]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iommu/intel-iommu.c
Merge branch 'fbdev-for-linus' of git://github.com/schandinat/linux-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <asm/cacheflush.h>
45 #include <asm/iommu.h>
46
47 #define ROOT_SIZE VTD_PAGE_SIZE
48 #define CONTEXT_SIZE VTD_PAGE_SIZE
49
50 #define IS_BRIDGE_HOST_DEVICE(pdev) \
51 ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
55
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
59
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
61
62 #define MAX_AGAW_WIDTH 64
63
64 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
65 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
66
67 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
68 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
69 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
70 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
71 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
72
73 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
74 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
75 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
76
77 /* page table handling */
78 #define LEVEL_STRIDE (9)
79 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
80
81 static inline int agaw_to_level(int agaw)
82 {
83 return agaw + 2;
84 }
85
86 static inline int agaw_to_width(int agaw)
87 {
88 return 30 + agaw * LEVEL_STRIDE;
89 }
90
91 static inline int width_to_agaw(int width)
92 {
93 return (width - 30) / LEVEL_STRIDE;
94 }
95
96 static inline unsigned int level_to_offset_bits(int level)
97 {
98 return (level - 1) * LEVEL_STRIDE;
99 }
100
101 static inline int pfn_level_offset(unsigned long pfn, int level)
102 {
103 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
104 }
105
106 static inline unsigned long level_mask(int level)
107 {
108 return -1UL << level_to_offset_bits(level);
109 }
110
111 static inline unsigned long level_size(int level)
112 {
113 return 1UL << level_to_offset_bits(level);
114 }
115
116 static inline unsigned long align_to_level(unsigned long pfn, int level)
117 {
118 return (pfn + level_size(level) - 1) & level_mask(level);
119 }
120
121 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
122 {
123 return 1 << ((lvl - 1) * LEVEL_STRIDE);
124 }
125
126 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
127 are never going to work. */
128 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
129 {
130 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
131 }
132
133 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
134 {
135 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
136 }
137 static inline unsigned long page_to_dma_pfn(struct page *pg)
138 {
139 return mm_to_dma_pfn(page_to_pfn(pg));
140 }
141 static inline unsigned long virt_to_dma_pfn(void *p)
142 {
143 return page_to_dma_pfn(virt_to_page(p));
144 }
145
146 /* global iommu list, set NULL for ignored DMAR units */
147 static struct intel_iommu **g_iommus;
148
149 static void __init check_tylersburg_isoch(void);
150 static int rwbf_quirk;
151
152 /*
153 * set to 1 to panic kernel if can't successfully enable VT-d
154 * (used when kernel is launched w/ TXT)
155 */
156 static int force_on = 0;
157
158 /*
159 * 0: Present
160 * 1-11: Reserved
161 * 12-63: Context Ptr (12 - (haw-1))
162 * 64-127: Reserved
163 */
164 struct root_entry {
165 u64 val;
166 u64 rsvd1;
167 };
168 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
169 static inline bool root_present(struct root_entry *root)
170 {
171 return (root->val & 1);
172 }
173 static inline void set_root_present(struct root_entry *root)
174 {
175 root->val |= 1;
176 }
177 static inline void set_root_value(struct root_entry *root, unsigned long value)
178 {
179 root->val |= value & VTD_PAGE_MASK;
180 }
181
182 static inline struct context_entry *
183 get_context_addr_from_root(struct root_entry *root)
184 {
185 return (struct context_entry *)
186 (root_present(root)?phys_to_virt(
187 root->val & VTD_PAGE_MASK) :
188 NULL);
189 }
190
191 /*
192 * low 64 bits:
193 * 0: present
194 * 1: fault processing disable
195 * 2-3: translation type
196 * 12-63: address space root
197 * high 64 bits:
198 * 0-2: address width
199 * 3-6: aval
200 * 8-23: domain id
201 */
202 struct context_entry {
203 u64 lo;
204 u64 hi;
205 };
206
207 static inline bool context_present(struct context_entry *context)
208 {
209 return (context->lo & 1);
210 }
211 static inline void context_set_present(struct context_entry *context)
212 {
213 context->lo |= 1;
214 }
215
216 static inline void context_set_fault_enable(struct context_entry *context)
217 {
218 context->lo &= (((u64)-1) << 2) | 1;
219 }
220
221 static inline void context_set_translation_type(struct context_entry *context,
222 unsigned long value)
223 {
224 context->lo &= (((u64)-1) << 4) | 3;
225 context->lo |= (value & 3) << 2;
226 }
227
228 static inline void context_set_address_root(struct context_entry *context,
229 unsigned long value)
230 {
231 context->lo |= value & VTD_PAGE_MASK;
232 }
233
234 static inline void context_set_address_width(struct context_entry *context,
235 unsigned long value)
236 {
237 context->hi |= value & 7;
238 }
239
240 static inline void context_set_domain_id(struct context_entry *context,
241 unsigned long value)
242 {
243 context->hi |= (value & ((1 << 16) - 1)) << 8;
244 }
245
246 static inline void context_clear_entry(struct context_entry *context)
247 {
248 context->lo = 0;
249 context->hi = 0;
250 }
251
252 /*
253 * 0: readable
254 * 1: writable
255 * 2-6: reserved
256 * 7: super page
257 * 8-10: available
258 * 11: snoop behavior
259 * 12-63: Host physcial address
260 */
261 struct dma_pte {
262 u64 val;
263 };
264
265 static inline void dma_clear_pte(struct dma_pte *pte)
266 {
267 pte->val = 0;
268 }
269
270 static inline void dma_set_pte_readable(struct dma_pte *pte)
271 {
272 pte->val |= DMA_PTE_READ;
273 }
274
275 static inline void dma_set_pte_writable(struct dma_pte *pte)
276 {
277 pte->val |= DMA_PTE_WRITE;
278 }
279
280 static inline void dma_set_pte_snp(struct dma_pte *pte)
281 {
282 pte->val |= DMA_PTE_SNP;
283 }
284
285 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
286 {
287 pte->val = (pte->val & ~3) | (prot & 3);
288 }
289
290 static inline u64 dma_pte_addr(struct dma_pte *pte)
291 {
292 #ifdef CONFIG_64BIT
293 return pte->val & VTD_PAGE_MASK;
294 #else
295 /* Must have a full atomic 64-bit read */
296 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
297 #endif
298 }
299
300 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
301 {
302 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
303 }
304
305 static inline bool dma_pte_present(struct dma_pte *pte)
306 {
307 return (pte->val & 3) != 0;
308 }
309
310 static inline bool dma_pte_superpage(struct dma_pte *pte)
311 {
312 return (pte->val & (1 << 7));
313 }
314
315 static inline int first_pte_in_page(struct dma_pte *pte)
316 {
317 return !((unsigned long)pte & ~VTD_PAGE_MASK);
318 }
319
320 /*
321 * This domain is a statically identity mapping domain.
322 * 1. This domain creats a static 1:1 mapping to all usable memory.
323 * 2. It maps to each iommu if successful.
324 * 3. Each iommu mapps to this domain if successful.
325 */
326 static struct dmar_domain *si_domain;
327 static int hw_pass_through = 1;
328
329 /* devices under the same p2p bridge are owned in one domain */
330 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
331
332 /* domain represents a virtual machine, more than one devices
333 * across iommus may be owned in one domain, e.g. kvm guest.
334 */
335 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
336
337 /* si_domain contains mulitple devices */
338 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
339
340 struct dmar_domain {
341 int id; /* domain id */
342 int nid; /* node id */
343 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
344
345 struct list_head devices; /* all devices' list */
346 struct iova_domain iovad; /* iova's that belong to this domain */
347
348 struct dma_pte *pgd; /* virtual address */
349 int gaw; /* max guest address width */
350
351 /* adjusted guest address width, 0 is level 2 30-bit */
352 int agaw;
353
354 int flags; /* flags to find out type of domain */
355
356 int iommu_coherency;/* indicate coherency of iommu access */
357 int iommu_snooping; /* indicate snooping control feature*/
358 int iommu_count; /* reference count of iommu */
359 int iommu_superpage;/* Level of superpages supported:
360 0 == 4KiB (no superpages), 1 == 2MiB,
361 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
362 spinlock_t iommu_lock; /* protect iommu set in domain */
363 u64 max_addr; /* maximum mapped address */
364 };
365
366 /* PCI domain-device relationship */
367 struct device_domain_info {
368 struct list_head link; /* link to domain siblings */
369 struct list_head global; /* link to global list */
370 int segment; /* PCI domain */
371 u8 bus; /* PCI bus number */
372 u8 devfn; /* PCI devfn number */
373 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
374 struct intel_iommu *iommu; /* IOMMU used by this device */
375 struct dmar_domain *domain; /* pointer to domain */
376 };
377
378 static void flush_unmaps_timeout(unsigned long data);
379
380 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
381
382 #define HIGH_WATER_MARK 250
383 struct deferred_flush_tables {
384 int next;
385 struct iova *iova[HIGH_WATER_MARK];
386 struct dmar_domain *domain[HIGH_WATER_MARK];
387 };
388
389 static struct deferred_flush_tables *deferred_flush;
390
391 /* bitmap for indexing intel_iommus */
392 static int g_num_of_iommus;
393
394 static DEFINE_SPINLOCK(async_umap_flush_lock);
395 static LIST_HEAD(unmaps_to_do);
396
397 static int timer_on;
398 static long list_size;
399
400 static void domain_remove_dev_info(struct dmar_domain *domain);
401
402 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
403 int dmar_disabled = 0;
404 #else
405 int dmar_disabled = 1;
406 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
407
408 static int dmar_map_gfx = 1;
409 static int dmar_forcedac;
410 static int intel_iommu_strict;
411 static int intel_iommu_superpage = 1;
412
413 int intel_iommu_gfx_mapped;
414 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
415
416 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
417 static DEFINE_SPINLOCK(device_domain_lock);
418 static LIST_HEAD(device_domain_list);
419
420 static struct iommu_ops intel_iommu_ops;
421
422 static int __init intel_iommu_setup(char *str)
423 {
424 if (!str)
425 return -EINVAL;
426 while (*str) {
427 if (!strncmp(str, "on", 2)) {
428 dmar_disabled = 0;
429 printk(KERN_INFO "Intel-IOMMU: enabled\n");
430 } else if (!strncmp(str, "off", 3)) {
431 dmar_disabled = 1;
432 printk(KERN_INFO "Intel-IOMMU: disabled\n");
433 } else if (!strncmp(str, "igfx_off", 8)) {
434 dmar_map_gfx = 0;
435 printk(KERN_INFO
436 "Intel-IOMMU: disable GFX device mapping\n");
437 } else if (!strncmp(str, "forcedac", 8)) {
438 printk(KERN_INFO
439 "Intel-IOMMU: Forcing DAC for PCI devices\n");
440 dmar_forcedac = 1;
441 } else if (!strncmp(str, "strict", 6)) {
442 printk(KERN_INFO
443 "Intel-IOMMU: disable batched IOTLB flush\n");
444 intel_iommu_strict = 1;
445 } else if (!strncmp(str, "sp_off", 6)) {
446 printk(KERN_INFO
447 "Intel-IOMMU: disable supported super page\n");
448 intel_iommu_superpage = 0;
449 }
450
451 str += strcspn(str, ",");
452 while (*str == ',')
453 str++;
454 }
455 return 0;
456 }
457 __setup("intel_iommu=", intel_iommu_setup);
458
459 static struct kmem_cache *iommu_domain_cache;
460 static struct kmem_cache *iommu_devinfo_cache;
461 static struct kmem_cache *iommu_iova_cache;
462
463 static inline void *alloc_pgtable_page(int node)
464 {
465 struct page *page;
466 void *vaddr = NULL;
467
468 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
469 if (page)
470 vaddr = page_address(page);
471 return vaddr;
472 }
473
474 static inline void free_pgtable_page(void *vaddr)
475 {
476 free_page((unsigned long)vaddr);
477 }
478
479 static inline void *alloc_domain_mem(void)
480 {
481 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
482 }
483
484 static void free_domain_mem(void *vaddr)
485 {
486 kmem_cache_free(iommu_domain_cache, vaddr);
487 }
488
489 static inline void * alloc_devinfo_mem(void)
490 {
491 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
492 }
493
494 static inline void free_devinfo_mem(void *vaddr)
495 {
496 kmem_cache_free(iommu_devinfo_cache, vaddr);
497 }
498
499 struct iova *alloc_iova_mem(void)
500 {
501 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
502 }
503
504 void free_iova_mem(struct iova *iova)
505 {
506 kmem_cache_free(iommu_iova_cache, iova);
507 }
508
509
510 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
511 {
512 unsigned long sagaw;
513 int agaw = -1;
514
515 sagaw = cap_sagaw(iommu->cap);
516 for (agaw = width_to_agaw(max_gaw);
517 agaw >= 0; agaw--) {
518 if (test_bit(agaw, &sagaw))
519 break;
520 }
521
522 return agaw;
523 }
524
525 /*
526 * Calculate max SAGAW for each iommu.
