]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/iommu/intel-iommu.c
Merge tag 'pci-v4.3-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[mirror_ubuntu-hirsute-kernel.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 * Joerg Roedel <jroedel@suse.de>
19 */
20
21 #define pr_fmt(fmt) "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <linux/dma-contiguous.h>
46 #include <linux/crash_dump.h>
47 #include <asm/irq_remapping.h>
48 #include <asm/cacheflush.h>
49 #include <asm/iommu.h>
50
51 #include "irq_remapping.h"
52
53 #define ROOT_SIZE VTD_PAGE_SIZE
54 #define CONTEXT_SIZE VTD_PAGE_SIZE
55
56 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60
61 #define IOAPIC_RANGE_START (0xfee00000)
62 #define IOAPIC_RANGE_END (0xfeefffff)
63 #define IOVA_START_ADDR (0x1000)
64
65 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
66
67 #define MAX_AGAW_WIDTH 64
68 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
69
70 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
71 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
72
73 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
74 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
75 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
76 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
77 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78
79 /* IO virtual address start page frame number */
80 #define IOVA_START_PFN (1)
81
82 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
83 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
84 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
85
86 /* page table handling */
87 #define LEVEL_STRIDE (9)
88 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
89
90 /*
91 * This bitmap is used to advertise the page sizes our hardware support
92 * to the IOMMU core, which will then use this information to split
93 * physically contiguous memory regions it is mapping into page sizes
94 * that we support.
95 *
96 * Traditionally the IOMMU core just handed us the mappings directly,
97 * after making sure the size is an order of a 4KiB page and that the
98 * mapping has natural alignment.
99 *
100 * To retain this behavior, we currently advertise that we support
101 * all page sizes that are an order of 4KiB.
102 *
103 * If at some point we'd like to utilize the IOMMU core's new behavior,
104 * we could change this to advertise the real page sizes we support.
105 */
106 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
107
108 static inline int agaw_to_level(int agaw)
109 {
110 return agaw + 2;
111 }
112
113 static inline int agaw_to_width(int agaw)
114 {
115 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
116 }
117
118 static inline int width_to_agaw(int width)
119 {
120 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
121 }
122
123 static inline unsigned int level_to_offset_bits(int level)
124 {
125 return (level - 1) * LEVEL_STRIDE;
126 }
127
128 static inline int pfn_level_offset(unsigned long pfn, int level)
129 {
130 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
131 }
132
133 static inline unsigned long level_mask(int level)
134 {
135 return -1UL << level_to_offset_bits(level);
136 }
137
138 static inline unsigned long level_size(int level)
139 {
140 return 1UL << level_to_offset_bits(level);
141 }
142
143 static inline unsigned long align_to_level(unsigned long pfn, int level)
144 {
145 return (pfn + level_size(level) - 1) & level_mask(level);
146 }
147
148 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
149 {
150 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
151 }
152
153 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
154 are never going to work. */
155 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
156 {
157 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 }
159
160 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
161 {
162 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
163 }
164 static inline unsigned long page_to_dma_pfn(struct page *pg)
165 {
166 return mm_to_dma_pfn(page_to_pfn(pg));
167 }
168 static inline unsigned long virt_to_dma_pfn(void *p)
169 {
170 return page_to_dma_pfn(virt_to_page(p));
171 }
172
173 /* global iommu list, set NULL for ignored DMAR units */
174 static struct intel_iommu **g_iommus;
175
176 static void __init check_tylersburg_isoch(void);
177 static int rwbf_quirk;
178
179 /*
180 * set to 1 to panic kernel if can't successfully enable VT-d
181 * (used when kernel is launched w/ TXT)
182 */
183 static int force_on = 0;
184
185 /*
186 * 0: Present
187 * 1-11: Reserved
188 * 12-63: Context Ptr (12 - (haw-1))
189 * 64-127: Reserved
190 */
191 struct root_entry {
192 u64 lo;
193 u64 hi;
194 };
195 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
196
197 /*
198 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
199 * if marked present.
200 */
201 static phys_addr_t root_entry_lctp(struct root_entry *re)
202 {
203 if (!(re->lo & 1))
204 return 0;
205
206 return re->lo & VTD_PAGE_MASK;
207 }
208
209 /*
210 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
211 * if marked present.
212 */
213 static phys_addr_t root_entry_uctp(struct root_entry *re)
214 {
215 if (!(re->hi & 1))
216 return 0;
217
218 return re->hi & VTD_PAGE_MASK;
219 }
220 /*
221 * low 64 bits:
222 * 0: present
223 * 1: fault processing disable
224 * 2-3: translation type
225 * 12-63: address space root
226 * high 64 bits:
227 * 0-2: address width
228 * 3-6: aval
229 * 8-23: domain id
230 */
231 struct context_entry {
232 u64 lo;
233 u64 hi;
234 };
235
236 static inline void context_clear_pasid_enable(struct context_entry *context)
237 {
238 context->lo &= ~(1ULL << 11);
239 }
240
241 static inline bool context_pasid_enabled(struct context_entry *context)
242 {
243 return !!(context->lo & (1ULL << 11));
244 }
245
246 static inline void context_set_copied(struct context_entry *context)
247 {
248 context->hi |= (1ull << 3);
249 }
250
251 static inline bool context_copied(struct context_entry *context)
252 {
253 return !!(context->hi & (1ULL << 3));
254 }
255
256 static inline bool __context_present(struct context_entry *context)
257 {
258 return (context->lo & 1);
259 }
260
261 static inline bool context_present(struct context_entry *context)
262 {
263 return context_pasid_enabled(context) ?
264 __context_present(context) :
265 __context_present(context) && !context_copied(context);
266 }
267
268 static inline void context_set_present(struct context_entry *context)
269 {
270 context->lo |= 1;
271 }
272
273 static inline void context_set_fault_enable(struct context_entry *context)
274 {
275 context->lo &= (((u64)-1) << 2) | 1;
276 }
277
278 static inline void context_set_translation_type(struct context_entry *context,
279 unsigned long value)
280 {
281 context->lo &= (((u64)-1) << 4) | 3;
282 context->lo |= (value & 3) << 2;
283 }
284
285 static inline void context_set_address_root(struct context_entry *context,
286 unsigned long value)
287 {
288 context->lo &= ~VTD_PAGE_MASK;
289 context->lo |= value & VTD_PAGE_MASK;
290 }
291
292 static inline void context_set_address_width(struct context_entry *context,
293 unsigned long value)
294 {
295 context->hi |= value & 7;
296 }
297
298 static inline void context_set_domain_id(struct context_entry *context,
299 unsigned long value)
300 {
301 context->hi |= (value & ((1 << 16) - 1)) << 8;
302 }
303
304 static inline int context_domain_id(struct context_entry *c)
305 {
306 return((c->hi >> 8) & 0xffff);
307 }
308
309 static inline void context_clear_entry(struct context_entry *context)
310 {
311 context->lo = 0;
312 context->hi = 0;
313 }
314
315 /*
316 * 0: readable
317 * 1: writable
318 * 2-6: reserved
319 * 7: super page
320 * 8-10: available
321 * 11: snoop behavior
322 * 12-63: Host physcial address
323 */
324 struct dma_pte {
325 u64 val;
326 };
327
328 static inline void dma_clear_pte(struct dma_pte *pte)
329 {
330 pte->val = 0;
331 }
332
333 static inline u64 dma_pte_addr(struct dma_pte *pte)
334 {
335 #ifdef CONFIG_64BIT
336 return pte->val & VTD_PAGE_MASK;
337 #else
338 /* Must have a full atomic 64-bit read */
339 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
340 #endif
341 }
342
343 static inline bool dma_pte_present(struct dma_pte *pte)
344 {
345 return (pte->val & 3) != 0;
346 }
347
348 static inline bool dma_pte_superpage(struct dma_pte *pte)
349 {
350 return (pte->val & DMA_PTE_LARGE_PAGE);
351 }
352
353 static inline int first_pte_in_page(struct dma_pte *pte)
354 {
355 return !((unsigned long)pte & ~VTD_PAGE_MASK);
356 }
357
358 /*
359 * This domain is a statically identity mapping domain.
360 * 1. This domain creats a static 1:1 mapping to all usable memory.
361 * 2. It maps to each iommu if successful.
362 * 3. Each iommu mapps to this domain if successful.
363 */
364 static struct dmar_domain *si_domain;
365 static int hw_pass_through = 1;
366
367 /* domain represents a virtual machine, more than one devices
368 * across iommus may be owned in one domain, e.g. kvm guest.
369 */
370 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
371
372 /* si_domain contains mulitple devices */
373 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
374
375 struct dmar_domain {
376 int id; /* domain id */
377 int nid; /* node id */
378 DECLARE_BITMAP(iommu_bmp, DMAR_UNITS_SUPPORTED);
379 /* bitmap of iommus this domain uses*/
380
381 struct list_head devices; /* all devices' list */
382 struct iova_domain iovad; /* iova's that belong to this domain */
383
384 struct dma_pte *pgd; /* virtual address */
385 int gaw; /* max guest address width */
386
387 /* adjusted guest address width, 0 is level 2 30-bit */
388 int agaw;
389
390 int flags; /* flags to find out type of domain */
391
392 int iommu_coherency;/* indicate coherency of iommu access */
393 int iommu_snooping; /* indicate snooping control feature*/
394 int iommu_count; /* reference count of iommu */
395 int iommu_superpage;/* Level of superpages supported:
396 0 == 4KiB (no superpages), 1 == 2MiB,
397 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
398 spinlock_t iommu_lock; /* protect iommu set in domain */
399 u64 max_addr; /* maximum mapped address */
400
401 struct iommu_domain domain; /* generic domain data structure for
402 iommu core */
403 };
404
405 /* PCI domain-device relationship */
406 struct device_domain_info {
407 struct list_head link; /* link to domain siblings */
408 struct list_head global; /* link to global list */
409 u8 bus; /* PCI bus number */
410 u8 devfn; /* PCI devfn number */
411 struct {
412 u8 enabled:1;
413 u8 qdep;
414 } ats; /* ATS state */
415 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
416 struct intel_iommu *iommu; /* IOMMU used by this device */
417 struct dmar_domain *domain; /* pointer to domain */
418 };
419
420 struct dmar_rmrr_unit {
421 struct list_head list; /* list of rmrr units */
422 struct acpi_dmar_header *hdr; /* ACPI header */
423 u64 base_address; /* reserved base address*/
424 u64 end_address; /* reserved end address */
425 struct dmar_dev_scope *devices; /* target devices */
426 int devices_cnt; /* target device count */
427 };
428
429 struct dmar_atsr_unit {
430 struct list_head list; /* list of ATSR units */
431 struct acpi_dmar_header *hdr; /* ACPI header */
432 struct dmar_dev_scope *devices; /* target devices */
433 int devices_cnt; /* target device count */
434 u8 include_all:1; /* include all ports */
435 };
436
437 static LIST_HEAD(dmar_atsr_units);
438 static LIST_HEAD(dmar_rmrr_units);
439
440 #define for_each_rmrr_units(rmrr) \
441 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
442
443 static void flush_unmaps_timeout(unsigned long data);
444
445 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
446
447 #define HIGH_WATER_MARK 250
448 struct deferred_flush_tables {
449 int next;
450 struct iova *iova[HIGH_WATER_MARK];
451 struct dmar_domain *domain[HIGH_WATER_MARK];
452 struct page *freelist[HIGH_WATER_MARK];
453 };
454
455 static struct deferred_flush_tables *deferred_flush;
456
457 /* bitmap for indexing intel_iommus */
458 static int g_num_of_iommus;
459
460 static DEFINE_SPINLOCK(async_umap_flush_lock);
461 static LIST_HEAD(unmaps_to_do);
462
463 static int timer_on;
464 static long list_size;
465
466 static void domain_exit(struct dmar_domain *domain);
467 static void domain_remove_dev_info(struct dmar_domain *domain);
468 static void domain_remove_one_dev_info(struct dmar_domain *domain,
469 struct device *dev);
470 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
471 struct device *dev);
472 static int domain_detach_iommu(struct dmar_domain *domain,
473 struct intel_iommu *iommu);
474
475 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
476 int dmar_disabled = 0;
477 #else
478 int dmar_disabled = 1;
479 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
480
481 int intel_iommu_enabled = 0;
482 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
483
484 static int dmar_map_gfx = 1;
485 static int dmar_forcedac;
486 static int intel_iommu_strict;
487 static int intel_iommu_superpage = 1;
488 static int intel_iommu_ecs = 1;
489
490 /* We only actually use ECS when PASID support (on the new bit 40)
491 * is also advertised. Some early implementations — the ones with
492 * PASID support on bit 28 — have issues even when we *only* use
493 * extended root/context tables. */
494 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
495 ecap_pasid(iommu->ecap))
496
497 int intel_iommu_gfx_mapped;
498 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
499
500 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
501 static DEFINE_SPINLOCK(device_domain_lock);
502 static LIST_HEAD(device_domain_list);
503
504 static const struct iommu_ops intel_iommu_ops;
505
506 static bool translation_pre_enabled(struct intel_iommu *iommu)
507 {
508 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
509 }
510
511 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
512 {
513 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
514 }
515
516 static void init_translation_status(struct intel_iommu *iommu)
517 {
518 u32 gsts;
519
520 gsts = readl(iommu->reg + DMAR_GSTS_REG);
521 if (gsts & DMA_GSTS_TES)
522 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
523 }
524
525 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
526 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
527 {
528 return container_of(dom, struct dmar_domain, domain);
529 }
530
531 static int __init intel_iommu_setup(char *str)
532 {
533 if (!str)
534 return -EINVAL;
535 while (*str) {
536 if (!strncmp(str, "on", 2)) {
537 dmar_disabled = 0;
538 pr_info("IOMMU enabled\n");
539 } else if (!strncmp(str, "off", 3)) {
540 dmar_disabled = 1;
541 pr_info("IOMMU disabled\n");
542 } else if (!strncmp(str, "igfx_off", 8)) {
543 dmar_map_gfx = 0;
544 pr_info("Disable GFX device mapping\n");
545 } else if (!strncmp(str, "forcedac", 8)) {
546 pr_info("Forcing DAC for PCI devices\n");
547 dmar_forcedac = 1;
548 } else if (!strncmp(str, "strict", 6)) {
549 pr_info("Disable batched IOTLB flush\n");
550 intel_iommu_strict = 1;
551 } else if (!strncmp(str, "sp_off", 6)) {
552 pr_info("Disable supported super page\n");
553 intel_iommu_superpage = 0;
554 } else if (!strncmp(str, "ecs_off", 7)) {
555 printk(KERN_INFO
556 "Intel-IOMMU: disable extended context table support\n");
557 intel_iommu_ecs = 0;
558 }
559
560 str += strcspn(str, ",");
561 while (*str == ',')
562 str++;
563 }
564 return 0;
565 }
566 __setup("intel_iommu=", intel_iommu_setup);
567
568 static struct kmem_cache *iommu_domain_cache;
569 static struct kmem_cache *iommu_devinfo_cache;
570
571 static inline void *alloc_pgtable_page(int node)
572 {
573 struct page *page;
574 void *vaddr = NULL;
575
576 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
577 if (page)
578 vaddr = page_address(page);
579 return vaddr;
580 }
581
582 static inline void free_pgtable_page(void *vaddr)
583 {
584 free_page((unsigned long)vaddr);
585 }
586
587 static inline void *alloc_domain_mem(void)
588 {
589 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
590 }
591
592 static void free_domain_mem(void *vaddr)
593 {
594 kmem_cache_free(iommu_domain_cache, vaddr);
595 }
596
597 static inline void * alloc_devinfo_mem(void)
598 {
599 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
600 }
601
602 static inline void free_devinfo_mem(void *vaddr)
603 {
604 kmem_cache_free(iommu_devinfo_cache, vaddr);
605 }
606
607 static inline int domain_type_is_vm(struct dmar_domain *domain)
608 {
609 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
610 }
611
612 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
613 {
614 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
615 DOMAIN_FLAG_STATIC_IDENTITY);
616 }
617
618 static inline int domain_pfn_supported(struct dmar_domain *domain,
619 unsigned long pfn)
620 {
621 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
622
623 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
624 }
625
626 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
627 {
628 unsigned long sagaw;
629 int agaw = -1;
630
631 sagaw = cap_sagaw(iommu->cap);
632 for (agaw = width_to_agaw(max_gaw);
633 agaw >= 0; agaw--) {
634 if (test_bit(agaw, &sagaw))
635 break;
636 }
637
638 return agaw;
639 }
640
641 /*
642 * Calculate max SAGAW for each iommu.
643 */
644 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
645 {
646 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
647 }
648
649 /*
650 * calculate agaw for each iommu.
651 * "SAGAW" may be different across iommus, use a default agaw, and
652 * get a supported less agaw for iommus that don't support the default agaw.
