]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/iommu/intel-iommu.c
Merge branch 'tip/perf/core' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-eoan-kernel.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <asm/cacheflush.h>
45 #include <asm/iommu.h>
46
47 #define ROOT_SIZE VTD_PAGE_SIZE
48 #define CONTEXT_SIZE VTD_PAGE_SIZE
49
50 #define IS_BRIDGE_HOST_DEVICE(pdev) \
51 ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
55
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
59
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
61
62 #define MAX_AGAW_WIDTH 64
63
64 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
65 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
66
67 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
68 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
69 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
70 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
71 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
72
73 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
74 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
75 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
76
77 /* page table handling */
78 #define LEVEL_STRIDE (9)
79 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
80
81 static inline int agaw_to_level(int agaw)
82 {
83 return agaw + 2;
84 }
85
86 static inline int agaw_to_width(int agaw)
87 {
88 return 30 + agaw * LEVEL_STRIDE;
89 }
90
91 static inline int width_to_agaw(int width)
92 {
93 return (width - 30) / LEVEL_STRIDE;
94 }
95
96 static inline unsigned int level_to_offset_bits(int level)
97 {
98 return (level - 1) * LEVEL_STRIDE;
99 }
100
101 static inline int pfn_level_offset(unsigned long pfn, int level)
102 {
103 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
104 }
105
106 static inline unsigned long level_mask(int level)
107 {
108 return -1UL << level_to_offset_bits(level);
109 }
110
111 static inline unsigned long level_size(int level)
112 {
113 return 1UL << level_to_offset_bits(level);
114 }
115
116 static inline unsigned long align_to_level(unsigned long pfn, int level)
117 {
118 return (pfn + level_size(level) - 1) & level_mask(level);
119 }
120
121 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
122 {
123 return 1 << ((lvl - 1) * LEVEL_STRIDE);
124 }
125
126 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
127 are never going to work. */
128 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
129 {
130 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
131 }
132
133 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
134 {
135 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
136 }
137 static inline unsigned long page_to_dma_pfn(struct page *pg)
138 {
139 return mm_to_dma_pfn(page_to_pfn(pg));
140 }
141 static inline unsigned long virt_to_dma_pfn(void *p)
142 {
143 return page_to_dma_pfn(virt_to_page(p));
144 }
145
146 /* global iommu list, set NULL for ignored DMAR units */
147 static struct intel_iommu **g_iommus;
148
149 static void __init check_tylersburg_isoch(void);
150 static int rwbf_quirk;
151
152 /*
153 * set to 1 to panic kernel if can't successfully enable VT-d
154 * (used when kernel is launched w/ TXT)
155 */
156 static int force_on = 0;
157
158 /*
159 * 0: Present
160 * 1-11: Reserved
161 * 12-63: Context Ptr (12 - (haw-1))
162 * 64-127: Reserved
163 */
164 struct root_entry {
165 u64 val;
166 u64 rsvd1;
167 };
168 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
169 static inline bool root_present(struct root_entry *root)
170 {
171 return (root->val & 1);
172 }
173 static inline void set_root_present(struct root_entry *root)
174 {
175 root->val |= 1;
176 }
177 static inline void set_root_value(struct root_entry *root, unsigned long value)
178 {
179 root->val |= value & VTD_PAGE_MASK;
180 }
181
182 static inline struct context_entry *
183 get_context_addr_from_root(struct root_entry *root)
184 {
185 return (struct context_entry *)
186 (root_present(root)?phys_to_virt(
187 root->val & VTD_PAGE_MASK) :
188 NULL);
189 }
190
191 /*
192 * low 64 bits:
193 * 0: present
194 * 1: fault processing disable
195 * 2-3: translation type
196 * 12-63: address space root
197 * high 64 bits:
198 * 0-2: address width
199 * 3-6: aval
200 * 8-23: domain id
201 */
202 struct context_entry {
203 u64 lo;
204 u64 hi;
205 };
206
207 static inline bool context_present(struct context_entry *context)
208 {
209 return (context->lo & 1);
210 }
211 static inline void context_set_present(struct context_entry *context)
212 {
213 context->lo |= 1;
214 }
215
216 static inline void context_set_fault_enable(struct context_entry *context)
217 {
218 context->lo &= (((u64)-1) << 2) | 1;
219 }
220
221 static inline void context_set_translation_type(struct context_entry *context,
222 unsigned long value)
223 {
224 context->lo &= (((u64)-1) << 4) | 3;
225 context->lo |= (value & 3) << 2;
226 }
227
228 static inline void context_set_address_root(struct context_entry *context,
229 unsigned long value)
230 {
231 context->lo |= value & VTD_PAGE_MASK;
232 }
233
234 static inline void context_set_address_width(struct context_entry *context,
235 unsigned long value)
236 {
237 context->hi |= value & 7;
238 }
239
240 static inline void context_set_domain_id(struct context_entry *context,
241 unsigned long value)
242 {
243 context->hi |= (value & ((1 << 16) - 1)) << 8;
244 }
245
246 static inline void context_clear_entry(struct context_entry *context)
247 {
248 context->lo = 0;
249 context->hi = 0;
250 }
251
252 /*
253 * 0: readable
254 * 1: writable
255 * 2-6: reserved
256 * 7: super page
257 * 8-10: available
258 * 11: snoop behavior
259 * 12-63: Host physcial address
260 */
261 struct dma_pte {
262 u64 val;
263 };
264
265 static inline void dma_clear_pte(struct dma_pte *pte)
266 {
267 pte->val = 0;
268 }
269
270 static inline void dma_set_pte_readable(struct dma_pte *pte)
271 {
272 pte->val |= DMA_PTE_READ;
273 }
274
275 static inline void dma_set_pte_writable(struct dma_pte *pte)
276 {
277 pte->val |= DMA_PTE_WRITE;
278 }
279
280 static inline void dma_set_pte_snp(struct dma_pte *pte)
281 {
282 pte->val |= DMA_PTE_SNP;
283 }
284
285 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
286 {
287 pte->val = (pte->val & ~3) | (prot & 3);
288 }
289
290 static inline u64 dma_pte_addr(struct dma_pte *pte)
291 {
292 #ifdef CONFIG_64BIT
293 return pte->val & VTD_PAGE_MASK;
294 #else
295 /* Must have a full atomic 64-bit read */
296 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
297 #endif
298 }
299
300 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
301 {
302 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
303 }
304
305 static inline bool dma_pte_present(struct dma_pte *pte)
306 {
307 return (pte->val & 3) != 0;
308 }
309
310 static inline bool dma_pte_superpage(struct dma_pte *pte)
311 {
312 return (pte->val & (1 << 7));
313 }
314
315 static inline int first_pte_in_page(struct dma_pte *pte)
316 {
317 return !((unsigned long)pte & ~VTD_PAGE_MASK);
318 }
319
320 /*
321 * This domain is a statically identity mapping domain.
322 * 1. This domain creats a static 1:1 mapping to all usable memory.
323 * 2. It maps to each iommu if successful.
324 * 3. Each iommu mapps to this domain if successful.
325 */
326 static struct dmar_domain *si_domain;
327 static int hw_pass_through = 1;
328
329 /* devices under the same p2p bridge are owned in one domain */
330 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
331
332 /* domain represents a virtual machine, more than one devices
333 * across iommus may be owned in one domain, e.g. kvm guest.
334 */
335 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
336
337 /* si_domain contains mulitple devices */
338 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
339
340 struct dmar_domain {
341 int id; /* domain id */
342 int nid; /* node id */
343 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
344
345 struct list_head devices; /* all devices' list */
346 struct iova_domain iovad; /* iova's that belong to this domain */
347
348 struct dma_pte *pgd; /* virtual address */
349 int gaw; /* max guest address width */
350
351 /* adjusted guest address width, 0 is level 2 30-bit */
352 int agaw;
353
354 int flags; /* flags to find out type of domain */
355
356 int iommu_coherency;/* indicate coherency of iommu access */
357 int iommu_snooping; /* indicate snooping control feature*/
358 int iommu_count; /* reference count of iommu */
359 int iommu_superpage;/* Level of superpages supported:
360 0 == 4KiB (no superpages), 1 == 2MiB,
361 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
362 spinlock_t iommu_lock; /* protect iommu set in domain */
363 u64 max_addr; /* maximum mapped address */
364 };
365
366 /* PCI domain-device relationship */
367 struct device_domain_info {
368 struct list_head link; /* link to domain siblings */
369 struct list_head global; /* link to global list */
370 int segment; /* PCI domain */
371 u8 bus; /* PCI bus number */
372 u8 devfn; /* PCI devfn number */
373 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
374 struct intel_iommu *iommu; /* IOMMU used by this device */
375 struct dmar_domain *domain; /* pointer to domain */
376 };
377
378 static void flush_unmaps_timeout(unsigned long data);
379
380 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
381
382 #define HIGH_WATER_MARK 250
383 struct deferred_flush_tables {
384 int next;
385 struct iova *iova[HIGH_WATER_MARK];
386 struct dmar_domain *domain[HIGH_WATER_MARK];
387 };
388
389 static struct deferred_flush_tables *deferred_flush;
390
391 /* bitmap for indexing intel_iommus */
392 static int g_num_of_iommus;
393
394 static DEFINE_SPINLOCK(async_umap_flush_lock);
395 static LIST_HEAD(unmaps_to_do);
396
397 static int timer_on;
398 static long list_size;
399
400 static void domain_remove_dev_info(struct dmar_domain *domain);
401
402 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
403 int dmar_disabled = 0;
404 #else
405 int dmar_disabled = 1;
406 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
407
408 int intel_iommu_enabled = 0;
409 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
410
411 static int dmar_map_gfx = 1;
412 static int dmar_forcedac;
413 static int intel_iommu_strict;
414 static int intel_iommu_superpage = 1;
415
416 int intel_iommu_gfx_mapped;
417 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
418
419 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
420 static DEFINE_SPINLOCK(device_domain_lock);
421 static LIST_HEAD(device_domain_list);
422
423 static struct iommu_ops intel_iommu_ops;
424
425 static int __init intel_iommu_setup(char *str)
426 {
427 if (!str)
428 return -EINVAL;
429 while (*str) {
430 if (!strncmp(str, "on", 2)) {
431 dmar_disabled = 0;
432 printk(KERN_INFO "Intel-IOMMU: enabled\n");
433 } else if (!strncmp(str, "off", 3)) {
434 dmar_disabled = 1;
435 printk(KERN_INFO "Intel-IOMMU: disabled\n");
436 } else if (!strncmp(str, "igfx_off", 8)) {
437 dmar_map_gfx = 0;
438 printk(KERN_INFO
439 "Intel-IOMMU: disable GFX device mapping\n");
440 } else if (!strncmp(str, "forcedac", 8)) {
441 printk(KERN_INFO
442 "Intel-IOMMU: Forcing DAC for PCI devices\n");
443 dmar_forcedac = 1;
444 } else if (!strncmp(str, "strict", 6)) {
445 printk(KERN_INFO
446 "Intel-IOMMU: disable batched IOTLB flush\n");
447 intel_iommu_strict = 1;
448 } else if (!strncmp(str, "sp_off", 6)) {
449 printk(KERN_INFO
450 "Intel-IOMMU: disable supported super page\n");
451 intel_iommu_superpage = 0;
452 }
453
454 str += strcspn(str, ",");
455 while (*str == ',')
456 str++;
457 }
458 return 0;
459 }
460 __setup("intel_iommu=", intel_iommu_setup);
461
462 static struct kmem_cache *iommu_domain_cache;
463 static struct kmem_cache *iommu_devinfo_cache;
464 static struct kmem_cache *iommu_iova_cache;
465
466 static inline void *alloc_pgtable_page(int node)
467 {
468 struct page *page;
469 void *vaddr = NULL;
470
471 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
472 if (page)
473 vaddr = page_address(page);
474 return vaddr;
475 }
476
477 static inline void free_pgtable_page(void *vaddr)
478 {
479 free_page((unsigned long)vaddr);
480 }
481
482 static inline void *alloc_domain_mem(void)
483 {
484 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
485 }
486
487 static void free_domain_mem(void *vaddr)
488 {
489 kmem_cache_free(iommu_domain_cache, vaddr);
490 }
491
492 static inline void * alloc_devinfo_mem(void)
493 {
494 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
495 }
496
497 static inline void free_devinfo_mem(void *vaddr)
498 {
499 kmem_cache_free(iommu_devinfo_cache, vaddr);
500 }
501
502 struct iova *alloc_iova_mem(void)
503 {
504 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
505 }
506
507 void free_iova_mem(struct iova *iova)
508 {
509 kmem_cache_free(iommu_iova_cache, iova);
510 }
511
512
513 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
514 {
515 unsigned long sagaw;
516 int agaw = -1;
517
518 sagaw = cap_sagaw(iommu->cap);
519 for (agaw = width_to_agaw(max_gaw);
520 agaw >= 0; agaw--) {
521 if (test_bit(agaw, &sagaw))
522 break;
523 }
524
525 return agaw;
526 }
527
528 /*
529 * Calculate max SAGAW for each iommu.
530 */
531 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
532 {
533 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
534 }
535
536 /*
537 * calculate agaw for each iommu.
538 * "SAGAW" may be different across iommus, use a default agaw, and
539 * get a supported less agaw for iommus that don't support the default agaw.