527 */
528 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
529 {
530 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
531 }
532
533 /*
534 * calculate agaw for each iommu.
535 * "SAGAW" may be different across iommus, use a default agaw, and
536 * get a supported less agaw for iommus that don't support the default agaw.
537 */
538 int iommu_calculate_agaw(struct intel_iommu *iommu)
539 {
540 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
541 }
542
543 /* This functionin only returns single iommu in a domain */
544 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
545 {
546 int iommu_id;
547
548 /* si_domain and vm domain should not get here. */
549 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
550 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
551
552 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
553 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
554 return NULL;
555
556 return g_iommus[iommu_id];
557 }
558
559 static void domain_update_iommu_coherency(struct dmar_domain *domain)
560 {
561 int i;
562
563 domain->iommu_coherency = 1;
564
565 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
566 if (!ecap_coherent(g_iommus[i]->ecap)) {
567 domain->iommu_coherency = 0;
568 break;
569 }
570 }
571 }
572
573 static void domain_update_iommu_snooping(struct dmar_domain *domain)
574 {
575 int i;
576
577 domain->iommu_snooping = 1;
578
579 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
580 if (!ecap_sc_support(g_iommus[i]->ecap)) {
581 domain->iommu_snooping = 0;
582 break;
583 }
584 }
585 }
586
587 static void domain_update_iommu_superpage(struct dmar_domain *domain)
588 {
589 struct dmar_drhd_unit *drhd;
590 struct intel_iommu *iommu = NULL;
591 int mask = 0xf;
592
593 if (!intel_iommu_superpage) {
594 domain->iommu_superpage = 0;
595 return;
596 }
597
598 /* set iommu_superpage to the smallest common denominator */
599 for_each_active_iommu(iommu, drhd) {
600 mask &= cap_super_page_val(iommu->cap);
601 if (!mask) {
602 break;
603 }
604 }
605 domain->iommu_superpage = fls(mask);
606 }
607
608 /* Some capabilities may be different across iommus */
609 static void domain_update_iommu_cap(struct dmar_domain *domain)
610 {
611 domain_update_iommu_coherency(domain);
612 domain_update_iommu_snooping(domain);
613 domain_update_iommu_superpage(domain);
614 }
615
616 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
617 {
618 struct dmar_drhd_unit *drhd = NULL;
619 int i;
620
621 for_each_drhd_unit(drhd) {
622 if (drhd->ignored)
623 continue;
624 if (segment != drhd->segment)
625 continue;
626
627 for (i = 0; i < drhd->devices_cnt; i++) {
628 if (drhd->devices[i] &&
629 drhd->devices[i]->bus->number == bus &&
630 drhd->devices[i]->devfn == devfn)
631 return drhd->iommu;
632 if (drhd->devices[i] &&
633 drhd->devices[i]->subordinate &&
634 drhd->devices[i]->subordinate->number <= bus &&
635 drhd->devices[i]->subordinate->subordinate >= bus)
636 return drhd->iommu;
637 }
638
639 if (drhd->include_all)
640 return drhd->iommu;
641 }
642
643 return NULL;
644 }
645
646 static void domain_flush_cache(struct dmar_domain *domain,
647 void *addr, int size)
648 {
649 if (!domain->iommu_coherency)
650 clflush_cache_range(addr, size);
651 }
652
653 /* Gets context entry for a given bus and devfn */
654 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
655 u8 bus, u8 devfn)
656 {
657 struct root_entry *root;
658 struct context_entry *context;
659 unsigned long phy_addr;
660 unsigned long flags;
661
662 spin_lock_irqsave(&iommu->lock, flags);
663 root = &iommu->root_entry[bus];
664 context = get_context_addr_from_root(root);
665 if (!context) {
666 context = (struct context_entry *)
667 alloc_pgtable_page(iommu->node);
668 if (!context) {
669 spin_unlock_irqrestore(&iommu->lock, flags);
670 return NULL;
671 }
672 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
673 phy_addr = virt_to_phys((void *)context);
674 set_root_value(root, phy_addr);
675 set_root_present(root);
676 __iommu_flush_cache(iommu, root, sizeof(*root));
677 }
678 spin_unlock_irqrestore(&iommu->lock, flags);
679 return &context[devfn];
680 }
681
682 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
683 {
684 struct root_entry *root;
685 struct context_entry *context;
686 int ret;
687 unsigned long flags;
688
689 spin_lock_irqsave(&iommu->lock, flags);
690 root = &iommu->root_entry[bus];
691 context = get_context_addr_from_root(root);
692 if (!context) {
693 ret = 0;
694 goto out;
695 }
696 ret = context_present(&context[devfn]);
697 out:
698 spin_unlock_irqrestore(&iommu->lock, flags);
699 return ret;
700 }
701
702 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
703 {
704 struct root_entry *root;
705 struct context_entry *context;
706 unsigned long flags;
707
708 spin_lock_irqsave(&iommu->lock, flags);
709 root = &iommu->root_entry[bus];
710 context = get_context_addr_from_root(root);
711 if (context) {
712 context_clear_entry(&context[devfn]);
713 __iommu_flush_cache(iommu, &context[devfn], \
714 sizeof(*context));
715 }
716 spin_unlock_irqrestore(&iommu->lock, flags);
717 }
718
719 static void free_context_table(struct intel_iommu *iommu)
720 {
721 struct root_entry *root;
722 int i;
723 unsigned long flags;
724 struct context_entry *context;
725
726 spin_lock_irqsave(&iommu->lock, flags);
727 if (!iommu->root_entry) {
728 goto out;
729 }
730 for (i = 0; i < ROOT_ENTRY_NR; i++) {
731 root = &iommu->root_entry[i];
732 context = get_context_addr_from_root(root);
733 if (context)
734 free_pgtable_page(context);
735 }
736 free_pgtable_page(iommu->root_entry);
737 iommu->root_entry = NULL;
738 out:
739 spin_unlock_irqrestore(&iommu->lock, flags);
740 }
741
742 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
743 unsigned long pfn, int target_level)
744 {
745 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
746 struct dma_pte *parent, *pte = NULL;
747 int level = agaw_to_level(domain->agaw);
748 int offset;
749
750 BUG_ON(!domain->pgd);
751 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
752 parent = domain->pgd;
753
754 while (level > 0) {
755 void *tmp_page;
756
757 offset = pfn_level_offset(pfn, level);
758 pte = &parent[offset];
759 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
760 break;
761 if (level == target_level)
762 break;
763
764 if (!dma_pte_present(pte)) {
765 uint64_t pteval;
766
767 tmp_page = alloc_pgtable_page(domain->nid);
768
769 if (!tmp_page)
770 return NULL;
771
772 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
773 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
774 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
775 /* Someone else set it while we were thinking; use theirs. */
776 free_pgtable_page(tmp_page);
777 } else {
778 dma_pte_addr(pte);
779 domain_flush_cache(domain, pte, sizeof(*pte));
780 }
781 }
782 parent = phys_to_virt(dma_pte_addr(pte));
783 level--;
784 }
785
786 return pte;
787 }
788
789
790 /* return address's pte at specific level */
791 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
792 unsigned long pfn,
793 int level, int *large_page)
794 {
795 struct dma_pte *parent, *pte = NULL;
796 int total = agaw_to_level(domain->agaw);
797 int offset;
798
799 parent = domain->pgd;
800 while (level <= total) {
801 offset = pfn_level_offset(pfn, total);
802 pte = &parent[offset];
803 if (level == total)
804 return pte;
805
806 if (!dma_pte_present(pte)) {
807 *large_page = total;
808 break;
809 }
810
811 if (pte->val & DMA_PTE_LARGE_PAGE) {
812 *large_page = total;
813 return pte;
814 }
815
816 parent = phys_to_virt(dma_pte_addr(pte));
817 total--;
818 }
819 return NULL;
820 }
821
822 /* clear last level pte, a tlb flush should be followed */
823 static int dma_pte_clear_range(struct dmar_domain *domain,
824 unsigned long start_pfn,
825 unsigned long last_pfn)
826 {
827 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
828 unsigned int large_page = 1;
829 struct dma_pte *first_pte, *pte;
830 int order;
831
832 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
833 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
834 BUG_ON(start_pfn > last_pfn);
835
836 /* we don't need lock here; nobody else touches the iova range */
837 do {
838 large_page = 1;
839 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
840 if (!pte) {
841 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
842 continue;
843 }
844 do {
845 dma_clear_pte(pte);
846 start_pfn += lvl_to_nr_pages(large_page);
847 pte++;
848 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
849
850 domain_flush_cache(domain, first_pte,
851 (void *)pte - (void *)first_pte);
852
853 } while (start_pfn && start_pfn <= last_pfn);
854
855 order = (large_page - 1) * 9;
856 return order;
857 }
858
859 /* free page table pages. last level pte should already be cleared */
860 static void dma_pte_free_pagetable(struct dmar_domain *domain,
861 unsigned long start_pfn,
862 unsigned long last_pfn)
863 {
864 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
865 struct dma_pte *first_pte, *pte;
866 int total = agaw_to_level(domain->agaw);
867 int level;
868 unsigned long tmp;
869 int large_page = 2;
870
871 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
872 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
873 BUG_ON(start_pfn > last_pfn);
874
875 /* We don't need lock here; nobody else touches the iova range */
876 level = 2;
877 while (level <= total) {
878 tmp = align_to_level(start_pfn, level);
879
880 /* If we can't even clear one PTE at this level, we're done */
881 if (tmp + level_size(level) - 1 > last_pfn)
882 return;
883
884 do {
885 large_page = level;
886 first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page);
887 if (large_page > level)
888 level = large_page + 1;
889 if (!pte) {
890 tmp = align_to_level(tmp + 1, level + 1);
891 continue;
892 }
893 do {
894 if (dma_pte_present(pte)) {
895 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
896 dma_clear_pte(pte);
897 }
898 pte++;
899 tmp += level_size(level);
900 } while (!first_pte_in_page(pte) &&
901 tmp + level_size(level) - 1 <= last_pfn);
902
903 domain_flush_cache(domain, first_pte,