653 */
654 int iommu_calculate_agaw(struct intel_iommu *iommu)
655 {
656 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
657 }
658
659 /* This functionin only returns single iommu in a domain */
660 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
661 {
662 int iommu_id;
663
664 /* si_domain and vm domain should not get here. */
665 BUG_ON(domain_type_is_vm_or_si(domain));
666 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
667 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
668 return NULL;
669
670 return g_iommus[iommu_id];
671 }
672
673 static void domain_update_iommu_coherency(struct dmar_domain *domain)
674 {
675 struct dmar_drhd_unit *drhd;
676 struct intel_iommu *iommu;
677 bool found = false;
678 int i;
679
680 domain->iommu_coherency = 1;
681
682 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
683 found = true;
684 if (!ecap_coherent(g_iommus[i]->ecap)) {
685 domain->iommu_coherency = 0;
686 break;
687 }
688 }
689 if (found)
690 return;
691
692 /* No hardware attached; use lowest common denominator */
693 rcu_read_lock();
694 for_each_active_iommu(iommu, drhd) {
695 if (!ecap_coherent(iommu->ecap)) {
696 domain->iommu_coherency = 0;
697 break;
698 }
699 }
700 rcu_read_unlock();
701 }
702
703 static int domain_update_iommu_snooping(struct intel_iommu *skip)
704 {
705 struct dmar_drhd_unit *drhd;
706 struct intel_iommu *iommu;
707 int ret = 1;
708
709 rcu_read_lock();
710 for_each_active_iommu(iommu, drhd) {
711 if (iommu != skip) {
712 if (!ecap_sc_support(iommu->ecap)) {
713 ret = 0;
714 break;
715 }
716 }
717 }
718 rcu_read_unlock();
719
720 return ret;
721 }
722
723 static int domain_update_iommu_superpage(struct intel_iommu *skip)
724 {
725 struct dmar_drhd_unit *drhd;
726 struct intel_iommu *iommu;
727 int mask = 0xf;
728
729 if (!intel_iommu_superpage) {
730 return 0;
731 }
732
733 /* set iommu_superpage to the smallest common denominator */
734 rcu_read_lock();
735 for_each_active_iommu(iommu, drhd) {
736 if (iommu != skip) {
737 mask &= cap_super_page_val(iommu->cap);
738 if (!mask)
739 break;
740 }
741 }
742 rcu_read_unlock();
743
744 return fls(mask);
745 }
746
747 /* Some capabilities may be different across iommus */
748 static void domain_update_iommu_cap(struct dmar_domain *domain)
749 {
750 domain_update_iommu_coherency(domain);
751 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
752 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
753 }
754
755 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
756 u8 bus, u8 devfn, int alloc)
757 {
758 struct root_entry *root = &iommu->root_entry[bus];
759 struct context_entry *context;
760 u64 *entry;
761
762 if (ecs_enabled(iommu)) {
763 if (devfn >= 0x80) {
764 devfn -= 0x80;
765 entry = &root->hi;
766 }
767 devfn *= 2;
768 }
769 entry = &root->lo;
770 if (*entry & 1)
771 context = phys_to_virt(*entry & VTD_PAGE_MASK);
772 else {
773 unsigned long phy_addr;
774 if (!alloc)
775 return NULL;
776
777 context = alloc_pgtable_page(iommu->node);
778 if (!context)
779 return NULL;
780
781 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
782 phy_addr = virt_to_phys((void *)context);
783 *entry = phy_addr | 1;
784 __iommu_flush_cache(iommu, entry, sizeof(*entry));
785 }
786 return &context[devfn];
787 }
788
789 static int iommu_dummy(struct device *dev)
790 {
791 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
792 }
793
794 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
795 {
796 struct dmar_drhd_unit *drhd = NULL;
797 struct intel_iommu *iommu;
798 struct device *tmp;
799 struct pci_dev *ptmp, *pdev = NULL;
800 u16 segment = 0;
801 int i;
802
803 if (iommu_dummy(dev))
804 return NULL;
805
806 if (dev_is_pci(dev)) {
807 pdev = to_pci_dev(dev);
808 segment = pci_domain_nr(pdev->bus);
809 } else if (has_acpi_companion(dev))
810 dev = &ACPI_COMPANION(dev)->dev;
811
812 rcu_read_lock();
813 for_each_active_iommu(iommu, drhd) {
814 if (pdev && segment != drhd->segment)
815 continue;
816
817 for_each_active_dev_scope(drhd->devices,
818 drhd->devices_cnt, i, tmp) {
819 if (tmp == dev) {
820 *bus = drhd->devices[i].bus;
821 *devfn = drhd->devices[i].devfn;
822 goto out;
823 }
824
825 if (!pdev || !dev_is_pci(tmp))
826 continue;
827
828 ptmp = to_pci_dev(tmp);
829 if (ptmp->subordinate &&
830 ptmp->subordinate->number <= pdev->bus->number &&
831 ptmp->subordinate->busn_res.end >= pdev->bus->number)
832 goto got_pdev;
833 }
834
835 if (pdev && drhd->include_all) {
836 got_pdev:
837 *bus = pdev->bus->number;
838 *devfn = pdev->devfn;
839 goto out;
840 }
841 }
842 iommu = NULL;
843 out:
844 rcu_read_unlock();
845
846 return iommu;
847 }
848
849 static void domain_flush_cache(struct dmar_domain *domain,
850 void *addr, int size)
851 {
852 if (!domain->iommu_coherency)
853 clflush_cache_range(addr, size);
854 }
855
856 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
857 {
858 struct context_entry *context;
859 int ret = 0;
860 unsigned long flags;
861
862 spin_lock_irqsave(&iommu->lock, flags);
863 context = iommu_context_addr(iommu, bus, devfn, 0);
864 if (context)
865 ret = context_present(context);
866 spin_unlock_irqrestore(&iommu->lock, flags);
867 return ret;
868 }
869
870 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
871 {
872 struct context_entry *context;
873 unsigned long flags;
874
875 spin_lock_irqsave(&iommu->lock, flags);
876 context = iommu_context_addr(iommu, bus, devfn, 0);
877 if (context) {
878 context_clear_entry(context);
879 __iommu_flush_cache(iommu, context, sizeof(*context));
880 }
881 spin_unlock_irqrestore(&iommu->lock, flags);
882 }
883
884 static void free_context_table(struct intel_iommu *iommu)
885 {
886 int i;
887 unsigned long flags;
888 struct context_entry *context;
889
890 spin_lock_irqsave(&iommu->lock, flags);
891 if (!iommu->root_entry) {
892 goto out;
893 }
894 for (i = 0; i < ROOT_ENTRY_NR; i++) {
895 context = iommu_context_addr(iommu, i, 0, 0);
896 if (context)
897 free_pgtable_page(context);
898
899 if (!ecs_enabled(iommu))
900 continue;
901
902 context = iommu_context_addr(iommu, i, 0x80, 0);
903 if (context)
904 free_pgtable_page(context);
905
906 }
907 free_pgtable_page(iommu->root_entry);
908 iommu->root_entry = NULL;
909 out:
910 spin_unlock_irqrestore(&iommu->lock, flags);
911 }
912
913 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
914 unsigned long pfn, int *target_level)
915 {
916 struct dma_pte *parent, *pte = NULL;
917 int level = agaw_to_level(domain->agaw);
918 int offset;
919
920 BUG_ON(!domain->pgd);
921
922 if (!domain_pfn_supported(domain, pfn))
923 /* Address beyond IOMMU's addressing capabilities. */
924 return NULL;
925
926 parent = domain->pgd;
927
928 while (1) {
929 void *tmp_page;
930
931 offset = pfn_level_offset(pfn, level);
932 pte = &parent[offset];
933 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
934 break;
935 if (level == *target_level)
936 break;
937
938 if (!dma_pte_present(pte)) {
939 uint64_t pteval;
940
941 tmp_page = alloc_pgtable_page(domain->nid);
942
943 if (!tmp_page)
944 return NULL;
945
946 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
947 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
948 if (cmpxchg64(&pte->val, 0ULL, pteval))
949 /* Someone else set it while we were thinking; use theirs. */
950 free_pgtable_page(tmp_page);
951 else
952 domain_flush_cache(domain, pte, sizeof(*pte));
953 }
954 if (level == 1)
955 break;
956
957 parent = phys_to_virt(dma_pte_addr(pte));
958 level--;
959 }
960
961 if (!*target_level)
962 *target_level = level;
963
964 return pte;
965 }
966
967
968 /* return address's pte at specific level */
969 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
970 unsigned long pfn,
971 int level, int *large_page)
972 {
973 struct dma_pte *parent, *pte = NULL;
974 int total = agaw_to_level(domain->agaw);
975 int offset;
976
977 parent = domain->pgd;
978 while (level <= total) {
979 offset = pfn_level_offset(pfn, total);
980 pte = &parent[offset];
981 if (level == total)
982 return pte;
983
984 if (!dma_pte_present(pte)) {
985 *large_page = total;
986 break;
987 }
988
989 if (dma_pte_superpage(pte)) {
990 *large_page = total;
991 return pte;
992 }
993
994 parent = phys_to_virt(dma_pte_addr(pte));
995 total--;
996 }
997 return NULL;
998 }
999
1000 /* clear last level pte, a tlb flush should be followed */
1001 static void dma_pte_clear_range(struct dmar_domain *domain,
1002 unsigned long start_pfn,
1003 unsigned long last_pfn)
1004 {
1005 unsigned int large_page = 1;
1006 struct dma_pte *first_pte, *pte;
1007
1008 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1009 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1010 BUG_ON(start_pfn > last_pfn);
1011
1012 /* we don't need lock here; nobody else touches the iova range */
1013 do {
1014 large_page = 1;
1015 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1016 if (!pte) {
1017 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1018 continue;
1019 }
1020 do {
1021 dma_clear_pte(pte);
1022 start_pfn += lvl_to_nr_pages(large_page);
1023 pte++;
1024 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1025
1026 domain_flush_cache(domain, first_pte,
1027 (void *)pte - (void *)first_pte);
1028
1029 } while (start_pfn && start_pfn <= last_pfn);
1030 }
1031
1032 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1033 struct dma_pte *pte, unsigned long pfn,
1034 unsigned long start_pfn, unsigned long last_pfn)
1035 {
1036 pfn = max(start_pfn, pfn);
1037 pte = &pte[pfn_level_offset(pfn, level)];
1038
1039 do {
1040 unsigned long level_pfn;
1041 struct dma_pte *level_pte;
1042
1043 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1044 goto next;
1045
1046 level_pfn = pfn & level_mask(level - 1);
1047 level_pte = phys_to_virt(dma_pte_addr(pte));
1048
1049 if (level > 2)
1050 dma_pte_free_level(domain, level - 1, level_pte,
1051 level_pfn, start_pfn, last_pfn);
1052
1053 /* If range covers entire pagetable, free it */
1054 if (!(start_pfn > level_pfn ||
1055 last_pfn < level_pfn + level_size(level) - 1)) {
1056 dma_clear_pte(pte);
1057 domain_flush_cache(domain, pte, sizeof(*pte));
1058 free_pgtable_page(level_pte);
1059 }
1060 next:
1061 pfn += level_size(level);
1062 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1063 }
1064
1065 /* free page table pages. last level pte should already be cleared */
1066 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1067 unsigned long start_pfn,
1068 unsigned long last_pfn)
1069 {
1070 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1071 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1072 BUG_ON(start_pfn > last_pfn);
1073
1074 dma_pte_clear_range(domain, start_pfn, last_pfn);
1075
1076 /* We don't need lock here; nobody else touches the iova range */
1077 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1078 domain->pgd, 0, start_pfn, last_pfn);
1079
1080 /* free pgd */
1081 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1082 free_pgtable_page(domain->pgd);
1083 domain->pgd = NULL;
1084 }
1085 }
1086
1087 /* When a page at a given level is being unlinked from its parent, we don't
1088 need to *modify* it at all. All we need to do is make a list of all the
1089 pages which can be freed just as soon as we've flushed the IOTLB and we
1090 know the hardware page-walk will no longer touch them.
1091 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1092 be freed. */
1093 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1094 int level, struct dma_pte *pte,
1095 struct page *freelist)
1096 {
1097 struct page *pg;
1098
1099 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1100 pg->freelist = freelist;
1101 freelist = pg;
1102
1103 if (level == 1)
1104 return freelist;
1105
1106 pte = page_address(pg);
1107 do {
1108 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1109 freelist = dma_pte_list_pagetables(domain, level - 1,
1110 pte, freelist);
1111 pte++;
1112 } while (!first_pte_in_page(pte));
1113
1114 return freelist;
1115 }
1116
1117 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1118 struct dma_pte *pte, unsigned long pfn,
1119 unsigned long start_pfn,
1120 unsigned long last_pfn,
1121 struct page *freelist)
1122 {
1123 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1124
1125 pfn = max(start_pfn, pfn);
1126 pte = &pte[pfn_level_offset(pfn, level)];
1127
1128 do {
1129 unsigned long level_pfn;
1130
1131 if (!dma_pte_present(pte))
1132 goto next;
1133
1134 level_pfn = pfn & level_mask(level);
1135
1136 /* If range covers entire pagetable, free it */
1137 if (start_pfn <= level_pfn &&
1138 last_pfn >= level_pfn + level_size(level) - 1) {
1139 /* These suborbinate page tables are going away entirely. Don't
1140 bother to clear them; we're just going to *free* them. */
1141 if (level > 1 && !dma_pte_superpage(pte))
1142 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1143
1144 dma_clear_pte(pte);
1145 if (!first_pte)
1146 first_pte = pte;
1147 last_pte = pte;
1148 } else if (level > 1) {
1149 /* Recurse down into a level that isn't *entirely* obsolete */
1150 freelist = dma_pte_clear_level(domain, level - 1,
1151 phys_to_virt(dma_pte_addr(pte)),
1152 level_pfn, start_pfn, last_pfn,
1153 freelist);
1154 }
1155 next:
1156 pfn += level_size(level);
1157 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1158
1159 if (first_pte)
1160 domain_flush_cache(domain, first_pte,
1161 (void *)++last_pte - (void *)first_pte);
1162
1163 return freelist;
1164 }
1165
1166 /* We can't just free the pages because the IOMMU may still be walking
1167 the page tables, and may have cached the intermediate levels. The
1168 pages can only be freed after the IOTLB flush has been done. */
1169 struct page *domain_unmap(struct dmar_domain *domain,
1170 unsigned long start_pfn,
1171 unsigned long last_pfn)
1172 {
1173 struct page *freelist = NULL;
1174
1175 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1176 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1177 BUG_ON(start_pfn > last_pfn);
1178
1179 /* we don't need lock here; nobody else touches the iova range */
1180 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1181 domain->pgd, 0, start_pfn, last_pfn, NULL);
1182
1183 /* free pgd */
1184 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1185 struct page *pgd_page = virt_to_page(domain->pgd);
1186 pgd_page->freelist = freelist;
1187 freelist = pgd_page;
1188
1189 domain->pgd = NULL;
1190 }
1191
1192 return freelist;
1193 }
1194
1195 void dma_free_pagelist(struct page *freelist)
1196 {
1197 struct page *pg;
1198
1199 while ((pg = freelist)) {
1200 freelist = pg->freelist;
1201 free_pgtable_page(page_address(pg));
1202 }
1203 }
1204
1205 /* iommu handling */
1206 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1207 {
1208 struct root_entry *root;
1209 unsigned long flags;
1210
1211 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1212 if (!root) {
1213 pr_err("Allocating root entry for %s failed\n",
1214 iommu->name);
1215 return -ENOMEM;
1216 }
1217
1218 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1219
1220 spin_lock_irqsave(&iommu->lock, flags);
1221 iommu->root_entry = root;
1222 spin_unlock_irqrestore(&iommu->lock, flags);
1223
1224 return 0;
1225 }
1226
1227 static void iommu_set_root_entry(struct intel_iommu *iommu)
1228 {
1229 u64 addr;
1230 u32 sts;
1231 unsigned long flag;
1232
1233 addr = virt_to_phys(iommu->root_entry);
1234 if (ecs_enabled(iommu))
1235 addr |= DMA_RTADDR_RTT;
1236
1237 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1238 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1239
1240 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1241
1242 /* Make sure hardware complete it */
1243 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1244 readl, (sts & DMA_GSTS_RTPS), sts);
1245
1246 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1247 }
1248
1249 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1250 {
1251 u32 val;
1252 unsigned long flag;
1253
1254 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1255 return;
1256
1257 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1258 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1259
1260 /* Make sure hardware complete it */
1261 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1262 readl, (!(val & DMA_GSTS_WBFS)), val);
1263
1264 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1265 }
1266
1267 /* return value determine if we need a write buffer flush */
1268 static void __iommu_flush_context(struct intel_iommu *iommu,
1269 u16 did, u16 source_id, u8 function_mask,
1270 u64 type)
1271 {
1272 u64 val = 0;
1273 unsigned long flag;
1274
1275 switch (type) {
1276 case DMA_CCMD_GLOBAL_INVL:
1277 val = DMA_CCMD_GLOBAL_INVL;
1278 break;
1279 case DMA_CCMD_DOMAIN_INVL:
1280 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1281 break;
1282 case DMA_CCMD_DEVICE_INVL:
1283 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1284 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1285 break;
1286 default:
1287 BUG();
1288 }
1289 val |= DMA_CCMD_ICC;
1290
1291 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1292 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1293
1294 /* Make sure hardware complete it */
1295 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1296 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1297
1298 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1299 }
1300
1301 /* return value determine if we need a write buffer flush */
1302 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1303 u64 addr, unsigned int size_order, u64 type)
1304 {
1305 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1306 u64 val = 0, val_iva = 0;
1307 unsigned long flag;
1308
1309 switch (type) {
1310 case DMA_TLB_GLOBAL_FLUSH:
1311 /* global flush doesn't need set IVA_REG */
1312 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1313 break;
1314 case DMA_TLB_DSI_FLUSH:
1315 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1316 break;
1317 case DMA_TLB_PSI_FLUSH:
1318 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1319 /* IH bit is passed in as part of address */
1320 val_iva = size_order | addr;
1321 break;
1322 default:
1323 BUG();
1324 }
1325 /* Note: set drain read/write */
1326 #if 0
1327 /*
1328 * This is probably to be super secure.. Looks like we can
1329 * ignore it without any impact.