540 */
541 int iommu_calculate_agaw(struct intel_iommu *iommu)
542 {
543 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
544 }
545
546 /* This functionin only returns single iommu in a domain */
547 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
548 {
549 int iommu_id;
550
551 /* si_domain and vm domain should not get here. */
552 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
553 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
554
555 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
556 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
557 return NULL;
558
559 return g_iommus[iommu_id];
560 }
561
562 static void domain_update_iommu_coherency(struct dmar_domain *domain)
563 {
564 int i;
565
566 domain->iommu_coherency = 1;
567
568 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
569 if (!ecap_coherent(g_iommus[i]->ecap)) {
570 domain->iommu_coherency = 0;
571 break;
572 }
573 }
574 }
575
576 static void domain_update_iommu_snooping(struct dmar_domain *domain)
577 {
578 int i;
579
580 domain->iommu_snooping = 1;
581
582 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
583 if (!ecap_sc_support(g_iommus[i]->ecap)) {
584 domain->iommu_snooping = 0;
585 break;
586 }
587 }
588 }
589
590 static void domain_update_iommu_superpage(struct dmar_domain *domain)
591 {
592 struct dmar_drhd_unit *drhd;
593 struct intel_iommu *iommu = NULL;
594 int mask = 0xf;
595
596 if (!intel_iommu_superpage) {
597 domain->iommu_superpage = 0;
598 return;
599 }
600
601 /* set iommu_superpage to the smallest common denominator */
602 for_each_active_iommu(iommu, drhd) {
603 mask &= cap_super_page_val(iommu->cap);
604 if (!mask) {
605 break;
606 }
607 }
608 domain->iommu_superpage = fls(mask);
609 }
610
611 /* Some capabilities may be different across iommus */
612 static void domain_update_iommu_cap(struct dmar_domain *domain)
613 {
614 domain_update_iommu_coherency(domain);
615 domain_update_iommu_snooping(domain);
616 domain_update_iommu_superpage(domain);
617 }
618
619 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
620 {
621 struct dmar_drhd_unit *drhd = NULL;
622 int i;
623
624 for_each_drhd_unit(drhd) {
625 if (drhd->ignored)
626 continue;
627 if (segment != drhd->segment)
628 continue;
629
630 for (i = 0; i < drhd->devices_cnt; i++) {
631 if (drhd->devices[i] &&
632 drhd->devices[i]->bus->number == bus &&
633 drhd->devices[i]->devfn == devfn)
634 return drhd->iommu;
635 if (drhd->devices[i] &&
636 drhd->devices[i]->subordinate &&
637 drhd->devices[i]->subordinate->number <= bus &&
638 drhd->devices[i]->subordinate->subordinate >= bus)
639 return drhd->iommu;
640 }
641
642 if (drhd->include_all)
643 return drhd->iommu;
644 }
645
646 return NULL;
647 }
648
649 static void domain_flush_cache(struct dmar_domain *domain,
650 void *addr, int size)
651 {
652 if (!domain->iommu_coherency)
653 clflush_cache_range(addr, size);
654 }
655
656 /* Gets context entry for a given bus and devfn */
657 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
658 u8 bus, u8 devfn)
659 {
660 struct root_entry *root;
661 struct context_entry *context;
662 unsigned long phy_addr;
663 unsigned long flags;
664
665 spin_lock_irqsave(&iommu->lock, flags);
666 root = &iommu->root_entry[bus];
667 context = get_context_addr_from_root(root);
668 if (!context) {
669 context = (struct context_entry *)
670 alloc_pgtable_page(iommu->node);
671 if (!context) {
672 spin_unlock_irqrestore(&iommu->lock, flags);
673 return NULL;
674 }
675 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
676 phy_addr = virt_to_phys((void *)context);
677 set_root_value(root, phy_addr);
678 set_root_present(root);
679 __iommu_flush_cache(iommu, root, sizeof(*root));
680 }
681 spin_unlock_irqrestore(&iommu->lock, flags);
682 return &context[devfn];
683 }
684
685 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
686 {
687 struct root_entry *root;
688 struct context_entry *context;
689 int ret;
690 unsigned long flags;
691
692 spin_lock_irqsave(&iommu->lock, flags);
693 root = &iommu->root_entry[bus];
694 context = get_context_addr_from_root(root);
695 if (!context) {
696 ret = 0;
697 goto out;
698 }
699 ret = context_present(&context[devfn]);
700 out:
701 spin_unlock_irqrestore(&iommu->lock, flags);
702 return ret;
703 }
704
705 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
706 {
707 struct root_entry *root;
708 struct context_entry *context;
709 unsigned long flags;
710
711 spin_lock_irqsave(&iommu->lock, flags);
712 root = &iommu->root_entry[bus];
713 context = get_context_addr_from_root(root);
714 if (context) {
715 context_clear_entry(&context[devfn]);
716 __iommu_flush_cache(iommu, &context[devfn], \
717 sizeof(*context));
718 }
719 spin_unlock_irqrestore(&iommu->lock, flags);
720 }
721
722 static void free_context_table(struct intel_iommu *iommu)
723 {
724 struct root_entry *root;
725 int i;
726 unsigned long flags;
727 struct context_entry *context;
728
729 spin_lock_irqsave(&iommu->lock, flags);
730 if (!iommu->root_entry) {
731 goto out;
732 }
733 for (i = 0; i < ROOT_ENTRY_NR; i++) {
734 root = &iommu->root_entry[i];
735 context = get_context_addr_from_root(root);
736 if (context)
737 free_pgtable_page(context);
738 }
739 free_pgtable_page(iommu->root_entry);
740 iommu->root_entry = NULL;
741 out:
742 spin_unlock_irqrestore(&iommu->lock, flags);
743 }
744
745 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
746 unsigned long pfn, int target_level)
747 {
748 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
749 struct dma_pte *parent, *pte = NULL;
750 int level = agaw_to_level(domain->agaw);
751 int offset;
752
753 BUG_ON(!domain->pgd);
754 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
755 parent = domain->pgd;
756
757 while (level > 0) {
758 void *tmp_page;
759
760 offset = pfn_level_offset(pfn, level);
761 pte = &parent[offset];
762 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
763 break;
764 if (level == target_level)
765 break;
766
767 if (!dma_pte_present(pte)) {
768 uint64_t pteval;
769
770 tmp_page = alloc_pgtable_page(domain->nid);
771
772 if (!tmp_page)
773 return NULL;
774
775 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
776 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
777 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
778 /* Someone else set it while we were thinking; use theirs. */
779 free_pgtable_page(tmp_page);
780 } else {
781 dma_pte_addr(pte);
782 domain_flush_cache(domain, pte, sizeof(*pte));
783 }
784 }
785 parent = phys_to_virt(dma_pte_addr(pte));
786 level--;
787 }
788
789 return pte;
790 }
791
792
793 /* return address's pte at specific level */
794 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
795 unsigned long pfn,
796 int level, int *large_page)
797 {
798 struct dma_pte *parent, *pte = NULL;
799 int total = agaw_to_level(domain->agaw);
800 int offset;
801
802 parent = domain->pgd;
803 while (level <= total) {
804 offset = pfn_level_offset(pfn, total);
805 pte = &parent[offset];
806 if (level == total)
807 return pte;
808
809 if (!dma_pte_present(pte)) {
810 *large_page = total;
811 break;
812 }
813
814 if (pte->val & DMA_PTE_LARGE_PAGE) {
815 *large_page = total;
816 return pte;
817 }
818
819 parent = phys_to_virt(dma_pte_addr(pte));
820 total--;
821 }
822 return NULL;
823 }
824
825 /* clear last level pte, a tlb flush should be followed */
826 static int dma_pte_clear_range(struct dmar_domain *domain,
827 unsigned long start_pfn,
828 unsigned long last_pfn)
829 {
830 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
831 unsigned int large_page = 1;
832 struct dma_pte *first_pte, *pte;
833 int order;
834
835 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
836 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
837 BUG_ON(start_pfn > last_pfn);
838
839 /* we don't need lock here; nobody else touches the iova range */
840 do {
841 large_page = 1;
842 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
843 if (!pte) {
844 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
845 continue;
846 }
847 do {
848 dma_clear_pte(pte);
849 start_pfn += lvl_to_nr_pages(large_page);
850 pte++;
851 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
852
853 domain_flush_cache(domain, first_pte,
854 (void *)pte - (void *)first_pte);
855
856 } while (start_pfn && start_pfn <= last_pfn);
857
858 order = (large_page - 1) * 9;
859 return order;
860 }
861
862 /* free page table pages. last level pte should already be cleared */
863 static void dma_pte_free_pagetable(struct dmar_domain *domain,
864 unsigned long start_pfn,
865 unsigned long last_pfn)
866 {
867 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
868 struct dma_pte *first_pte, *pte;
869 int total = agaw_to_level(domain->agaw);
870 int level;
871 unsigned long tmp;
872 int large_page = 2;
873
874 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
875 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
876 BUG_ON(start_pfn > last_pfn);
877
878 /* We don't need lock here; nobody else touches the iova range */
879 level = 2;
880 while (level <= total) {
881 tmp = align_to_level(start_pfn, level);
882
883 /* If we can't even clear one PTE at this level, we're done */
884 if (tmp + level_size(level) - 1 > last_pfn)
885 return;
886
887 do {
888 large_page = level;
889 first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page);
890 if (large_page > level)
891 level = large_page + 1;
892 if (!pte) {
893 tmp = align_to_level(tmp + 1, level + 1);
894 continue;
895 }
896 do {
897 if (dma_pte_present(pte)) {
898 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
899 dma_clear_pte(pte);
900 }
901 pte++;
902 tmp += level_size(level);
903 } while (!first_pte_in_page(pte) &&
904 tmp + level_size(level) - 1 <= last_pfn);
905
906 domain_flush_cache(domain, first_pte,
907 (void *)pte - (void *)first_pte);
908
909 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
910 level++;
911 }
912 /* free pgd */
913 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
914 free_pgtable_page(domain->pgd);
915 domain->pgd = NULL;
916 }
917 }
918
919 /* iommu handling */
920 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
921 {
922 struct root_entry *root;
923 unsigned long flags;
924
925 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
926 if (!root)
927 return -ENOMEM;
928
929 __iommu_flush_cache(iommu, root, ROOT_SIZE);
930
931 spin_lock_irqsave(&iommu->lock, flags);
932 iommu->root_entry = root;
933 spin_unlock_irqrestore(&iommu->lock, flags);
934
935 return 0;
936 }
937
938 static void iommu_set_root_entry(struct intel_iommu *iommu)
939 {
940 void *addr;
941 u32 sts;
942 unsigned long flag;
943
944 addr = iommu->root_entry;
945
946 raw_spin_lock_irqsave(&iommu->register_lock, flag);
947 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
948
949 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
950
951 /* Make sure hardware complete it */
952 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
953 readl, (sts & DMA_GSTS_RTPS), sts);
954
955 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
956 }
957
958 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
959 {
960 u32 val;
961 unsigned long flag;
962
963 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
964 return;
965
966 raw_spin_lock_irqsave(&iommu->register_lock, flag);
967 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
968
969 /* Make sure hardware complete it */
970 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
971 readl, (!(val & DMA_GSTS_WBFS)), val);
972
973 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
974 }
975
976 /* return value determine if we need a write buffer flush */
977 static void __iommu_flush_context(struct intel_iommu *iommu,
978 u16 did, u16 source_id, u8 function_mask,
979 u64 type)
980 {
981 u64 val = 0;
982 unsigned long flag;
983
984 switch (type) {
985 case DMA_CCMD_GLOBAL_INVL:
986 val = DMA_CCMD_GLOBAL_INVL;
987 break;
988 case DMA_CCMD_DOMAIN_INVL:
989 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
990 break;
991 case DMA_CCMD_DEVICE_INVL:
992 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
993 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
994 break;
995 default:
996 BUG();
997 }
998 val |= DMA_CCMD_ICC;
999
1000 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1001 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1002
1003 /* Make sure hardware complete it */
1004 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1005 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1006
1007 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1008 }
1009
1010 /* return value determine if we need a write buffer flush */
1011 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1012 u64 addr, unsigned int size_order, u64 type)
1013 {
1014 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1015 u64 val = 0, val_iva = 0;
1016 unsigned long flag;
1017
1018 switch (type) {
1019 case DMA_TLB_GLOBAL_FLUSH:
1020 /* global flush doesn't need set IVA_REG */
1021 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1022 break;
1023 case DMA_TLB_DSI_FLUSH:
1024 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1025 break;
1026 case DMA_TLB_PSI_FLUSH:
1027 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1028 /* Note: always flush non-leaf currently */
1029 val_iva = size_order | addr;
1030 break;
1031 default:
1032 BUG();
1033 }
1034 /* Note: set drain read/write */
1035 #if 0
1036 /*
1037 * This is probably to be super secure.. Looks like we can
1038 * ignore it without any impact.
1039 */
1040 if (cap_read_drain(iommu->cap))
1041 val |= DMA_TLB_READ_DRAIN;
1042 #endif
1043 if (cap_write_drain(iommu->cap))
1044 val |= DMA_TLB_WRITE_DRAIN;
1045
1046 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1047 /* Note: Only uses first TLB reg currently */
1048 if (val_iva)
1049 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1050 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1051
1052 /* Make sure hardware complete it */
1053 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1054 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1055
1056 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1057
1058 /* check IOTLB invalidation granularity */
1059 if (DMA_TLB_IAIG(val) == 0)
1060 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1061 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1062 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1063 (unsigned long long)DMA_TLB_IIRG(type),
1064 (unsigned long long)DMA_TLB_IAIG(val));
1065 }
1066
1067 static struct device_domain_info *iommu_support_dev_iotlb(
1068 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1069 {
1070 int found = 0;
1071 unsigned long flags;
1072 struct device_domain_info *info;
1073 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1074
1075 if (!ecap_dev_iotlb_support(iommu->ecap))
1076 return NULL;
1077
1078 if (!iommu->qi)
1079 return NULL;
1080
1081 spin_lock_irqsave(&device_domain_lock, flags);
1082 list_for_each_entry(info, &domain->devices, link)
1083 if (info->bus == bus && info->devfn == devfn) {
1084 found = 1;
1085 break;
1086 }
1087 spin_unlock_irqrestore(&device_domain_lock, flags);
1088
1089 if (!found || !info->dev)
1090 return NULL;
1091
1092 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1093 return NULL;
1094
1095 if (!dmar_find_matched_atsr_unit(info->dev))
1096 return NULL;
1097
1098 info->iommu = iommu;
1099
1100 return info;
1101 }
1102
1103 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1104 {
1105 if (!info)
1106 return;
1107
1108 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1109 }
1110
1111 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1112 {
1113 if (!info->dev || !pci_ats_enabled(info->dev))
1114 return;
1115
1116 pci_disable_ats(info->dev);
1117 }
1118
1119 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1120 u64 addr, unsigned mask)
1121 {
1122 u16 sid, qdep;
1123 unsigned long flags;
1124 struct device_domain_info *info;
1125
1126 spin_lock_irqsave(&device_domain_lock, flags);
1127 list_for_each_entry(info, &domain->devices, link) {
1128 if (!info->dev || !pci_ats_enabled(info->dev))
1129 continue;
1130
1131 sid = info->bus << 8 | info->devfn;
1132 qdep = pci_ats_queue_depth(info->dev);
1133 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1134 }
1135 spin_unlock_irqrestore(&device_domain_lock, flags);
1136 }
1137
1138 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1139 unsigned long pfn, unsigned int pages, int map)
1140 {
1141 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1142 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1143
1144 BUG_ON(pages == 0);
1145
1146 /*
1147 * Fallback to domain selective flush if no PSI support or the size is
1148 * too big.
1149 * PSI requires page size to be 2 ^ x, and the base address is naturally
1150 * aligned to the size
1151 */
1152 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1153 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1154 DMA_TLB_DSI_FLUSH);
1155 else
1156 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1157 DMA_TLB_PSI_FLUSH);
1158
1159 /*
1160 * In caching mode, changes of pages from non-present to present require
1161 * flush. However, device IOTLB doesn't need to be flushed in this case.