904 (void *)pte - (void *)first_pte);
905
906 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
907 level++;
908 }
909 /* free pgd */
910 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
911 free_pgtable_page(domain->pgd);
912 domain->pgd = NULL;
913 }
914 }
915
916 /* iommu handling */
917 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
918 {
919 struct root_entry *root;
920 unsigned long flags;
921
922 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
923 if (!root)
924 return -ENOMEM;
925
926 __iommu_flush_cache(iommu, root, ROOT_SIZE);
927
928 spin_lock_irqsave(&iommu->lock, flags);
929 iommu->root_entry = root;
930 spin_unlock_irqrestore(&iommu->lock, flags);
931
932 return 0;
933 }
934
935 static void iommu_set_root_entry(struct intel_iommu *iommu)
936 {
937 void *addr;
938 u32 sts;
939 unsigned long flag;
940
941 addr = iommu->root_entry;
942
943 raw_spin_lock_irqsave(&iommu->register_lock, flag);
944 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
945
946 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
947
948 /* Make sure hardware complete it */
949 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
950 readl, (sts & DMA_GSTS_RTPS), sts);
951
952 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
953 }
954
955 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
956 {
957 u32 val;
958 unsigned long flag;
959
960 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
961 return;
962
963 raw_spin_lock_irqsave(&iommu->register_lock, flag);
964 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
965
966 /* Make sure hardware complete it */
967 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
968 readl, (!(val & DMA_GSTS_WBFS)), val);
969
970 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
971 }
972
973 /* return value determine if we need a write buffer flush */
974 static void __iommu_flush_context(struct intel_iommu *iommu,
975 u16 did, u16 source_id, u8 function_mask,
976 u64 type)
977 {
978 u64 val = 0;
979 unsigned long flag;
980
981 switch (type) {
982 case DMA_CCMD_GLOBAL_INVL:
983 val = DMA_CCMD_GLOBAL_INVL;
984 break;
985 case DMA_CCMD_DOMAIN_INVL:
986 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
987 break;
988 case DMA_CCMD_DEVICE_INVL:
989 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
990 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
991 break;
992 default:
993 BUG();
994 }
995 val |= DMA_CCMD_ICC;
996
997 raw_spin_lock_irqsave(&iommu->register_lock, flag);
998 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
999
1000 /* Make sure hardware complete it */
1001 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1002 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1003
1004 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1005 }
1006
1007 /* return value determine if we need a write buffer flush */
1008 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1009 u64 addr, unsigned int size_order, u64 type)
1010 {
1011 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1012 u64 val = 0, val_iva = 0;
1013 unsigned long flag;
1014
1015 switch (type) {
1016 case DMA_TLB_GLOBAL_FLUSH:
1017 /* global flush doesn't need set IVA_REG */
1018 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1019 break;
1020 case DMA_TLB_DSI_FLUSH:
1021 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1022 break;
1023 case DMA_TLB_PSI_FLUSH:
1024 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1025 /* Note: always flush non-leaf currently */
1026 val_iva = size_order | addr;
1027 break;
1028 default:
1029 BUG();
1030 }
1031 /* Note: set drain read/write */
1032 #if 0
1033 /*
1034 * This is probably to be super secure.. Looks like we can
1035 * ignore it without any impact.
1036 */
1037 if (cap_read_drain(iommu->cap))
1038 val |= DMA_TLB_READ_DRAIN;
1039 #endif
1040 if (cap_write_drain(iommu->cap))
1041 val |= DMA_TLB_WRITE_DRAIN;
1042
1043 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1044 /* Note: Only uses first TLB reg currently */
1045 if (val_iva)
1046 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1047 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1048
1049 /* Make sure hardware complete it */
1050 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1051 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1052
1053 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1054
1055 /* check IOTLB invalidation granularity */
1056 if (DMA_TLB_IAIG(val) == 0)
1057 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1058 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1059 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1060 (unsigned long long)DMA_TLB_IIRG(type),
1061 (unsigned long long)DMA_TLB_IAIG(val));
1062 }
1063
1064 static struct device_domain_info *iommu_support_dev_iotlb(
1065 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1066 {
1067 int found = 0;
1068 unsigned long flags;
1069 struct device_domain_info *info;
1070 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1071
1072 if (!ecap_dev_iotlb_support(iommu->ecap))
1073 return NULL;
1074
1075 if (!iommu->qi)
1076 return NULL;
1077
1078 spin_lock_irqsave(&device_domain_lock, flags);
1079 list_for_each_entry(info, &domain->devices, link)
1080 if (info->bus == bus && info->devfn == devfn) {
1081 found = 1;
1082 break;
1083 }
1084 spin_unlock_irqrestore(&device_domain_lock, flags);
1085
1086 if (!found || !info->dev)
1087 return NULL;
1088
1089 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1090 return NULL;
1091
1092 if (!dmar_find_matched_atsr_unit(info->dev))
1093 return NULL;
1094
1095 info->iommu = iommu;
1096
1097 return info;
1098 }
1099
1100 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1101 {
1102 if (!info)
1103 return;
1104
1105 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1106 }
1107
1108 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1109 {
1110 if (!info->dev || !pci_ats_enabled(info->dev))
1111 return;
1112
1113 pci_disable_ats(info->dev);
1114 }
1115
1116 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1117 u64 addr, unsigned mask)
1118 {
1119 u16 sid, qdep;
1120 unsigned long flags;
1121 struct device_domain_info *info;
1122
1123 spin_lock_irqsave(&device_domain_lock, flags);
1124 list_for_each_entry(info, &domain->devices, link) {
1125 if (!info->dev || !pci_ats_enabled(info->dev))
1126 continue;
1127
1128 sid = info->bus << 8 | info->devfn;
1129 qdep = pci_ats_queue_depth(info->dev);
1130 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1131 }
1132 spin_unlock_irqrestore(&device_domain_lock, flags);
1133 }
1134
1135 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1136 unsigned long pfn, unsigned int pages, int map)
1137 {
1138 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1139 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1140
1141 BUG_ON(pages == 0);
1142
1143 /*
1144 * Fallback to domain selective flush if no PSI support or the size is
1145 * too big.
1146 * PSI requires page size to be 2 ^ x, and the base address is naturally
1147 * aligned to the size
1148 */
1149 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1150 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1151 DMA_TLB_DSI_FLUSH);
1152 else
1153 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1154 DMA_TLB_PSI_FLUSH);
1155
1156 /*
1157 * In caching mode, changes of pages from non-present to present require
1158 * flush. However, device IOTLB doesn't need to be flushed in this case.
1159 */
1160 if (!cap_caching_mode(iommu->cap) || !map)
1161 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1162 }
1163
1164 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1165 {
1166 u32 pmen;
1167 unsigned long flags;
1168
1169 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1170 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1171 pmen &= ~DMA_PMEN_EPM;
1172 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1173
1174 /* wait for the protected region status bit to clear */
1175 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1176 readl, !(pmen & DMA_PMEN_PRS), pmen);
1177
1178 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1179 }
1180
1181 static int iommu_enable_translation(struct intel_iommu *iommu)
1182 {
1183 u32 sts;
1184 unsigned long flags;
1185
1186 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1187 iommu->gcmd |= DMA_GCMD_TE;
1188 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1189
1190 /* Make sure hardware complete it */
1191 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1192 readl, (sts & DMA_GSTS_TES), sts);
1193
1194 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1195 return 0;
1196 }
1197
1198 static int iommu_disable_translation(struct intel_iommu *iommu)
1199 {
1200 u32 sts;
1201 unsigned long flag;
1202
1203 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1204 iommu->gcmd &= ~DMA_GCMD_TE;
1205 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1206
1207 /* Make sure hardware complete it */
1208 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1209 readl, (!(sts & DMA_GSTS_TES)), sts);
1210
1211 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1212 return 0;
1213 }
1214
1215
1216 static int iommu_init_domains(struct intel_iommu *iommu)
1217 {
1218 unsigned long ndomains;
1219 unsigned long nlongs;
1220
1221 ndomains = cap_ndoms(iommu->cap);
1222 pr_debug("IOMMU %d: Number of Domains supportd <%ld>\n", iommu->seq_id,
1223 ndomains);
1224 nlongs = BITS_TO_LONGS(ndomains);
1225
1226 spin_lock_init(&iommu->lock);
1227
1228 /* TBD: there might be 64K domains,
1229 * consider other allocation for future chip
1230 */
1231 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1232 if (!iommu->domain_ids) {
1233 printk(KERN_ERR "Allocating domain id array failed\n");
1234 return -ENOMEM;
1235 }
1236 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1237 GFP_KERNEL);
1238 if (!iommu->domains) {
1239 printk(KERN_ERR "Allocating domain array failed\n");
1240 return -ENOMEM;
1241 }
1242
1243 /*
1244 * if Caching mode is set, then invalid translations are tagged
1245 * with domainid 0. Hence we need to pre-allocate it.