1330 */
1331 if (cap_read_drain(iommu->cap))
1332 val |= DMA_TLB_READ_DRAIN;
1333 #endif
1334 if (cap_write_drain(iommu->cap))
1335 val |= DMA_TLB_WRITE_DRAIN;
1336
1337 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1338 /* Note: Only uses first TLB reg currently */
1339 if (val_iva)
1340 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1341 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1342
1343 /* Make sure hardware complete it */
1344 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1345 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1346
1347 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1348
1349 /* check IOTLB invalidation granularity */
1350 if (DMA_TLB_IAIG(val) == 0)
1351 pr_err("Flush IOTLB failed\n");
1352 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1353 pr_debug("TLB flush request %Lx, actual %Lx\n",
1354 (unsigned long long)DMA_TLB_IIRG(type),
1355 (unsigned long long)DMA_TLB_IAIG(val));
1356 }
1357
1358 static struct device_domain_info *
1359 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1360 u8 bus, u8 devfn)
1361 {
1362 bool found = false;
1363 unsigned long flags;
1364 struct device_domain_info *info;
1365 struct pci_dev *pdev;
1366
1367 if (!ecap_dev_iotlb_support(iommu->ecap))
1368 return NULL;
1369
1370 if (!iommu->qi)
1371 return NULL;
1372
1373 spin_lock_irqsave(&device_domain_lock, flags);
1374 list_for_each_entry(info, &domain->devices, link)
1375 if (info->iommu == iommu && info->bus == bus &&
1376 info->devfn == devfn) {
1377 found = true;
1378 break;
1379 }
1380 spin_unlock_irqrestore(&device_domain_lock, flags);
1381
1382 if (!found || !info->dev || !dev_is_pci(info->dev))
1383 return NULL;
1384
1385 pdev = to_pci_dev(info->dev);
1386
1387 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1388 return NULL;
1389
1390 if (!dmar_find_matched_atsr_unit(pdev))
1391 return NULL;
1392
1393 return info;
1394 }
1395
1396 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1397 {
1398 struct pci_dev *pdev;
1399
1400 if (!info || !dev_is_pci(info->dev))
1401 return;
1402
1403 pdev = to_pci_dev(info->dev);
1404 if (pci_enable_ats(pdev, VTD_PAGE_SHIFT))
1405 return;
1406
1407 info->ats.enabled = 1;
1408 info->ats.qdep = pci_ats_queue_depth(pdev);
1409 }
1410
1411 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1412 {
1413 if (!info->ats.enabled)
1414 return;
1415
1416 pci_disable_ats(to_pci_dev(info->dev));
1417 info->ats.enabled = 0;
1418 }
1419
1420 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1421 u64 addr, unsigned mask)
1422 {
1423 u16 sid, qdep;
1424 unsigned long flags;
1425 struct device_domain_info *info;
1426
1427 spin_lock_irqsave(&device_domain_lock, flags);
1428 list_for_each_entry(info, &domain->devices, link) {
1429 if (!info->ats.enabled)
1430 continue;
1431
1432 sid = info->bus << 8 | info->devfn;
1433 qdep = info->ats.qdep;
1434 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1435 }
1436 spin_unlock_irqrestore(&device_domain_lock, flags);
1437 }
1438
1439 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1440 unsigned long pfn, unsigned int pages, int ih, int map)
1441 {
1442 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1443 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1444
1445 BUG_ON(pages == 0);
1446
1447 if (ih)
1448 ih = 1 << 6;
1449 /*
1450 * Fallback to domain selective flush if no PSI support or the size is
1451 * too big.
1452 * PSI requires page size to be 2 ^ x, and the base address is naturally
1453 * aligned to the size
1454 */
1455 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1456 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1457 DMA_TLB_DSI_FLUSH);
1458 else
1459 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1460 DMA_TLB_PSI_FLUSH);
1461
1462 /*
1463 * In caching mode, changes of pages from non-present to present require
1464 * flush. However, device IOTLB doesn't need to be flushed in this case.
1465 */
1466 if (!cap_caching_mode(iommu->cap) || !map)
1467 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1468 }
1469
1470 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1471 {
1472 u32 pmen;
1473 unsigned long flags;
1474
1475 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1476 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1477 pmen &= ~DMA_PMEN_EPM;
1478 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1479
1480 /* wait for the protected region status bit to clear */
1481 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1482 readl, !(pmen & DMA_PMEN_PRS), pmen);
1483
1484 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1485 }
1486
1487 static void iommu_enable_translation(struct intel_iommu *iommu)
1488 {
1489 u32 sts;
1490 unsigned long flags;
1491
1492 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1493 iommu->gcmd |= DMA_GCMD_TE;
1494 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1495
1496 /* Make sure hardware complete it */
1497 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1498 readl, (sts & DMA_GSTS_TES), sts);
1499
1500 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1501 }
1502
1503 static void iommu_disable_translation(struct intel_iommu *iommu)
1504 {
1505 u32 sts;
1506 unsigned long flag;
1507
1508 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1509 iommu->gcmd &= ~DMA_GCMD_TE;
1510 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1511
1512 /* Make sure hardware complete it */
1513 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1514 readl, (!(sts & DMA_GSTS_TES)), sts);
1515
1516 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1517 }
1518
1519
1520 static int iommu_init_domains(struct intel_iommu *iommu)
1521 {
1522 unsigned long ndomains;
1523 unsigned long nlongs;
1524
1525 ndomains = cap_ndoms(iommu->cap);
1526 pr_debug("%s: Number of Domains supported <%ld>\n",
1527 iommu->name, ndomains);
1528 nlongs = BITS_TO_LONGS(ndomains);
1529
1530 spin_lock_init(&iommu->lock);
1531
1532 /* TBD: there might be 64K domains,
1533 * consider other allocation for future chip
1534 */
1535 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1536 if (!iommu->domain_ids) {
1537 pr_err("%s: Allocating domain id array failed\n",
1538 iommu->name);
1539 return -ENOMEM;
1540 }
1541 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1542 GFP_KERNEL);
1543 if (!iommu->domains) {
1544 pr_err("%s: Allocating domain array failed\n",
1545 iommu->name);
1546 kfree(iommu->domain_ids);
1547 iommu->domain_ids = NULL;
1548 return -ENOMEM;
1549 }
1550
1551 /*
1552 * if Caching mode is set, then invalid translations are tagged
1553 * with domainid 0. Hence we need to pre-allocate it.
1554 */
1555 if (cap_caching_mode(iommu->cap))
1556 set_bit(0, iommu->domain_ids);
1557 return 0;
1558 }
1559
1560 static void disable_dmar_iommu(struct intel_iommu *iommu)
1561 {
1562 struct dmar_domain *domain;
1563 int i;
1564
1565 if ((iommu->domains) && (iommu->domain_ids)) {
1566 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1567 /*
1568 * Domain id 0 is reserved for invalid translation
1569 * if hardware supports caching mode.
1570 */
1571 if (cap_caching_mode(iommu->cap) && i == 0)
1572 continue;
1573
1574 domain = iommu->domains[i];
1575 clear_bit(i, iommu->domain_ids);
1576 if (domain_detach_iommu(domain, iommu) == 0 &&
1577 !domain_type_is_vm(domain))
1578 domain_exit(domain);
1579 }
1580 }
1581
1582 if (iommu->gcmd & DMA_GCMD_TE)
1583 iommu_disable_translation(iommu);
1584 }
1585
1586 static void free_dmar_iommu(struct intel_iommu *iommu)
1587 {
1588 if ((iommu->domains) && (iommu->domain_ids)) {
1589 kfree(iommu->domains);
1590 kfree(iommu->domain_ids);
1591 iommu->domains = NULL;
1592 iommu->domain_ids = NULL;
1593 }
1594
1595 g_iommus[iommu->seq_id] = NULL;
1596
1597 /* free context mapping */
1598 free_context_table(iommu);
1599 }
1600
1601 static struct dmar_domain *alloc_domain(int flags)
1602 {
1603 /* domain id for virtual machine, it won't be set in context */
1604 static atomic_t vm_domid = ATOMIC_INIT(0);
1605 struct dmar_domain *domain;
1606
1607 domain = alloc_domain_mem();
1608 if (!domain)
1609 return NULL;
1610
1611 memset(domain, 0, sizeof(*domain));
1612 domain->nid = -1;
1613 domain->flags = flags;
1614 spin_lock_init(&domain->iommu_lock);
1615 INIT_LIST_HEAD(&domain->devices);
1616 if (flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1617 domain->id = atomic_inc_return(&vm_domid);
1618
1619 return domain;
1620 }
1621
1622 static int __iommu_attach_domain(struct dmar_domain *domain,
1623 struct intel_iommu *iommu)
1624 {
1625 int num;
1626 unsigned long ndomains;
1627
1628 ndomains = cap_ndoms(iommu->cap);
1629 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1630 if (num < ndomains) {
1631 set_bit(num, iommu->domain_ids);
1632 iommu->domains[num] = domain;
1633 } else {
1634 num = -ENOSPC;
1635 }
1636
1637 return num;
1638 }
1639
1640 static int iommu_attach_domain(struct dmar_domain *domain,
1641 struct intel_iommu *iommu)
1642 {
1643 int num;
1644 unsigned long flags;
1645
1646 spin_lock_irqsave(&iommu->lock, flags);
1647 num = __iommu_attach_domain(domain, iommu);
1648 spin_unlock_irqrestore(&iommu->lock, flags);
1649 if (num < 0)
1650 pr_err("%s: No free domain ids\n", iommu->name);
1651
1652 return num;
1653 }
1654
1655 static int iommu_attach_vm_domain(struct dmar_domain *domain,
1656 struct intel_iommu *iommu)
1657 {
1658 int num;
1659 unsigned long ndomains;
1660
1661 ndomains = cap_ndoms(iommu->cap);
1662 for_each_set_bit(num, iommu->domain_ids, ndomains)
1663 if (iommu->domains[num] == domain)
1664 return num;
1665
1666 return __iommu_attach_domain(domain, iommu);
1667 }
1668
1669 static void iommu_detach_domain(struct dmar_domain *domain,
1670 struct intel_iommu *iommu)
1671 {
1672 unsigned long flags;
1673 int num, ndomains;
1674
1675 spin_lock_irqsave(&iommu->lock, flags);
1676 if (domain_type_is_vm_or_si(domain)) {
1677 ndomains = cap_ndoms(iommu->cap);
1678 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1679 if (iommu->domains[num] == domain) {
1680 clear_bit(num, iommu->domain_ids);
1681 iommu->domains[num] = NULL;
1682 break;
1683 }
1684 }
1685 } else {
1686 clear_bit(domain->id, iommu->domain_ids);
1687 iommu->domains[domain->id] = NULL;
1688 }
1689 spin_unlock_irqrestore(&iommu->lock, flags);
1690 }
1691
1692 static void domain_attach_iommu(struct dmar_domain *domain,
1693 struct intel_iommu *iommu)
1694 {
1695 unsigned long flags;
1696
1697 spin_lock_irqsave(&domain->iommu_lock, flags);
1698 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1699 domain->iommu_count++;
1700 if (domain->iommu_count == 1)
1701 domain->nid = iommu->node;
1702 domain_update_iommu_cap(domain);
1703 }
1704 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1705 }
1706
1707 static int domain_detach_iommu(struct dmar_domain *domain,
1708 struct intel_iommu *iommu)
1709 {
1710 unsigned long flags;
1711 int count = INT_MAX;
1712
1713 spin_lock_irqsave(&domain->iommu_lock, flags);
1714 if (test_and_clear_bit(iommu->seq_id, domain->iommu_bmp)) {
1715 count = --domain->iommu_count;
1716 domain_update_iommu_cap(domain);
1717 }
1718 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1719
1720 return count;
1721 }
1722
1723 static struct iova_domain reserved_iova_list;
1724 static struct lock_class_key reserved_rbtree_key;
1725
1726 static int dmar_init_reserved_ranges(void)
1727 {
1728 struct pci_dev *pdev = NULL;
1729 struct iova *iova;
1730 int i;
1731
1732 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1733 DMA_32BIT_PFN);
1734
1735 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1736 &reserved_rbtree_key);
1737
1738 /* IOAPIC ranges shouldn't be accessed by DMA */
1739 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1740 IOVA_PFN(IOAPIC_RANGE_END));
1741 if (!iova) {
1742 pr_err("Reserve IOAPIC range failed\n");
1743 return -ENODEV;
1744 }
1745
1746 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1747 for_each_pci_dev(pdev) {
1748 struct resource *r;
1749
1750 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1751 r = &pdev->resource[i];
1752 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1753 continue;
1754 iova = reserve_iova(&reserved_iova_list,
1755 IOVA_PFN(r->start),
1756 IOVA_PFN(r->end));
1757 if (!iova) {
1758 pr_err("Reserve iova failed\n");
1759 return -ENODEV;
1760 }
1761 }
1762 }
1763 return 0;
1764 }
1765
1766 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1767 {
1768 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1769 }
1770
1771 static inline int guestwidth_to_adjustwidth(int gaw)
1772 {
1773 int agaw;
1774 int r = (gaw - 12) % 9;
1775
1776 if (r == 0)
1777 agaw = gaw;
1778 else
1779 agaw = gaw + 9 - r;
1780 if (agaw > 64)
1781 agaw = 64;
1782 return agaw;
1783 }
1784
1785 static int domain_init(struct dmar_domain *domain, int guest_width)
1786 {
1787 struct intel_iommu *iommu;
1788 int adjust_width, agaw;
1789 unsigned long sagaw;
1790
1791 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1792 DMA_32BIT_PFN);
1793 domain_reserve_special_ranges(domain);
1794
1795 /* calculate AGAW */
1796 iommu = domain_get_iommu(domain);
1797 if (guest_width > cap_mgaw(iommu->cap))
1798 guest_width = cap_mgaw(iommu->cap);
1799 domain->gaw = guest_width;
1800 adjust_width = guestwidth_to_adjustwidth(guest_width);
1801 agaw = width_to_agaw(adjust_width);
1802 sagaw = cap_sagaw(iommu->cap);
1803 if (!test_bit(agaw, &sagaw)) {
1804 /* hardware doesn't support it, choose a bigger one */
1805 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1806 agaw = find_next_bit(&sagaw, 5, agaw);
1807 if (agaw >= 5)
1808 return -ENODEV;
1809 }
1810 domain->agaw = agaw;
1811
1812 if (ecap_coherent(iommu->ecap))
1813 domain->iommu_coherency = 1;
1814 else
1815 domain->iommu_coherency = 0;
1816
1817 if (ecap_sc_support(iommu->ecap))
1818 domain->iommu_snooping = 1;
1819 else
1820 domain->iommu_snooping = 0;
1821
1822 if (intel_iommu_superpage)
1823 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1824 else
1825 domain->iommu_superpage = 0;
1826
1827 domain->nid = iommu->node;
1828
1829 /* always allocate the top pgd */
1830 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1831 if (!domain->pgd)
1832 return -ENOMEM;
1833 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1834 return 0;
1835 }
1836
1837 static void domain_exit(struct dmar_domain *domain)
1838 {
1839 struct dmar_drhd_unit *drhd;
1840 struct intel_iommu *iommu;
1841 struct page *freelist = NULL;
1842
1843 /* Domain 0 is reserved, so dont process it */
1844 if (!domain)
1845 return;
1846
1847 /* Flush any lazy unmaps that may reference this domain */
1848 if (!intel_iommu_strict)
1849 flush_unmaps_timeout(0);
1850
1851 /* remove associated devices */
1852 domain_remove_dev_info(domain);
1853
1854 /* destroy iovas */
1855 put_iova_domain(&domain->iovad);
1856
1857 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1858
1859 /* clear attached or cached domains */
1860 rcu_read_lock();
1861 for_each_active_iommu(iommu, drhd)
1862 if (domain_type_is_vm(domain) ||
1863 test_bit(iommu->seq_id, domain->iommu_bmp))
1864 iommu_detach_domain(domain, iommu);
1865 rcu_read_unlock();
1866
1867 dma_free_pagelist(freelist);
1868
1869 free_domain_mem(domain);
1870 }
1871
1872 static int domain_context_mapping_one(struct dmar_domain *domain,
1873 struct intel_iommu *iommu,
1874 u8 bus, u8 devfn, int translation)
1875 {
1876 struct context_entry *context;
1877 unsigned long flags;
1878 struct dma_pte *pgd;
1879 int id;
1880 int agaw;
1881 struct device_domain_info *info = NULL;
1882
1883 pr_debug("Set context mapping for %02x:%02x.%d\n",
1884 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1885
1886 BUG_ON(!domain->pgd);
1887 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1888 translation != CONTEXT_TT_MULTI_LEVEL);
1889
1890 spin_lock_irqsave(&iommu->lock, flags);
1891 context = iommu_context_addr(iommu, bus, devfn, 1);
1892 spin_unlock_irqrestore(&iommu->lock, flags);
1893 if (!context)
1894 return -ENOMEM;
1895 spin_lock_irqsave(&iommu->lock, flags);
1896 if (context_present(context)) {
1897 spin_unlock_irqrestore(&iommu->lock, flags);
1898 return 0;
1899 }
1900
1901 context_clear_entry(context);
1902
1903 id = domain->id;
1904 pgd = domain->pgd;
1905
1906 if (domain_type_is_vm_or_si(domain)) {
1907 if (domain_type_is_vm(domain)) {
1908 id = iommu_attach_vm_domain(domain, iommu);
1909 if (id < 0) {
1910 spin_unlock_irqrestore(&iommu->lock, flags);
1911 pr_err("%s: No free domain ids\n", iommu->name);
1912 return -EFAULT;
1913 }
1914 }
1915
1916 /* Skip top levels of page tables for
1917 * iommu which has less agaw than default.
1918 * Unnecessary for PT mode.
1919 */
1920 if (translation != CONTEXT_TT_PASS_THROUGH) {
1921 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1922 pgd = phys_to_virt(dma_pte_addr(pgd));
1923 if (!dma_pte_present(pgd)) {
1924 spin_unlock_irqrestore(&iommu->lock, flags);
1925 return -ENOMEM;
1926 }
1927 }
1928 }
1929 }
1930
1931 context_set_domain_id(context, id);
1932
1933 if (translation != CONTEXT_TT_PASS_THROUGH) {
1934 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1935 translation = info ? CONTEXT_TT_DEV_IOTLB :
1936 CONTEXT_TT_MULTI_LEVEL;
1937 }
1938 /*
1939 * In pass through mode, AW must be programmed to indicate the largest
1940 * AGAW value supported by hardware. And ASR is ignored by hardware.