1162 */
1163 if (!cap_caching_mode(iommu->cap) || !map)
1164 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1165 }
1166
1167 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1168 {
1169 u32 pmen;
1170 unsigned long flags;
1171
1172 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1173 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1174 pmen &= ~DMA_PMEN_EPM;
1175 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1176
1177 /* wait for the protected region status bit to clear */
1178 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1179 readl, !(pmen & DMA_PMEN_PRS), pmen);
1180
1181 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1182 }
1183
1184 static int iommu_enable_translation(struct intel_iommu *iommu)
1185 {
1186 u32 sts;
1187 unsigned long flags;
1188
1189 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1190 iommu->gcmd |= DMA_GCMD_TE;
1191 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1192
1193 /* Make sure hardware complete it */
1194 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1195 readl, (sts & DMA_GSTS_TES), sts);
1196
1197 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1198 return 0;
1199 }
1200
1201 static int iommu_disable_translation(struct intel_iommu *iommu)
1202 {
1203 u32 sts;
1204 unsigned long flag;
1205
1206 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1207 iommu->gcmd &= ~DMA_GCMD_TE;
1208 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1209
1210 /* Make sure hardware complete it */
1211 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1212 readl, (!(sts & DMA_GSTS_TES)), sts);
1213
1214 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1215 return 0;
1216 }
1217
1218
1219 static int iommu_init_domains(struct intel_iommu *iommu)
1220 {
1221 unsigned long ndomains;
1222 unsigned long nlongs;
1223
1224 ndomains = cap_ndoms(iommu->cap);
1225 pr_debug("IOMMU %d: Number of Domains supportd <%ld>\n", iommu->seq_id,
1226 ndomains);
1227 nlongs = BITS_TO_LONGS(ndomains);
1228
1229 spin_lock_init(&iommu->lock);
1230
1231 /* TBD: there might be 64K domains,
1232 * consider other allocation for future chip
1233 */
1234 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1235 if (!iommu->domain_ids) {
1236 printk(KERN_ERR "Allocating domain id array failed\n");
1237 return -ENOMEM;
1238 }
1239 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1240 GFP_KERNEL);
1241 if (!iommu->domains) {
1242 printk(KERN_ERR "Allocating domain array failed\n");
1243 return -ENOMEM;
1244 }
1245
1246 /*
1247 * if Caching mode is set, then invalid translations are tagged
1248 * with domainid 0. Hence we need to pre-allocate it.
1249 */
1250 if (cap_caching_mode(iommu->cap))
1251 set_bit(0, iommu->domain_ids);
1252 return 0;
1253 }
1254
1255
1256 static void domain_exit(struct dmar_domain *domain);
1257 static void vm_domain_exit(struct dmar_domain *domain);
1258
1259 void free_dmar_iommu(struct intel_iommu *iommu)
1260 {
1261 struct dmar_domain *domain;
1262 int i;
1263 unsigned long flags;
1264
1265 if ((iommu->domains) && (iommu->domain_ids)) {
1266 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1267 domain = iommu->domains[i];
1268 clear_bit(i, iommu->domain_ids);
1269
1270 spin_lock_irqsave(&domain->iommu_lock, flags);
1271 if (--domain->iommu_count == 0) {
1272 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1273 vm_domain_exit(domain);
1274 else
1275 domain_exit(domain);
1276 }
1277 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1278 }
1279 }
1280
1281 if (iommu->gcmd & DMA_GCMD_TE)
1282 iommu_disable_translation(iommu);
1283
1284 if (iommu->irq) {
1285 irq_set_handler_data(iommu->irq, NULL);
1286 /* This will mask the irq */
1287 free_irq(iommu->irq, iommu);
1288 destroy_irq(iommu->irq);
1289 }
1290
1291 kfree(iommu->domains);
1292 kfree(iommu->domain_ids);
1293
1294 g_iommus[iommu->seq_id] = NULL;
1295
1296 /* if all iommus are freed, free g_iommus */
1297 for (i = 0; i < g_num_of_iommus; i++) {
1298 if (g_iommus[i])
1299 break;
1300 }
1301
1302 if (i == g_num_of_iommus)
1303 kfree(g_iommus);
1304
1305 /* free context mapping */
1306 free_context_table(iommu);
1307 }
1308
1309 static struct dmar_domain *alloc_domain(void)
1310 {
1311 struct dmar_domain *domain;
1312
1313 domain = alloc_domain_mem();
1314 if (!domain)
1315 return NULL;
1316
1317 domain->nid = -1;
1318 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1319 domain->flags = 0;
1320
1321 return domain;
1322 }
1323
1324 static int iommu_attach_domain(struct dmar_domain *domain,
1325 struct intel_iommu *iommu)
1326 {
1327 int num;
1328 unsigned long ndomains;
1329 unsigned long flags;
1330
1331 ndomains = cap_ndoms(iommu->cap);
1332
1333 spin_lock_irqsave(&iommu->lock, flags);
1334
1335 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1336 if (num >= ndomains) {
1337 spin_unlock_irqrestore(&iommu->lock, flags);
1338 printk(KERN_ERR "IOMMU: no free domain ids\n");
1339 return -ENOMEM;
1340 }
1341
1342 domain->id = num;
1343 set_bit(num, iommu->domain_ids);
1344 set_bit(iommu->seq_id, &domain->iommu_bmp);
1345 iommu->domains[num] = domain;
1346 spin_unlock_irqrestore(&iommu->lock, flags);
1347
1348 return 0;
1349 }
1350
1351 static void iommu_detach_domain(struct dmar_domain *domain,
1352 struct intel_iommu *iommu)
1353 {
1354 unsigned long flags;
1355 int num, ndomains;
1356 int found = 0;
1357
1358 spin_lock_irqsave(&iommu->lock, flags);
1359 ndomains = cap_ndoms(iommu->cap);
1360 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1361 if (iommu->domains[num] == domain) {
1362 found = 1;
1363 break;
1364 }
1365 }
1366
1367 if (found) {
1368 clear_bit(num, iommu->domain_ids);
1369 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1370 iommu->domains[num] = NULL;
1371 }
1372 spin_unlock_irqrestore(&iommu->lock, flags);
1373 }
1374
1375 static struct iova_domain reserved_iova_list;
1376 static struct lock_class_key reserved_rbtree_key;
1377
1378 static int dmar_init_reserved_ranges(void)
1379 {
1380 struct pci_dev *pdev = NULL;
1381 struct iova *iova;
1382 int i;
1383
1384 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1385
1386 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1387 &reserved_rbtree_key);
1388
1389 /* IOAPIC ranges shouldn't be accessed by DMA */
1390 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1391 IOVA_PFN(IOAPIC_RANGE_END));
1392 if (!iova) {
1393 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1394 return -ENODEV;
1395 }
1396
1397 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1398 for_each_pci_dev(pdev) {
1399 struct resource *r;
1400
1401 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1402 r = &pdev->resource[i];
1403 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1404 continue;
1405 iova = reserve_iova(&reserved_iova_list,
1406 IOVA_PFN(r->start),
1407 IOVA_PFN(r->end));
1408 if (!iova) {
1409 printk(KERN_ERR "Reserve iova failed\n");
1410 return -ENODEV;
1411 }
1412 }
1413 }
1414 return 0;
1415 }
1416
1417 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1418 {
1419 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1420 }
1421
1422 static inline int guestwidth_to_adjustwidth(int gaw)
1423 {
1424 int agaw;
1425 int r = (gaw - 12) % 9;
1426
1427 if (r == 0)
1428 agaw = gaw;
1429 else
1430 agaw = gaw + 9 - r;
1431 if (agaw > 64)
1432 agaw = 64;
1433 return agaw;
1434 }
1435
1436 static int domain_init(struct dmar_domain *domain, int guest_width)
1437 {
1438 struct intel_iommu *iommu;
1439 int adjust_width, agaw;
1440 unsigned long sagaw;
1441
1442 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1443 spin_lock_init(&domain->iommu_lock);
1444
1445 domain_reserve_special_ranges(domain);
1446
1447 /* calculate AGAW */
1448 iommu = domain_get_iommu(domain);
1449 if (guest_width > cap_mgaw(iommu->cap))
1450 guest_width = cap_mgaw(iommu->cap);
1451 domain->gaw = guest_width;
1452 adjust_width = guestwidth_to_adjustwidth(guest_width);
1453 agaw = width_to_agaw(adjust_width);
1454 sagaw = cap_sagaw(iommu->cap);
1455 if (!test_bit(agaw, &sagaw)) {
1456 /* hardware doesn't support it, choose a bigger one */
1457 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1458 agaw = find_next_bit(&sagaw, 5, agaw);
1459 if (agaw >= 5)
1460 return -ENODEV;
1461 }
1462 domain->agaw = agaw;
1463 INIT_LIST_HEAD(&domain->devices);
1464
1465 if (ecap_coherent(iommu->ecap))
1466 domain->iommu_coherency = 1;
1467 else
1468 domain->iommu_coherency = 0;
1469
1470 if (ecap_sc_support(iommu->ecap))
1471 domain->iommu_snooping = 1;
1472 else
1473 domain->iommu_snooping = 0;
1474
1475 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1476 domain->iommu_count = 1;
1477 domain->nid = iommu->node;
1478
1479 /* always allocate the top pgd */
1480 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1481 if (!domain->pgd)
1482 return -ENOMEM;
1483 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1484 return 0;
1485 }
1486
1487 static void domain_exit(struct dmar_domain *domain)
1488 {
1489 struct dmar_drhd_unit *drhd;
1490 struct intel_iommu *iommu;
1491
1492 /* Domain 0 is reserved, so dont process it */
1493 if (!domain)
1494 return;
1495
1496 /* Flush any lazy unmaps that may reference this domain */
1497 if (!intel_iommu_strict)
1498 flush_unmaps_timeout(0);
1499
1500 domain_remove_dev_info(domain);
1501 /* destroy iovas */
1502 put_iova_domain(&domain->iovad);
1503
1504 /* clear ptes */
1505 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1506
1507 /* free page tables */
1508 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1509
1510 for_each_active_iommu(iommu, drhd)
1511 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1512 iommu_detach_domain(domain, iommu);
1513
1514 free_domain_mem(domain);
1515 }
1516
1517 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1518 u8 bus, u8 devfn, int translation)
1519 {
1520 struct context_entry *context;
1521 unsigned long flags;
1522 struct intel_iommu *iommu;
1523 struct dma_pte *pgd;
1524 unsigned long num;
1525 unsigned long ndomains;
1526 int id;
1527 int agaw;
1528 struct device_domain_info *info = NULL;
1529
1530 pr_debug("Set context mapping for %02x:%02x.%d\n",
1531 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1532
1533 BUG_ON(!domain->pgd);
1534 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1535 translation != CONTEXT_TT_MULTI_LEVEL);
1536
1537 iommu = device_to_iommu(segment, bus, devfn);
1538 if (!iommu)
1539 return -ENODEV;
1540
1541 context = device_to_context_entry(iommu, bus, devfn);
1542 if (!context)
1543 return -ENOMEM;
1544 spin_lock_irqsave(&iommu->lock, flags);
1545 if (context_present(context)) {
1546 spin_unlock_irqrestore(&iommu->lock, flags);
1547 return 0;
1548 }
1549
1550 id = domain->id;
1551 pgd = domain->pgd;
1552
1553 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1554 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1555 int found = 0;
1556
1557 /* find an available domain id for this device in iommu */
1558 ndomains = cap_ndoms(iommu->cap);
1559 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1560 if (iommu->domains[num] == domain) {
1561 id = num;
1562 found = 1;
1563 break;
1564 }
1565 }
1566
1567 if (found == 0) {
1568 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1569 if (num >= ndomains) {
1570 spin_unlock_irqrestore(&iommu->lock, flags);
1571 printk(KERN_ERR "IOMMU: no free domain ids\n");
1572 return -EFAULT;
1573 }
1574
1575 set_bit(num, iommu->domain_ids);
1576 iommu->domains[num] = domain;
1577 id = num;
1578 }
1579
1580 /* Skip top levels of page tables for
1581 * iommu which has less agaw than default.
1582 * Unnecessary for PT mode.
1583 */
1584 if (translation != CONTEXT_TT_PASS_THROUGH) {
1585 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1586 pgd = phys_to_virt(dma_pte_addr(pgd));
1587 if (!dma_pte_present(pgd)) {
1588 spin_unlock_irqrestore(&iommu->lock, flags);
1589 return -ENOMEM;
1590 }
1591 }
1592 }
1593 }
1594
1595 context_set_domain_id(context, id);
1596
1597 if (translation != CONTEXT_TT_PASS_THROUGH) {
1598 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1599 translation = info ? CONTEXT_TT_DEV_IOTLB :
1600 CONTEXT_TT_MULTI_LEVEL;
1601 }
1602 /*
1603 * In pass through mode, AW must be programmed to indicate the largest
1604 * AGAW value supported by hardware. And ASR is ignored by hardware.