1246 */
1247 if (cap_caching_mode(iommu->cap))
1248 set_bit(0, iommu->domain_ids);
1249 return 0;
1250 }
1251
1252
1253 static void domain_exit(struct dmar_domain *domain);
1254 static void vm_domain_exit(struct dmar_domain *domain);
1255
1256 void free_dmar_iommu(struct intel_iommu *iommu)
1257 {
1258 struct dmar_domain *domain;
1259 int i;
1260 unsigned long flags;
1261
1262 if ((iommu->domains) && (iommu->domain_ids)) {
1263 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1264 domain = iommu->domains[i];
1265 clear_bit(i, iommu->domain_ids);
1266
1267 spin_lock_irqsave(&domain->iommu_lock, flags);
1268 if (--domain->iommu_count == 0) {
1269 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1270 vm_domain_exit(domain);
1271 else
1272 domain_exit(domain);
1273 }
1274 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1275 }
1276 }
1277
1278 if (iommu->gcmd & DMA_GCMD_TE)
1279 iommu_disable_translation(iommu);
1280
1281 if (iommu->irq) {
1282 irq_set_handler_data(iommu->irq, NULL);
1283 /* This will mask the irq */
1284 free_irq(iommu->irq, iommu);
1285 destroy_irq(iommu->irq);
1286 }
1287
1288 kfree(iommu->domains);
1289 kfree(iommu->domain_ids);
1290
1291 g_iommus[iommu->seq_id] = NULL;
1292
1293 /* if all iommus are freed, free g_iommus */
1294 for (i = 0; i < g_num_of_iommus; i++) {
1295 if (g_iommus[i])
1296 break;
1297 }
1298
1299 if (i == g_num_of_iommus)
1300 kfree(g_iommus);
1301
1302 /* free context mapping */
1303 free_context_table(iommu);
1304 }
1305
1306 static struct dmar_domain *alloc_domain(void)
1307 {
1308 struct dmar_domain *domain;
1309
1310 domain = alloc_domain_mem();
1311 if (!domain)
1312 return NULL;
1313
1314 domain->nid = -1;
1315 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1316 domain->flags = 0;
1317
1318 return domain;
1319 }
1320
1321 static int iommu_attach_domain(struct dmar_domain *domain,
1322 struct intel_iommu *iommu)
1323 {
1324 int num;
1325 unsigned long ndomains;
1326 unsigned long flags;
1327
1328 ndomains = cap_ndoms(iommu->cap);
1329
1330 spin_lock_irqsave(&iommu->lock, flags);
1331
1332 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1333 if (num >= ndomains) {
1334 spin_unlock_irqrestore(&iommu->lock, flags);
1335 printk(KERN_ERR "IOMMU: no free domain ids\n");
1336 return -ENOMEM;
1337 }
1338
1339 domain->id = num;
1340 set_bit(num, iommu->domain_ids);
1341 set_bit(iommu->seq_id, &domain->iommu_bmp);
1342 iommu->domains[num] = domain;
1343 spin_unlock_irqrestore(&iommu->lock, flags);
1344
1345 return 0;
1346 }
1347
1348 static void iommu_detach_domain(struct dmar_domain *domain,
1349 struct intel_iommu *iommu)
1350 {
1351 unsigned long flags;
1352 int num, ndomains;
1353 int found = 0;
1354
1355 spin_lock_irqsave(&iommu->lock, flags);
1356 ndomains = cap_ndoms(iommu->cap);
1357 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1358 if (iommu->domains[num] == domain) {
1359 found = 1;
1360 break;
1361 }
1362 }
1363
1364 if (found) {
1365 clear_bit(num, iommu->domain_ids);
1366 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1367 iommu->domains[num] = NULL;
1368 }
1369 spin_unlock_irqrestore(&iommu->lock, flags);
1370 }
1371
1372 static struct iova_domain reserved_iova_list;
1373 static struct lock_class_key reserved_rbtree_key;
1374
1375 static int dmar_init_reserved_ranges(void)
1376 {
1377 struct pci_dev *pdev = NULL;
1378 struct iova *iova;
1379 int i;
1380
1381 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1382
1383 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1384 &reserved_rbtree_key);
1385
1386 /* IOAPIC ranges shouldn't be accessed by DMA */
1387 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1388 IOVA_PFN(IOAPIC_RANGE_END));
1389 if (!iova) {
1390 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1391 return -ENODEV;
1392 }
1393
1394 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1395 for_each_pci_dev(pdev) {
1396 struct resource *r;
1397
1398 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1399 r = &pdev->resource[i];
1400 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1401 continue;
1402 iova = reserve_iova(&reserved_iova_list,
1403 IOVA_PFN(r->start),
1404 IOVA_PFN(r->end));
1405 if (!iova) {
1406 printk(KERN_ERR "Reserve iova failed\n");
1407 return -ENODEV;
1408 }
1409 }
1410 }
1411 return 0;
1412 }
1413
1414 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1415 {
1416 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1417 }
1418
1419 static inline int guestwidth_to_adjustwidth(int gaw)
1420 {
1421 int agaw;
1422 int r = (gaw - 12) % 9;
1423
1424 if (r == 0)
1425 agaw = gaw;
1426 else
1427 agaw = gaw + 9 - r;
1428 if (agaw > 64)
1429 agaw = 64;
1430 return agaw;
1431 }
1432
1433 static int domain_init(struct dmar_domain *domain, int guest_width)
1434 {
1435 struct intel_iommu *iommu;
1436 int adjust_width, agaw;
1437 unsigned long sagaw;
1438
1439 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1440 spin_lock_init(&domain->iommu_lock);
1441
1442 domain_reserve_special_ranges(domain);
1443
1444 /* calculate AGAW */
1445 iommu = domain_get_iommu(domain);
1446 if (guest_width > cap_mgaw(iommu->cap))
1447 guest_width = cap_mgaw(iommu->cap);
1448 domain->gaw = guest_width;
1449 adjust_width = guestwidth_to_adjustwidth(guest_width);
1450 agaw = width_to_agaw(adjust_width);
1451 sagaw = cap_sagaw(iommu->cap);
1452 if (!test_bit(agaw, &sagaw)) {
1453 /* hardware doesn't support it, choose a bigger one */
1454 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1455 agaw = find_next_bit(&sagaw, 5, agaw);
1456 if (agaw >= 5)
1457 return -ENODEV;
1458 }
1459 domain->agaw = agaw;
1460 INIT_LIST_HEAD(&domain->devices);
1461
1462 if (ecap_coherent(iommu->ecap))
1463 domain->iommu_coherency = 1;
1464 else
1465 domain->iommu_coherency = 0;
1466
1467 if (ecap_sc_support(iommu->ecap))
1468 domain->iommu_snooping = 1;
1469 else
1470 domain->iommu_snooping = 0;
1471
1472 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1473 domain->iommu_count = 1;
1474 domain->nid = iommu->node;
1475
1476 /* always allocate the top pgd */
1477 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1478 if (!domain->pgd)
1479 return -ENOMEM;
1480 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1481 return 0;
1482 }
1483
1484 static void domain_exit(struct dmar_domain *domain)
1485 {
1486 struct dmar_drhd_unit *drhd;
1487 struct intel_iommu *iommu;
1488
1489 /* Domain 0 is reserved, so dont process it */
1490 if (!domain)
1491 return;
1492
1493 /* Flush any lazy unmaps that may reference this domain */
1494 if (!intel_iommu_strict)
1495 flush_unmaps_timeout(0);
1496
1497 domain_remove_dev_info(domain);
1498 /* destroy iovas */
1499 put_iova_domain(&domain->iovad);
1500
1501 /* clear ptes */
1502 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1503
1504 /* free page tables */
1505 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1506
1507 for_each_active_iommu(iommu, drhd)
1508 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1509 iommu_detach_domain(domain, iommu);
1510
1511 free_domain_mem(domain);
1512 }
1513
1514 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1515 u8 bus, u8 devfn, int translation)
1516 {
1517 struct context_entry *context;
1518 unsigned long flags;
1519 struct intel_iommu *iommu;
1520 struct dma_pte *pgd;
1521 unsigned long num;
1522 unsigned long ndomains;
1523 int id;
1524 int agaw;
1525 struct device_domain_info *info = NULL;
1526
1527 pr_debug("Set context mapping for %02x:%02x.%d\n",
1528 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1529
1530 BUG_ON(!domain->pgd);
1531 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1532 translation != CONTEXT_TT_MULTI_LEVEL);
1533
1534 iommu = device_to_iommu(segment, bus, devfn);
1535 if (!iommu)
1536 return -ENODEV;
1537
1538 context = device_to_context_entry(iommu, bus, devfn);
1539 if (!context)
1540 return -ENOMEM;
1541 spin_lock_irqsave(&iommu->lock, flags);
1542 if (context_present(context)) {
1543 spin_unlock_irqrestore(&iommu->lock, flags);
1544 return 0;
1545 }
1546
1547 id = domain->id;
1548 pgd = domain->pgd;
1549
1550 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1551 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1552 int found = 0;
1553
1554 /* find an available domain id for this device in iommu */
1555 ndomains = cap_ndoms(iommu->cap);
1556 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1557 if (iommu->domains[num] == domain) {
1558 id = num;
1559 found = 1;
1560 break;
1561 }
1562 }
1563
1564 if (found == 0) {
1565 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1566 if (num >= ndomains) {
1567 spin_unlock_irqrestore(&iommu->lock, flags);
1568 printk(KERN_ERR "IOMMU: no free domain ids\n");
1569 return -EFAULT;
1570 }
1571
1572 set_bit(num, iommu->domain_ids);
1573 iommu->domains[num] = domain;
1574 id = num;
1575 }
1576
1577 /* Skip top levels of page tables for
1578 * iommu which has less agaw than default.
1579 * Unnecessary for PT mode.
1580 */
1581 if (translation != CONTEXT_TT_PASS_THROUGH) {
1582 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1583 pgd = phys_to_virt(dma_pte_addr(pgd));
1584 if (!dma_pte_present(pgd)) {
1585 spin_unlock_irqrestore(&iommu->lock, flags);
1586 return -ENOMEM;
1587 }
1588 }
1589 }
1590 }
1591
1592 context_set_domain_id(context, id);
1593
1594 if (translation != CONTEXT_TT_PASS_THROUGH) {
1595 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1596 translation = info ? CONTEXT_TT_DEV_IOTLB :
1597 CONTEXT_TT_MULTI_LEVEL;
1598 }
1599 /*
1600 * In pass through mode, AW must be programmed to indicate the largest
1601 * AGAW value supported by hardware. And ASR is ignored by hardware.
