4702 /*
4703 * Knock out extra levels of page tables if necessary
4704 */
4705 while (iommu->agaw < dmar_domain->agaw) {
4706 struct dma_pte *pte;
4707
4708 pte = dmar_domain->pgd;
4709 if (dma_pte_present(pte)) {
4710 dmar_domain->pgd = (struct dma_pte *)
4711 phys_to_virt(dma_pte_addr(pte));
4712 free_pgtable_page(pte);
4713 }
4714 dmar_domain->agaw--;
4715 }
4716
4717 return domain_add_dev_info(dmar_domain, dev);
4718 }
4719
4720 static void intel_iommu_detach_device(struct iommu_domain *domain,
4721 struct device *dev)
4722 {
4723 dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
4724 }
4725
4726 static int intel_iommu_map(struct iommu_domain *domain,
4727 unsigned long iova, phys_addr_t hpa,
4728 size_t size, int iommu_prot)
4729 {
4730 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4731 u64 max_addr;
4732 int prot = 0;
4733 int ret;
4734
4735 if (iommu_prot & IOMMU_READ)
4736 prot |= DMA_PTE_READ;
4737 if (iommu_prot & IOMMU_WRITE)
4738 prot |= DMA_PTE_WRITE;
4739 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4740 prot |= DMA_PTE_SNP;
4741
4742 max_addr = iova + size;
4743 if (dmar_domain->max_addr < max_addr) {
4744 u64 end;
4745
4746 /* check if minimum agaw is sufficient for mapped address */
4747 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4748 if (end < max_addr) {
4749 pr_err("%s: iommu width (%d) is not "
4750 "sufficient for the mapped address (%llx)\n",
4751 __func__, dmar_domain->gaw, max_addr);
4752 return -EFAULT;
4753 }
4754 dmar_domain->max_addr = max_addr;
4755 }
4756 /* Round up size to next multiple of PAGE_SIZE, if it and
4757 the low bits of hpa would take us onto the next page */
4758 size = aligned_nrpages(hpa, size);
4759 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4760 hpa >> VTD_PAGE_SHIFT, size, prot);
4761 return ret;
4762 }
4763
4764 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4765 unsigned long iova, size_t size)
4766 {
4767 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4768 struct page *freelist = NULL;
4769 struct intel_iommu *iommu;
4770 unsigned long start_pfn, last_pfn;
4771 unsigned int npages;
4772 int iommu_id, level = 0;
4773
4774 /* Cope with horrid API which requires us to unmap more than the
4775 size argument if it happens to be a large-page mapping. */
4776 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
4777
4778 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4779 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4780
4781 start_pfn = iova >> VTD_PAGE_SHIFT;
4782 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4783
4784 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4785
4786 npages = last_pfn - start_pfn + 1;
4787
4788 for_each_domain_iommu(iommu_id, dmar_domain) {
4789 iommu = g_iommus[iommu_id];
4790
4791 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
4792 start_pfn, npages, !freelist, 0);
4793 }
4794
4795 dma_free_pagelist(freelist);
4796
4797 if (dmar_domain->max_addr == iova + size)
4798 dmar_domain->max_addr = iova;
4799
4800 return size;
4801 }
4802
4803 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4804 dma_addr_t iova)
4805 {
4806 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4807 struct dma_pte *pte;
4808 int level = 0;
4809 u64 phys = 0;
4810
4811 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4812 if (pte)
4813 phys = dma_pte_addr(pte);
4814
4815 return phys;
4816 }
4817
4818 static bool intel_iommu_capable(enum iommu_cap cap)
4819 {
4820 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4821 return domain_update_iommu_snooping(NULL) == 1;
4822 if (cap == IOMMU_CAP_INTR_REMAP)
4823 return irq_remapping_enabled == 1;
4824
4825 return false;
4826 }
4827
4828 static int intel_iommu_add_device(struct device *dev)
4829 {
4830 struct intel_iommu *iommu;
4831 struct iommu_group *group;
4832 u8 bus, devfn;
4833
4834 iommu = device_to_iommu(dev, &bus, &devfn);
4835 if (!iommu)
4836 return -ENODEV;
4837
4838 iommu_device_link(iommu->iommu_dev, dev);
4839
4840 group = iommu_group_get_for_dev(dev);
4841
4842 if (IS_ERR(group))
4843 return PTR_ERR(group);
4844
4845 iommu_group_put(group);
4846 return 0;
4847 }
4848
4849 static void intel_iommu_remove_device(struct device *dev)
4850 {
4851 struct intel_iommu *iommu;
4852 u8 bus, devfn;
4853
4854 iommu = device_to_iommu(dev, &bus, &devfn);
4855 if (!iommu)
4856 return;
4857
4858 iommu_group_remove_device(dev);
4859
4860 iommu_device_unlink(iommu->iommu_dev, dev);
4861 }
4862
4863 static const struct iommu_ops intel_iommu_ops = {
4864 .capable = intel_iommu_capable,
4865 .domain_alloc = intel_iommu_domain_alloc,
4866 .domain_free = intel_iommu_domain_free,
4867 .attach_dev = intel_iommu_attach_device,
4868 .detach_dev = intel_iommu_detach_device,
4869 .map = intel_iommu_map,