1605 */
1606 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1607 context_set_address_width(context, iommu->msagaw);
1608 else {
1609 context_set_address_root(context, virt_to_phys(pgd));
1610 context_set_address_width(context, iommu->agaw);
1611 }
1612
1613 context_set_translation_type(context, translation);
1614 context_set_fault_enable(context);
1615 context_set_present(context);
1616 domain_flush_cache(domain, context, sizeof(*context));
1617
1618 /*
1619 * It's a non-present to present mapping. If hardware doesn't cache
1620 * non-present entry we only need to flush the write-buffer. If the
1621 * _does_ cache non-present entries, then it does so in the special
1622 * domain #0, which we have to flush:
1623 */
1624 if (cap_caching_mode(iommu->cap)) {
1625 iommu->flush.flush_context(iommu, 0,
1626 (((u16)bus) << 8) | devfn,
1627 DMA_CCMD_MASK_NOBIT,
1628 DMA_CCMD_DEVICE_INVL);
1629 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1630 } else {
1631 iommu_flush_write_buffer(iommu);
1632 }
1633 iommu_enable_dev_iotlb(info);
1634 spin_unlock_irqrestore(&iommu->lock, flags);
1635
1636 spin_lock_irqsave(&domain->iommu_lock, flags);
1637 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1638 domain->iommu_count++;
1639 if (domain->iommu_count == 1)
1640 domain->nid = iommu->node;
1641 domain_update_iommu_cap(domain);
1642 }
1643 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1644 return 0;
1645 }
1646
1647 static int
1648 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1649 int translation)
1650 {
1651 int ret;
1652 struct pci_dev *tmp, *parent;
1653
1654 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1655 pdev->bus->number, pdev->devfn,
1656 translation);
1657 if (ret)
1658 return ret;
1659
1660 /* dependent device mapping */
1661 tmp = pci_find_upstream_pcie_bridge(pdev);
1662 if (!tmp)
1663 return 0;
1664 /* Secondary interface's bus number and devfn 0 */
1665 parent = pdev->bus->self;
1666 while (parent != tmp) {
1667 ret = domain_context_mapping_one(domain,
1668 pci_domain_nr(parent->bus),
1669 parent->bus->number,
1670 parent->devfn, translation);
1671 if (ret)
1672 return ret;
1673 parent = parent->bus->self;
1674 }
1675 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1676 return domain_context_mapping_one(domain,
1677 pci_domain_nr(tmp->subordinate),
1678 tmp->subordinate->number, 0,
1679 translation);
1680 else /* this is a legacy PCI bridge */
1681 return domain_context_mapping_one(domain,
1682 pci_domain_nr(tmp->bus),
1683 tmp->bus->number,
1684 tmp->devfn,
1685 translation);
1686 }
1687
1688 static int domain_context_mapped(struct pci_dev *pdev)
1689 {
1690 int ret;
1691 struct pci_dev *tmp, *parent;
1692 struct intel_iommu *iommu;
1693
1694 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1695 pdev->devfn);
1696 if (!iommu)
1697 return -ENODEV;
1698
1699 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1700 if (!ret)
1701 return ret;
1702 /* dependent device mapping */
1703 tmp = pci_find_upstream_pcie_bridge(pdev);
1704 if (!tmp)
1705 return ret;
1706 /* Secondary interface's bus number and devfn 0 */
1707 parent = pdev->bus->self;
1708 while (parent != tmp) {
1709 ret = device_context_mapped(iommu, parent->bus->number,
1710 parent->devfn);
1711 if (!ret)
1712 return ret;
1713 parent = parent->bus->self;
1714 }
1715 if (pci_is_pcie(tmp))
1716 return device_context_mapped(iommu, tmp->subordinate->number,
1717 0);
1718 else
1719 return device_context_mapped(iommu, tmp->bus->number,
1720 tmp->devfn);
1721 }
1722
1723 /* Returns a number of VTD pages, but aligned to MM page size */
1724 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1725 size_t size)
1726 {
1727 host_addr &= ~PAGE_MASK;
1728 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1729 }
1730
1731 /* Return largest possible superpage level for a given mapping */
1732 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1733 unsigned long iov_pfn,
1734 unsigned long phy_pfn,
1735 unsigned long pages)
1736 {
1737 int support, level = 1;
1738 unsigned long pfnmerge;
1739
1740 support = domain->iommu_superpage;
1741
1742 /* To use a large page, the virtual *and* physical addresses
1743 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1744 of them will mean we have to use smaller pages. So just
1745 merge them and check both at once. */
1746 pfnmerge = iov_pfn | phy_pfn;
1747
1748 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1749 pages >>= VTD_STRIDE_SHIFT;
1750 if (!pages)
1751 break;
1752 pfnmerge >>= VTD_STRIDE_SHIFT;
1753 level++;
1754 support--;
1755 }
1756 return level;
1757 }
1758
1759 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1760 struct scatterlist *sg, unsigned long phys_pfn,
1761 unsigned long nr_pages, int prot)
1762 {
1763 struct dma_pte *first_pte = NULL, *pte = NULL;
1764 phys_addr_t uninitialized_var(pteval);
1765 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1766 unsigned long sg_res;
1767 unsigned int largepage_lvl = 0;
1768 unsigned long lvl_pages = 0;
1769
1770 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1771
1772 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1773 return -EINVAL;
1774
1775 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1776
1777 if (sg)
1778 sg_res = 0;
1779 else {
1780 sg_res = nr_pages + 1;
1781 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1782 }
1783
1784 while (nr_pages > 0) {
1785 uint64_t tmp;
1786
1787 if (!sg_res) {
1788 sg_res = aligned_nrpages(sg->offset, sg->length);
1789 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1790 sg->dma_length = sg->length;
1791 pteval = page_to_phys(sg_page(sg)) | prot;
1792 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1793 }
1794
1795 if (!pte) {
1796 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1797
1798 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1799 if (!pte)
1800 return -ENOMEM;
1801 /* It is large page*/
1802 if (largepage_lvl > 1)
1803 pteval |= DMA_PTE_LARGE_PAGE;
1804 else
1805 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1806
1807 }
1808 /* We don't need lock here, nobody else
1809 * touches the iova range
1810 */
1811 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1812 if (tmp) {
1813 static int dumps = 5;
1814 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1815 iov_pfn, tmp, (unsigned long long)pteval);
1816 if (dumps) {
1817 dumps--;
1818 debug_dma_dump_mappings(NULL);
1819 }
1820 WARN_ON(1);
1821 }
1822
1823 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1824
1825 BUG_ON(nr_pages < lvl_pages);
1826 BUG_ON(sg_res < lvl_pages);
1827
1828 nr_pages -= lvl_pages;
1829 iov_pfn += lvl_pages;
1830 phys_pfn += lvl_pages;
1831 pteval += lvl_pages * VTD_PAGE_SIZE;
1832 sg_res -= lvl_pages;
1833
1834 /* If the next PTE would be the first in a new page, then we
1835 need to flush the cache on the entries we've just written.
1836 And then we'll need to recalculate 'pte', so clear it and
1837 let it get set again in the if (!pte) block above.
1838
1839 If we're done (!nr_pages) we need to flush the cache too.
1840
1841 Also if we've been setting superpages, we may need to
1842 recalculate 'pte' and switch back to smaller pages for the
1843 end of the mapping, if the trailing size is not enough to
1844 use another superpage (i.e. sg_res < lvl_pages). */
1845 pte++;
1846 if (!nr_pages || first_pte_in_page(pte) ||
1847 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1848 domain_flush_cache(domain, first_pte,
1849 (void *)pte - (void *)first_pte);
1850 pte = NULL;
1851 }
1852
1853 if (!sg_res && nr_pages)
1854 sg = sg_next(sg);
1855 }
1856 return 0;
1857 }
1858
1859 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1860 struct scatterlist *sg, unsigned long nr_pages,
1861 int prot)
1862 {
1863 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1864 }
1865
1866 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1867 unsigned long phys_pfn, unsigned long nr_pages,
1868 int prot)
1869 {
1870 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1871 }
1872
1873 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1874 {
1875 if (!iommu)
1876 return;
1877
1878 clear_context_table(iommu, bus, devfn);
1879 iommu->flush.flush_context(iommu, 0, 0, 0,
1880 DMA_CCMD_GLOBAL_INVL);
1881 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1882 }
1883
1884 static void domain_remove_dev_info(struct dmar_domain *domain)
1885 {
1886 struct device_domain_info *info;
1887 unsigned long flags;
1888 struct intel_iommu *iommu;
1889
1890 spin_lock_irqsave(&device_domain_lock, flags);
1891 while (!list_empty(&domain->devices)) {
1892 info = list_entry(domain->devices.next,
1893 struct device_domain_info, link);
1894 list_del(&info->link);
1895 list_del(&info->global);
1896 if (info->dev)
1897 info->dev->dev.archdata.iommu = NULL;
1898 spin_unlock_irqrestore(&device_domain_lock, flags);
1899
1900 iommu_disable_dev_iotlb(info);
1901 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1902 iommu_detach_dev(iommu, info->bus, info->devfn);
1903 free_devinfo_mem(info);
1904
1905 spin_lock_irqsave(&device_domain_lock, flags);
1906 }
1907 spin_unlock_irqrestore(&device_domain_lock, flags);
1908 }
1909
1910 /*
1911 * find_domain
1912 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1913 */
1914 static struct dmar_domain *
1915 find_domain(struct pci_dev *pdev)
1916 {
1917 struct device_domain_info *info;
1918
1919 /* No lock here, assumes no domain exit in normal case */
1920 info = pdev->dev.archdata.iommu;
1921 if (info)
1922 return info->domain;
1923 return NULL;
1924 }
1925
1926 /* domain is initialized */
1927 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1928 {
1929 struct dmar_domain *domain, *found = NULL;
1930 struct intel_iommu *iommu;
1931 struct dmar_drhd_unit *drhd;
1932 struct device_domain_info *info, *tmp;
1933 struct pci_dev *dev_tmp;
1934 unsigned long flags;
1935 int bus = 0, devfn = 0;
1936 int segment;
1937 int ret;
1938
1939 domain = find_domain(pdev);
1940 if (domain)
1941 return domain;
1942
1943 segment = pci_domain_nr(pdev->bus);
1944
1945 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1946 if (dev_tmp) {
1947 if (pci_is_pcie(dev_tmp)) {
1948 bus = dev_tmp->subordinate->number;
1949 devfn = 0;
1950 } else {
1951 bus = dev_tmp->bus->number;
1952 devfn = dev_tmp->devfn;
1953 }
1954 spin_lock_irqsave(&device_domain_lock, flags);
1955 list_for_each_entry(info, &device_domain_list, global) {
1956 if (info->segment == segment &&
1957 info->bus == bus && info->devfn == devfn) {
1958 found = info->domain;
1959 break;
1960 }
1961 }
1962 spin_unlock_irqrestore(&device_domain_lock, flags);
1963 /* pcie-pci bridge already has a domain, uses it */
1964 if (found) {
1965 domain = found;
1966 goto found_domain;
1967 }
1968 }
1969
1970 domain = alloc_domain();
1971 if (!domain)
1972 goto error;
1973
1974 /* Allocate new domain for the device */
1975 drhd = dmar_find_matched_drhd_unit(pdev);
1976 if (!drhd) {
1977 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1978 pci_name(pdev));
1979 return NULL;
1980 }
1981 iommu = drhd->iommu;
1982
1983 ret = iommu_attach_domain(domain, iommu);
1984 if (ret) {
1985 free_domain_mem(domain);
1986 goto error;
1987 }
1988
1989 if (domain_init(domain, gaw)) {
1990 domain_exit(domain);
1991 goto error;
1992 }
1993
1994 /* register pcie-to-pci device */
1995 if (dev_tmp) {
1996 info = alloc_devinfo_mem();
1997 if (!info) {
1998 domain_exit(domain);
1999 goto error;
2000 }
2001 info->segment = segment;
2002 info->bus = bus;
2003 info->devfn = devfn;
2004 info->dev = NULL;
2005 info->domain = domain;
2006 /* This domain is shared by devices under p2p bridge */
2007 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2008
2009 /* pcie-to-pci bridge already has a domain, uses it */
2010 found = NULL;
2011 spin_lock_irqsave(&device_domain_lock, flags);
2012 list_for_each_entry(tmp, &device_domain_list, global) {
2013 if (tmp->segment == segment &&
2014 tmp->bus == bus && tmp->devfn == devfn) {
2015 found = tmp->domain;
2016 break;
2017 }
2018 }
2019 if (found) {
2020 spin_unlock_irqrestore(&device_domain_lock, flags);
2021 free_devinfo_mem(info);
2022 domain_exit(domain);
2023 domain = found;
2024 } else {
2025 list_add(&info->link, &domain->devices);
2026 list_add(&info->global, &device_domain_list);
2027 spin_unlock_irqrestore(&device_domain_lock, flags);
2028 }
2029 }
2030
2031 found_domain:
2032 info = alloc_devinfo_mem();
2033 if (!info)
2034 goto error;
2035 info->segment = segment;
2036 info->bus = pdev->bus->number;
2037 info->devfn = pdev->devfn;
2038 info->dev = pdev;
2039 info->domain = domain;
2040 spin_lock_irqsave(&device_domain_lock, flags);
2041 /* somebody is fast */
2042 found = find_domain(pdev);
2043 if (found != NULL) {
2044 spin_unlock_irqrestore(&device_domain_lock, flags);
2045 if (found != domain) {
2046 domain_exit(domain);
2047 domain = found;
2048 }
2049 free_devinfo_mem(info);
2050 return domain;
2051 }
2052 list_add(&info->link, &domain->devices);
2053 list_add(&info->global, &device_domain_list);
2054 pdev->dev.archdata.iommu = info;
2055 spin_unlock_irqrestore(&device_domain_lock, flags);
2056 return domain;
2057 error:
2058 /* recheck it here, maybe others set it */
2059 return find_domain(pdev);
2060 }
2061
2062 static int iommu_identity_mapping;
2063 #define IDENTMAP_ALL 1
2064 #define IDENTMAP_GFX 2
2065 #define IDENTMAP_AZALIA 4
2066
2067 static int iommu_domain_identity_map(struct dmar_domain *domain,
2068 unsigned long long start,
2069 unsigned long long end)
2070 {
2071 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2072 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2073
2074 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2075 dma_to_mm_pfn(last_vpfn))) {
2076 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2077 return -ENOMEM;
2078 }
2079
2080 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2081 start, end, domain->id);
2082 /*
2083 * RMRR range might have overlap with physical memory range,
2084 * clear it first
2085 */
2086 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2087
2088 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2089 last_vpfn - first_vpfn + 1,
2090 DMA_PTE_READ|DMA_PTE_WRITE);
2091 }
2092
2093 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2094 unsigned long long start,
2095 unsigned long long end)
2096 {
2097 struct dmar_domain *domain;
2098 int ret;
2099
2100 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2101 if (!domain)
2102 return -ENOMEM;
2103
2104 /* For _hardware_ passthrough, don't bother. But for software
2105 passthrough, we do it anyway -- it may indicate a memory
2106 range which is reserved in E820, so which didn't get set
2107 up to start with in si_domain */
2108 if (domain == si_domain && hw_pass_through) {
2109 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2110 pci_name(pdev), start, end);
2111 return 0;
2112 }
2113
2114 printk(KERN_INFO
2115 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2116 pci_name(pdev), start, end);
2117
2118 if (end < start) {
2119 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2120 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2121 dmi_get_system_info(DMI_BIOS_VENDOR),
2122 dmi_get_system_info(DMI_BIOS_VERSION),
2123 dmi_get_system_info(DMI_PRODUCT_VERSION));
2124 ret = -EIO;
2125 goto error;
2126 }
2127
2128 if (end >> agaw_to_width(domain->agaw)) {
2129 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2130 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2131 agaw_to_width(domain->agaw),
2132 dmi_get_system_info(DMI_BIOS_VENDOR),
2133 dmi_get_system_info(DMI_BIOS_VERSION),
2134 dmi_get_system_info(DMI_PRODUCT_VERSION));
2135 ret = -EIO;
2136 goto error;
2137 }
2138
2139 ret = iommu_domain_identity_map(domain, start, end);
2140 if (ret)
2141 goto error;
2142
2143 /* context entry init */
2144 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2145 if (ret)
2146 goto error;
2147
2148 return 0;
2149
2150 error:
2151 domain_exit(domain);
2152 return ret;
2153 }
2154
2155 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2156 struct pci_dev *pdev)
2157 {
2158 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2159 return 0;
2160 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2161 rmrr->end_address);
2162 }
2163
2164 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2165 static inline void iommu_prepare_isa(void)
2166 {
2167 struct pci_dev *pdev;
2168 int ret;
2169
2170 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2171 if (!pdev)
2172 return;
2173
2174 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2175 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2176
2177 if (ret)
2178 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2179 "floppy might not work\n");
2180
2181 }
2182 #else
2183 static inline void iommu_prepare_isa(void)
2184 {
2185 return;
2186 }
2187 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2188
2189 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2190
2191 static int __init si_domain_work_fn(unsigned long start_pfn,
2192 unsigned long end_pfn, void *datax)
2193 {
2194 int *ret = datax;
2195
2196 *ret = iommu_domain_identity_map(si_domain,
2197 (uint64_t)start_pfn << PAGE_SHIFT,
2198 (uint64_t)end_pfn << PAGE_SHIFT);
2199 return *ret;
2200
2201 }
2202
2203 static int __init si_domain_init(int hw)
2204 {
2205 struct dmar_drhd_unit *drhd;
2206 struct intel_iommu *iommu;
2207 int nid, ret = 0;
2208
2209 si_domain = alloc_domain();
2210 if (!si_domain)
2211 return -EFAULT;
2212
2213 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2214
2215 for_each_active_iommu(iommu, drhd) {
2216 ret = iommu_attach_domain(si_domain, iommu);
2217 if (ret) {
2218 domain_exit(si_domain);
2219 return -EFAULT;
2220 }
2221 }
2222
2223 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2224 domain_exit(si_domain);
2225 return -EFAULT;
2226 }
2227
2228 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2229
2230 if (hw)
2231 return 0;
2232
2233 for_each_online_node(nid) {
2234 work_with_active_regions(nid, si_domain_work_fn, &ret);
2235 if (ret)
2236 return ret;
2237 }
2238
2239 return 0;
2240 }
2241
2242 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2243 struct pci_dev *pdev);
2244 static int identity_mapping(struct pci_dev *pdev)
2245 {
2246 struct device_domain_info *info;
2247
2248 if (likely(!iommu_identity_mapping))
2249 return 0;
2250
2251 info = pdev->dev.archdata.iommu;
2252 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2253 return (info->domain == si_domain);
2254
2255 return 0;
2256 }
2257
2258 static int domain_add_dev_info(struct dmar_domain *domain,
2259 struct pci_dev *pdev,
2260 int translation)
2261 {
2262 struct device_domain_info *info;
2263 unsigned long flags;
2264 int ret;
2265
2266 info = alloc_devinfo_mem();
2267 if (!info)
2268 return -ENOMEM;
2269
2270 ret = domain_context_mapping(domain, pdev, translation);
2271 if (ret) {
2272 free_devinfo_mem(info);
2273 return ret;
2274 }
2275
2276 info->segment = pci_domain_nr(pdev->bus);
2277 info->bus = pdev->bus->number;
2278 info->devfn = pdev->devfn;
2279 info->dev = pdev;
2280 info->domain = domain;
2281
2282 spin_lock_irqsave(&device_domain_lock, flags);
2283 list_add(&info->link, &domain->devices);
2284 list_add(&info->global, &device_domain_list);
2285 pdev->dev.archdata.iommu = info;
2286 spin_unlock_irqrestore(&device_domain_lock, flags);
2287
2288 return 0;
2289 }
2290
2291 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2292 {
2293 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2294 return 1;
2295
2296 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2297 return 1;
2298
2299 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2300 return 0;
2301
2302 /*
2303 * We want to start off with all devices in the 1:1 domain, and
2304 * take them out later if we find they can't access all of memory.