1602 */
1603 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1604 context_set_address_width(context, iommu->msagaw);
1605 else {
1606 context_set_address_root(context, virt_to_phys(pgd));
1607 context_set_address_width(context, iommu->agaw);
1608 }
1609
1610 context_set_translation_type(context, translation);
1611 context_set_fault_enable(context);
1612 context_set_present(context);
1613 domain_flush_cache(domain, context, sizeof(*context));
1614
1615 /*
1616 * It's a non-present to present mapping. If hardware doesn't cache
1617 * non-present entry we only need to flush the write-buffer. If the
1618 * _does_ cache non-present entries, then it does so in the special
1619 * domain #0, which we have to flush:
1620 */
1621 if (cap_caching_mode(iommu->cap)) {
1622 iommu->flush.flush_context(iommu, 0,
1623 (((u16)bus) << 8) | devfn,
1624 DMA_CCMD_MASK_NOBIT,
1625 DMA_CCMD_DEVICE_INVL);
1626 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1627 } else {
1628 iommu_flush_write_buffer(iommu);
1629 }
1630 iommu_enable_dev_iotlb(info);
1631 spin_unlock_irqrestore(&iommu->lock, flags);
1632
1633 spin_lock_irqsave(&domain->iommu_lock, flags);
1634 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1635 domain->iommu_count++;
1636 if (domain->iommu_count == 1)
1637 domain->nid = iommu->node;
1638 domain_update_iommu_cap(domain);
1639 }
1640 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1641 return 0;
1642 }
1643
1644 static int
1645 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1646 int translation)
1647 {
1648 int ret;
1649 struct pci_dev *tmp, *parent;
1650
1651 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1652 pdev->bus->number, pdev->devfn,
1653 translation);
1654 if (ret)
1655 return ret;
1656
1657 /* dependent device mapping */
1658 tmp = pci_find_upstream_pcie_bridge(pdev);
1659 if (!tmp)
1660 return 0;
1661 /* Secondary interface's bus number and devfn 0 */
1662 parent = pdev->bus->self;
1663 while (parent != tmp) {
1664 ret = domain_context_mapping_one(domain,
1665 pci_domain_nr(parent->bus),
1666 parent->bus->number,
1667 parent->devfn, translation);
1668 if (ret)
1669 return ret;
1670 parent = parent->bus->self;
1671 }
1672 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1673 return domain_context_mapping_one(domain,
1674 pci_domain_nr(tmp->subordinate),
1675 tmp->subordinate->number, 0,
1676 translation);
1677 else /* this is a legacy PCI bridge */
1678 return domain_context_mapping_one(domain,
1679 pci_domain_nr(tmp->bus),
1680 tmp->bus->number,
1681 tmp->devfn,
1682 translation);
1683 }
1684
1685 static int domain_context_mapped(struct pci_dev *pdev)
1686 {
1687 int ret;
1688 struct pci_dev *tmp, *parent;
1689 struct intel_iommu *iommu;
1690
1691 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1692 pdev->devfn);
1693 if (!iommu)
1694 return -ENODEV;
1695
1696 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1697 if (!ret)
1698 return ret;
1699 /* dependent device mapping */
1700 tmp = pci_find_upstream_pcie_bridge(pdev);
1701 if (!tmp)
1702 return ret;
1703 /* Secondary interface's bus number and devfn 0 */
1704 parent = pdev->bus->self;
1705 while (parent != tmp) {
1706 ret = device_context_mapped(iommu, parent->bus->number,
1707 parent->devfn);
1708 if (!ret)
1709 return ret;
1710 parent = parent->bus->self;
1711 }
1712 if (pci_is_pcie(tmp))
1713 return device_context_mapped(iommu, tmp->subordinate->number,
1714 0);
1715 else
1716 return device_context_mapped(iommu, tmp->bus->number,
1717 tmp->devfn);
1718 }
1719
1720 /* Returns a number of VTD pages, but aligned to MM page size */
1721 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1722 size_t size)
1723 {
1724 host_addr &= ~PAGE_MASK;
1725 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1726 }
1727
1728 /* Return largest possible superpage level for a given mapping */
1729 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1730 unsigned long iov_pfn,
1731 unsigned long phy_pfn,
1732 unsigned long pages)
1733 {
1734 int support, level = 1;
1735 unsigned long pfnmerge;
1736
1737 support = domain->iommu_superpage;
1738
1739 /* To use a large page, the virtual *and* physical addresses
1740 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1741 of them will mean we have to use smaller pages. So just
1742 merge them and check both at once. */
1743 pfnmerge = iov_pfn | phy_pfn;
1744
1745 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1746 pages >>= VTD_STRIDE_SHIFT;
1747 if (!pages)
1748 break;
1749 pfnmerge >>= VTD_STRIDE_SHIFT;
1750 level++;
1751 support--;
1752 }
1753 return level;
1754 }
1755
1756 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1757 struct scatterlist *sg, unsigned long phys_pfn,
1758 unsigned long nr_pages, int prot)
1759 {
1760 struct dma_pte *first_pte = NULL, *pte = NULL;
1761 phys_addr_t uninitialized_var(pteval);
1762 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1763 unsigned long sg_res;
1764 unsigned int largepage_lvl = 0;
1765 unsigned long lvl_pages = 0;
1766
1767 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1768
1769 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1770 return -EINVAL;
1771
1772 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1773
1774 if (sg)
1775 sg_res = 0;
1776 else {
1777 sg_res = nr_pages + 1;
1778 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1779 }
1780
1781 while (nr_pages > 0) {
1782 uint64_t tmp;
1783
1784 if (!sg_res) {
1785 sg_res = aligned_nrpages(sg->offset, sg->length);
1786 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1787 sg->dma_length = sg->length;
1788 pteval = page_to_phys(sg_page(sg)) | prot;
1789 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1790 }
1791
1792 if (!pte) {
1793 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1794
1795 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1796 if (!pte)
1797 return -ENOMEM;
1798 /* It is large page*/
1799 if (largepage_lvl > 1)
1800 pteval |= DMA_PTE_LARGE_PAGE;
1801 else
1802 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1803
1804 }
1805 /* We don't need lock here, nobody else
1806 * touches the iova range
1807 */
1808 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1809 if (tmp) {
1810 static int dumps = 5;
1811 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1812 iov_pfn, tmp, (unsigned long long)pteval);
1813 if (dumps) {
1814 dumps--;
1815 debug_dma_dump_mappings(NULL);
1816 }
1817 WARN_ON(1);
1818 }
1819
1820 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1821
1822 BUG_ON(nr_pages < lvl_pages);
1823 BUG_ON(sg_res < lvl_pages);
1824
1825 nr_pages -= lvl_pages;
1826 iov_pfn += lvl_pages;
1827 phys_pfn += lvl_pages;
1828 pteval += lvl_pages * VTD_PAGE_SIZE;
1829 sg_res -= lvl_pages;
1830
1831 /* If the next PTE would be the first in a new page, then we
1832 need to flush the cache on the entries we've just written.
1833 And then we'll need to recalculate 'pte', so clear it and
1834 let it get set again in the if (!pte) block above.
1835
1836 If we're done (!nr_pages) we need to flush the cache too.
1837
1838 Also if we've been setting superpages, we may need to
1839 recalculate 'pte' and switch back to smaller pages for the
1840 end of the mapping, if the trailing size is not enough to
1841 use another superpage (i.e. sg_res < lvl_pages). */
1842 pte++;
1843 if (!nr_pages || first_pte_in_page(pte) ||
1844 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1845 domain_flush_cache(domain, first_pte,
1846 (void *)pte - (void *)first_pte);
1847 pte = NULL;
1848 }
1849
1850 if (!sg_res && nr_pages)
1851 sg = sg_next(sg);
1852 }
1853 return 0;
1854 }
1855
1856 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1857 struct scatterlist *sg, unsigned long nr_pages,
1858 int prot)
1859 {
1860 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1861 }
1862
1863 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1864 unsigned long phys_pfn, unsigned long nr_pages,
1865 int prot)
1866 {
1867 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1868 }
1869
1870 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1871 {
1872 if (!iommu)
1873 return;
1874
1875 clear_context_table(iommu, bus, devfn);
1876 iommu->flush.flush_context(iommu, 0, 0, 0,
1877 DMA_CCMD_GLOBAL_INVL);
1878 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1879 }
1880
1881 static void domain_remove_dev_info(struct dmar_domain *domain)
1882 {
1883 struct device_domain_info *info;
1884 unsigned long flags;
1885 struct intel_iommu *iommu;
1886
1887 spin_lock_irqsave(&device_domain_lock, flags);
1888 while (!list_empty(&domain->devices)) {
1889 info = list_entry(domain->devices.next,
1890 struct device_domain_info, link);
1891 list_del(&info->link);
1892 list_del(&info->global);
1893 if (info->dev)
1894 info->dev->dev.archdata.iommu = NULL;
1895 spin_unlock_irqrestore(&device_domain_lock, flags);
1896
1897 iommu_disable_dev_iotlb(info);
1898 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1899 iommu_detach_dev(iommu, info->bus, info->devfn);
1900 free_devinfo_mem(info);
1901
1902 spin_lock_irqsave(&device_domain_lock, flags);
1903 }
1904 spin_unlock_irqrestore(&device_domain_lock, flags);
1905 }
1906
1907 /*
1908 * find_domain
1909 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1910 */
1911 static struct dmar_domain *
1912 find_domain(struct pci_dev *pdev)
1913 {
1914 struct device_domain_info *info;
1915
1916 /* No lock here, assumes no domain exit in normal case */
1917 info = pdev->dev.archdata.iommu;
1918 if (info)
1919 return info->domain;
1920 return NULL;
1921 }
1922
1923 /* domain is initialized */
1924 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1925 {
1926 struct dmar_domain *domain, *found = NULL;
1927 struct intel_iommu *iommu;
1928 struct dmar_drhd_unit *drhd;
1929 struct device_domain_info *info, *tmp;
1930 struct pci_dev *dev_tmp;
1931 unsigned long flags;
1932 int bus = 0, devfn = 0;
1933 int segment;
1934 int ret;
1935
1936 domain = find_domain(pdev);
1937 if (domain)
1938 return domain;
1939
1940 segment = pci_domain_nr(pdev->bus);
1941
1942 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1943 if (dev_tmp) {
1944 if (pci_is_pcie(dev_tmp)) {
1945 bus = dev_tmp->subordinate->number;
1946 devfn = 0;
1947 } else {
1948 bus = dev_tmp->bus->number;
1949 devfn = dev_tmp->devfn;
1950 }
1951 spin_lock_irqsave(&device_domain_lock, flags);
1952 list_for_each_entry(info, &device_domain_list, global) {
1953 if (info->segment == segment &&
1954 info->bus == bus && info->devfn == devfn) {
1955 found = info->domain;
1956 break;
1957 }
1958 }
1959 spin_unlock_irqrestore(&device_domain_lock, flags);
1960 /* pcie-pci bridge already has a domain, uses it */
1961 if (found) {
1962 domain = found;
1963 goto found_domain;
1964 }
1965 }
1966
1967 domain = alloc_domain();
1968 if (!domain)
1969 goto error;
1970
1971 /* Allocate new domain for the device */
1972 drhd = dmar_find_matched_drhd_unit(pdev);
1973 if (!drhd) {
1974 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1975 pci_name(pdev));
1976 return NULL;
1977 }
1978 iommu = drhd->iommu;
1979
1980 ret = iommu_attach_domain(domain, iommu);
1981 if (ret) {
1982 free_domain_mem(domain);
1983 goto error;
1984 }
1985
1986 if (domain_init(domain, gaw)) {
1987 domain_exit(domain);
1988 goto error;
1989 }
1990
1991 /* register pcie-to-pci device */
1992 if (dev_tmp) {
1993 info = alloc_devinfo_mem();
1994 if (!info) {
1995 domain_exit(domain);
1996 goto error;
1997 }
1998 info->segment = segment;
1999 info->bus = bus;
2000 info->devfn = devfn;
2001 info->dev = NULL;
2002 info->domain = domain;
2003 /* This domain is shared by devices under p2p bridge */
2004 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2005
2006 /* pcie-to-pci bridge already has a domain, uses it */
2007 found = NULL;
2008 spin_lock_irqsave(&device_domain_lock, flags);
2009 list_for_each_entry(tmp, &device_domain_list, global) {
2010 if (tmp->segment == segment &&
2011 tmp->bus == bus && tmp->devfn == devfn) {
2012 found = tmp->domain;
2013 break;
2014 }
2015 }
2016 if (found) {
2017 spin_unlock_irqrestore(&device_domain_lock, flags);
2018 free_devinfo_mem(info);
2019 domain_exit(domain);
2020 domain = found;
2021 } else {
2022 list_add(&info->link, &domain->devices);
2023 list_add(&info->global, &device_domain_list);
2024 spin_unlock_irqrestore(&device_domain_lock, flags);
2025 }
2026 }
2027
2028 found_domain:
2029 info = alloc_devinfo_mem();
2030 if (!info)
2031 goto error;
2032 info->segment = segment;
2033 info->bus = pdev->bus->number;
2034 info->devfn = pdev->devfn;
2035 info->dev = pdev;
2036 info->domain = domain;
2037 spin_lock_irqsave(&device_domain_lock, flags);
2038 /* somebody is fast */
2039 found = find_domain(pdev);
2040 if (found != NULL) {