1941 */
1942 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1943 context_set_address_width(context, iommu->msagaw);
1944 else {
1945 context_set_address_root(context, virt_to_phys(pgd));
1946 context_set_address_width(context, iommu->agaw);
1947 }
1948
1949 context_set_translation_type(context, translation);
1950 context_set_fault_enable(context);
1951 context_set_present(context);
1952 domain_flush_cache(domain, context, sizeof(*context));
1953
1954 /*
1955 * It's a non-present to present mapping. If hardware doesn't cache
1956 * non-present entry we only need to flush the write-buffer. If the
1957 * _does_ cache non-present entries, then it does so in the special
1958 * domain #0, which we have to flush:
1959 */
1960 if (cap_caching_mode(iommu->cap)) {
1961 iommu->flush.flush_context(iommu, 0,
1962 (((u16)bus) << 8) | devfn,
1963 DMA_CCMD_MASK_NOBIT,
1964 DMA_CCMD_DEVICE_INVL);
1965 iommu->flush.flush_iotlb(iommu, id, 0, 0, DMA_TLB_DSI_FLUSH);
1966 } else {
1967 iommu_flush_write_buffer(iommu);
1968 }
1969 iommu_enable_dev_iotlb(info);
1970 spin_unlock_irqrestore(&iommu->lock, flags);
1971
1972 domain_attach_iommu(domain, iommu);
1973
1974 return 0;
1975 }
1976
1977 struct domain_context_mapping_data {
1978 struct dmar_domain *domain;
1979 struct intel_iommu *iommu;
1980 int translation;
1981 };
1982
1983 static int domain_context_mapping_cb(struct pci_dev *pdev,
1984 u16 alias, void *opaque)
1985 {
1986 struct domain_context_mapping_data *data = opaque;
1987
1988 return domain_context_mapping_one(data->domain, data->iommu,
1989 PCI_BUS_NUM(alias), alias & 0xff,
1990 data->translation);
1991 }
1992
1993 static int
1994 domain_context_mapping(struct dmar_domain *domain, struct device *dev,
1995 int translation)
1996 {
1997 struct intel_iommu *iommu;
1998 u8 bus, devfn;
1999 struct domain_context_mapping_data data;
2000
2001 iommu = device_to_iommu(dev, &bus, &devfn);
2002 if (!iommu)
2003 return -ENODEV;
2004
2005 if (!dev_is_pci(dev))
2006 return domain_context_mapping_one(domain, iommu, bus, devfn,
2007 translation);
2008
2009 data.domain = domain;
2010 data.iommu = iommu;
2011 data.translation = translation;
2012
2013 return pci_for_each_dma_alias(to_pci_dev(dev),
2014 &domain_context_mapping_cb, &data);
2015 }
2016
2017 static int domain_context_mapped_cb(struct pci_dev *pdev,
2018 u16 alias, void *opaque)
2019 {
2020 struct intel_iommu *iommu = opaque;
2021
2022 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2023 }
2024
2025 static int domain_context_mapped(struct device *dev)
2026 {
2027 struct intel_iommu *iommu;
2028 u8 bus, devfn;
2029
2030 iommu = device_to_iommu(dev, &bus, &devfn);
2031 if (!iommu)
2032 return -ENODEV;
2033
2034 if (!dev_is_pci(dev))
2035 return device_context_mapped(iommu, bus, devfn);
2036
2037 return !pci_for_each_dma_alias(to_pci_dev(dev),
2038 domain_context_mapped_cb, iommu);
2039 }
2040
2041 /* Returns a number of VTD pages, but aligned to MM page size */
2042 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2043 size_t size)
2044 {
2045 host_addr &= ~PAGE_MASK;
2046 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2047 }
2048
2049 /* Return largest possible superpage level for a given mapping */
2050 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2051 unsigned long iov_pfn,
2052 unsigned long phy_pfn,
2053 unsigned long pages)
2054 {
2055 int support, level = 1;
2056 unsigned long pfnmerge;
2057
2058 support = domain->iommu_superpage;
2059
2060 /* To use a large page, the virtual *and* physical addresses
2061 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2062 of them will mean we have to use smaller pages. So just
2063 merge them and check both at once. */
2064 pfnmerge = iov_pfn | phy_pfn;
2065
2066 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2067 pages >>= VTD_STRIDE_SHIFT;
2068 if (!pages)
2069 break;
2070 pfnmerge >>= VTD_STRIDE_SHIFT;
2071 level++;
2072 support--;
2073 }
2074 return level;
2075 }
2076
2077 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2078 struct scatterlist *sg, unsigned long phys_pfn,
2079 unsigned long nr_pages, int prot)
2080 {
2081 struct dma_pte *first_pte = NULL, *pte = NULL;
2082 phys_addr_t uninitialized_var(pteval);
2083 unsigned long sg_res = 0;
2084 unsigned int largepage_lvl = 0;
2085 unsigned long lvl_pages = 0;
2086
2087 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2088
2089 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2090 return -EINVAL;
2091
2092 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2093
2094 if (!sg) {
2095 sg_res = nr_pages;
2096 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2097 }
2098
2099 while (nr_pages > 0) {
2100 uint64_t tmp;
2101
2102 if (!sg_res) {
2103 sg_res = aligned_nrpages(sg->offset, sg->length);
2104 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2105 sg->dma_length = sg->length;
2106 pteval = page_to_phys(sg_page(sg)) | prot;
2107 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2108 }
2109
2110 if (!pte) {
2111 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2112
2113 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2114 if (!pte)
2115 return -ENOMEM;
2116 /* It is large page*/
2117 if (largepage_lvl > 1) {
2118 pteval |= DMA_PTE_LARGE_PAGE;
2119 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2120 /*
2121 * Ensure that old small page tables are
2122 * removed to make room for superpage,
2123 * if they exist.
2124 */
2125 dma_pte_free_pagetable(domain, iov_pfn,
2126 iov_pfn + lvl_pages - 1);
2127 } else {
2128 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2129 }
2130
2131 }
2132 /* We don't need lock here, nobody else
2133 * touches the iova range
2134 */
2135 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2136 if (tmp) {
2137 static int dumps = 5;
2138 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2139 iov_pfn, tmp, (unsigned long long)pteval);
2140 if (dumps) {
2141 dumps--;
2142 debug_dma_dump_mappings(NULL);
2143 }
2144 WARN_ON(1);
2145 }
2146
2147 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2148
2149 BUG_ON(nr_pages < lvl_pages);
2150 BUG_ON(sg_res < lvl_pages);
2151
2152 nr_pages -= lvl_pages;
2153 iov_pfn += lvl_pages;
2154 phys_pfn += lvl_pages;
2155 pteval += lvl_pages * VTD_PAGE_SIZE;
2156 sg_res -= lvl_pages;
2157
2158 /* If the next PTE would be the first in a new page, then we
2159 need to flush the cache on the entries we've just written.
2160 And then we'll need to recalculate 'pte', so clear it and
2161 let it get set again in the if (!pte) block above.
2162
2163 If we're done (!nr_pages) we need to flush the cache too.
2164
2165 Also if we've been setting superpages, we may need to
2166 recalculate 'pte' and switch back to smaller pages for the
2167 end of the mapping, if the trailing size is not enough to
2168 use another superpage (i.e. sg_res < lvl_pages). */
2169 pte++;
2170 if (!nr_pages || first_pte_in_page(pte) ||
2171 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2172 domain_flush_cache(domain, first_pte,
2173 (void *)pte - (void *)first_pte);
2174 pte = NULL;
2175 }
2176
2177 if (!sg_res && nr_pages)
2178 sg = sg_next(sg);
2179 }
2180 return 0;
2181 }
2182
2183 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2184 struct scatterlist *sg, unsigned long nr_pages,
2185 int prot)
2186 {
2187 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2188 }
2189
2190 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2191 unsigned long phys_pfn, unsigned long nr_pages,
2192 int prot)
2193 {
2194 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2195 }
2196
2197 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2198 {
2199 if (!iommu)
2200 return;
2201
2202 clear_context_table(iommu, bus, devfn);
2203 iommu->flush.flush_context(iommu, 0, 0, 0,
2204 DMA_CCMD_GLOBAL_INVL);
2205 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2206 }
2207
2208 static inline void unlink_domain_info(struct device_domain_info *info)
2209 {
2210 assert_spin_locked(&device_domain_lock);
2211 list_del(&info->link);
2212 list_del(&info->global);
2213 if (info->dev)
2214 info->dev->archdata.iommu = NULL;
2215 }
2216
2217 static void domain_remove_dev_info(struct dmar_domain *domain)
2218 {
2219 struct device_domain_info *info, *tmp;
2220 unsigned long flags;
2221
2222 spin_lock_irqsave(&device_domain_lock, flags);
2223 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
2224 unlink_domain_info(info);
2225 spin_unlock_irqrestore(&device_domain_lock, flags);
2226
2227 iommu_disable_dev_iotlb(info);
2228 iommu_detach_dev(info->iommu, info->bus, info->devfn);
2229
2230 if (domain_type_is_vm(domain)) {
2231 iommu_detach_dependent_devices(info->iommu, info->dev);
2232 domain_detach_iommu(domain, info->iommu);
2233 }
2234
2235 free_devinfo_mem(info);
2236 spin_lock_irqsave(&device_domain_lock, flags);
2237 }
2238 spin_unlock_irqrestore(&device_domain_lock, flags);
2239 }
2240
2241 /*
2242 * find_domain
2243 * Note: we use struct device->archdata.iommu stores the info
2244 */
2245 static struct dmar_domain *find_domain(struct device *dev)
2246 {
2247 struct device_domain_info *info;
2248
2249 /* No lock here, assumes no domain exit in normal case */
2250 info = dev->archdata.iommu;
2251 if (info)
2252 return info->domain;
2253 return NULL;
2254 }
2255
2256 static inline struct device_domain_info *
2257 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2258 {
2259 struct device_domain_info *info;
2260
2261 list_for_each_entry(info, &device_domain_list, global)
2262 if (info->iommu->segment == segment && info->bus == bus &&
2263 info->devfn == devfn)
2264 return info;
2265
2266 return NULL;
2267 }
2268
2269 static struct dmar_domain *dmar_insert_dev_info(struct intel_iommu *iommu,
2270 int bus, int devfn,
2271 struct device *dev,
2272 struct dmar_domain *domain)
2273 {
2274 struct dmar_domain *found = NULL;
2275 struct device_domain_info *info;
2276 unsigned long flags;
2277
2278 info = alloc_devinfo_mem();
2279 if (!info)
2280 return NULL;
2281
2282 info->bus = bus;
2283 info->devfn = devfn;
2284 info->ats.enabled = 0;
2285 info->ats.qdep = 0;
2286 info->dev = dev;
2287 info->domain = domain;
2288 info->iommu = iommu;
2289
2290 spin_lock_irqsave(&device_domain_lock, flags);
2291 if (dev)
2292 found = find_domain(dev);
2293 else {
2294 struct device_domain_info *info2;
2295 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2296 if (info2)
2297 found = info2->domain;
2298 }
2299 if (found) {
2300 spin_unlock_irqrestore(&device_domain_lock, flags);
2301 free_devinfo_mem(info);
2302 /* Caller must free the original domain */
2303 return found;
2304 }
2305
2306 list_add(&info->link, &domain->devices);
2307 list_add(&info->global, &device_domain_list);
2308 if (dev)
2309 dev->archdata.iommu = info;
2310 spin_unlock_irqrestore(&device_domain_lock, flags);
2311
2312 return domain;
2313 }
2314
2315 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2316 {
2317 *(u16 *)opaque = alias;
2318 return 0;
2319 }
2320
2321 /* domain is initialized */
2322 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2323 {
2324 struct dmar_domain *domain, *tmp;
2325 struct intel_iommu *iommu;
2326 struct device_domain_info *info;
2327 u16 dma_alias;
2328 unsigned long flags;
2329 u8 bus, devfn;
2330
2331 domain = find_domain(dev);
2332 if (domain)
2333 return domain;
2334
2335 iommu = device_to_iommu(dev, &bus, &devfn);
2336 if (!iommu)
2337 return NULL;
2338
2339 if (dev_is_pci(dev)) {
2340 struct pci_dev *pdev = to_pci_dev(dev);
2341
2342 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2343
2344 spin_lock_irqsave(&device_domain_lock, flags);
2345 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2346 PCI_BUS_NUM(dma_alias),
2347 dma_alias & 0xff);
2348 if (info) {
2349 iommu = info->iommu;
2350 domain = info->domain;
2351 }
2352 spin_unlock_irqrestore(&device_domain_lock, flags);
2353
2354 /* DMA alias already has a domain, uses it */
2355 if (info)
2356 goto found_domain;
2357 }
2358
2359 /* Allocate and initialize new domain for the device */
2360 domain = alloc_domain(0);
2361 if (!domain)
2362 return NULL;
2363 domain->id = iommu_attach_domain(domain, iommu);
2364 if (domain->id < 0) {
2365 free_domain_mem(domain);
2366 return NULL;
2367 }
2368 domain_attach_iommu(domain, iommu);
2369 if (domain_init(domain, gaw)) {
2370 domain_exit(domain);
2371 return NULL;
2372 }
2373
2374 /* register PCI DMA alias device */
2375 if (dev_is_pci(dev)) {
2376 tmp = dmar_insert_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2377 dma_alias & 0xff, NULL, domain);
2378
2379 if (!tmp || tmp != domain) {
2380 domain_exit(domain);
2381 domain = tmp;
2382 }
2383
2384 if (!domain)
2385 return NULL;
2386 }
2387
2388 found_domain:
2389 tmp = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2390
2391 if (!tmp || tmp != domain) {
2392 domain_exit(domain);
2393 domain = tmp;
2394 }
2395
2396 return domain;
2397 }
2398
2399 static int iommu_identity_mapping;
2400 #define IDENTMAP_ALL 1
2401 #define IDENTMAP_GFX 2
2402 #define IDENTMAP_AZALIA 4
2403
2404 static int iommu_domain_identity_map(struct dmar_domain *domain,
2405 unsigned long long start,
2406 unsigned long long end)
2407 {
2408 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2409 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2410
2411 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2412 dma_to_mm_pfn(last_vpfn))) {
2413 pr_err("Reserving iova failed\n");
2414 return -ENOMEM;
2415 }
2416
2417 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2418 start, end, domain->id);
2419 /*
2420 * RMRR range might have overlap with physical memory range,
2421 * clear it first
2422 */
2423 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2424
2425 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2426 last_vpfn - first_vpfn + 1,
2427 DMA_PTE_READ|DMA_PTE_WRITE);
2428 }
2429
2430 static int iommu_prepare_identity_map(struct device *dev,
2431 unsigned long long start,
2432 unsigned long long end)
2433 {
2434 struct dmar_domain *domain;
2435 int ret;
2436
2437 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2438 if (!domain)
2439 return -ENOMEM;
2440
2441 /* For _hardware_ passthrough, don't bother. But for software
2442 passthrough, we do it anyway -- it may indicate a memory
2443 range which is reserved in E820, so which didn't get set
2444 up to start with in si_domain */
2445 if (domain == si_domain && hw_pass_through) {
2446 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2447 dev_name(dev), start, end);
2448 return 0;
2449 }
2450
2451 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2452 dev_name(dev), start, end);
2453
2454 if (end < start) {
2455 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2456 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2457 dmi_get_system_info(DMI_BIOS_VENDOR),
2458 dmi_get_system_info(DMI_BIOS_VERSION),
2459 dmi_get_system_info(DMI_PRODUCT_VERSION));
2460 ret = -EIO;
2461 goto error;
2462 }
2463
2464 if (end >> agaw_to_width(domain->agaw)) {
2465 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2466 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2467 agaw_to_width(domain->agaw),
2468 dmi_get_system_info(DMI_BIOS_VENDOR),
2469 dmi_get_system_info(DMI_BIOS_VERSION),
2470 dmi_get_system_info(DMI_PRODUCT_VERSION));
2471 ret = -EIO;
2472 goto error;
2473 }
2474
2475 ret = iommu_domain_identity_map(domain, start, end);
2476 if (ret)
2477 goto error;
2478
2479 /* context entry init */
2480 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2481 if (ret)
2482 goto error;
2483
2484 return 0;
2485
2486 error:
2487 domain_exit(domain);
2488 return ret;
2489 }
2490
2491 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2492 struct device *dev)
2493 {
2494 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2495 return 0;
2496 return iommu_prepare_identity_map(dev, rmrr->base_address,
2497 rmrr->end_address);
2498 }
2499
2500 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2501 static inline void iommu_prepare_isa(void)
2502 {
2503 struct pci_dev *pdev;
2504 int ret;
2505
2506 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2507 if (!pdev)
2508 return;
2509
2510 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2511 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2512
2513 if (ret)
2514 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2515
2516 pci_dev_put(pdev);
2517 }
2518 #else
2519 static inline void iommu_prepare_isa(void)
2520 {
2521 return;
2522 }
2523 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2524
2525 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2526
2527 static int __init si_domain_init(int hw)
2528 {
2529 struct dmar_drhd_unit *drhd;
2530 struct intel_iommu *iommu;
2531 int nid, ret = 0;
2532 bool first = true;
2533
2534 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2535 if (!si_domain)
2536 return -EFAULT;
2537
2538 for_each_active_iommu(iommu, drhd) {
2539 ret = iommu_attach_domain(si_domain, iommu);
2540 if (ret < 0) {
2541 domain_exit(si_domain);
2542 return -EFAULT;
2543 } else if (first) {
2544 si_domain->id = ret;
2545 first = false;
2546 } else if (si_domain->id != ret) {
2547 domain_exit(si_domain);
2548 return -EFAULT;
2549 }
2550 domain_attach_iommu(si_domain, iommu);
2551 }
2552
2553 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2554 domain_exit(si_domain);
2555 return -EFAULT;
2556 }
2557
2558 pr_debug("Identity mapping domain is domain %d\n",
2559 si_domain->id);
2560
2561 if (hw)
2562 return 0;
2563
2564 for_each_online_node(nid) {
2565 unsigned long start_pfn, end_pfn;
2566 int i;
2567
2568 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2569 ret = iommu_domain_identity_map(si_domain,
2570 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2571 if (ret)
2572 return ret;
2573 }
2574 }
2575
2576 return 0;
2577 }
2578
2579 static int identity_mapping(struct device *dev)
2580 {
2581 struct device_domain_info *info;
2582
2583 if (likely(!iommu_identity_mapping))
2584 return 0;
2585
2586 info = dev->archdata.iommu;
2587 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2588 return (info->domain == si_domain);
2589
2590 return 0;
2591 }
2592
2593 static int domain_add_dev_info(struct dmar_domain *domain,
2594 struct device *dev, int translation)
2595 {
2596 struct dmar_domain *ndomain;
2597 struct intel_iommu *iommu;
2598 u8 bus, devfn;
2599 int ret;
2600
2601 iommu = device_to_iommu(dev, &bus, &devfn);
2602 if (!iommu)
2603 return -ENODEV;
2604
2605 ndomain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2606 if (ndomain != domain)
2607 return -EBUSY;
2608
2609 ret = domain_context_mapping(domain, dev, translation);
2610 if (ret) {
2611 domain_remove_one_dev_info(domain, dev);
2612 return ret;
2613 }
2614
2615 return 0;
2616 }
2617
2618 static bool device_has_rmrr(struct device *dev)
2619 {
2620 struct dmar_rmrr_unit *rmrr;
2621 struct device *tmp;
2622 int i;
2623
2624 rcu_read_lock();
2625 for_each_rmrr_units(rmrr) {
2626 /*
2627 * Return TRUE if this RMRR contains the device that
2628 * is passed in.