2305 *
2306 * However, we can't do this for PCI devices behind bridges,
2307 * because all PCI devices behind the same bridge will end up
2308 * with the same source-id on their transactions.
2309 *
2310 * Practically speaking, we can't change things around for these
2311 * devices at run-time, because we can't be sure there'll be no
2312 * DMA transactions in flight for any of their siblings.
2313 *
2314 * So PCI devices (unless they're on the root bus) as well as
2315 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2316 * the 1:1 domain, just in _case_ one of their siblings turns out
2317 * not to be able to map all of memory.
2318 */
2319 if (!pci_is_pcie(pdev)) {
2320 if (!pci_is_root_bus(pdev->bus))
2321 return 0;
2322 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2323 return 0;
2324 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2325 return 0;
2326
2327 /*
2328 * At boot time, we don't yet know if devices will be 64-bit capable.
2329 * Assume that they will -- if they turn out not to be, then we can
2330 * take them out of the 1:1 domain later.
2331 */
2332 if (!startup) {
2333 /*
2334 * If the device's dma_mask is less than the system's memory
2335 * size then this is not a candidate for identity mapping.
2336 */
2337 u64 dma_mask = pdev->dma_mask;
2338
2339 if (pdev->dev.coherent_dma_mask &&
2340 pdev->dev.coherent_dma_mask < dma_mask)
2341 dma_mask = pdev->dev.coherent_dma_mask;
2342
2343 return dma_mask >= dma_get_required_mask(&pdev->dev);
2344 }
2345
2346 return 1;
2347 }
2348
2349 static int __init iommu_prepare_static_identity_mapping(int hw)
2350 {
2351 struct pci_dev *pdev = NULL;
2352 int ret;
2353
2354 ret = si_domain_init(hw);
2355 if (ret)
2356 return -EFAULT;
2357
2358 for_each_pci_dev(pdev) {
2359 /* Skip Host/PCI Bridge devices */
2360 if (IS_BRIDGE_HOST_DEVICE(pdev))
2361 continue;
2362 if (iommu_should_identity_map(pdev, 1)) {
2363 printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2364 hw ? "hardware" : "software", pci_name(pdev));
2365
2366 ret = domain_add_dev_info(si_domain, pdev,
2367 hw ? CONTEXT_TT_PASS_THROUGH :
2368 CONTEXT_TT_MULTI_LEVEL);
2369 if (ret)
2370 return ret;
2371 }
2372 }
2373
2374 return 0;
2375 }
2376
2377 static int __init init_dmars(void)
2378 {
2379 struct dmar_drhd_unit *drhd;
2380 struct dmar_rmrr_unit *rmrr;
2381 struct pci_dev *pdev;
2382 struct intel_iommu *iommu;
2383 int i, ret;
2384
2385 /*
2386 * for each drhd
2387 * allocate root
2388 * initialize and program root entry to not present
2389 * endfor
2390 */
2391 for_each_drhd_unit(drhd) {
2392 g_num_of_iommus++;
2393 /*
2394 * lock not needed as this is only incremented in the single
2395 * threaded kernel __init code path all other access are read
2396 * only
2397 */
2398 }
2399
2400 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2401 GFP_KERNEL);
2402 if (!g_iommus) {
2403 printk(KERN_ERR "Allocating global iommu array failed\n");
2404 ret = -ENOMEM;
2405 goto error;
2406 }
2407
2408 deferred_flush = kzalloc(g_num_of_iommus *
2409 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2410 if (!deferred_flush) {
2411 ret = -ENOMEM;
2412 goto error;
2413 }
2414
2415 for_each_drhd_unit(drhd) {
2416 if (drhd->ignored)
2417 continue;
2418
2419 iommu = drhd->iommu;
2420 g_iommus[iommu->seq_id] = iommu;
2421
2422 ret = iommu_init_domains(iommu);
2423 if (ret)
2424 goto error;
2425
2426 /*
2427 * TBD:
2428 * we could share the same root & context tables
2429 * among all IOMMU's. Need to Split it later.
2430 */
2431 ret = iommu_alloc_root_entry(iommu);
2432 if (ret) {
2433 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2434 goto error;
2435 }
2436 if (!ecap_pass_through(iommu->ecap))
2437 hw_pass_through = 0;
2438 }
2439
2440 /*
2441 * Start from the sane iommu hardware state.
2442 */
2443 for_each_drhd_unit(drhd) {
2444 if (drhd->ignored)
2445 continue;
2446
2447 iommu = drhd->iommu;
2448
2449 /*
2450 * If the queued invalidation is already initialized by us
2451 * (for example, while enabling interrupt-remapping) then
2452 * we got the things already rolling from a sane state.
2453 */
2454 if (iommu->qi)
2455 continue;
2456
2457 /*
2458 * Clear any previous faults.
2459 */
2460 dmar_fault(-1, iommu);
2461 /*
2462 * Disable queued invalidation if supported and already enabled
2463 * before OS handover.
2464 */
2465 dmar_disable_qi(iommu);
2466 }
2467
2468 for_each_drhd_unit(drhd) {
2469 if (drhd->ignored)
2470 continue;
2471
2472 iommu = drhd->iommu;
2473
2474 if (dmar_enable_qi(iommu)) {
2475 /*
2476 * Queued Invalidate not enabled, use Register Based
2477 * Invalidate
2478 */
2479 iommu->flush.flush_context = __iommu_flush_context;
2480 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2481 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2482 "invalidation\n",
2483 iommu->seq_id,
2484 (unsigned long long)drhd->reg_base_addr);
2485 } else {
2486 iommu->flush.flush_context = qi_flush_context;
2487 iommu->flush.flush_iotlb = qi_flush_iotlb;
2488 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2489 "invalidation\n",
2490 iommu->seq_id,
2491 (unsigned long long)drhd->reg_base_addr);
2492 }
2493 }
2494
2495 if (iommu_pass_through)
2496 iommu_identity_mapping |= IDENTMAP_ALL;
2497
2498 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2499 iommu_identity_mapping |= IDENTMAP_GFX;
2500 #endif
2501
2502 check_tylersburg_isoch();
2503
2504 /*
2505 * If pass through is not set or not enabled, setup context entries for
2506 * identity mappings for rmrr, gfx, and isa and may fall back to static
2507 * identity mapping if iommu_identity_mapping is set.
2508 */
2509 if (iommu_identity_mapping) {
2510 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2511 if (ret) {
2512 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2513 goto error;
2514 }
2515 }
2516 /*
2517 * For each rmrr
2518 * for each dev attached to rmrr
2519 * do
2520 * locate drhd for dev, alloc domain for dev
2521 * allocate free domain
2522 * allocate page table entries for rmrr
2523 * if context not allocated for bus
2524 * allocate and init context
2525 * set present in root table for this bus
2526 * init context with domain, translation etc
2527 * endfor
2528 * endfor
2529 */
2530 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2531 for_each_rmrr_units(rmrr) {
2532 for (i = 0; i < rmrr->devices_cnt; i++) {
2533 pdev = rmrr->devices[i];
2534 /*
2535 * some BIOS lists non-exist devices in DMAR
2536 * table.
2537 */
2538 if (!pdev)
2539 continue;
2540 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2541 if (ret)
2542 printk(KERN_ERR
2543 "IOMMU: mapping reserved region failed\n");
2544 }
2545 }
2546
2547 iommu_prepare_isa();
2548
2549 /*
2550 * for each drhd
2551 * enable fault log
2552 * global invalidate context cache
2553 * global invalidate iotlb
2554 * enable translation
2555 */
2556 for_each_drhd_unit(drhd) {
2557 if (drhd->ignored) {
2558 /*
2559 * we always have to disable PMRs or DMA may fail on
2560 * this device
2561 */
2562 if (force_on)
2563 iommu_disable_protect_mem_regions(drhd->iommu);
2564 continue;
2565 }
2566 iommu = drhd->iommu;
2567
2568 iommu_flush_write_buffer(iommu);
2569
2570 ret = dmar_set_interrupt(iommu);
2571 if (ret)
2572 goto error;
2573
2574 iommu_set_root_entry(iommu);
2575
2576 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2577 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2578
2579 ret = iommu_enable_translation(iommu);
2580 if (ret)
2581 goto error;
2582
2583 iommu_disable_protect_mem_regions(iommu);
2584 }
2585
2586 return 0;
2587 error:
2588 for_each_drhd_unit(drhd) {
2589 if (drhd->ignored)
2590 continue;
2591 iommu = drhd->iommu;
2592 free_iommu(iommu);
2593 }
2594 kfree(g_iommus);
2595 return ret;
2596 }
2597
2598 /* This takes a number of _MM_ pages, not VTD pages */
2599 static struct iova *intel_alloc_iova(struct device *dev,
2600 struct dmar_domain *domain,
2601 unsigned long nrpages, uint64_t dma_mask)
2602 {
2603 struct pci_dev *pdev = to_pci_dev(dev);
2604 struct iova *iova = NULL;
2605
2606 /* Restrict dma_mask to the width that the iommu can handle */
2607 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2608
2609 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2610 /*
2611 * First try to allocate an io virtual address in
2612 * DMA_BIT_MASK(32) and if that fails then try allocating
2613 * from higher range
2614 */
2615 iova = alloc_iova(&domain->iovad, nrpages,
2616 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2617 if (iova)
2618 return iova;
2619 }
2620 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2621 if (unlikely(!iova)) {
2622 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2623 nrpages, pci_name(pdev));
2624 return NULL;
2625 }
2626
2627 return iova;
2628 }
2629
2630 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2631 {
2632 struct dmar_domain *domain;
2633 int ret;
2634
2635 domain = get_domain_for_dev(pdev,
2636 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2637 if (!domain) {
2638 printk(KERN_ERR
2639 "Allocating domain for %s failed", pci_name(pdev));
2640 return NULL;
2641 }
2642
2643 /* make sure context mapping is ok */
2644 if (unlikely(!domain_context_mapped(pdev))) {
2645 ret = domain_context_mapping(domain, pdev,
2646 CONTEXT_TT_MULTI_LEVEL);
2647 if (ret) {
2648 printk(KERN_ERR
2649 "Domain context map for %s failed",
2650 pci_name(pdev));
2651 return NULL;
2652 }
2653 }
2654
2655 return domain;
2656 }
2657
2658 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2659 {
2660 struct device_domain_info *info;
2661
2662 /* No lock here, assumes no domain exit in normal case */
2663 info = dev->dev.archdata.iommu;
2664 if (likely(info))
2665 return info->domain;
2666
2667 return __get_valid_domain_for_dev(dev);
2668 }
2669
2670 static int iommu_dummy(struct pci_dev *pdev)
2671 {
2672 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2673 }
2674
2675 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2676 static int iommu_no_mapping(struct device *dev)
2677 {
2678 struct pci_dev *pdev;
2679 int found;
2680
2681 if (unlikely(dev->bus != &pci_bus_type))
2682 return 1;
2683
2684 pdev = to_pci_dev(dev);
2685 if (iommu_dummy(pdev))
2686 return 1;
2687
2688 if (!iommu_identity_mapping)
2689 return 0;
2690
2691 found = identity_mapping(pdev);
2692 if (found) {
2693 if (iommu_should_identity_map(pdev, 0))
2694 return 1;
2695 else {
2696 /*
2697 * 32 bit DMA is removed from si_domain and fall back
2698 * to non-identity mapping.