2041 spin_unlock_irqrestore(&device_domain_lock, flags);
2042 if (found != domain) {
2043 domain_exit(domain);
2044 domain = found;
2045 }
2046 free_devinfo_mem(info);
2047 return domain;
2048 }
2049 list_add(&info->link, &domain->devices);
2050 list_add(&info->global, &device_domain_list);
2051 pdev->dev.archdata.iommu = info;
2052 spin_unlock_irqrestore(&device_domain_lock, flags);
2053 return domain;
2054 error:
2055 /* recheck it here, maybe others set it */
2056 return find_domain(pdev);
2057 }
2058
2059 static int iommu_identity_mapping;
2060 #define IDENTMAP_ALL 1
2061 #define IDENTMAP_GFX 2
2062 #define IDENTMAP_AZALIA 4
2063
2064 static int iommu_domain_identity_map(struct dmar_domain *domain,
2065 unsigned long long start,
2066 unsigned long long end)
2067 {
2068 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2069 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2070
2071 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2072 dma_to_mm_pfn(last_vpfn))) {
2073 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2074 return -ENOMEM;
2075 }
2076
2077 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2078 start, end, domain->id);
2079 /*
2080 * RMRR range might have overlap with physical memory range,
2081 * clear it first
2082 */
2083 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2084
2085 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2086 last_vpfn - first_vpfn + 1,
2087 DMA_PTE_READ|DMA_PTE_WRITE);
2088 }
2089
2090 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2091 unsigned long long start,
2092 unsigned long long end)
2093 {
2094 struct dmar_domain *domain;
2095 int ret;
2096
2097 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2098 if (!domain)
2099 return -ENOMEM;
2100
2101 /* For _hardware_ passthrough, don't bother. But for software
2102 passthrough, we do it anyway -- it may indicate a memory
2103 range which is reserved in E820, so which didn't get set
2104 up to start with in si_domain */
2105 if (domain == si_domain && hw_pass_through) {
2106 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2107 pci_name(pdev), start, end);
2108 return 0;
2109 }
2110
2111 printk(KERN_INFO
2112 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2113 pci_name(pdev), start, end);
2114
2115 if (end < start) {
2116 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2117 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2118 dmi_get_system_info(DMI_BIOS_VENDOR),
2119 dmi_get_system_info(DMI_BIOS_VERSION),
2120 dmi_get_system_info(DMI_PRODUCT_VERSION));
2121 ret = -EIO;
2122 goto error;
2123 }
2124
2125 if (end >> agaw_to_width(domain->agaw)) {
2126 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2127 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2128 agaw_to_width(domain->agaw),
2129 dmi_get_system_info(DMI_BIOS_VENDOR),
2130 dmi_get_system_info(DMI_BIOS_VERSION),
2131 dmi_get_system_info(DMI_PRODUCT_VERSION));
2132 ret = -EIO;
2133 goto error;
2134 }
2135
2136 ret = iommu_domain_identity_map(domain, start, end);
2137 if (ret)
2138 goto error;
2139
2140 /* context entry init */
2141 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2142 if (ret)
2143 goto error;
2144
2145 return 0;
2146
2147 error:
2148 domain_exit(domain);
2149 return ret;
2150 }
2151
2152 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2153 struct pci_dev *pdev)
2154 {
2155 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2156 return 0;
2157 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2158 rmrr->end_address);
2159 }
2160
2161 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2162 static inline void iommu_prepare_isa(void)
2163 {
2164 struct pci_dev *pdev;
2165 int ret;
2166
2167 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2168 if (!pdev)
2169 return;
2170
2171 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2172 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2173
2174 if (ret)
2175 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2176 "floppy might not work\n");
2177
2178 }
2179 #else
2180 static inline void iommu_prepare_isa(void)
2181 {
2182 return;
2183 }
2184 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2185
2186 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2187
2188 static int __init si_domain_work_fn(unsigned long start_pfn,
2189 unsigned long end_pfn, void *datax)
2190 {
2191 int *ret = datax;
2192
2193 *ret = iommu_domain_identity_map(si_domain,
2194 (uint64_t)start_pfn << PAGE_SHIFT,
2195 (uint64_t)end_pfn << PAGE_SHIFT);
2196 return *ret;
2197
2198 }
2199
2200 static int __init si_domain_init(int hw)
2201 {
2202 struct dmar_drhd_unit *drhd;
2203 struct intel_iommu *iommu;
2204 int nid, ret = 0;
2205
2206 si_domain = alloc_domain();
2207 if (!si_domain)
2208 return -EFAULT;
2209
2210 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2211
2212 for_each_active_iommu(iommu, drhd) {
2213 ret = iommu_attach_domain(si_domain, iommu);
2214 if (ret) {
2215 domain_exit(si_domain);
2216 return -EFAULT;
2217 }
2218 }
2219
2220 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2221 domain_exit(si_domain);
2222 return -EFAULT;
2223 }
2224
2225 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2226
2227 if (hw)
2228 return 0;
2229
2230 for_each_online_node(nid) {
2231 work_with_active_regions(nid, si_domain_work_fn, &ret);
2232 if (ret)
2233 return ret;
2234 }
2235
2236 return 0;
2237 }
2238
2239 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2240 struct pci_dev *pdev);
2241 static int identity_mapping(struct pci_dev *pdev)
2242 {
2243 struct device_domain_info *info;
2244
2245 if (likely(!iommu_identity_mapping))
2246 return 0;
2247
2248 info = pdev->dev.archdata.iommu;
2249 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2250 return (info->domain == si_domain);
2251
2252 return 0;
2253 }
2254
2255 static int domain_add_dev_info(struct dmar_domain *domain,
2256 struct pci_dev *pdev,
2257 int translation)
2258 {
2259 struct device_domain_info *info;
2260 unsigned long flags;
2261 int ret;
2262
2263 info = alloc_devinfo_mem();
2264 if (!info)
2265 return -ENOMEM;
2266
2267 ret = domain_context_mapping(domain, pdev, translation);
2268 if (ret) {
2269 free_devinfo_mem(info);
2270 return ret;
2271 }
2272
2273 info->segment = pci_domain_nr(pdev->bus);
2274 info->bus = pdev->bus->number;
2275 info->devfn = pdev->devfn;
2276 info->dev = pdev;
2277 info->domain = domain;
2278
2279 spin_lock_irqsave(&device_domain_lock, flags);
2280 list_add(&info->link, &domain->devices);
2281 list_add(&info->global, &device_domain_list);
2282 pdev->dev.archdata.iommu = info;
2283 spin_unlock_irqrestore(&device_domain_lock, flags);
2284
2285 return 0;
2286 }
2287
2288 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2289 {
2290 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2291 return 1;
2292
2293 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2294 return 1;
2295
2296 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2297 return 0;
2298
2299 /*
2300 * We want to start off with all devices in the 1:1 domain, and
2301 * take them out later if we find they can't access all of memory.
2302 *
2303 * However, we can't do this for PCI devices behind bridges,
2304 * because all PCI devices behind the same bridge will end up
2305 * with the same source-id on their transactions.
2306 *
2307 * Practically speaking, we can't change things around for these
2308 * devices at run-time, because we can't be sure there'll be no
2309 * DMA transactions in flight for any of their siblings.
2310 *
2311 * So PCI devices (unless they're on the root bus) as well as
2312 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2313 * the 1:1 domain, just in _case_ one of their siblings turns out
2314 * not to be able to map all of memory.
2315 */
2316 if (!pci_is_pcie(pdev)) {
2317 if (!pci_is_root_bus(pdev->bus))
2318 return 0;
2319 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2320 return 0;
2321 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2322 return 0;
2323
2324 /*
2325 * At boot time, we don't yet know if devices will be 64-bit capable.
2326 * Assume that they will -- if they turn out not to be, then we can
2327 * take them out of the 1:1 domain later.
2328 */
2329 if (!startup) {
2330 /*
2331 * If the device's dma_mask is less than the system's memory
2332 * size then this is not a candidate for identity mapping.
2333 */
2334 u64 dma_mask = pdev->dma_mask;
2335
2336 if (pdev->dev.coherent_dma_mask &&
2337 pdev->dev.coherent_dma_mask < dma_mask)
2338 dma_mask = pdev->dev.coherent_dma_mask;
2339
2340 return dma_mask >= dma_get_required_mask(&pdev->dev);
2341 }
2342
2343 return 1;
2344 }
2345
2346 static int __init iommu_prepare_static_identity_mapping(int hw)
2347 {
2348 struct pci_dev *pdev = NULL;
2349 int ret;
2350
2351 ret = si_domain_init(hw);
2352 if (ret)
2353 return -EFAULT;
2354
2355 for_each_pci_dev(pdev) {
2356 /* Skip Host/PCI Bridge devices */
2357 if (IS_BRIDGE_HOST_DEVICE(pdev))
2358 continue;
2359 if (iommu_should_identity_map(pdev, 1)) {
2360 printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2361 hw ? "hardware" : "software", pci_name(pdev));
2362
2363 ret = domain_add_dev_info(si_domain, pdev,
2364 hw ? CONTEXT_TT_PASS_THROUGH :
2365 CONTEXT_TT_MULTI_LEVEL);
2366 if (ret)
2367 return ret;
2368 }
2369 }
2370
2371 return 0;
2372 }
2373
2374 static int __init init_dmars(void)
2375 {
2376 struct dmar_drhd_unit *drhd;
2377 struct dmar_rmrr_unit *rmrr;
2378 struct pci_dev *pdev;
2379 struct intel_iommu *iommu;
2380 int i, ret;
2381
2382 /*
2383 * for each drhd
2384 * allocate root
2385 * initialize and program root entry to not present
2386 * endfor
2387 */
2388 for_each_drhd_unit(drhd) {
2389 g_num_of_iommus++;
2390 /*
2391 * lock not needed as this is only incremented in the single
2392 * threaded kernel __init code path all other access are read
2393 * only
2394 */
2395 }
2396
2397 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2398 GFP_KERNEL);
2399 if (!g_iommus) {
2400 printk(KERN_ERR "Allocating global iommu array failed\n");
2401 ret = -ENOMEM;
2402 goto error;
2403 }
2404
2405 deferred_flush = kzalloc(g_num_of_iommus *
2406 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2407 if (!deferred_flush) {
2408 ret = -ENOMEM;
2409 goto error;
2410 }
2411
2412 for_each_drhd_unit(drhd) {
2413 if (drhd->ignored)
2414 continue;
2415
2416 iommu = drhd->iommu;
2417 g_iommus[iommu->seq_id] = iommu;
2418
2419 ret = iommu_init_domains(iommu);
2420 if (ret)
2421 goto error;
2422
2423 /*
2424 * TBD:
2425 * we could share the same root & context tables
2426 * among all IOMMU's. Need to Split it later.
2427 */
2428 ret = iommu_alloc_root_entry(iommu);
2429 if (ret) {
2430 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2431 goto error;
2432 }
2433 if (!ecap_pass_through(iommu->ecap))
2434 hw_pass_through = 0;
2435 }
2436
2437 /*
2438 * Start from the sane iommu hardware state.
2439 */
2440 for_each_drhd_unit(drhd) {
2441 if (drhd->ignored)
2442 continue;
2443
2444 iommu = drhd->iommu;
2445
2446 /*
2447 * If the queued invalidation is already initialized by us
2448 * (for example, while enabling interrupt-remapping) then
2449 * we got the things already rolling from a sane state.
2450 */
2451 if (iommu->qi)
2452 continue;
2453
2454 /*
2455 * Clear any previous faults.
2456 */
2457 dmar_fault(-1, iommu);
2458 /*
2459 * Disable queued invalidation if supported and already enabled
2460 * before OS handover.
2461 */
2462 dmar_disable_qi(iommu);
2463 }
2464
2465 for_each_drhd_unit(drhd) {
2466 if (drhd->ignored)
2467 continue;
2468
2469 iommu = drhd->iommu;
2470
2471 if (dmar_enable_qi(iommu)) {
2472 /*
2473 * Queued Invalidate not enabled, use Register Based
2474 * Invalidate
2475 */
2476 iommu->flush.flush_context = __iommu_flush_context;
2477 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2478 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2479 "invalidation\n",
2480 iommu->seq_id,
2481 (unsigned long long)drhd->reg_base_addr);
2482 } else {
2483 iommu->flush.flush_context = qi_flush_context;
2484 iommu->flush.flush_iotlb = qi_flush_iotlb;
2485 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2486 "invalidation\n",
2487 iommu->seq_id,
2488 (unsigned long long)drhd->reg_base_addr);
2489 }
2490 }
2491
2492 if (iommu_pass_through)
2493 iommu_identity_mapping |= IDENTMAP_ALL;
2494
2495 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2496 iommu_identity_mapping |= IDENTMAP_GFX;
2497 #endif
2498
2499 check_tylersburg_isoch();
2500
2501 /*
2502 * If pass through is not set or not enabled, setup context entries for
2503 * identity mappings for rmrr, gfx, and isa and may fall back to static
2504 * identity mapping if iommu_identity_mapping is set.