2629 */
2630 for_each_active_dev_scope(rmrr->devices,
2631 rmrr->devices_cnt, i, tmp)
2632 if (tmp == dev) {
2633 rcu_read_unlock();
2634 return true;
2635 }
2636 }
2637 rcu_read_unlock();
2638 return false;
2639 }
2640
2641 /*
2642 * There are a couple cases where we need to restrict the functionality of
2643 * devices associated with RMRRs. The first is when evaluating a device for
2644 * identity mapping because problems exist when devices are moved in and out
2645 * of domains and their respective RMRR information is lost. This means that
2646 * a device with associated RMRRs will never be in a "passthrough" domain.
2647 * The second is use of the device through the IOMMU API. This interface
2648 * expects to have full control of the IOVA space for the device. We cannot
2649 * satisfy both the requirement that RMRR access is maintained and have an
2650 * unencumbered IOVA space. We also have no ability to quiesce the device's
2651 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2652 * We therefore prevent devices associated with an RMRR from participating in
2653 * the IOMMU API, which eliminates them from device assignment.
2654 *
2655 * In both cases we assume that PCI USB devices with RMRRs have them largely
2656 * for historical reasons and that the RMRR space is not actively used post
2657 * boot. This exclusion may change if vendors begin to abuse it.
2658 *
2659 * The same exception is made for graphics devices, with the requirement that
2660 * any use of the RMRR regions will be torn down before assigning the device
2661 * to a guest.
2662 */
2663 static bool device_is_rmrr_locked(struct device *dev)
2664 {
2665 if (!device_has_rmrr(dev))
2666 return false;
2667
2668 if (dev_is_pci(dev)) {
2669 struct pci_dev *pdev = to_pci_dev(dev);
2670
2671 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2672 return false;
2673 }
2674
2675 return true;
2676 }
2677
2678 static int iommu_should_identity_map(struct device *dev, int startup)
2679 {
2680
2681 if (dev_is_pci(dev)) {
2682 struct pci_dev *pdev = to_pci_dev(dev);
2683
2684 if (device_is_rmrr_locked(dev))
2685 return 0;
2686
2687 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2688 return 1;
2689
2690 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2691 return 1;
2692
2693 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2694 return 0;
2695
2696 /*
2697 * We want to start off with all devices in the 1:1 domain, and
2698 * take them out later if we find they can't access all of memory.
2699 *
2700 * However, we can't do this for PCI devices behind bridges,
2701 * because all PCI devices behind the same bridge will end up
2702 * with the same source-id on their transactions.
2703 *
2704 * Practically speaking, we can't change things around for these
2705 * devices at run-time, because we can't be sure there'll be no
2706 * DMA transactions in flight for any of their siblings.
2707 *
2708 * So PCI devices (unless they're on the root bus) as well as
2709 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2710 * the 1:1 domain, just in _case_ one of their siblings turns out
2711 * not to be able to map all of memory.
2712 */
2713 if (!pci_is_pcie(pdev)) {
2714 if (!pci_is_root_bus(pdev->bus))
2715 return 0;
2716 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2717 return 0;
2718 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2719 return 0;
2720 } else {
2721 if (device_has_rmrr(dev))
2722 return 0;
2723 }
2724
2725 /*
2726 * At boot time, we don't yet know if devices will be 64-bit capable.
2727 * Assume that they will — if they turn out not to be, then we can
2728 * take them out of the 1:1 domain later.
2729 */
2730 if (!startup) {
2731 /*
2732 * If the device's dma_mask is less than the system's memory
2733 * size then this is not a candidate for identity mapping.
2734 */
2735 u64 dma_mask = *dev->dma_mask;
2736
2737 if (dev->coherent_dma_mask &&
2738 dev->coherent_dma_mask < dma_mask)
2739 dma_mask = dev->coherent_dma_mask;
2740
2741 return dma_mask >= dma_get_required_mask(dev);
2742 }
2743
2744 return 1;
2745 }
2746
2747 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2748 {
2749 int ret;
2750
2751 if (!iommu_should_identity_map(dev, 1))
2752 return 0;
2753
2754 ret = domain_add_dev_info(si_domain, dev,
2755 hw ? CONTEXT_TT_PASS_THROUGH :
2756 CONTEXT_TT_MULTI_LEVEL);
2757 if (!ret)
2758 pr_info("%s identity mapping for device %s\n",
2759 hw ? "Hardware" : "Software", dev_name(dev));
2760 else if (ret == -ENODEV)
2761 /* device not associated with an iommu */
2762 ret = 0;
2763
2764 return ret;
2765 }
2766
2767
2768 static int __init iommu_prepare_static_identity_mapping(int hw)
2769 {
2770 struct pci_dev *pdev = NULL;
2771 struct dmar_drhd_unit *drhd;
2772 struct intel_iommu *iommu;
2773 struct device *dev;
2774 int i;
2775 int ret = 0;
2776
2777 for_each_pci_dev(pdev) {
2778 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2779 if (ret)
2780 return ret;
2781 }
2782
2783 for_each_active_iommu(iommu, drhd)
2784 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2785 struct acpi_device_physical_node *pn;
2786 struct acpi_device *adev;
2787
2788 if (dev->bus != &acpi_bus_type)
2789 continue;
2790
2791 adev= to_acpi_device(dev);
2792 mutex_lock(&adev->physical_node_lock);
2793 list_for_each_entry(pn, &adev->physical_node_list, node) {
2794 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2795 if (ret)
2796 break;
2797 }
2798 mutex_unlock(&adev->physical_node_lock);
2799 if (ret)
2800 return ret;
2801 }
2802
2803 return 0;
2804 }
2805
2806 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2807 {
2808 /*
2809 * Start from the sane iommu hardware state.
2810 * If the queued invalidation is already initialized by us
2811 * (for example, while enabling interrupt-remapping) then
2812 * we got the things already rolling from a sane state.
2813 */
2814 if (!iommu->qi) {
2815 /*
2816 * Clear any previous faults.
2817 */
2818 dmar_fault(-1, iommu);
2819 /*
2820 * Disable queued invalidation if supported and already enabled
2821 * before OS handover.
2822 */
2823 dmar_disable_qi(iommu);
2824 }
2825
2826 if (dmar_enable_qi(iommu)) {
2827 /*
2828 * Queued Invalidate not enabled, use Register Based Invalidate
2829 */
2830 iommu->flush.flush_context = __iommu_flush_context;
2831 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2832 pr_info("%s: Using Register based invalidation\n",
2833 iommu->name);
2834 } else {
2835 iommu->flush.flush_context = qi_flush_context;
2836 iommu->flush.flush_iotlb = qi_flush_iotlb;
2837 pr_info("%s: Using Queued invalidation\n", iommu->name);
2838 }
2839 }
2840
2841 static int copy_context_table(struct intel_iommu *iommu,
2842 struct root_entry *old_re,
2843 struct context_entry **tbl,
2844 int bus, bool ext)
2845 {
2846 struct context_entry *old_ce = NULL, *new_ce = NULL, ce;
2847 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2848 phys_addr_t old_ce_phys;
2849
2850 tbl_idx = ext ? bus * 2 : bus;
2851
2852 for (devfn = 0; devfn < 256; devfn++) {
2853 /* First calculate the correct index */
2854 idx = (ext ? devfn * 2 : devfn) % 256;
2855
2856 if (idx == 0) {
2857 /* First save what we may have and clean up */
2858 if (new_ce) {
2859 tbl[tbl_idx] = new_ce;
2860 __iommu_flush_cache(iommu, new_ce,
2861 VTD_PAGE_SIZE);
2862 pos = 1;
2863 }
2864
2865 if (old_ce)
2866 iounmap(old_ce);
2867
2868 ret = 0;
2869 if (devfn < 0x80)
2870 old_ce_phys = root_entry_lctp(old_re);
2871 else
2872 old_ce_phys = root_entry_uctp(old_re);
2873
2874 if (!old_ce_phys) {
2875 if (ext && devfn == 0) {
2876 /* No LCTP, try UCTP */
2877 devfn = 0x7f;
2878 continue;
2879 } else {
2880 goto out;
2881 }
2882 }
2883
2884 ret = -ENOMEM;
2885 old_ce = ioremap_cache(old_ce_phys, PAGE_SIZE);
2886 if (!old_ce)
2887 goto out;
2888
2889 new_ce = alloc_pgtable_page(iommu->node);
2890 if (!new_ce)
2891 goto out_unmap;
2892
2893 ret = 0;
2894 }
2895
2896 /* Now copy the context entry */
2897 ce = old_ce[idx];
2898
2899 if (!__context_present(&ce))
2900 continue;
2901
2902 did = context_domain_id(&ce);
2903 if (did >= 0 && did < cap_ndoms(iommu->cap))
2904 set_bit(did, iommu->domain_ids);
2905
2906 /*
2907 * We need a marker for copied context entries. This
2908 * marker needs to work for the old format as well as
2909 * for extended context entries.
2910 *
2911 * Bit 67 of the context entry is used. In the old
2912 * format this bit is available to software, in the
2913 * extended format it is the PGE bit, but PGE is ignored
2914 * by HW if PASIDs are disabled (and thus still
2915 * available).
2916 *
2917 * So disable PASIDs first and then mark the entry
2918 * copied. This means that we don't copy PASID
2919 * translations from the old kernel, but this is fine as
2920 * faults there are not fatal.
2921 */
2922 context_clear_pasid_enable(&ce);
2923 context_set_copied(&ce);
2924
2925 new_ce[idx] = ce;
2926 }
2927
2928 tbl[tbl_idx + pos] = new_ce;
2929
2930 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2931
2932 out_unmap:
2933 iounmap(old_ce);
2934
2935 out:
2936 return ret;
2937 }
2938
2939 static int copy_translation_tables(struct intel_iommu *iommu)
2940 {
2941 struct context_entry **ctxt_tbls;
2942 struct root_entry *old_rt;
2943 phys_addr_t old_rt_phys;
2944 int ctxt_table_entries;
2945 unsigned long flags;
2946 u64 rtaddr_reg;
2947 int bus, ret;
2948 bool new_ext, ext;
2949
2950 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
2951 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
2952 new_ext = !!ecap_ecs(iommu->ecap);
2953
2954 /*
2955 * The RTT bit can only be changed when translation is disabled,
2956 * but disabling translation means to open a window for data
2957 * corruption. So bail out and don't copy anything if we would
2958 * have to change the bit.
2959 */
2960 if (new_ext != ext)
2961 return -EINVAL;
2962
2963 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
2964 if (!old_rt_phys)
2965 return -EINVAL;
2966
2967 old_rt = ioremap_cache(old_rt_phys, PAGE_SIZE);
2968 if (!old_rt)
2969 return -ENOMEM;
2970
2971 /* This is too big for the stack - allocate it from slab */
2972 ctxt_table_entries = ext ? 512 : 256;
2973 ret = -ENOMEM;
2974 ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
2975 if (!ctxt_tbls)
2976 goto out_unmap;
2977
2978 for (bus = 0; bus < 256; bus++) {
2979 ret = copy_context_table(iommu, &old_rt[bus],
2980 ctxt_tbls, bus, ext);
2981 if (ret) {
2982 pr_err("%s: Failed to copy context table for bus %d\n",
2983 iommu->name, bus);
2984 continue;
2985 }
2986 }
2987
2988 spin_lock_irqsave(&iommu->lock, flags);
2989
2990 /* Context tables are copied, now write them to the root_entry table */
2991 for (bus = 0; bus < 256; bus++) {
2992 int idx = ext ? bus * 2 : bus;
2993 u64 val;
2994
2995 if (ctxt_tbls[idx]) {
2996 val = virt_to_phys(ctxt_tbls[idx]) | 1;
2997 iommu->root_entry[bus].lo = val;
2998 }
2999
3000 if (!ext || !ctxt_tbls[idx + 1])
3001 continue;
3002
3003 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3004 iommu->root_entry[bus].hi = val;
3005 }
3006
3007 spin_unlock_irqrestore(&iommu->lock, flags);
3008
3009 kfree(ctxt_tbls);
3010
3011 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3012
3013 ret = 0;
3014
3015 out_unmap:
3016 iounmap(old_rt);
3017
3018 return ret;
3019 }
3020
3021 static int __init init_dmars(void)
3022 {
3023 struct dmar_drhd_unit *drhd;
3024 struct dmar_rmrr_unit *rmrr;
3025 bool copied_tables = false;
3026 struct device *dev;
3027 struct intel_iommu *iommu;
3028 int i, ret;
3029
3030 /*
3031 * for each drhd
3032 * allocate root
3033 * initialize and program root entry to not present
3034 * endfor
3035 */
3036 for_each_drhd_unit(drhd) {
3037 /*
3038 * lock not needed as this is only incremented in the single
3039 * threaded kernel __init code path all other access are read
3040 * only
3041 */
3042 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3043 g_num_of_iommus++;
3044 continue;
3045 }
3046 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3047 }
3048
3049 /* Preallocate enough resources for IOMMU hot-addition */
3050 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3051 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3052
3053 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3054 GFP_KERNEL);
3055 if (!g_iommus) {
3056 pr_err("Allocating global iommu array failed\n");
3057 ret = -ENOMEM;
3058 goto error;
3059 }
3060
3061 deferred_flush = kzalloc(g_num_of_iommus *
3062 sizeof(struct deferred_flush_tables), GFP_KERNEL);
3063 if (!deferred_flush) {
3064 ret = -ENOMEM;
3065 goto free_g_iommus;
3066 }
3067
3068 for_each_active_iommu(iommu, drhd) {
3069 g_iommus[iommu->seq_id] = iommu;
3070
3071 intel_iommu_init_qi(iommu);
3072
3073 ret = iommu_init_domains(iommu);
3074 if (ret)
3075 goto free_iommu;
3076
3077 init_translation_status(iommu);
3078
3079 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3080 iommu_disable_translation(iommu);
3081 clear_translation_pre_enabled(iommu);
3082 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3083 iommu->name);
3084 }
3085
3086 /*
3087 * TBD:
3088 * we could share the same root & context tables
3089 * among all IOMMU's. Need to Split it later.
3090 */
3091 ret = iommu_alloc_root_entry(iommu);
3092 if (ret)
3093 goto free_iommu;
3094
3095 if (translation_pre_enabled(iommu)) {
3096 pr_info("Translation already enabled - trying to copy translation structures\n");
3097
3098 ret = copy_translation_tables(iommu);
3099 if (ret) {
3100 /*
3101 * We found the IOMMU with translation
3102 * enabled - but failed to copy over the
3103 * old root-entry table. Try to proceed
3104 * by disabling translation now and
3105 * allocating a clean root-entry table.
3106 * This might cause DMAR faults, but
3107 * probably the dump will still succeed.
3108 */
3109 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3110 iommu->name);
3111 iommu_disable_translation(iommu);
3112 clear_translation_pre_enabled(iommu);
3113 } else {
3114 pr_info("Copied translation tables from previous kernel for %s\n",
3115 iommu->name);
3116 copied_tables = true;
3117 }
3118 }
3119
3120 iommu_flush_write_buffer(iommu);
3121 iommu_set_root_entry(iommu);
3122 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3123 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3124
3125 if (!ecap_pass_through(iommu->ecap))
3126 hw_pass_through = 0;
3127 }
3128
3129 if (iommu_pass_through)
3130 iommu_identity_mapping |= IDENTMAP_ALL;
3131
3132 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3133 iommu_identity_mapping |= IDENTMAP_GFX;
3134 #endif
3135
3136 if (iommu_identity_mapping) {
3137 ret = si_domain_init(hw_pass_through);
3138 if (ret)
3139 goto free_iommu;
3140 }
3141
3142 check_tylersburg_isoch();
3143
3144 /*
3145 * If we copied translations from a previous kernel in the kdump
3146 * case, we can not assign the devices to domains now, as that
3147 * would eliminate the old mappings. So skip this part and defer
3148 * the assignment to device driver initialization time.
3149 */
3150 if (copied_tables)
3151 goto domains_done;
3152
3153 /*
3154 * If pass through is not set or not enabled, setup context entries for
3155 * identity mappings for rmrr, gfx, and isa and may fall back to static
3156 * identity mapping if iommu_identity_mapping is set.