2699 */
2700 domain_remove_one_dev_info(si_domain, pdev);
2701 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2702 pci_name(pdev));
2703 return 0;
2704 }
2705 } else {
2706 /*
2707 * In case of a detached 64 bit DMA device from vm, the device
2708 * is put into si_domain for identity mapping.
2709 */
2710 if (iommu_should_identity_map(pdev, 0)) {
2711 int ret;
2712 ret = domain_add_dev_info(si_domain, pdev,
2713 hw_pass_through ?
2714 CONTEXT_TT_PASS_THROUGH :
2715 CONTEXT_TT_MULTI_LEVEL);
2716 if (!ret) {
2717 printk(KERN_INFO "64bit %s uses identity mapping\n",
2718 pci_name(pdev));
2719 return 1;
2720 }
2721 }
2722 }
2723
2724 return 0;
2725 }
2726
2727 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2728 size_t size, int dir, u64 dma_mask)
2729 {
2730 struct pci_dev *pdev = to_pci_dev(hwdev);
2731 struct dmar_domain *domain;
2732 phys_addr_t start_paddr;
2733 struct iova *iova;
2734 int prot = 0;
2735 int ret;
2736 struct intel_iommu *iommu;
2737 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2738
2739 BUG_ON(dir == DMA_NONE);
2740
2741 if (iommu_no_mapping(hwdev))
2742 return paddr;
2743
2744 domain = get_valid_domain_for_dev(pdev);
2745 if (!domain)
2746 return 0;
2747
2748 iommu = domain_get_iommu(domain);
2749 size = aligned_nrpages(paddr, size);
2750
2751 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2752 if (!iova)
2753 goto error;
2754
2755 /*
2756 * Check if DMAR supports zero-length reads on write only
2757 * mappings..
2758 */
2759 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2760 !cap_zlr(iommu->cap))
2761 prot |= DMA_PTE_READ;
2762 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2763 prot |= DMA_PTE_WRITE;
2764 /*
2765 * paddr - (paddr + size) might be partial page, we should map the whole
2766 * page. Note: if two part of one page are separately mapped, we
2767 * might have two guest_addr mapping to the same host paddr, but this
2768 * is not a big problem
2769 */
2770 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2771 mm_to_dma_pfn(paddr_pfn), size, prot);
2772 if (ret)
2773 goto error;
2774
2775 /* it's a non-present to present mapping. Only flush if caching mode */
2776 if (cap_caching_mode(iommu->cap))
2777 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2778 else
2779 iommu_flush_write_buffer(iommu);
2780
2781 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2782 start_paddr += paddr & ~PAGE_MASK;
2783 return start_paddr;
2784
2785 error:
2786 if (iova)
2787 __free_iova(&domain->iovad, iova);
2788 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2789 pci_name(pdev), size, (unsigned long long)paddr, dir);
2790 return 0;
2791 }
2792
2793 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2794 unsigned long offset, size_t size,
2795 enum dma_data_direction dir,
2796 struct dma_attrs *attrs)
2797 {
2798 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2799 dir, to_pci_dev(dev)->dma_mask);
2800 }
2801
2802 static void flush_unmaps(void)
2803 {
2804 int i, j;
2805
2806 timer_on = 0;
2807
2808 /* just flush them all */
2809 for (i = 0; i < g_num_of_iommus; i++) {
2810 struct intel_iommu *iommu = g_iommus[i];
2811 if (!iommu)
2812 continue;
2813
2814 if (!deferred_flush[i].next)
2815 continue;
2816
2817 /* In caching mode, global flushes turn emulation expensive */
2818 if (!cap_caching_mode(iommu->cap))
2819 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2820 DMA_TLB_GLOBAL_FLUSH);
2821 for (j = 0; j < deferred_flush[i].next; j++) {
2822 unsigned long mask;
2823 struct iova *iova = deferred_flush[i].iova[j];
2824 struct dmar_domain *domain = deferred_flush[i].domain[j];
2825
2826 /* On real hardware multiple invalidations are expensive */
2827 if (cap_caching_mode(iommu->cap))
2828 iommu_flush_iotlb_psi(iommu, domain->id,
2829 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2830 else {
2831 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2832 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2833 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2834 }
2835 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2836 }
2837 deferred_flush[i].next = 0;
2838 }
2839
2840 list_size = 0;
2841 }
2842
2843 static void flush_unmaps_timeout(unsigned long data)
2844 {
2845 unsigned long flags;
2846
2847 spin_lock_irqsave(&async_umap_flush_lock, flags);
2848 flush_unmaps();
2849 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2850 }
2851
2852 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2853 {
2854 unsigned long flags;
2855 int next, iommu_id;
2856 struct intel_iommu *iommu;
2857
2858 spin_lock_irqsave(&async_umap_flush_lock, flags);
2859 if (list_size == HIGH_WATER_MARK)
2860 flush_unmaps();
2861
2862 iommu = domain_get_iommu(dom);
2863 iommu_id = iommu->seq_id;
2864
2865 next = deferred_flush[iommu_id].next;
2866 deferred_flush[iommu_id].domain[next] = dom;
2867 deferred_flush[iommu_id].iova[next] = iova;
2868 deferred_flush[iommu_id].next++;
2869
2870 if (!timer_on) {
2871 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2872 timer_on = 1;
2873 }
2874 list_size++;
2875 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2876 }
2877
2878 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2879 size_t size, enum dma_data_direction dir,
2880 struct dma_attrs *attrs)
2881 {
2882 struct pci_dev *pdev = to_pci_dev(dev);
2883 struct dmar_domain *domain;
2884 unsigned long start_pfn, last_pfn;
2885 struct iova *iova;
2886 struct intel_iommu *iommu;
2887
2888 if (iommu_no_mapping(dev))
2889 return;
2890
2891 domain = find_domain(pdev);
2892 BUG_ON(!domain);
2893
2894 iommu = domain_get_iommu(domain);
2895
2896 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2897 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2898 (unsigned long long)dev_addr))
2899 return;
2900
2901 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2902 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2903
2904 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2905 pci_name(pdev), start_pfn, last_pfn);
2906
2907 /* clear the whole page */
2908 dma_pte_clear_range(domain, start_pfn, last_pfn);
2909
2910 /* free page tables */
2911 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2912
2913 if (intel_iommu_strict) {
2914 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2915 last_pfn - start_pfn + 1, 0);
2916 /* free iova */
2917 __free_iova(&domain->iovad, iova);
2918 } else {
2919 add_unmap(domain, iova);
2920 /*
2921 * queue up the release of the unmap to save the 1/6th of the
2922 * cpu used up by the iotlb flush operation...
2923 */
2924 }
2925 }
2926
2927 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2928 dma_addr_t *dma_handle, gfp_t flags)
2929 {
2930 void *vaddr;
2931 int order;
2932
2933 size = PAGE_ALIGN(size);
2934 order = get_order(size);
2935
2936 if (!iommu_no_mapping(hwdev))
2937 flags &= ~(GFP_DMA | GFP_DMA32);
2938 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2939 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2940 flags |= GFP_DMA;
2941 else
2942 flags |= GFP_DMA32;
2943 }
2944
2945 vaddr = (void *)__get_free_pages(flags, order);
2946 if (!vaddr)
2947 return NULL;
2948 memset(vaddr, 0, size);
2949
2950 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2951 DMA_BIDIRECTIONAL,
2952 hwdev->coherent_dma_mask);
2953 if (*dma_handle)
2954 return vaddr;
2955 free_pages((unsigned long)vaddr, order);
2956 return NULL;
2957 }
2958
2959 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2960 dma_addr_t dma_handle)
2961 {
2962 int order;
2963
2964 size = PAGE_ALIGN(size);
2965 order = get_order(size);
2966
2967 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2968 free_pages((unsigned long)vaddr, order);
2969 }
2970
2971 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2972 int nelems, enum dma_data_direction dir,
2973 struct dma_attrs *attrs)
2974 {
2975 struct pci_dev *pdev = to_pci_dev(hwdev);
2976 struct dmar_domain *domain;
2977 unsigned long start_pfn, last_pfn;
2978 struct iova *iova;
2979 struct intel_iommu *iommu;
2980
2981 if (iommu_no_mapping(hwdev))
2982 return;
2983
2984 domain = find_domain(pdev);
2985 BUG_ON(!domain);
2986
2987 iommu = domain_get_iommu(domain);
2988
2989 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2990 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2991 (unsigned long long)sglist[0].dma_address))
2992 return;
2993
2994 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2995 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2996
2997 /* clear the whole page */
2998 dma_pte_clear_range(domain, start_pfn, last_pfn);
2999
3000 /* free page tables */
3001 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
3002
3003 if (intel_iommu_strict) {
3004 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3005 last_pfn - start_pfn + 1, 0);
3006 /* free iova */
3007 __free_iova(&domain->iovad, iova);
3008 } else {
3009 add_unmap(domain, iova);
3010 /*
3011 * queue up the release of the unmap to save the 1/6th of the
3012 * cpu used up by the iotlb flush operation...
3013 */
3014 }
3015 }
3016
3017 static int intel_nontranslate_map_sg(struct device *hddev,
3018 struct scatterlist *sglist, int nelems, int dir)
3019 {
3020 int i;
3021 struct scatterlist *sg;
3022
3023 for_each_sg(sglist, sg, nelems, i) {
3024 BUG_ON(!sg_page(sg));
3025 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3026 sg->dma_length = sg->length;
3027 }
3028 return nelems;
3029 }
3030
3031 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3032 enum dma_data_direction dir, struct dma_attrs *attrs)
3033 {
3034 int i;
3035 struct pci_dev *pdev = to_pci_dev(hwdev);
3036 struct dmar_domain *domain;
3037 size_t size = 0;
3038 int prot = 0;
3039 struct iova *iova = NULL;
3040 int ret;
3041 struct scatterlist *sg;
3042 unsigned long start_vpfn;
3043 struct intel_iommu *iommu;
3044
3045 BUG_ON(dir == DMA_NONE);
3046 if (iommu_no_mapping(hwdev))
3047 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3048
3049 domain = get_valid_domain_for_dev(pdev);
3050 if (!domain)
3051 return 0;
3052
3053 iommu = domain_get_iommu(domain);
3054
3055 for_each_sg(sglist, sg, nelems, i)
3056 size += aligned_nrpages(sg->offset, sg->length);
3057
3058 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3059 pdev->dma_mask);
3060 if (!iova) {
3061 sglist->dma_length = 0;
3062 return 0;
3063 }
3064
3065 /*
3066 * Check if DMAR supports zero-length reads on write only
3067 * mappings..
3068 */
3069 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3070 !cap_zlr(iommu->cap))
3071 prot |= DMA_PTE_READ;
3072 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3073 prot |= DMA_PTE_WRITE;
3074
3075 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3076
3077 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3078 if (unlikely(ret)) {
3079 /* clear the page */
3080 dma_pte_clear_range(domain, start_vpfn,
3081 start_vpfn + size - 1);
3082 /* free page tables */
3083 dma_pte_free_pagetable(domain, start_vpfn,
3084 start_vpfn + size - 1);
3085 /* free iova */
3086 __free_iova(&domain->iovad, iova);
3087 return 0;
3088 }
3089
3090 /* it's a non-present to present mapping. Only flush if caching mode */
3091 if (cap_caching_mode(iommu->cap))
3092 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3093 else
3094 iommu_flush_write_buffer(iommu);
3095
3096 return nelems;
3097 }
3098
3099 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3100 {
3101 return !dma_addr;
3102 }
3103
3104 struct dma_map_ops intel_dma_ops = {
3105 .alloc_coherent = intel_alloc_coherent,
3106 .free_coherent = intel_free_coherent,
3107 .map_sg = intel_map_sg,
3108 .unmap_sg = intel_unmap_sg,
3109 .map_page = intel_map_page,
3110 .unmap_page = intel_unmap_page,
3111 .mapping_error = intel_mapping_error,
3112 };
3113
3114 static inline int iommu_domain_cache_init(void)
3115 {
3116 int ret = 0;
3117
3118 iommu_domain_cache = kmem_cache_create("iommu_domain",
3119 sizeof(struct dmar_domain),
3120 0,
3121 SLAB_HWCACHE_ALIGN,
3122
3123 NULL);
3124 if (!iommu_domain_cache) {
3125 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3126 ret = -ENOMEM;
3127 }
3128
3129 return ret;
3130 }
3131
3132 static inline int iommu_devinfo_cache_init(void)
3133 {
3134 int ret = 0;
3135
3136 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3137 sizeof(struct device_domain_info),
3138 0,
3139 SLAB_HWCACHE_ALIGN,
3140 NULL);
3141 if (!iommu_devinfo_cache) {
3142 printk(KERN_ERR "Couldn't create devinfo cache\n");
3143 ret = -ENOMEM;
3144 }
3145
3146 return ret;
3147 }
3148
3149 static inline int iommu_iova_cache_init(void)
3150 {
3151 int ret = 0;
3152
3153 iommu_iova_cache = kmem_cache_create("iommu_iova",
3154 sizeof(struct iova),
3155 0,
3156 SLAB_HWCACHE_ALIGN,
3157 NULL);
3158 if (!iommu_iova_cache) {
3159 printk(KERN_ERR "Couldn't create iova cache\n");
3160 ret = -ENOMEM;
3161 }
3162
3163 return ret;
3164 }
3165
3166 static int __init iommu_init_mempool(void)
3167 {
3168 int ret;
3169 ret = iommu_iova_cache_init();
3170 if (ret)
3171 return ret;
3172
3173 ret = iommu_domain_cache_init();
3174 if (ret)
3175 goto domain_error;
3176
3177 ret = iommu_devinfo_cache_init();
3178 if (!ret)
3179 return ret;
3180
3181 kmem_cache_destroy(iommu_domain_cache);
3182 domain_error:
3183 kmem_cache_destroy(iommu_iova_cache);
3184
3185 return -ENOMEM;
3186 }
3187
3188 static void __init iommu_exit_mempool(void)
3189 {
3190 kmem_cache_destroy(iommu_devinfo_cache);
3191 kmem_cache_destroy(iommu_domain_cache);
3192 kmem_cache_destroy(iommu_iova_cache);
3193
3194 }
3195
3196 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3197 {
3198 struct dmar_drhd_unit *drhd;
3199 u32 vtbar;
3200 int rc;
3201
3202 /* We know that this device on this chipset has its own IOMMU.