2505 */
2506 if (iommu_identity_mapping) {
2507 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2508 if (ret) {
2509 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2510 goto error;
2511 }
2512 }
2513 /*
2514 * For each rmrr
2515 * for each dev attached to rmrr
2516 * do
2517 * locate drhd for dev, alloc domain for dev
2518 * allocate free domain
2519 * allocate page table entries for rmrr
2520 * if context not allocated for bus
2521 * allocate and init context
2522 * set present in root table for this bus
2523 * init context with domain, translation etc
2524 * endfor
2525 * endfor
2526 */
2527 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2528 for_each_rmrr_units(rmrr) {
2529 for (i = 0; i < rmrr->devices_cnt; i++) {
2530 pdev = rmrr->devices[i];
2531 /*
2532 * some BIOS lists non-exist devices in DMAR
2533 * table.
2534 */
2535 if (!pdev)
2536 continue;
2537 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2538 if (ret)
2539 printk(KERN_ERR
2540 "IOMMU: mapping reserved region failed\n");
2541 }
2542 }
2543
2544 iommu_prepare_isa();
2545
2546 /*
2547 * for each drhd
2548 * enable fault log
2549 * global invalidate context cache
2550 * global invalidate iotlb
2551 * enable translation
2552 */
2553 for_each_drhd_unit(drhd) {
2554 if (drhd->ignored) {
2555 /*
2556 * we always have to disable PMRs or DMA may fail on
2557 * this device
2558 */
2559 if (force_on)
2560 iommu_disable_protect_mem_regions(drhd->iommu);
2561 continue;
2562 }
2563 iommu = drhd->iommu;
2564
2565 iommu_flush_write_buffer(iommu);
2566
2567 ret = dmar_set_interrupt(iommu);
2568 if (ret)
2569 goto error;
2570
2571 iommu_set_root_entry(iommu);
2572
2573 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2574 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2575
2576 ret = iommu_enable_translation(iommu);
2577 if (ret)
2578 goto error;
2579
2580 iommu_disable_protect_mem_regions(iommu);
2581 }
2582
2583 return 0;
2584 error:
2585 for_each_drhd_unit(drhd) {
2586 if (drhd->ignored)
2587 continue;
2588 iommu = drhd->iommu;
2589 free_iommu(iommu);
2590 }
2591 kfree(g_iommus);
2592 return ret;
2593 }
2594
2595 /* This takes a number of _MM_ pages, not VTD pages */
2596 static struct iova *intel_alloc_iova(struct device *dev,
2597 struct dmar_domain *domain,
2598 unsigned long nrpages, uint64_t dma_mask)
2599 {
2600 struct pci_dev *pdev = to_pci_dev(dev);
2601 struct iova *iova = NULL;
2602
2603 /* Restrict dma_mask to the width that the iommu can handle */
2604 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2605
2606 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2607 /*
2608 * First try to allocate an io virtual address in
2609 * DMA_BIT_MASK(32) and if that fails then try allocating
2610 * from higher range
2611 */
2612 iova = alloc_iova(&domain->iovad, nrpages,
2613 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2614 if (iova)
2615 return iova;
2616 }
2617 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2618 if (unlikely(!iova)) {
2619 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2620 nrpages, pci_name(pdev));
2621 return NULL;
2622 }
2623
2624 return iova;
2625 }
2626
2627 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2628 {
2629 struct dmar_domain *domain;
2630 int ret;
2631
2632 domain = get_domain_for_dev(pdev,
2633 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2634 if (!domain) {
2635 printk(KERN_ERR
2636 "Allocating domain for %s failed", pci_name(pdev));
2637 return NULL;
2638 }
2639
2640 /* make sure context mapping is ok */
2641 if (unlikely(!domain_context_mapped(pdev))) {
2642 ret = domain_context_mapping(domain, pdev,
2643 CONTEXT_TT_MULTI_LEVEL);
2644 if (ret) {
2645 printk(KERN_ERR
2646 "Domain context map for %s failed",
2647 pci_name(pdev));
2648 return NULL;
2649 }
2650 }
2651
2652 return domain;
2653 }
2654
2655 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2656 {
2657 struct device_domain_info *info;
2658
2659 /* No lock here, assumes no domain exit in normal case */
2660 info = dev->dev.archdata.iommu;
2661 if (likely(info))
2662 return info->domain;
2663
2664 return __get_valid_domain_for_dev(dev);
2665 }
2666
2667 static int iommu_dummy(struct pci_dev *pdev)
2668 {
2669 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2670 }
2671
2672 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2673 static int iommu_no_mapping(struct device *dev)
2674 {
2675 struct pci_dev *pdev;
2676 int found;
2677
2678 if (unlikely(dev->bus != &pci_bus_type))
2679 return 1;
2680
2681 pdev = to_pci_dev(dev);
2682 if (iommu_dummy(pdev))
2683 return 1;
2684
2685 if (!iommu_identity_mapping)
2686 return 0;
2687
2688 found = identity_mapping(pdev);
2689 if (found) {
2690 if (iommu_should_identity_map(pdev, 0))
2691 return 1;
2692 else {
2693 /*
2694 * 32 bit DMA is removed from si_domain and fall back
2695 * to non-identity mapping.
2696 */
2697 domain_remove_one_dev_info(si_domain, pdev);
2698 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2699 pci_name(pdev));
2700 return 0;
2701 }
2702 } else {
2703 /*
2704 * In case of a detached 64 bit DMA device from vm, the device
2705 * is put into si_domain for identity mapping.
2706 */
2707 if (iommu_should_identity_map(pdev, 0)) {
2708 int ret;
2709 ret = domain_add_dev_info(si_domain, pdev,
2710 hw_pass_through ?
2711 CONTEXT_TT_PASS_THROUGH :
2712 CONTEXT_TT_MULTI_LEVEL);
2713 if (!ret) {
2714 printk(KERN_INFO "64bit %s uses identity mapping\n",
2715 pci_name(pdev));
2716 return 1;
2717 }
2718 }
2719 }
2720
2721 return 0;
2722 }
2723
2724 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2725 size_t size, int dir, u64 dma_mask)
2726 {
2727 struct pci_dev *pdev = to_pci_dev(hwdev);
2728 struct dmar_domain *domain;
2729 phys_addr_t start_paddr;
2730 struct iova *iova;
2731 int prot = 0;
2732 int ret;
2733 struct intel_iommu *iommu;
2734 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2735
2736 BUG_ON(dir == DMA_NONE);
2737
2738 if (iommu_no_mapping(hwdev))
2739 return paddr;
2740
2741 domain = get_valid_domain_for_dev(pdev);
2742 if (!domain)
2743 return 0;
2744
2745 iommu = domain_get_iommu(domain);
2746 size = aligned_nrpages(paddr, size);
2747
2748 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2749 if (!iova)
2750 goto error;
2751
2752 /*
2753 * Check if DMAR supports zero-length reads on write only
2754 * mappings..
2755 */
2756 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2757 !cap_zlr(iommu->cap))
2758 prot |= DMA_PTE_READ;
2759 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2760 prot |= DMA_PTE_WRITE;
2761 /*
2762 * paddr - (paddr + size) might be partial page, we should map the whole
2763 * page. Note: if two part of one page are separately mapped, we
2764 * might have two guest_addr mapping to the same host paddr, but this
2765 * is not a big problem
2766 */
2767 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2768 mm_to_dma_pfn(paddr_pfn), size, prot);
2769 if (ret)
2770 goto error;
2771
2772 /* it's a non-present to present mapping. Only flush if caching mode */
2773 if (cap_caching_mode(iommu->cap))
2774 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2775 else
2776 iommu_flush_write_buffer(iommu);
2777
2778 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2779 start_paddr += paddr & ~PAGE_MASK;
2780 return start_paddr;
2781
2782 error:
2783 if (iova)
2784 __free_iova(&domain->iovad, iova);
2785 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2786 pci_name(pdev), size, (unsigned long long)paddr, dir);
2787 return 0;
2788 }
2789
2790 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2791 unsigned long offset, size_t size,
2792 enum dma_data_direction dir,
2793 struct dma_attrs *attrs)
2794 {
2795 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2796 dir, to_pci_dev(dev)->dma_mask);
2797 }
2798
2799 static void flush_unmaps(void)
2800 {
2801 int i, j;
2802
2803 timer_on = 0;
2804
2805 /* just flush them all */
2806 for (i = 0; i < g_num_of_iommus; i++) {
2807 struct intel_iommu *iommu = g_iommus[i];
2808 if (!iommu)
2809 continue;
2810
2811 if (!deferred_flush[i].next)
2812 continue;
2813
2814 /* In caching mode, global flushes turn emulation expensive */
2815 if (!cap_caching_mode(iommu->cap))
2816 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2817 DMA_TLB_GLOBAL_FLUSH);
2818 for (j = 0; j < deferred_flush[i].next; j++) {
2819 unsigned long mask;
2820 struct iova *iova = deferred_flush[i].iova[j];
2821 struct dmar_domain *domain = deferred_flush[i].domain[j];
2822
2823 /* On real hardware multiple invalidations are expensive */
2824 if (cap_caching_mode(iommu->cap))
2825 iommu_flush_iotlb_psi(iommu, domain->id,
2826 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2827 else {
2828 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2829 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2830 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2831 }
2832 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2833 }
2834 deferred_flush[i].next = 0;
2835 }
2836
2837 list_size = 0;
2838 }
2839
2840 static void flush_unmaps_timeout(unsigned long data)
2841 {
2842 unsigned long flags;
2843
2844 spin_lock_irqsave(&async_umap_flush_lock, flags);
2845 flush_unmaps();
2846 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2847 }
2848
2849 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2850 {
2851 unsigned long flags;
2852 int next, iommu_id;
2853 struct intel_iommu *iommu;
2854
2855 spin_lock_irqsave(&async_umap_flush_lock, flags);
2856 if (list_size == HIGH_WATER_MARK)
2857 flush_unmaps();
2858
2859 iommu = domain_get_iommu(dom);
2860 iommu_id = iommu->seq_id;
2861
2862 next = deferred_flush[iommu_id].next;
2863 deferred_flush[iommu_id].domain[next] = dom;
2864 deferred_flush[iommu_id].iova[next] = iova;
2865 deferred_flush[iommu_id].next++;
2866
2867 if (!timer_on) {
2868 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2869 timer_on = 1;
2870 }
2871 list_size++;
2872 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2873 }
2874
2875 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2876 size_t size, enum dma_data_direction dir,
2877 struct dma_attrs *attrs)
2878 {
2879 struct pci_dev *pdev = to_pci_dev(dev);
2880 struct dmar_domain *domain;
2881 unsigned long start_pfn, last_pfn;
2882 struct iova *iova;
2883 struct intel_iommu *iommu;
2884
2885 if (iommu_no_mapping(dev))
2886 return;
2887
2888 domain = find_domain(pdev);
2889 BUG_ON(!domain);
2890
2891 iommu = domain_get_iommu(domain);
2892
2893 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2894 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2895 (unsigned long long)dev_addr))
2896 return;
2897
2898 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2899 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2900
2901 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2902 pci_name(pdev), start_pfn, last_pfn);
2903
2904 /* clear the whole page */
2905 dma_pte_clear_range(domain, start_pfn, last_pfn);
2906
2907 /* free page tables */
2908 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2909
2910 if (intel_iommu_strict) {
2911 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2912 last_pfn - start_pfn + 1, 0);
2913 /* free iova */
2914 __free_iova(&domain->iovad, iova);
2915 } else {
2916 add_unmap(domain, iova);
2917 /*
2918 * queue up the release of the unmap to save the 1/6th of the
2919 * cpu used up by the iotlb flush operation...