3157 */
3158 if (iommu_identity_mapping) {
3159 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3160 if (ret) {
3161 pr_crit("Failed to setup IOMMU pass-through\n");
3162 goto free_iommu;
3163 }
3164 }
3165 /*
3166 * For each rmrr
3167 * for each dev attached to rmrr
3168 * do
3169 * locate drhd for dev, alloc domain for dev
3170 * allocate free domain
3171 * allocate page table entries for rmrr
3172 * if context not allocated for bus
3173 * allocate and init context
3174 * set present in root table for this bus
3175 * init context with domain, translation etc
3176 * endfor
3177 * endfor
3178 */
3179 pr_info("Setting RMRR:\n");
3180 for_each_rmrr_units(rmrr) {
3181 /* some BIOS lists non-exist devices in DMAR table. */
3182 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3183 i, dev) {
3184 ret = iommu_prepare_rmrr_dev(rmrr, dev);
3185 if (ret)
3186 pr_err("Mapping reserved region failed\n");
3187 }
3188 }
3189
3190 iommu_prepare_isa();
3191
3192 domains_done:
3193
3194 /*
3195 * for each drhd
3196 * enable fault log
3197 * global invalidate context cache
3198 * global invalidate iotlb
3199 * enable translation
3200 */
3201 for_each_iommu(iommu, drhd) {
3202 if (drhd->ignored) {
3203 /*
3204 * we always have to disable PMRs or DMA may fail on
3205 * this device
3206 */
3207 if (force_on)
3208 iommu_disable_protect_mem_regions(iommu);
3209 continue;
3210 }
3211
3212 iommu_flush_write_buffer(iommu);
3213
3214 ret = dmar_set_interrupt(iommu);
3215 if (ret)
3216 goto free_iommu;
3217
3218 if (!translation_pre_enabled(iommu))
3219 iommu_enable_translation(iommu);
3220
3221 iommu_disable_protect_mem_regions(iommu);
3222 }
3223
3224 return 0;
3225
3226 free_iommu:
3227 for_each_active_iommu(iommu, drhd) {
3228 disable_dmar_iommu(iommu);
3229 free_dmar_iommu(iommu);
3230 }
3231 kfree(deferred_flush);
3232 free_g_iommus:
3233 kfree(g_iommus);
3234 error:
3235 return ret;
3236 }
3237
3238 /* This takes a number of _MM_ pages, not VTD pages */
3239 static struct iova *intel_alloc_iova(struct device *dev,
3240 struct dmar_domain *domain,
3241 unsigned long nrpages, uint64_t dma_mask)
3242 {
3243 struct iova *iova = NULL;
3244
3245 /* Restrict dma_mask to the width that the iommu can handle */
3246 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3247
3248 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3249 /*
3250 * First try to allocate an io virtual address in
3251 * DMA_BIT_MASK(32) and if that fails then try allocating
3252 * from higher range
3253 */
3254 iova = alloc_iova(&domain->iovad, nrpages,
3255 IOVA_PFN(DMA_BIT_MASK(32)), 1);
3256 if (iova)
3257 return iova;
3258 }
3259 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
3260 if (unlikely(!iova)) {
3261 pr_err("Allocating %ld-page iova for %s failed",
3262 nrpages, dev_name(dev));
3263 return NULL;
3264 }
3265
3266 return iova;
3267 }
3268
3269 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3270 {
3271 struct dmar_domain *domain;
3272 int ret;
3273
3274 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3275 if (!domain) {
3276 pr_err("Allocating domain for %s failed\n",
3277 dev_name(dev));
3278 return NULL;
3279 }
3280
3281 /* make sure context mapping is ok */
3282 if (unlikely(!domain_context_mapped(dev))) {
3283 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
3284 if (ret) {
3285 pr_err("Domain context map for %s failed\n",
3286 dev_name(dev));
3287 return NULL;
3288 }
3289 }
3290
3291 return domain;
3292 }
3293
3294 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3295 {
3296 struct device_domain_info *info;
3297
3298 /* No lock here, assumes no domain exit in normal case */
3299 info = dev->archdata.iommu;
3300 if (likely(info))
3301 return info->domain;
3302
3303 return __get_valid_domain_for_dev(dev);
3304 }
3305
3306 /* Check if the dev needs to go through non-identity map and unmap process.*/
3307 static int iommu_no_mapping(struct device *dev)
3308 {
3309 int found;
3310
3311 if (iommu_dummy(dev))
3312 return 1;
3313
3314 if (!iommu_identity_mapping)
3315 return 0;
3316
3317 found = identity_mapping(dev);
3318 if (found) {
3319 if (iommu_should_identity_map(dev, 0))
3320 return 1;
3321 else {
3322 /*
3323 * 32 bit DMA is removed from si_domain and fall back
3324 * to non-identity mapping.
3325 */
3326 domain_remove_one_dev_info(si_domain, dev);
3327 pr_info("32bit %s uses non-identity mapping\n",
3328 dev_name(dev));
3329 return 0;
3330 }
3331 } else {
3332 /*
3333 * In case of a detached 64 bit DMA device from vm, the device
3334 * is put into si_domain for identity mapping.
3335 */
3336 if (iommu_should_identity_map(dev, 0)) {
3337 int ret;
3338 ret = domain_add_dev_info(si_domain, dev,
3339 hw_pass_through ?
3340 CONTEXT_TT_PASS_THROUGH :
3341 CONTEXT_TT_MULTI_LEVEL);
3342 if (!ret) {
3343 pr_info("64bit %s uses identity mapping\n",
3344 dev_name(dev));
3345 return 1;
3346 }
3347 }
3348 }
3349
3350 return 0;
3351 }
3352
3353 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3354 size_t size, int dir, u64 dma_mask)
3355 {
3356 struct dmar_domain *domain;
3357 phys_addr_t start_paddr;
3358 struct iova *iova;
3359 int prot = 0;
3360 int ret;
3361 struct intel_iommu *iommu;
3362 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3363
3364 BUG_ON(dir == DMA_NONE);
3365
3366 if (iommu_no_mapping(dev))
3367 return paddr;
3368
3369 domain = get_valid_domain_for_dev(dev);
3370 if (!domain)
3371 return 0;
3372
3373 iommu = domain_get_iommu(domain);
3374 size = aligned_nrpages(paddr, size);
3375
3376 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3377 if (!iova)
3378 goto error;
3379
3380 /*
3381 * Check if DMAR supports zero-length reads on write only
3382 * mappings..
3383 */
3384 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3385 !cap_zlr(iommu->cap))
3386 prot |= DMA_PTE_READ;
3387 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3388 prot |= DMA_PTE_WRITE;
3389 /*
3390 * paddr - (paddr + size) might be partial page, we should map the whole
3391 * page. Note: if two part of one page are separately mapped, we
3392 * might have two guest_addr mapping to the same host paddr, but this
3393 * is not a big problem
3394 */
3395 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3396 mm_to_dma_pfn(paddr_pfn), size, prot);
3397 if (ret)
3398 goto error;
3399
3400 /* it's a non-present to present mapping. Only flush if caching mode */
3401 if (cap_caching_mode(iommu->cap))
3402 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 0, 1);
3403 else
3404 iommu_flush_write_buffer(iommu);
3405
3406 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3407 start_paddr += paddr & ~PAGE_MASK;
3408 return start_paddr;
3409
3410 error:
3411 if (iova)
3412 __free_iova(&domain->iovad, iova);
3413 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3414 dev_name(dev), size, (unsigned long long)paddr, dir);
3415 return 0;
3416 }
3417
3418 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3419 unsigned long offset, size_t size,
3420 enum dma_data_direction dir,
3421 struct dma_attrs *attrs)
3422 {
3423 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3424 dir, *dev->dma_mask);
3425 }
3426
3427 static void flush_unmaps(void)
3428 {
3429 int i, j;
3430
3431 timer_on = 0;
3432
3433 /* just flush them all */
3434 for (i = 0; i < g_num_of_iommus; i++) {
3435 struct intel_iommu *iommu = g_iommus[i];
3436 if (!iommu)
3437 continue;
3438
3439 if (!deferred_flush[i].next)
3440 continue;
3441
3442 /* In caching mode, global flushes turn emulation expensive */
3443 if (!cap_caching_mode(iommu->cap))
3444 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3445 DMA_TLB_GLOBAL_FLUSH);
3446 for (j = 0; j < deferred_flush[i].next; j++) {
3447 unsigned long mask;
3448 struct iova *iova = deferred_flush[i].iova[j];
3449 struct dmar_domain *domain = deferred_flush[i].domain[j];
3450
3451 /* On real hardware multiple invalidations are expensive */
3452 if (cap_caching_mode(iommu->cap))
3453 iommu_flush_iotlb_psi(iommu, domain->id,
3454 iova->pfn_lo, iova_size(iova),
3455 !deferred_flush[i].freelist[j], 0);
3456 else {
3457 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
3458 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3459 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3460 }
3461 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3462 if (deferred_flush[i].freelist[j])
3463 dma_free_pagelist(deferred_flush[i].freelist[j]);
3464 }
3465 deferred_flush[i].next = 0;
3466 }
3467
3468 list_size = 0;
3469 }
3470
3471 static void flush_unmaps_timeout(unsigned long data)
3472 {
3473 unsigned long flags;
3474
3475 spin_lock_irqsave(&async_umap_flush_lock, flags);
3476 flush_unmaps();
3477 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3478 }
3479
3480 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3481 {
3482 unsigned long flags;
3483 int next, iommu_id;
3484 struct intel_iommu *iommu;
3485
3486 spin_lock_irqsave(&async_umap_flush_lock, flags);
3487 if (list_size == HIGH_WATER_MARK)
3488 flush_unmaps();
3489
3490 iommu = domain_get_iommu(dom);
3491 iommu_id = iommu->seq_id;
3492
3493 next = deferred_flush[iommu_id].next;
3494 deferred_flush[iommu_id].domain[next] = dom;
3495 deferred_flush[iommu_id].iova[next] = iova;
3496 deferred_flush[iommu_id].freelist[next] = freelist;
3497 deferred_flush[iommu_id].next++;
3498
3499 if (!timer_on) {
3500 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3501 timer_on = 1;
3502 }
3503 list_size++;
3504 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3505 }
3506
3507 static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
3508 {
3509 struct dmar_domain *domain;
3510 unsigned long start_pfn, last_pfn;
3511 struct iova *iova;
3512 struct intel_iommu *iommu;
3513 struct page *freelist;
3514
3515 if (iommu_no_mapping(dev))
3516 return;
3517
3518 domain = find_domain(dev);
3519 BUG_ON(!domain);
3520
3521 iommu = domain_get_iommu(domain);
3522
3523 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3524 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3525 (unsigned long long)dev_addr))
3526 return;
3527
3528 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3529 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3530
3531 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3532 dev_name(dev), start_pfn, last_pfn);
3533
3534 freelist = domain_unmap(domain, start_pfn, last_pfn);
3535
3536 if (intel_iommu_strict) {
3537 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3538 last_pfn - start_pfn + 1, !freelist, 0);
3539 /* free iova */
3540 __free_iova(&domain->iovad, iova);
3541 dma_free_pagelist(freelist);
3542 } else {
3543 add_unmap(domain, iova, freelist);
3544 /*
3545 * queue up the release of the unmap to save the 1/6th of the
3546 * cpu used up by the iotlb flush operation...
3547 */
3548 }
3549 }
3550
3551 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3552 size_t size, enum dma_data_direction dir,
3553 struct dma_attrs *attrs)
3554 {
3555 intel_unmap(dev, dev_addr);
3556 }
3557
3558 static void *intel_alloc_coherent(struct device *dev, size_t size,
3559 dma_addr_t *dma_handle, gfp_t flags,
3560 struct dma_attrs *attrs)
3561 {
3562 struct page *page = NULL;
3563 int order;
3564
3565 size = PAGE_ALIGN(size);
3566 order = get_order(size);
3567
3568 if (!iommu_no_mapping(dev))
3569 flags &= ~(GFP_DMA | GFP_DMA32);
3570 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3571 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3572 flags |= GFP_DMA;
3573 else
3574 flags |= GFP_DMA32;
3575 }
3576
3577 if (flags & __GFP_WAIT) {
3578 unsigned int count = size >> PAGE_SHIFT;
3579
3580 page = dma_alloc_from_contiguous(dev, count, order);
3581 if (page && iommu_no_mapping(dev) &&
3582 page_to_phys(page) + size > dev->coherent_dma_mask) {
3583 dma_release_from_contiguous(dev, page, count);
3584 page = NULL;
3585 }
3586 }
3587
3588 if (!page)
3589 page = alloc_pages(flags, order);
3590 if (!page)
3591 return NULL;
3592 memset(page_address(page), 0, size);
3593
3594 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3595 DMA_BIDIRECTIONAL,
3596 dev->coherent_dma_mask);
3597 if (*dma_handle)
3598 return page_address(page);
3599 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3600 __free_pages(page, order);
3601
3602 return NULL;
3603 }
3604
3605 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3606 dma_addr_t dma_handle, struct dma_attrs *attrs)
3607 {
3608 int order;
3609 struct page *page = virt_to_page(vaddr);
3610
3611 size = PAGE_ALIGN(size);
3612 order = get_order(size);
3613
3614 intel_unmap(dev, dma_handle);
3615 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3616 __free_pages(page, order);
3617 }
3618
3619 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3620 int nelems, enum dma_data_direction dir,
3621 struct dma_attrs *attrs)
3622 {
3623 intel_unmap(dev, sglist[0].dma_address);
3624 }
3625
3626 static int intel_nontranslate_map_sg(struct device *hddev,
3627 struct scatterlist *sglist, int nelems, int dir)
3628 {
3629 int i;
3630 struct scatterlist *sg;
3631
3632 for_each_sg(sglist, sg, nelems, i) {
3633 BUG_ON(!sg_page(sg));
3634 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3635 sg->dma_length = sg->length;
3636 }
3637 return nelems;
3638 }
3639
3640 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3641 enum dma_data_direction dir, struct dma_attrs *attrs)
3642 {
3643 int i;
3644 struct dmar_domain *domain;
3645 size_t size = 0;
3646 int prot = 0;
3647 struct iova *iova = NULL;
3648 int ret;
3649 struct scatterlist *sg;
3650 unsigned long start_vpfn;
3651 struct intel_iommu *iommu;
3652
3653 BUG_ON(dir == DMA_NONE);
3654 if (iommu_no_mapping(dev))
3655 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3656
3657 domain = get_valid_domain_for_dev(dev);
3658 if (!domain)
3659 return 0;
3660
3661 iommu = domain_get_iommu(domain);
3662
3663 for_each_sg(sglist, sg, nelems, i)
3664 size += aligned_nrpages(sg->offset, sg->length);
3665
3666 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3667 *dev->dma_mask);
3668 if (!iova) {
3669 sglist->dma_length = 0;
3670 return 0;
3671 }
3672
3673 /*
3674 * Check if DMAR supports zero-length reads on write only
3675 * mappings..
3676 */
3677 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3678 !cap_zlr(iommu->cap))
3679 prot |= DMA_PTE_READ;
3680 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3681 prot |= DMA_PTE_WRITE;
3682
3683 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3684
3685 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3686 if (unlikely(ret)) {
3687 dma_pte_free_pagetable(domain, start_vpfn,
3688 start_vpfn + size - 1);
3689 __free_iova(&domain->iovad, iova);
3690 return 0;
3691 }
3692
3693 /* it's a non-present to present mapping. Only flush if caching mode */
3694 if (cap_caching_mode(iommu->cap))
3695 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 0, 1);
3696 else
3697 iommu_flush_write_buffer(iommu);
3698
3699 return nelems;
3700 }
3701
3702 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3703 {
3704 return !dma_addr;
3705 }
3706
3707 struct dma_map_ops intel_dma_ops = {
3708 .alloc = intel_alloc_coherent,
3709 .free = intel_free_coherent,
3710 .map_sg = intel_map_sg,
3711 .unmap_sg = intel_unmap_sg,
3712 .map_page = intel_map_page,
3713 .unmap_page = intel_unmap_page,
3714 .mapping_error = intel_mapping_error,
3715 };
3716
3717 static inline int iommu_domain_cache_init(void)
3718 {
3719 int ret = 0;
3720
3721 iommu_domain_cache = kmem_cache_create("iommu_domain",
3722 sizeof(struct dmar_domain),
3723 0,
3724 SLAB_HWCACHE_ALIGN,
3725
3726 NULL);
3727 if (!iommu_domain_cache) {
3728 pr_err("Couldn't create iommu_domain cache\n");
3729 ret = -ENOMEM;
3730 }
3731
3732 return ret;
3733 }
3734
3735 static inline int iommu_devinfo_cache_init(void)
3736 {
3737 int ret = 0;
3738
3739 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3740 sizeof(struct device_domain_info),
3741 0,
3742 SLAB_HWCACHE_ALIGN,
3743 NULL);
3744 if (!iommu_devinfo_cache) {
3745 pr_err("Couldn't create devinfo cache\n");
3746 ret = -ENOMEM;
3747 }
3748
3749 return ret;
3750 }
3751
3752 static int __init iommu_init_mempool(void)
3753 {
3754 int ret;
3755 ret = iommu_iova_cache_init();
3756 if (ret)
3757 return ret;
3758
3759 ret = iommu_domain_cache_init();
3760 if (ret)
3761 goto domain_error;
3762
3763 ret = iommu_devinfo_cache_init();
3764 if (!ret)
3765 return ret;
3766
3767 kmem_cache_destroy(iommu_domain_cache);
3768 domain_error:
3769 iommu_iova_cache_destroy();
3770
3771 return -ENOMEM;
3772 }
3773
3774 static void __init iommu_exit_mempool(void)
3775 {
3776 kmem_cache_destroy(iommu_devinfo_cache);
3777 kmem_cache_destroy(iommu_domain_cache);
3778 iommu_iova_cache_destroy();
3779 }
3780
3781 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3782 {
3783 struct dmar_drhd_unit *drhd;
3784 u32 vtbar;
3785 int rc;
3786
3787 /* We know that this device on this chipset has its own IOMMU.
3788 * If we find it under a different IOMMU, then the BIOS is lying
3789 * to us. Hope that the IOMMU for this device is actually
3790 * disabled, and it needs no translation...