3203 * If we find it under a different IOMMU, then the BIOS is lying
3204 * to us. Hope that the IOMMU for this device is actually
3205 * disabled, and it needs no translation...
3206 */
3207 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3208 if (rc) {
3209 /* "can't" happen */
3210 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3211 return;
3212 }
3213 vtbar &= 0xffff0000;
3214
3215 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3216 drhd = dmar_find_matched_drhd_unit(pdev);
3217 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3218 TAINT_FIRMWARE_WORKAROUND,
3219 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3220 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3221 }
3222 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3223
3224 static void __init init_no_remapping_devices(void)
3225 {
3226 struct dmar_drhd_unit *drhd;
3227
3228 for_each_drhd_unit(drhd) {
3229 if (!drhd->include_all) {
3230 int i;
3231 for (i = 0; i < drhd->devices_cnt; i++)
3232 if (drhd->devices[i] != NULL)
3233 break;
3234 /* ignore DMAR unit if no pci devices exist */
3235 if (i == drhd->devices_cnt)
3236 drhd->ignored = 1;
3237 }
3238 }
3239
3240 for_each_drhd_unit(drhd) {
3241 int i;
3242 if (drhd->ignored || drhd->include_all)
3243 continue;
3244
3245 for (i = 0; i < drhd->devices_cnt; i++)
3246 if (drhd->devices[i] &&
3247 !IS_GFX_DEVICE(drhd->devices[i]))
3248 break;
3249
3250 if (i < drhd->devices_cnt)
3251 continue;
3252
3253 /* This IOMMU has *only* gfx devices. Either bypass it or
3254 set the gfx_mapped flag, as appropriate */
3255 if (dmar_map_gfx) {
3256 intel_iommu_gfx_mapped = 1;
3257 } else {
3258 drhd->ignored = 1;
3259 for (i = 0; i < drhd->devices_cnt; i++) {
3260 if (!drhd->devices[i])
3261 continue;
3262 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3263 }
3264 }
3265 }
3266 }
3267
3268 #ifdef CONFIG_SUSPEND
3269 static int init_iommu_hw(void)
3270 {
3271 struct dmar_drhd_unit *drhd;
3272 struct intel_iommu *iommu = NULL;
3273
3274 for_each_active_iommu(iommu, drhd)
3275 if (iommu->qi)
3276 dmar_reenable_qi(iommu);
3277
3278 for_each_iommu(iommu, drhd) {
3279 if (drhd->ignored) {
3280 /*
3281 * we always have to disable PMRs or DMA may fail on
3282 * this device
3283 */
3284 if (force_on)
3285 iommu_disable_protect_mem_regions(iommu);
3286 continue;
3287 }
3288
3289 iommu_flush_write_buffer(iommu);
3290
3291 iommu_set_root_entry(iommu);
3292
3293 iommu->flush.flush_context(iommu, 0, 0, 0,
3294 DMA_CCMD_GLOBAL_INVL);
3295 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3296 DMA_TLB_GLOBAL_FLUSH);
3297 if (iommu_enable_translation(iommu))
3298 return 1;
3299 iommu_disable_protect_mem_regions(iommu);
3300 }
3301
3302 return 0;
3303 }
3304
3305 static void iommu_flush_all(void)
3306 {
3307 struct dmar_drhd_unit *drhd;
3308 struct intel_iommu *iommu;
3309
3310 for_each_active_iommu(iommu, drhd) {
3311 iommu->flush.flush_context(iommu, 0, 0, 0,
3312 DMA_CCMD_GLOBAL_INVL);
3313 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3314 DMA_TLB_GLOBAL_FLUSH);
3315 }
3316 }
3317
3318 static int iommu_suspend(void)
3319 {
3320 struct dmar_drhd_unit *drhd;
3321 struct intel_iommu *iommu = NULL;
3322 unsigned long flag;
3323
3324 for_each_active_iommu(iommu, drhd) {
3325 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3326 GFP_ATOMIC);
3327 if (!iommu->iommu_state)
3328 goto nomem;
3329 }
3330
3331 iommu_flush_all();
3332
3333 for_each_active_iommu(iommu, drhd) {
3334 iommu_disable_translation(iommu);
3335
3336 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3337
3338 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3339 readl(iommu->reg + DMAR_FECTL_REG);
3340 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3341 readl(iommu->reg + DMAR_FEDATA_REG);
3342 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3343 readl(iommu->reg + DMAR_FEADDR_REG);
3344 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3345 readl(iommu->reg + DMAR_FEUADDR_REG);
3346
3347 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3348 }
3349 return 0;
3350
3351 nomem:
3352 for_each_active_iommu(iommu, drhd)
3353 kfree(iommu->iommu_state);
3354
3355 return -ENOMEM;
3356 }
3357
3358 static void iommu_resume(void)
3359 {
3360 struct dmar_drhd_unit *drhd;
3361 struct intel_iommu *iommu = NULL;
3362 unsigned long flag;
3363
3364 if (init_iommu_hw()) {
3365 if (force_on)
3366 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3367 else
3368 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3369 return;
3370 }
3371
3372 for_each_active_iommu(iommu, drhd) {
3373
3374 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3375
3376 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3377 iommu->reg + DMAR_FECTL_REG);
3378 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3379 iommu->reg + DMAR_FEDATA_REG);
3380 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3381 iommu->reg + DMAR_FEADDR_REG);
3382 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3383 iommu->reg + DMAR_FEUADDR_REG);
3384
3385 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3386 }
3387
3388 for_each_active_iommu(iommu, drhd)
3389 kfree(iommu->iommu_state);
3390 }
3391
3392 static struct syscore_ops iommu_syscore_ops = {
3393 .resume = iommu_resume,
3394 .suspend = iommu_suspend,
3395 };
3396
3397 static void __init init_iommu_pm_ops(void)
3398 {
3399 register_syscore_ops(&iommu_syscore_ops);
3400 }
3401
3402 #else
3403 static inline void init_iommu_pm_ops(void) {}
3404 #endif /* CONFIG_PM */
3405
3406 LIST_HEAD(dmar_rmrr_units);
3407
3408 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3409 {
3410 list_add(&rmrr->list, &dmar_rmrr_units);
3411 }
3412
3413
3414 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3415 {
3416 struct acpi_dmar_reserved_memory *rmrr;
3417 struct dmar_rmrr_unit *rmrru;
3418
3419 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3420 if (!rmrru)
3421 return -ENOMEM;
3422
3423 rmrru->hdr = header;
3424 rmrr = (struct acpi_dmar_reserved_memory *)header;
3425 rmrru->base_address = rmrr->base_address;
3426 rmrru->end_address = rmrr->end_address;
3427
3428 dmar_register_rmrr_unit(rmrru);
3429 return 0;
3430 }
3431
3432 static int __init
3433 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3434 {
3435 struct acpi_dmar_reserved_memory *rmrr;
3436 int ret;
3437
3438 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3439 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3440 ((void *)rmrr) + rmrr->header.length,
3441 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3442
3443 if (ret || (rmrru->devices_cnt == 0)) {
3444 list_del(&rmrru->list);
3445 kfree(rmrru);
3446 }
3447 return ret;
3448 }
3449
3450 static LIST_HEAD(dmar_atsr_units);
3451
3452 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3453 {
3454 struct acpi_dmar_atsr *atsr;
3455 struct dmar_atsr_unit *atsru;
3456
3457 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3458 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3459 if (!atsru)
3460 return -ENOMEM;
3461
3462 atsru->hdr = hdr;
3463 atsru->include_all = atsr->flags & 0x1;
3464
3465 list_add(&atsru->list, &dmar_atsr_units);
3466
3467 return 0;
3468 }
3469
3470 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3471 {
3472 int rc;
3473 struct acpi_dmar_atsr *atsr;
3474
3475 if (atsru->include_all)
3476 return 0;
3477
3478 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3479 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3480 (void *)atsr + atsr->header.length,
3481 &atsru->devices_cnt, &atsru->devices,
3482 atsr->segment);
3483 if (rc || !atsru->devices_cnt) {
3484 list_del(&atsru->list);
3485 kfree(atsru);
3486 }
3487
3488 return rc;
3489 }
3490
3491 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3492 {
3493 int i;
3494 struct pci_bus *bus;
3495 struct acpi_dmar_atsr *atsr;
3496 struct dmar_atsr_unit *atsru;
3497
3498 dev = pci_physfn(dev);
3499
3500 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3501 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3502 if (atsr->segment == pci_domain_nr(dev->bus))
3503 goto found;
3504 }
3505
3506 return 0;
3507
3508 found:
3509 for (bus = dev->bus; bus; bus = bus->parent) {
3510 struct pci_dev *bridge = bus->self;
3511
3512 if (!bridge || !pci_is_pcie(bridge) ||
3513 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
3514 return 0;
3515
3516 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
3517 for (i = 0; i < atsru->devices_cnt; i++)
3518 if (atsru->devices[i] == bridge)
3519 return 1;
3520 break;
3521 }
3522 }
3523
3524 if (atsru->include_all)
3525 return 1;
3526
3527 return 0;
3528 }
3529
3530 int __init dmar_parse_rmrr_atsr_dev(void)
3531 {
3532 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3533 struct dmar_atsr_unit *atsr, *atsr_n;
3534 int ret = 0;
3535
3536 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3537 ret = rmrr_parse_dev(rmrr);
3538 if (ret)
3539 return ret;
3540 }
3541
3542 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3543 ret = atsr_parse_dev(atsr);
3544 if (ret)
3545 return ret;
3546 }
3547
3548 return ret;
3549 }
3550
3551 /*
3552 * Here we only respond to action of unbound device from driver.
3553 *
3554 * Added device is not attached to its DMAR domain here yet. That will happen
3555 * when mapping the device to iova.
3556 */
3557 static int device_notifier(struct notifier_block *nb,
3558 unsigned long action, void *data)
3559 {
3560 struct device *dev = data;
3561 struct pci_dev *pdev = to_pci_dev(dev);
3562 struct dmar_domain *domain;
3563
3564 if (iommu_no_mapping(dev))
3565 return 0;
3566
3567 domain = find_domain(pdev);
3568 if (!domain)
3569 return 0;
3570
3571 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3572 domain_remove_one_dev_info(domain, pdev);
3573
3574 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3575 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3576 list_empty(&domain->devices))
3577 domain_exit(domain);
3578 }
3579
3580 return 0;
3581 }
3582
3583 static struct notifier_block device_nb = {
3584 .notifier_call = device_notifier,
3585 };
3586
3587 int __init intel_iommu_init(void)
3588 {
3589 int ret = 0;
3590
3591 /* VT-d is required for a TXT/tboot launch, so enforce that */
3592 force_on = tboot_force_iommu();
3593
3594 if (dmar_table_init()) {
3595 if (force_on)
3596 panic("tboot: Failed to initialize DMAR table\n");
3597 return -ENODEV;
3598 }
3599
3600 if (dmar_dev_scope_init() < 0) {
3601 if (force_on)
3602 panic("tboot: Failed to initialize DMAR device scope\n");
3603 return -ENODEV;
3604 }
3605
3606 if (no_iommu || dmar_disabled)
3607 return -ENODEV;
3608
3609 if (iommu_init_mempool()) {
3610 if (force_on)
3611 panic("tboot: Failed to initialize iommu memory\n");
3612 return -ENODEV;
3613 }
3614
3615 if (list_empty(&dmar_rmrr_units))
3616 printk(KERN_INFO "DMAR: No RMRR found\n");
3617
3618 if (list_empty(&dmar_atsr_units))
3619 printk(KERN_INFO "DMAR: No ATSR found\n");
3620
3621 if (dmar_init_reserved_ranges()) {
3622 if (force_on)
3623 panic("tboot: Failed to reserve iommu ranges\n");
3624 return -ENODEV;
3625 }
3626
3627 init_no_remapping_devices();
3628
3629 ret = init_dmars();
3630 if (ret) {
3631 if (force_on)
3632 panic("tboot: Failed to initialize DMARs\n");
3633 printk(KERN_ERR "IOMMU: dmar init failed\n");
3634 put_iova_domain(&reserved_iova_list);
3635 iommu_exit_mempool();
3636 return ret;
3637 }
3638 printk(KERN_INFO
3639 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3640
3641 init_timer(&unmap_timer);
3642 #ifdef CONFIG_SWIOTLB
3643 swiotlb = 0;
3644 #endif
3645 dma_ops = &intel_dma_ops;
3646
3647 init_iommu_pm_ops();
3648
3649 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3650
3651 bus_register_notifier(&pci_bus_type, &device_nb);
3652
3653 intel_iommu_enabled = 1;
3654
3655 return 0;
3656 }
3657
3658 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3659 struct pci_dev *pdev)
3660 {
3661 struct pci_dev *tmp, *parent;
3662
3663 if (!iommu || !pdev)
3664 return;
3665
3666 /* dependent device detach */
3667 tmp = pci_find_upstream_pcie_bridge(pdev);
3668 /* Secondary interface's bus number and devfn 0 */
3669 if (tmp) {
3670 parent = pdev->bus->self;
3671 while (parent != tmp) {
3672 iommu_detach_dev(iommu, parent->bus->number,
3673 parent->devfn);
3674 parent = parent->bus->self;
3675 }
3676 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3677 iommu_detach_dev(iommu,
3678 tmp->subordinate->number, 0);
3679 else /* this is a legacy PCI bridge */
3680 iommu_detach_dev(iommu, tmp->bus->number,
3681 tmp->devfn);
3682 }
3683 }
3684
3685 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3686 struct pci_dev *pdev)
3687 {
3688 struct device_domain_info *info;
3689 struct intel_iommu *iommu;
3690 unsigned long flags;
3691 int found = 0;
3692 struct list_head *entry, *tmp;
3693
3694 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3695 pdev->devfn);
3696 if (!iommu)
3697 return;
3698
3699 spin_lock_irqsave(&device_domain_lock, flags);
3700 list_for_each_safe(entry, tmp, &domain->devices) {
3701 info = list_entry(entry, struct device_domain_info, link);
3702 if (info->segment == pci_domain_nr(pdev->bus) &&
3703 info->bus == pdev->bus->number &&
3704 info->devfn == pdev->devfn) {
3705 list_del(&info->link);
3706 list_del(&info->global);
3707 if (info->dev)
3708 info->dev->dev.archdata.iommu = NULL;
3709 spin_unlock_irqrestore(&device_domain_lock, flags);
3710
3711 iommu_disable_dev_iotlb(info);
3712 iommu_detach_dev(iommu, info->bus, info->devfn);
3713 iommu_detach_dependent_devices(iommu, pdev);
3714 free_devinfo_mem(info);
3715
3716 spin_lock_irqsave(&device_domain_lock, flags);
3717
3718 if (found)
3719 break;
3720 else
3721 continue;
3722 }
3723
3724 /* if there is no other devices under the same iommu
3725 * owned by this domain, clear this iommu in iommu_bmp
3726 * update iommu count and coherency
3727 */
3728 if (iommu == device_to_iommu(info->segment, info->bus,