4870 .unmap = intel_iommu_unmap,
4871 .map_sg = default_iommu_map_sg,
4872 .iova_to_phys = intel_iommu_iova_to_phys,
4873 .add_device = intel_iommu_add_device,
4874 .remove_device = intel_iommu_remove_device,
4875 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4876 };
4877
4878 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4879 {
4880 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4881 pr_info("Disabling IOMMU for graphics on this chipset\n");
4882 dmar_map_gfx = 0;
4883 }
4884
4885 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4886 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4887 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4888 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4889 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4890 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4891 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4892
4893 static void quirk_iommu_rwbf(struct pci_dev *dev)
4894 {
4895 /*
4896 * Mobile 4 Series Chipset neglects to set RWBF capability,
4897 * but needs it. Same seems to hold for the desktop versions.
4898 */
4899 pr_info("Forcing write-buffer flush capability\n");
4900 rwbf_quirk = 1;
4901 }
4902
4903 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4904 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4905 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4906 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4907 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4908 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4909 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4910
4911 #define GGC 0x52
4912 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4913 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4914 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4915 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4916 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4917 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4918 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4919 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4920
4921 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4922 {
4923 unsigned short ggc;
4924
4925 if (pci_read_config_word(dev, GGC, &ggc))
4926 return;
4927
4928 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4929 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4930 dmar_map_gfx = 0;
4931 } else if (dmar_map_gfx) {
4932 /* we have to ensure the gfx device is idle before we flush */
4933 pr_info("Disabling batched IOTLB flush on Ironlake\n");
4934 intel_iommu_strict = 1;
4935 }
4936 }
4937 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4938 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4939 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4940 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4941
4942 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4943 ISOCH DMAR unit for the Azalia sound device, but not give it any
4944 TLB entries, which causes it to deadlock. Check for that. We do
4945 this in a function called from init_dmars(), instead of in a PCI
4946 quirk, because we don't want to print the obnoxious "BIOS broken"
4947 message if VT-d is actually disabled.
4948 */
4949 static void __init check_tylersburg_isoch(void)
4950 {
4951 struct pci_dev *pdev;
4952 uint32_t vtisochctrl;
4953
4954 /* If there's no Azalia in the system anyway, forget it. */
4955 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4956 if (!pdev)
4957 return;
4958 pci_dev_put(pdev);
4959
4960 /* System Management Registers. Might be hidden, in which case
4961 we can't do the sanity check. But that's OK, because the
4962 known-broken BIOSes _don't_ actually hide it, so far. */
4963 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4964 if (!pdev)
4965 return;
4966
4967 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4968 pci_dev_put(pdev);
4969 return;
4970 }
4971
4972 pci_dev_put(pdev);
4973
4974 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4975 if (vtisochctrl & 1)
4976 return;
4977
4978 /* Drop all bits other than the number of TLB entries */
4979 vtisochctrl &= 0x1c;
4980
4981 /* If we have the recommended number of TLB entries (16), fine. */
4982 if (vtisochctrl == 0x10)
4983 return;
4984
4985 /* Zero TLB entries? You get to ride the short bus to school. */
4986 if (!vtisochctrl) {
4987 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4988 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4989 dmi_get_system_info(DMI_BIOS_VENDOR),
4990 dmi_get_system_info(DMI_BIOS_VERSION),
4991 dmi_get_system_info(DMI_PRODUCT_VERSION));
4992 iommu_identity_mapping |= IDENTMAP_AZALIA;
4993 return;
4994 }
4995
4996 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4997 vtisochctrl);
4998 }