3791 */
3792 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3793 if (rc) {
3794 /* "can't" happen */
3795 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3796 return;
3797 }
3798 vtbar &= 0xffff0000;
3799
3800 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3801 drhd = dmar_find_matched_drhd_unit(pdev);
3802 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3803 TAINT_FIRMWARE_WORKAROUND,
3804 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3805 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3806 }
3807 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3808
3809 static void __init init_no_remapping_devices(void)
3810 {
3811 struct dmar_drhd_unit *drhd;
3812 struct device *dev;
3813 int i;
3814
3815 for_each_drhd_unit(drhd) {
3816 if (!drhd->include_all) {
3817 for_each_active_dev_scope(drhd->devices,
3818 drhd->devices_cnt, i, dev)
3819 break;
3820 /* ignore DMAR unit if no devices exist */
3821 if (i == drhd->devices_cnt)
3822 drhd->ignored = 1;
3823 }
3824 }
3825
3826 for_each_active_drhd_unit(drhd) {
3827 if (drhd->include_all)
3828 continue;
3829
3830 for_each_active_dev_scope(drhd->devices,
3831 drhd->devices_cnt, i, dev)
3832 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3833 break;
3834 if (i < drhd->devices_cnt)
3835 continue;
3836
3837 /* This IOMMU has *only* gfx devices. Either bypass it or
3838 set the gfx_mapped flag, as appropriate */
3839 if (dmar_map_gfx) {
3840 intel_iommu_gfx_mapped = 1;
3841 } else {
3842 drhd->ignored = 1;
3843 for_each_active_dev_scope(drhd->devices,
3844 drhd->devices_cnt, i, dev)
3845 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3846 }
3847 }
3848 }
3849
3850 #ifdef CONFIG_SUSPEND
3851 static int init_iommu_hw(void)
3852 {
3853 struct dmar_drhd_unit *drhd;
3854 struct intel_iommu *iommu = NULL;
3855
3856 for_each_active_iommu(iommu, drhd)
3857 if (iommu->qi)
3858 dmar_reenable_qi(iommu);
3859
3860 for_each_iommu(iommu, drhd) {
3861 if (drhd->ignored) {
3862 /*
3863 * we always have to disable PMRs or DMA may fail on
3864 * this device
3865 */
3866 if (force_on)
3867 iommu_disable_protect_mem_regions(iommu);
3868 continue;
3869 }
3870
3871 iommu_flush_write_buffer(iommu);
3872
3873 iommu_set_root_entry(iommu);
3874
3875 iommu->flush.flush_context(iommu, 0, 0, 0,
3876 DMA_CCMD_GLOBAL_INVL);
3877 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3878 iommu_enable_translation(iommu);
3879 iommu_disable_protect_mem_regions(iommu);
3880 }
3881
3882 return 0;
3883 }
3884
3885 static void iommu_flush_all(void)
3886 {
3887 struct dmar_drhd_unit *drhd;
3888 struct intel_iommu *iommu;
3889
3890 for_each_active_iommu(iommu, drhd) {
3891 iommu->flush.flush_context(iommu, 0, 0, 0,
3892 DMA_CCMD_GLOBAL_INVL);
3893 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3894 DMA_TLB_GLOBAL_FLUSH);
3895 }
3896 }
3897
3898 static int iommu_suspend(void)
3899 {
3900 struct dmar_drhd_unit *drhd;
3901 struct intel_iommu *iommu = NULL;
3902 unsigned long flag;
3903
3904 for_each_active_iommu(iommu, drhd) {
3905 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3906 GFP_ATOMIC);
3907 if (!iommu->iommu_state)
3908 goto nomem;
3909 }
3910
3911 iommu_flush_all();
3912
3913 for_each_active_iommu(iommu, drhd) {
3914 iommu_disable_translation(iommu);
3915
3916 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3917
3918 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3919 readl(iommu->reg + DMAR_FECTL_REG);
3920 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3921 readl(iommu->reg + DMAR_FEDATA_REG);
3922 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3923 readl(iommu->reg + DMAR_FEADDR_REG);
3924 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3925 readl(iommu->reg + DMAR_FEUADDR_REG);
3926
3927 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3928 }
3929 return 0;
3930
3931 nomem:
3932 for_each_active_iommu(iommu, drhd)
3933 kfree(iommu->iommu_state);
3934
3935 return -ENOMEM;
3936 }
3937
3938 static void iommu_resume(void)
3939 {
3940 struct dmar_drhd_unit *drhd;
3941 struct intel_iommu *iommu = NULL;
3942 unsigned long flag;
3943
3944 if (init_iommu_hw()) {
3945 if (force_on)
3946 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3947 else
3948 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3949 return;
3950 }
3951
3952 for_each_active_iommu(iommu, drhd) {
3953
3954 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3955
3956 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3957 iommu->reg + DMAR_FECTL_REG);
3958 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3959 iommu->reg + DMAR_FEDATA_REG);
3960 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3961 iommu->reg + DMAR_FEADDR_REG);
3962 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3963 iommu->reg + DMAR_FEUADDR_REG);
3964
3965 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3966 }
3967
3968 for_each_active_iommu(iommu, drhd)
3969 kfree(iommu->iommu_state);
3970 }
3971
3972 static struct syscore_ops iommu_syscore_ops = {
3973 .resume = iommu_resume,
3974 .suspend = iommu_suspend,
3975 };
3976
3977 static void __init init_iommu_pm_ops(void)
3978 {
3979 register_syscore_ops(&iommu_syscore_ops);
3980 }
3981
3982 #else
3983 static inline void init_iommu_pm_ops(void) {}
3984 #endif /* CONFIG_PM */
3985
3986
3987 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3988 {
3989 struct acpi_dmar_reserved_memory *rmrr;
3990 struct dmar_rmrr_unit *rmrru;
3991
3992 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3993 if (!rmrru)
3994 return -ENOMEM;
3995
3996 rmrru->hdr = header;
3997 rmrr = (struct acpi_dmar_reserved_memory *)header;
3998 rmrru->base_address = rmrr->base_address;
3999 rmrru->end_address = rmrr->end_address;
4000 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4001 ((void *)rmrr) + rmrr->header.length,
4002 &rmrru->devices_cnt);
4003 if (rmrru->devices_cnt && rmrru->devices == NULL) {
4004 kfree(rmrru);
4005 return -ENOMEM;
4006 }
4007
4008 list_add(&rmrru->list, &dmar_rmrr_units);
4009
4010 return 0;
4011 }
4012
4013 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4014 {
4015 struct dmar_atsr_unit *atsru;
4016 struct acpi_dmar_atsr *tmp;
4017
4018 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4019 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4020 if (atsr->segment != tmp->segment)
4021 continue;
4022 if (atsr->header.length != tmp->header.length)
4023 continue;
4024 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4025 return atsru;
4026 }
4027
4028 return NULL;
4029 }
4030
4031 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4032 {
4033 struct acpi_dmar_atsr *atsr;
4034 struct dmar_atsr_unit *atsru;
4035
4036 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4037 return 0;
4038
4039 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4040 atsru = dmar_find_atsr(atsr);
4041 if (atsru)
4042 return 0;
4043
4044 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4045 if (!atsru)
4046 return -ENOMEM;
4047
4048 /*
4049 * If memory is allocated from slab by ACPI _DSM method, we need to
4050 * copy the memory content because the memory buffer will be freed
4051 * on return.
4052 */
4053 atsru->hdr = (void *)(atsru + 1);
4054 memcpy(atsru->hdr, hdr, hdr->length);
4055 atsru->include_all = atsr->flags & 0x1;
4056 if (!atsru->include_all) {
4057 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4058 (void *)atsr + atsr->header.length,
4059 &atsru->devices_cnt);
4060 if (atsru->devices_cnt && atsru->devices == NULL) {
4061 kfree(atsru);
4062 return -ENOMEM;
4063 }
4064 }
4065
4066 list_add_rcu(&atsru->list, &dmar_atsr_units);
4067
4068 return 0;
4069 }
4070
4071 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4072 {
4073 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4074 kfree(atsru);
4075 }
4076
4077 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4078 {
4079 struct acpi_dmar_atsr *atsr;
4080 struct dmar_atsr_unit *atsru;
4081
4082 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4083 atsru = dmar_find_atsr(atsr);
4084 if (atsru) {
4085 list_del_rcu(&atsru->list);
4086 synchronize_rcu();
4087 intel_iommu_free_atsr(atsru);
4088 }
4089
4090 return 0;
4091 }
4092
4093 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4094 {
4095 int i;
4096 struct device *dev;
4097 struct acpi_dmar_atsr *atsr;
4098 struct dmar_atsr_unit *atsru;
4099
4100 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4101 atsru = dmar_find_atsr(atsr);
4102 if (!atsru)
4103 return 0;
4104
4105 if (!atsru->include_all && atsru->devices && atsru->devices_cnt)
4106 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4107 i, dev)
4108 return -EBUSY;
4109
4110 return 0;
4111 }
4112
4113 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4114 {
4115 int sp, ret = 0;
4116 struct intel_iommu *iommu = dmaru->iommu;
4117
4118 if (g_iommus[iommu->seq_id])
4119 return 0;
4120
4121 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4122 pr_warn("%s: Doesn't support hardware pass through.\n",
4123 iommu->name);
4124 return -ENXIO;
4125 }
4126 if (!ecap_sc_support(iommu->ecap) &&
4127 domain_update_iommu_snooping(iommu)) {
4128 pr_warn("%s: Doesn't support snooping.\n",
4129 iommu->name);
4130 return -ENXIO;
4131 }
4132 sp = domain_update_iommu_superpage(iommu) - 1;
4133 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4134 pr_warn("%s: Doesn't support large page.\n",
4135 iommu->name);
4136 return -ENXIO;
4137 }
4138
4139 /*
4140 * Disable translation if already enabled prior to OS handover.
4141 */
4142 if (iommu->gcmd & DMA_GCMD_TE)
4143 iommu_disable_translation(iommu);
4144
4145 g_iommus[iommu->seq_id] = iommu;
4146 ret = iommu_init_domains(iommu);
4147 if (ret == 0)
4148 ret = iommu_alloc_root_entry(iommu);
4149 if (ret)
4150 goto out;
4151
4152 if (dmaru->ignored) {
4153 /*
4154 * we always have to disable PMRs or DMA may fail on this device
4155 */
4156 if (force_on)
4157 iommu_disable_protect_mem_regions(iommu);
4158 return 0;
4159 }
4160
4161 intel_iommu_init_qi(iommu);
4162 iommu_flush_write_buffer(iommu);
4163 ret = dmar_set_interrupt(iommu);
4164 if (ret)
4165 goto disable_iommu;
4166
4167 iommu_set_root_entry(iommu);
4168 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4169 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4170 iommu_enable_translation(iommu);
4171
4172 if (si_domain) {
4173 ret = iommu_attach_domain(si_domain, iommu);
4174 if (ret < 0 || si_domain->id != ret)
4175 goto disable_iommu;
4176 domain_attach_iommu(si_domain, iommu);
4177 }
4178
4179 iommu_disable_protect_mem_regions(iommu);
4180 return 0;
4181
4182 disable_iommu:
4183 disable_dmar_iommu(iommu);
4184 out:
4185 free_dmar_iommu(iommu);
4186 return ret;
4187 }
4188
4189 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4190 {
4191 int ret = 0;
4192 struct intel_iommu *iommu = dmaru->iommu;
4193
4194 if (!intel_iommu_enabled)
4195 return 0;
4196 if (iommu == NULL)
4197 return -EINVAL;
4198
4199 if (insert) {
4200 ret = intel_iommu_add(dmaru);
4201 } else {
4202 disable_dmar_iommu(iommu);
4203 free_dmar_iommu(iommu);
4204 }
4205
4206 return ret;
4207 }
4208
4209 static void intel_iommu_free_dmars(void)
4210 {
4211 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4212 struct dmar_atsr_unit *atsru, *atsr_n;
4213
4214 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4215 list_del(&rmrru->list);
4216 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4217 kfree(rmrru);
4218 }
4219
4220 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4221 list_del(&atsru->list);
4222 intel_iommu_free_atsr(atsru);
4223 }
4224 }
4225
4226 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4227 {
4228 int i, ret = 1;
4229 struct pci_bus *bus;
4230 struct pci_dev *bridge = NULL;
4231 struct device *tmp;
4232 struct acpi_dmar_atsr *atsr;
4233 struct dmar_atsr_unit *atsru;
4234
4235 dev = pci_physfn(dev);
4236 for (bus = dev->bus; bus; bus = bus->parent) {
4237 bridge = bus->self;
4238 if (!bridge || !pci_is_pcie(bridge) ||
4239 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4240 return 0;
4241 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4242 break;
4243 }
4244 if (!bridge)
4245 return 0;
4246
4247 rcu_read_lock();
4248 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4249 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4250 if (atsr->segment != pci_domain_nr(dev->bus))
4251 continue;
4252
4253 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4254 if (tmp == &bridge->dev)
4255 goto out;
4256
4257 if (atsru->include_all)
4258 goto out;
4259 }
4260 ret = 0;
4261 out:
4262 rcu_read_unlock();
4263
4264 return ret;
4265 }
4266
4267 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4268 {
4269 int ret = 0;
4270 struct dmar_rmrr_unit *rmrru;
4271 struct dmar_atsr_unit *atsru;
4272 struct acpi_dmar_atsr *atsr;
4273 struct acpi_dmar_reserved_memory *rmrr;
4274
4275 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4276 return 0;
4277
4278 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4279 rmrr = container_of(rmrru->hdr,
4280 struct acpi_dmar_reserved_memory, header);
4281 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4282 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4283 ((void *)rmrr) + rmrr->header.length,
4284 rmrr->segment, rmrru->devices,
4285 rmrru->devices_cnt);
4286 if(ret < 0)
4287 return ret;
4288 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4289 dmar_remove_dev_scope(info, rmrr->segment,
4290 rmrru->devices, rmrru->devices_cnt);
4291 }
4292 }
4293
4294 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4295 if (atsru->include_all)
4296 continue;
4297
4298 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4299 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4300 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4301 (void *)atsr + atsr->header.length,
4302 atsr->segment, atsru->devices,
4303 atsru->devices_cnt);
4304 if (ret > 0)
4305 break;
4306 else if(ret < 0)
4307 return ret;
4308 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4309 if (dmar_remove_dev_scope(info, atsr->segment,
4310 atsru->devices, atsru->devices_cnt))
4311 break;
4312 }
4313 }
4314
4315 return 0;
4316 }
4317
4318 /*
4319 * Here we only respond to action of unbound device from driver.
4320 *
4321 * Added device is not attached to its DMAR domain here yet. That will happen
4322 * when mapping the device to iova.