3729 info->devfn))
3730 found = 1;
3731 }
3732
3733 spin_unlock_irqrestore(&device_domain_lock, flags);
3734
3735 if (found == 0) {
3736 unsigned long tmp_flags;
3737 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3738 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3739 domain->iommu_count--;
3740 domain_update_iommu_cap(domain);
3741 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3742
3743 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3744 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3745 spin_lock_irqsave(&iommu->lock, tmp_flags);
3746 clear_bit(domain->id, iommu->domain_ids);
3747 iommu->domains[domain->id] = NULL;
3748 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3749 }
3750 }
3751 }
3752
3753 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3754 {
3755 struct device_domain_info *info;
3756 struct intel_iommu *iommu;
3757 unsigned long flags1, flags2;
3758
3759 spin_lock_irqsave(&device_domain_lock, flags1);
3760 while (!list_empty(&domain->devices)) {
3761 info = list_entry(domain->devices.next,
3762 struct device_domain_info, link);
3763 list_del(&info->link);
3764 list_del(&info->global);
3765 if (info->dev)
3766 info->dev->dev.archdata.iommu = NULL;
3767
3768 spin_unlock_irqrestore(&device_domain_lock, flags1);
3769
3770 iommu_disable_dev_iotlb(info);
3771 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3772 iommu_detach_dev(iommu, info->bus, info->devfn);
3773 iommu_detach_dependent_devices(iommu, info->dev);
3774
3775 /* clear this iommu in iommu_bmp, update iommu count
3776 * and capabilities
3777 */
3778 spin_lock_irqsave(&domain->iommu_lock, flags2);
3779 if (test_and_clear_bit(iommu->seq_id,
3780 &domain->iommu_bmp)) {
3781 domain->iommu_count--;
3782 domain_update_iommu_cap(domain);
3783 }
3784 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3785
3786 free_devinfo_mem(info);
3787 spin_lock_irqsave(&device_domain_lock, flags1);
3788 }
3789 spin_unlock_irqrestore(&device_domain_lock, flags1);
3790 }
3791
3792 /* domain id for virtual machine, it won't be set in context */
3793 static unsigned long vm_domid;
3794
3795 static struct dmar_domain *iommu_alloc_vm_domain(void)
3796 {
3797 struct dmar_domain *domain;
3798
3799 domain = alloc_domain_mem();
3800 if (!domain)
3801 return NULL;
3802
3803 domain->id = vm_domid++;
3804 domain->nid = -1;
3805 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3806 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3807
3808 return domain;
3809 }
3810
3811 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3812 {
3813 int adjust_width;
3814
3815 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3816 spin_lock_init(&domain->iommu_lock);
3817
3818 domain_reserve_special_ranges(domain);
3819
3820 /* calculate AGAW */
3821 domain->gaw = guest_width;
3822 adjust_width = guestwidth_to_adjustwidth(guest_width);
3823 domain->agaw = width_to_agaw(adjust_width);
3824
3825 INIT_LIST_HEAD(&domain->devices);
3826
3827 domain->iommu_count = 0;
3828 domain->iommu_coherency = 0;
3829 domain->iommu_snooping = 0;
3830 domain->iommu_superpage = 0;
3831 domain->max_addr = 0;
3832 domain->nid = -1;
3833
3834 /* always allocate the top pgd */
3835 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3836 if (!domain->pgd)
3837 return -ENOMEM;
3838 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3839 return 0;
3840 }
3841
3842 static void iommu_free_vm_domain(struct dmar_domain *domain)
3843 {
3844 unsigned long flags;
3845 struct dmar_drhd_unit *drhd;
3846 struct intel_iommu *iommu;
3847 unsigned long i;
3848 unsigned long ndomains;
3849
3850 for_each_drhd_unit(drhd) {
3851 if (drhd->ignored)
3852 continue;
3853 iommu = drhd->iommu;
3854
3855 ndomains = cap_ndoms(iommu->cap);
3856 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3857 if (iommu->domains[i] == domain) {
3858 spin_lock_irqsave(&iommu->lock, flags);
3859 clear_bit(i, iommu->domain_ids);
3860 iommu->domains[i] = NULL;
3861 spin_unlock_irqrestore(&iommu->lock, flags);
3862 break;
3863 }
3864 }
3865 }
3866 }
3867
3868 static void vm_domain_exit(struct dmar_domain *domain)
3869 {
3870 /* Domain 0 is reserved, so dont process it */
3871 if (!domain)
3872 return;
3873
3874 vm_domain_remove_all_dev_info(domain);
3875 /* destroy iovas */
3876 put_iova_domain(&domain->iovad);
3877
3878 /* clear ptes */
3879 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3880
3881 /* free page tables */
3882 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3883
3884 iommu_free_vm_domain(domain);
3885 free_domain_mem(domain);
3886 }
3887
3888 static int intel_iommu_domain_init(struct iommu_domain *domain)
3889 {
3890 struct dmar_domain *dmar_domain;
3891
3892 dmar_domain = iommu_alloc_vm_domain();
3893 if (!dmar_domain) {
3894 printk(KERN_ERR
3895 "intel_iommu_domain_init: dmar_domain == NULL\n");
3896 return -ENOMEM;
3897 }
3898 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3899 printk(KERN_ERR
3900 "intel_iommu_domain_init() failed\n");
3901 vm_domain_exit(dmar_domain);
3902 return -ENOMEM;
3903 }
3904 domain_update_iommu_cap(dmar_domain);
3905 domain->priv = dmar_domain;
3906
3907 return 0;
3908 }
3909
3910 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3911 {
3912 struct dmar_domain *dmar_domain = domain->priv;
3913
3914 domain->priv = NULL;
3915 vm_domain_exit(dmar_domain);
3916 }
3917
3918 static int intel_iommu_attach_device(struct iommu_domain *domain,
3919 struct device *dev)
3920 {
3921 struct dmar_domain *dmar_domain = domain->priv;
3922 struct pci_dev *pdev = to_pci_dev(dev);
3923 struct intel_iommu *iommu;
3924 int addr_width;
3925
3926 /* normally pdev is not mapped */
3927 if (unlikely(domain_context_mapped(pdev))) {
3928 struct dmar_domain *old_domain;
3929
3930 old_domain = find_domain(pdev);
3931 if (old_domain) {
3932 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3933 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3934 domain_remove_one_dev_info(old_domain, pdev);
3935 else
3936 domain_remove_dev_info(old_domain);
3937 }
3938 }
3939
3940 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3941 pdev->devfn);
3942 if (!iommu)
3943 return -ENODEV;
3944
3945 /* check if this iommu agaw is sufficient for max mapped address */
3946 addr_width = agaw_to_width(iommu->agaw);
3947 if (addr_width > cap_mgaw(iommu->cap))
3948 addr_width = cap_mgaw(iommu->cap);
3949
3950 if (dmar_domain->max_addr > (1LL << addr_width)) {
3951 printk(KERN_ERR "%s: iommu width (%d) is not "
3952 "sufficient for the mapped address (%llx)\n",
3953 __func__, addr_width, dmar_domain->max_addr);
3954 return -EFAULT;
3955 }
3956 dmar_domain->gaw = addr_width;
3957
3958 /*
3959 * Knock out extra levels of page tables if necessary
3960 */
3961 while (iommu->agaw < dmar_domain->agaw) {
3962 struct dma_pte *pte;
3963
3964 pte = dmar_domain->pgd;
3965 if (dma_pte_present(pte)) {
3966 dmar_domain->pgd = (struct dma_pte *)
3967 phys_to_virt(dma_pte_addr(pte));
3968 free_pgtable_page(pte);
3969 }
3970 dmar_domain->agaw--;
3971 }
3972
3973 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3974 }
3975
3976 static void intel_iommu_detach_device(struct iommu_domain *domain,
3977 struct device *dev)
3978 {
3979 struct dmar_domain *dmar_domain = domain->priv;
3980 struct pci_dev *pdev = to_pci_dev(dev);
3981
3982 domain_remove_one_dev_info(dmar_domain, pdev);
3983 }
3984
3985 static int intel_iommu_map(struct iommu_domain *domain,
3986 unsigned long iova, phys_addr_t hpa,
3987 int gfp_order, int iommu_prot)
3988 {
3989 struct dmar_domain *dmar_domain = domain->priv;
3990 u64 max_addr;
3991 int prot = 0;
3992 size_t size;
3993 int ret;
3994
3995 if (iommu_prot & IOMMU_READ)
3996 prot |= DMA_PTE_READ;
3997 if (iommu_prot & IOMMU_WRITE)
3998 prot |= DMA_PTE_WRITE;
3999 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4000 prot |= DMA_PTE_SNP;
4001
4002 size = PAGE_SIZE << gfp_order;
4003 max_addr = iova + size;
4004 if (dmar_domain->max_addr < max_addr) {
4005 u64 end;
4006
4007 /* check if minimum agaw is sufficient for mapped address */
4008 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4009 if (end < max_addr) {
4010 printk(KERN_ERR "%s: iommu width (%d) is not "
4011 "sufficient for the mapped address (%llx)\n",
4012 __func__, dmar_domain->gaw, max_addr);
4013 return -EFAULT;
4014 }
4015 dmar_domain->max_addr = max_addr;
4016 }
4017 /* Round up size to next multiple of PAGE_SIZE, if it and
4018 the low bits of hpa would take us onto the next page */
4019 size = aligned_nrpages(hpa, size);
4020 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4021 hpa >> VTD_PAGE_SHIFT, size, prot);
4022 return ret;
4023 }
4024
4025 static int intel_iommu_unmap(struct iommu_domain *domain,
4026 unsigned long iova, int gfp_order)
4027 {
4028 struct dmar_domain *dmar_domain = domain->priv;
4029 size_t size = PAGE_SIZE << gfp_order;
4030 int order;
4031
4032 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4033 (iova + size - 1) >> VTD_PAGE_SHIFT);
4034
4035 if (dmar_domain->max_addr == iova + size)
4036 dmar_domain->max_addr = iova;
4037
4038 return order;
4039 }
4040
4041 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4042 unsigned long iova)
4043 {
4044 struct dmar_domain *dmar_domain = domain->priv;
4045 struct dma_pte *pte;
4046 u64 phys = 0;
4047
4048 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4049 if (pte)
4050 phys = dma_pte_addr(pte);
4051
4052 return phys;
4053 }
4054
4055 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4056 unsigned long cap)
4057 {
4058 struct dmar_domain *dmar_domain = domain->priv;
4059
4060 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4061 return dmar_domain->iommu_snooping;
4062 if (cap == IOMMU_CAP_INTR_REMAP)
4063 return intr_remapping_enabled;
4064
4065 return 0;
4066 }
4067
4068 static struct iommu_ops intel_iommu_ops = {
4069 .domain_init = intel_iommu_domain_init,
4070 .domain_destroy = intel_iommu_domain_destroy,
4071 .attach_dev = intel_iommu_attach_device,
4072 .detach_dev = intel_iommu_detach_device,
4073 .map = intel_iommu_map,
4074 .unmap = intel_iommu_unmap,
4075 .iova_to_phys = intel_iommu_iova_to_phys,
4076 .domain_has_cap = intel_iommu_domain_has_cap,
4077 };
4078
4079 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
4080 {
4081 /*
4082 * Mobile 4 Series Chipset neglects to set RWBF capability,
4083 * but needs it:
4084 */
4085 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4086 rwbf_quirk = 1;
4087
4088 /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
4089 if (dev->revision == 0x07) {
4090 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4091 dmar_map_gfx = 0;
4092 }
4093 }
4094
4095 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4096
4097 #define GGC 0x52
4098 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4099 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4100 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4101 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4102 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4103 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4104 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4105 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4106
4107 static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4108 {
4109 unsigned short ggc;
4110
4111 if (pci_read_config_word(dev, GGC, &ggc))
4112 return;
4113
4114 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4115 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4116 dmar_map_gfx = 0;
4117 } else if (dmar_map_gfx) {
4118 /* we have to ensure the gfx device is idle before we flush */
4119 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4120 intel_iommu_strict = 1;
4121 }
4122 }
4123 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4124 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4125 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4126 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4127
4128 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4129 ISOCH DMAR unit for the Azalia sound device, but not give it any
4130 TLB entries, which causes it to deadlock. Check for that. We do
4131 this in a function called from init_dmars(), instead of in a PCI
4132 quirk, because we don't want to print the obnoxious "BIOS broken"
4133 message if VT-d is actually disabled.
4134 */
4135 static void __init check_tylersburg_isoch(void)
4136 {
4137 struct pci_dev *pdev;
4138 uint32_t vtisochctrl;
4139
4140 /* If there's no Azalia in the system anyway, forget it. */
4141 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4142 if (!pdev)
4143 return;
4144 pci_dev_put(pdev);
4145
4146 /* System Management Registers. Might be hidden, in which case
4147 we can't do the sanity check. But that's OK, because the
4148 known-broken BIOSes _don't_ actually hide it, so far. */
4149 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4150 if (!pdev)
4151 return;
4152
4153 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4154 pci_dev_put(pdev);
4155 return;
4156 }
4157
4158 pci_dev_put(pdev);
4159
4160 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4161 if (vtisochctrl & 1)
4162 return;
4163
4164 /* Drop all bits other than the number of TLB entries */
4165 vtisochctrl &= 0x1c;
4166
4167 /* If we have the recommended number of TLB entries (16), fine. */
4168 if (vtisochctrl == 0x10)
4169 return;
4170
4171 /* Zero TLB entries? You get to ride the short bus to school. */
4172 if (!vtisochctrl) {
4173 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4174 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4175 dmi_get_system_info(DMI_BIOS_VENDOR),
4176 dmi_get_system_info(DMI_BIOS_VERSION),
4177 dmi_get_system_info(DMI_PRODUCT_VERSION));
4178 iommu_identity_mapping |= IDENTMAP_AZALIA;
4179 return;
4180 }
4181
4182 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4183 vtisochctrl);
4184 }