4323 */
4324 static int device_notifier(struct notifier_block *nb,
4325 unsigned long action, void *data)
4326 {
4327 struct device *dev = data;
4328 struct dmar_domain *domain;
4329
4330 if (iommu_dummy(dev))
4331 return 0;
4332
4333 if (action != BUS_NOTIFY_REMOVED_DEVICE)
4334 return 0;
4335
4336 domain = find_domain(dev);
4337 if (!domain)
4338 return 0;
4339
4340 down_read(&dmar_global_lock);
4341 domain_remove_one_dev_info(domain, dev);
4342 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4343 domain_exit(domain);
4344 up_read(&dmar_global_lock);
4345
4346 return 0;
4347 }
4348
4349 static struct notifier_block device_nb = {
4350 .notifier_call = device_notifier,
4351 };
4352
4353 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4354 unsigned long val, void *v)
4355 {
4356 struct memory_notify *mhp = v;
4357 unsigned long long start, end;
4358 unsigned long start_vpfn, last_vpfn;
4359
4360 switch (val) {
4361 case MEM_GOING_ONLINE:
4362 start = mhp->start_pfn << PAGE_SHIFT;
4363 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4364 if (iommu_domain_identity_map(si_domain, start, end)) {
4365 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4366 start, end);
4367 return NOTIFY_BAD;
4368 }
4369 break;
4370
4371 case MEM_OFFLINE:
4372 case MEM_CANCEL_ONLINE:
4373 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4374 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4375 while (start_vpfn <= last_vpfn) {
4376 struct iova *iova;
4377 struct dmar_drhd_unit *drhd;
4378 struct intel_iommu *iommu;
4379 struct page *freelist;
4380
4381 iova = find_iova(&si_domain->iovad, start_vpfn);
4382 if (iova == NULL) {
4383 pr_debug("Failed get IOVA for PFN %lx\n",
4384 start_vpfn);
4385 break;
4386 }
4387
4388 iova = split_and_remove_iova(&si_domain->iovad, iova,
4389 start_vpfn, last_vpfn);
4390 if (iova == NULL) {
4391 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4392 start_vpfn, last_vpfn);
4393 return NOTIFY_BAD;
4394 }
4395
4396 freelist = domain_unmap(si_domain, iova->pfn_lo,
4397 iova->pfn_hi);
4398
4399 rcu_read_lock();
4400 for_each_active_iommu(iommu, drhd)
4401 iommu_flush_iotlb_psi(iommu, si_domain->id,
4402 iova->pfn_lo, iova_size(iova),
4403 !freelist, 0);
4404 rcu_read_unlock();
4405 dma_free_pagelist(freelist);
4406
4407 start_vpfn = iova->pfn_hi + 1;
4408 free_iova_mem(iova);
4409 }
4410 break;
4411 }
4412
4413 return NOTIFY_OK;
4414 }
4415
4416 static struct notifier_block intel_iommu_memory_nb = {
4417 .notifier_call = intel_iommu_memory_notifier,
4418 .priority = 0
4419 };
4420
4421
4422 static ssize_t intel_iommu_show_version(struct device *dev,
4423 struct device_attribute *attr,
4424 char *buf)
4425 {
4426 struct intel_iommu *iommu = dev_get_drvdata(dev);
4427 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4428 return sprintf(buf, "%d:%d\n",
4429 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4430 }
4431 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4432
4433 static ssize_t intel_iommu_show_address(struct device *dev,
4434 struct device_attribute *attr,
4435 char *buf)
4436 {
4437 struct intel_iommu *iommu = dev_get_drvdata(dev);
4438 return sprintf(buf, "%llx\n", iommu->reg_phys);
4439 }
4440 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4441
4442 static ssize_t intel_iommu_show_cap(struct device *dev,
4443 struct device_attribute *attr,
4444 char *buf)
4445 {
4446 struct intel_iommu *iommu = dev_get_drvdata(dev);
4447 return sprintf(buf, "%llx\n", iommu->cap);
4448 }
4449 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4450
4451 static ssize_t intel_iommu_show_ecap(struct device *dev,
4452 struct device_attribute *attr,
4453 char *buf)
4454 {
4455 struct intel_iommu *iommu = dev_get_drvdata(dev);
4456 return sprintf(buf, "%llx\n", iommu->ecap);
4457 }
4458 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4459
4460 static struct attribute *intel_iommu_attrs[] = {
4461 &dev_attr_version.attr,
4462 &dev_attr_address.attr,
4463 &dev_attr_cap.attr,
4464 &dev_attr_ecap.attr,
4465 NULL,
4466 };
4467
4468 static struct attribute_group intel_iommu_group = {
4469 .name = "intel-iommu",
4470 .attrs = intel_iommu_attrs,
4471 };
4472
4473 const struct attribute_group *intel_iommu_groups[] = {
4474 &intel_iommu_group,
4475 NULL,
4476 };
4477
4478 int __init intel_iommu_init(void)
4479 {
4480 int ret = -ENODEV;
4481 struct dmar_drhd_unit *drhd;
4482 struct intel_iommu *iommu;
4483
4484 /* VT-d is required for a TXT/tboot launch, so enforce that */
4485 force_on = tboot_force_iommu();
4486
4487 if (iommu_init_mempool()) {
4488 if (force_on)
4489 panic("tboot: Failed to initialize iommu memory\n");
4490 return -ENOMEM;
4491 }
4492
4493 down_write(&dmar_global_lock);
4494 if (dmar_table_init()) {
4495 if (force_on)
4496 panic("tboot: Failed to initialize DMAR table\n");
4497 goto out_free_dmar;
4498 }
4499
4500 if (dmar_dev_scope_init() < 0) {
4501 if (force_on)
4502 panic("tboot: Failed to initialize DMAR device scope\n");
4503 goto out_free_dmar;
4504 }
4505
4506 if (no_iommu || dmar_disabled)
4507 goto out_free_dmar;
4508
4509 if (list_empty(&dmar_rmrr_units))
4510 pr_info("No RMRR found\n");
4511
4512 if (list_empty(&dmar_atsr_units))
4513 pr_info("No ATSR found\n");
4514
4515 if (dmar_init_reserved_ranges()) {
4516 if (force_on)
4517 panic("tboot: Failed to reserve iommu ranges\n");
4518 goto out_free_reserved_range;
4519 }
4520
4521 init_no_remapping_devices();
4522
4523 ret = init_dmars();
4524 if (ret) {
4525 if (force_on)
4526 panic("tboot: Failed to initialize DMARs\n");
4527 pr_err("Initialization failed\n");
4528 goto out_free_reserved_range;
4529 }
4530 up_write(&dmar_global_lock);
4531 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4532
4533 init_timer(&unmap_timer);
4534 #ifdef CONFIG_SWIOTLB
4535 swiotlb = 0;
4536 #endif
4537 dma_ops = &intel_dma_ops;
4538
4539 init_iommu_pm_ops();
4540
4541 for_each_active_iommu(iommu, drhd)
4542 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4543 intel_iommu_groups,
4544 iommu->name);
4545
4546 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4547 bus_register_notifier(&pci_bus_type, &device_nb);
4548 if (si_domain && !hw_pass_through)
4549 register_memory_notifier(&intel_iommu_memory_nb);
4550
4551 intel_iommu_enabled = 1;
4552
4553 return 0;
4554
4555 out_free_reserved_range:
4556 put_iova_domain(&reserved_iova_list);
4557 out_free_dmar:
4558 intel_iommu_free_dmars();
4559 up_write(&dmar_global_lock);
4560 iommu_exit_mempool();
4561 return ret;
4562 }
4563
4564 static int iommu_detach_dev_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4565 {
4566 struct intel_iommu *iommu = opaque;
4567
4568 iommu_detach_dev(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4569 return 0;
4570 }
4571
4572 /*
4573 * NB - intel-iommu lacks any sort of reference counting for the users of
4574 * dependent devices. If multiple endpoints have intersecting dependent
4575 * devices, unbinding the driver from any one of them will possibly leave
4576 * the others unable to operate.
4577 */
4578 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
4579 struct device *dev)
4580 {
4581 if (!iommu || !dev || !dev_is_pci(dev))
4582 return;
4583
4584 pci_for_each_dma_alias(to_pci_dev(dev), &iommu_detach_dev_cb, iommu);
4585 }
4586
4587 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4588 struct device *dev)
4589 {
4590 struct device_domain_info *info, *tmp;
4591 struct intel_iommu *iommu;
4592 unsigned long flags;
4593 bool found = false;
4594 u8 bus, devfn;
4595
4596 iommu = device_to_iommu(dev, &bus, &devfn);
4597 if (!iommu)
4598 return;
4599
4600 spin_lock_irqsave(&device_domain_lock, flags);
4601 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
4602 if (info->iommu == iommu && info->bus == bus &&
4603 info->devfn == devfn) {
4604 unlink_domain_info(info);
4605 spin_unlock_irqrestore(&device_domain_lock, flags);
4606
4607 iommu_disable_dev_iotlb(info);
4608 iommu_detach_dev(iommu, info->bus, info->devfn);
4609 iommu_detach_dependent_devices(iommu, dev);
4610 free_devinfo_mem(info);
4611
4612 spin_lock_irqsave(&device_domain_lock, flags);
4613
4614 if (found)
4615 break;
4616 else
4617 continue;
4618 }
4619
4620 /* if there is no other devices under the same iommu
4621 * owned by this domain, clear this iommu in iommu_bmp
4622 * update iommu count and coherency
4623 */
4624 if (info->iommu == iommu)
4625 found = true;
4626 }
4627
4628 spin_unlock_irqrestore(&device_domain_lock, flags);
4629
4630 if (found == 0) {
4631 domain_detach_iommu(domain, iommu);
4632 if (!domain_type_is_vm_or_si(domain))
4633 iommu_detach_domain(domain, iommu);
4634 }
4635 }
4636
4637 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4638 {
4639 int adjust_width;
4640
4641 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4642 DMA_32BIT_PFN);
4643 domain_reserve_special_ranges(domain);
4644
4645 /* calculate AGAW */
4646 domain->gaw = guest_width;
4647 adjust_width = guestwidth_to_adjustwidth(guest_width);
4648 domain->agaw = width_to_agaw(adjust_width);
4649
4650 domain->iommu_coherency = 0;
4651 domain->iommu_snooping = 0;
4652 domain->iommu_superpage = 0;
4653 domain->max_addr = 0;
4654
4655 /* always allocate the top pgd */
4656 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4657 if (!domain->pgd)
4658 return -ENOMEM;
4659 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4660 return 0;
4661 }
4662
4663 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4664 {
4665 struct dmar_domain *dmar_domain;
4666 struct iommu_domain *domain;
4667
4668 if (type != IOMMU_DOMAIN_UNMANAGED)
4669 return NULL;
4670
4671 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4672 if (!dmar_domain) {
4673 pr_err("Can't allocate dmar_domain\n");
4674 return NULL;
4675 }
4676 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4677 pr_err("Domain initialization failed\n");
4678 domain_exit(dmar_domain);
4679 return NULL;
4680 }
4681 domain_update_iommu_cap(dmar_domain);
4682
4683 domain = &dmar_domain->domain;
4684 domain->geometry.aperture_start = 0;
4685 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4686 domain->geometry.force_aperture = true;
4687
4688 return domain;
4689 }
4690
4691 static void intel_iommu_domain_free(struct iommu_domain *domain)
4692 {
4693 domain_exit(to_dmar_domain(domain));
4694 }
4695
4696 static int intel_iommu_attach_device(struct iommu_domain *domain,
4697 struct device *dev)
4698 {
4699 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4700 struct intel_iommu *iommu;
4701 int addr_width;
4702 u8 bus, devfn;
4703
4704 if (device_is_rmrr_locked(dev)) {
4705 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4706 return -EPERM;
4707 }
4708
4709 /* normally dev is not mapped */
4710 if (unlikely(domain_context_mapped(dev))) {
4711 struct dmar_domain *old_domain;
4712
4713 old_domain = find_domain(dev);
4714 if (old_domain) {
4715 if (domain_type_is_vm_or_si(dmar_domain))
4716 domain_remove_one_dev_info(old_domain, dev);
4717 else
4718 domain_remove_dev_info(old_domain);
4719
4720 if (!domain_type_is_vm_or_si(old_domain) &&
4721 list_empty(&old_domain->devices))
4722 domain_exit(old_domain);
4723 }
4724 }
4725
4726 iommu = device_to_iommu(dev, &bus, &devfn);
4727 if (!iommu)
4728 return -ENODEV;
4729
4730 /* check if this iommu agaw is sufficient for max mapped address */
4731 addr_width = agaw_to_width(iommu->agaw);
4732 if (addr_width > cap_mgaw(iommu->cap))
4733 addr_width = cap_mgaw(iommu->cap);
4734
4735 if (dmar_domain->max_addr > (1LL << addr_width)) {
4736 pr_err("%s: iommu width (%d) is not "
4737 "sufficient for the mapped address (%llx)\n",
4738 __func__, addr_width, dmar_domain->max_addr);
4739 return -EFAULT;
4740 }
4741 dmar_domain->gaw = addr_width;
4742
4743 /*
4744 * Knock out extra levels of page tables if necessary
4745 */
4746 while (iommu->agaw < dmar_domain->agaw) {
4747 struct dma_pte *pte;
4748
4749 pte = dmar_domain->pgd;
4750 if (dma_pte_present(pte)) {
4751 dmar_domain->pgd = (struct dma_pte *)
4752 phys_to_virt(dma_pte_addr(pte));
4753 free_pgtable_page(pte);
4754 }
4755 dmar_domain->agaw--;
4756 }
4757
4758 return domain_add_dev_info(dmar_domain, dev, CONTEXT_TT_MULTI_LEVEL);
4759 }
4760
4761 static void intel_iommu_detach_device(struct iommu_domain *domain,
4762 struct device *dev)
4763 {
4764 domain_remove_one_dev_info(to_dmar_domain(domain), dev);
4765 }
4766
4767 static int intel_iommu_map(struct iommu_domain *domain,
4768 unsigned long iova, phys_addr_t hpa,
4769 size_t size, int iommu_prot)
4770 {
4771 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4772 u64 max_addr;
4773 int prot = 0;
4774 int ret;
4775
4776 if (iommu_prot & IOMMU_READ)
4777 prot |= DMA_PTE_READ;
4778 if (iommu_prot & IOMMU_WRITE)
4779 prot |= DMA_PTE_WRITE;
4780 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4781 prot |= DMA_PTE_SNP;
4782
4783 max_addr = iova + size;
4784 if (dmar_domain->max_addr < max_addr) {
4785 u64 end;
4786
4787 /* check if minimum agaw is sufficient for mapped address */
4788 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4789 if (end < max_addr) {
4790 pr_err("%s: iommu width (%d) is not "
4791 "sufficient for the mapped address (%llx)\n",
4792 __func__, dmar_domain->gaw, max_addr);
4793 return -EFAULT;
4794 }
4795 dmar_domain->max_addr = max_addr;
4796 }
4797 /* Round up size to next multiple of PAGE_SIZE, if it and
4798 the low bits of hpa would take us onto the next page */
4799 size = aligned_nrpages(hpa, size);
4800 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4801 hpa >> VTD_PAGE_SHIFT, size, prot);
4802 return ret;
4803 }
4804
4805 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4806 unsigned long iova, size_t size)
4807 {
4808 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4809 struct page *freelist = NULL;
4810 struct intel_iommu *iommu;
4811 unsigned long start_pfn, last_pfn;
4812 unsigned int npages;
4813 int iommu_id, num, ndomains, level = 0;
4814
4815 /* Cope with horrid API which requires us to unmap more than the
4816 size argument if it happens to be a large-page mapping. */
4817 if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4818 BUG();
4819
4820 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4821 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4822
4823 start_pfn = iova >> VTD_PAGE_SHIFT;
4824 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4825
4826 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4827
4828 npages = last_pfn - start_pfn + 1;
4829
4830 for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4831 iommu = g_iommus[iommu_id];
4832
4833 /*
4834 * find bit position of dmar_domain
4835 */
4836 ndomains = cap_ndoms(iommu->cap);
4837 for_each_set_bit(num, iommu->domain_ids, ndomains) {
4838 if (iommu->domains[num] == dmar_domain)
4839 iommu_flush_iotlb_psi(iommu, num, start_pfn,
4840 npages, !freelist, 0);
4841 }
4842
4843 }
4844
4845 dma_free_pagelist(freelist);
4846
4847 if (dmar_domain->max_addr == iova + size)
4848 dmar_domain->max_addr = iova;
4849
4850 return size;
4851 }
4852
4853 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4854 dma_addr_t iova)
4855 {
4856 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4857 struct dma_pte *pte;
4858 int level = 0;
4859 u64 phys = 0;
4860
4861 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4862 if (pte)
4863 phys = dma_pte_addr(pte);
4864
4865 return phys;
4866 }
4867
4868 static bool intel_iommu_capable(enum iommu_cap cap)
4869 {
4870 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4871 return domain_update_iommu_snooping(NULL) == 1;
4872 if (cap == IOMMU_CAP_INTR_REMAP)
4873 return irq_remapping_enabled == 1;
4874
4875 return false;
4876 }
4877
4878 static int intel_iommu_add_device(struct device *dev)
4879 {
4880 struct intel_iommu *iommu;
4881 struct iommu_group *group;
4882 u8 bus, devfn;
4883
4884 iommu = device_to_iommu(dev, &bus, &devfn);
4885 if (!iommu)
4886 return -ENODEV;
4887
4888 iommu_device_link(iommu->iommu_dev, dev);
4889
4890 group = iommu_group_get_for_dev(dev);
4891
4892 if (IS_ERR(group))
4893 return PTR_ERR(group);
4894
4895 iommu_group_put(group);
4896 return 0;
4897 }
4898
4899 static void intel_iommu_remove_device(struct device *dev)
4900 {
4901 struct intel_iommu *iommu;
4902 u8 bus, devfn;
4903
4904 iommu = device_to_iommu(dev, &bus, &devfn);
4905 if (!iommu)
4906 return;
4907
4908 iommu_group_remove_device(dev);
4909
4910 iommu_device_unlink(iommu->iommu_dev, dev);
4911 }
4912
4913 static const struct iommu_ops intel_iommu_ops = {
4914 .capable = intel_iommu_capable,
4915 .domain_alloc = intel_iommu_domain_alloc,
4916 .domain_free = intel_iommu_domain_free,
4917 .attach_dev = intel_iommu_attach_device,
4918 .detach_dev = intel_iommu_detach_device,
4919 .map = intel_iommu_map,
4920 .unmap = intel_iommu_unmap,
4921 .map_sg = default_iommu_map_sg,
4922 .iova_to_phys = intel_iommu_iova_to_phys,
4923 .add_device = intel_iommu_add_device,
4924 .remove_device = intel_iommu_remove_device,
4925 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4926 };
4927
4928 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4929 {
4930 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4931 pr_info("Disabling IOMMU for graphics on this chipset\n");
4932 dmar_map_gfx = 0;
4933 }
4934
4935 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4936 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4937 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4938 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4939 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4940 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4941 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4942
4943 static void quirk_iommu_rwbf(struct pci_dev *dev)
4944 {
4945 /*
4946 * Mobile 4 Series Chipset neglects to set RWBF capability,
4947 * but needs it. Same seems to hold for the desktop versions.
4948 */
4949 pr_info("Forcing write-buffer flush capability\n");
4950 rwbf_quirk = 1;
4951 }
4952
4953 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4954 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4955 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4956 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4957 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4958 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4959 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4960
4961 #define GGC 0x52
4962 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4963 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4964 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4965 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4966 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4967 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4968 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4969 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4970
4971 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4972 {
4973 unsigned short ggc;
4974
4975 if (pci_read_config_word(dev, GGC, &ggc))
4976 return;
4977
4978 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4979 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4980 dmar_map_gfx = 0;
4981 } else if (dmar_map_gfx) {
4982 /* we have to ensure the gfx device is idle before we flush */
4983 pr_info("Disabling batched IOTLB flush on Ironlake\n");
4984 intel_iommu_strict = 1;
4985 }
4986 }
4987 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4988 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4989 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4990 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4991
4992 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4993 ISOCH DMAR unit for the Azalia sound device, but not give it any
4994 TLB entries, which causes it to deadlock. Check for that. We do
4995 this in a function called from init_dmars(), instead of in a PCI
4996 quirk, because we don't want to print the obnoxious "BIOS broken"
4997 message if VT-d is actually disabled.
4998 */
4999 static void __init check_tylersburg_isoch(void)
5000 {
5001 struct pci_dev *pdev;
5002 uint32_t vtisochctrl;
5003
5004 /* If there's no Azalia in the system anyway, forget it. */
5005 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5006 if (!pdev)
5007 return;
5008 pci_dev_put(pdev);
5009
5010 /* System Management Registers. Might be hidden, in which case
5011 we can't do the sanity check. But that's OK, because the
5012 known-broken BIOSes _don't_ actually hide it, so far. */
5013 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5014 if (!pdev)
5015 return;
5016
5017 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5018 pci_dev_put(pdev);
5019 return;
5020 }
5021
5022 pci_dev_put(pdev);
5023
5024 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5025 if (vtisochctrl & 1)
5026 return;
5027
5028 /* Drop all bits other than the number of TLB entries */
5029 vtisochctrl &= 0x1c;
5030
5031 /* If we have the recommended number of TLB entries (16), fine. */
5032 if (vtisochctrl == 0x10)
5033 return;
5034
5035 /* Zero TLB entries? You get to ride the short bus to school. */
5036 if (!vtisochctrl) {
5037 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5038 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5039 dmi_get_system_info(DMI_BIOS_VENDOR),
5040 dmi_get_system_info(DMI_BIOS_VERSION),
5041 dmi_get_system_info(DMI_PRODUCT_VERSION));
5042 iommu_identity_mapping |= IDENTMAP_AZALIA;
5043 return;
5044 }
5045
5046 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5047 vtisochctrl);
5048 }