2920 */
2921 }
2922 }
2923
2924 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2925 dma_addr_t *dma_handle, gfp_t flags)
2926 {
2927 void *vaddr;
2928 int order;
2929
2930 size = PAGE_ALIGN(size);
2931 order = get_order(size);
2932
2933 if (!iommu_no_mapping(hwdev))
2934 flags &= ~(GFP_DMA | GFP_DMA32);
2935 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2936 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2937 flags |= GFP_DMA;
2938 else
2939 flags |= GFP_DMA32;
2940 }
2941
2942 vaddr = (void *)__get_free_pages(flags, order);
2943 if (!vaddr)
2944 return NULL;
2945 memset(vaddr, 0, size);
2946
2947 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2948 DMA_BIDIRECTIONAL,
2949 hwdev->coherent_dma_mask);
2950 if (*dma_handle)
2951 return vaddr;
2952 free_pages((unsigned long)vaddr, order);
2953 return NULL;
2954 }
2955
2956 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2957 dma_addr_t dma_handle)
2958 {
2959 int order;
2960
2961 size = PAGE_ALIGN(size);
2962 order = get_order(size);
2963
2964 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2965 free_pages((unsigned long)vaddr, order);
2966 }
2967
2968 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2969 int nelems, enum dma_data_direction dir,
2970 struct dma_attrs *attrs)
2971 {
2972 struct pci_dev *pdev = to_pci_dev(hwdev);
2973 struct dmar_domain *domain;
2974 unsigned long start_pfn, last_pfn;
2975 struct iova *iova;
2976 struct intel_iommu *iommu;
2977
2978 if (iommu_no_mapping(hwdev))
2979 return;
2980
2981 domain = find_domain(pdev);
2982 BUG_ON(!domain);
2983
2984 iommu = domain_get_iommu(domain);
2985
2986 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2987 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2988 (unsigned long long)sglist[0].dma_address))
2989 return;
2990
2991 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2992 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2993
2994 /* clear the whole page */
2995 dma_pte_clear_range(domain, start_pfn, last_pfn);
2996
2997 /* free page tables */
2998 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2999
3000 if (intel_iommu_strict) {
3001 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3002 last_pfn - start_pfn + 1, 0);
3003 /* free iova */
3004 __free_iova(&domain->iovad, iova);
3005 } else {
3006 add_unmap(domain, iova);
3007 /*
3008 * queue up the release of the unmap to save the 1/6th of the
3009 * cpu used up by the iotlb flush operation...
3010 */
3011 }
3012 }
3013
3014 static int intel_nontranslate_map_sg(struct device *hddev,
3015 struct scatterlist *sglist, int nelems, int dir)
3016 {
3017 int i;
3018 struct scatterlist *sg;
3019
3020 for_each_sg(sglist, sg, nelems, i) {
3021 BUG_ON(!sg_page(sg));
3022 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3023 sg->dma_length = sg->length;
3024 }
3025 return nelems;
3026 }
3027
3028 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3029 enum dma_data_direction dir, struct dma_attrs *attrs)
3030 {
3031 int i;
3032 struct pci_dev *pdev = to_pci_dev(hwdev);
3033 struct dmar_domain *domain;
3034 size_t size = 0;
3035 int prot = 0;
3036 struct iova *iova = NULL;
3037 int ret;
3038 struct scatterlist *sg;
3039 unsigned long start_vpfn;
3040 struct intel_iommu *iommu;
3041
3042 BUG_ON(dir == DMA_NONE);
3043 if (iommu_no_mapping(hwdev))
3044 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3045
3046 domain = get_valid_domain_for_dev(pdev);
3047 if (!domain)
3048 return 0;
3049
3050 iommu = domain_get_iommu(domain);
3051
3052 for_each_sg(sglist, sg, nelems, i)
3053 size += aligned_nrpages(sg->offset, sg->length);
3054
3055 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3056 pdev->dma_mask);
3057 if (!iova) {
3058 sglist->dma_length = 0;
3059 return 0;
3060 }
3061
3062 /*
3063 * Check if DMAR supports zero-length reads on write only
3064 * mappings..
3065 */
3066 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3067 !cap_zlr(iommu->cap))
3068 prot |= DMA_PTE_READ;
3069 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3070 prot |= DMA_PTE_WRITE;
3071
3072 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3073
3074 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3075 if (unlikely(ret)) {
3076 /* clear the page */
3077 dma_pte_clear_range(domain, start_vpfn,
3078 start_vpfn + size - 1);
3079 /* free page tables */
3080 dma_pte_free_pagetable(domain, start_vpfn,
3081 start_vpfn + size - 1);
3082 /* free iova */
3083 __free_iova(&domain->iovad, iova);
3084 return 0;
3085 }
3086
3087 /* it's a non-present to present mapping. Only flush if caching mode */
3088 if (cap_caching_mode(iommu->cap))
3089 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3090 else
3091 iommu_flush_write_buffer(iommu);
3092
3093 return nelems;
3094 }
3095
3096 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3097 {
3098 return !dma_addr;
3099 }
3100
3101 struct dma_map_ops intel_dma_ops = {
3102 .alloc_coherent = intel_alloc_coherent,
3103 .free_coherent = intel_free_coherent,
3104 .map_sg = intel_map_sg,
3105 .unmap_sg = intel_unmap_sg,
3106 .map_page = intel_map_page,
3107 .unmap_page = intel_unmap_page,
3108 .mapping_error = intel_mapping_error,
3109 };
3110
3111 static inline int iommu_domain_cache_init(void)
3112 {
3113 int ret = 0;
3114
3115 iommu_domain_cache = kmem_cache_create("iommu_domain",
3116 sizeof(struct dmar_domain),
3117 0,
3118 SLAB_HWCACHE_ALIGN,
3119
3120 NULL);
3121 if (!iommu_domain_cache) {
3122 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3123 ret = -ENOMEM;
3124 }
3125
3126 return ret;
3127 }
3128
3129 static inline int iommu_devinfo_cache_init(void)
3130 {
3131 int ret = 0;
3132
3133 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3134 sizeof(struct device_domain_info),
3135 0,
3136 SLAB_HWCACHE_ALIGN,
3137 NULL);
3138 if (!iommu_devinfo_cache) {
3139 printk(KERN_ERR "Couldn't create devinfo cache\n");
3140 ret = -ENOMEM;
3141 }
3142
3143 return ret;
3144 }
3145
3146 static inline int iommu_iova_cache_init(void)
3147 {
3148 int ret = 0;
3149
3150 iommu_iova_cache = kmem_cache_create("iommu_iova",
3151 sizeof(struct iova),
3152 0,
3153 SLAB_HWCACHE_ALIGN,
3154 NULL);
3155 if (!iommu_iova_cache) {
3156 printk(KERN_ERR "Couldn't create iova cache\n");
3157 ret = -ENOMEM;
3158 }
3159
3160 return ret;
3161 }
3162
3163 static int __init iommu_init_mempool(void)
3164 {
3165 int ret;
3166 ret = iommu_iova_cache_init();
3167 if (ret)
3168 return ret;
3169
3170 ret = iommu_domain_cache_init();
3171 if (ret)
3172 goto domain_error;
3173
3174 ret = iommu_devinfo_cache_init();
3175 if (!ret)
3176 return ret;
3177
3178 kmem_cache_destroy(iommu_domain_cache);
3179 domain_error:
3180 kmem_cache_destroy(iommu_iova_cache);
3181
3182 return -ENOMEM;
3183 }
3184
3185 static void __init iommu_exit_mempool(void)
3186 {
3187 kmem_cache_destroy(iommu_devinfo_cache);
3188 kmem_cache_destroy(iommu_domain_cache);
3189 kmem_cache_destroy(iommu_iova_cache);
3190
3191 }
3192
3193 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3194 {
3195 struct dmar_drhd_unit *drhd;
3196 u32 vtbar;
3197 int rc;
3198
3199 /* We know that this device on this chipset has its own IOMMU.
3200 * If we find it under a different IOMMU, then the BIOS is lying
3201 * to us. Hope that the IOMMU for this device is actually
3202 * disabled, and it needs no translation...
3203 */
3204 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3205 if (rc) {
3206 /* "can't" happen */
3207 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3208 return;
3209 }
3210 vtbar &= 0xffff0000;
3211
3212 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3213 drhd = dmar_find_matched_drhd_unit(pdev);
3214 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3215 TAINT_FIRMWARE_WORKAROUND,
3216 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3217 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3218 }
3219 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3220
3221 static void __init init_no_remapping_devices(void)
3222 {
3223 struct dmar_drhd_unit *drhd;
3224
3225 for_each_drhd_unit(drhd) {
3226 if (!drhd->include_all) {
3227 int i;
3228 for (i = 0; i < drhd->devices_cnt; i++)
3229 if (drhd->devices[i] != NULL)
3230 break;
3231 /* ignore DMAR unit if no pci devices exist */
3232 if (i == drhd->devices_cnt)
3233 drhd->ignored = 1;
3234 }
3235 }
3236
3237 for_each_drhd_unit(drhd) {
3238 int i;
3239 if (drhd->ignored || drhd->include_all)
3240 continue;
3241
3242 for (i = 0; i < drhd->devices_cnt; i++)
3243 if (drhd->devices[i] &&
3244 !IS_GFX_DEVICE(drhd->devices[i]))
3245 break;
3246
3247 if (i < drhd->devices_cnt)
3248 continue;
3249
3250 /* This IOMMU has *only* gfx devices. Either bypass it or
3251 set the gfx_mapped flag, as appropriate */
3252 if (dmar_map_gfx) {
3253 intel_iommu_gfx_mapped = 1;
3254 } else {
3255 drhd->ignored = 1;
3256 for (i = 0; i < drhd->devices_cnt; i++) {
3257 if (!drhd->devices[i])
3258 continue;
3259 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3260 }
3261 }
3262 }
3263 }
3264
3265 #ifdef CONFIG_SUSPEND
3266 static int init_iommu_hw(void)
3267 {
3268 struct dmar_drhd_unit *drhd;
3269 struct intel_iommu *iommu = NULL;
3270
3271 for_each_active_iommu(iommu, drhd)
3272 if (iommu->qi)
3273 dmar_reenable_qi(iommu);
3274
3275 for_each_iommu(iommu, drhd) {
3276 if (drhd->ignored) {
3277 /*
3278 * we always have to disable PMRs or DMA may fail on
3279 * this device
3280 */
3281 if (force_on)
3282 iommu_disable_protect_mem_regions(iommu);
3283 continue;
3284 }
3285
3286 iommu_flush_write_buffer(iommu);
3287
3288 iommu_set_root_entry(iommu);
3289
3290 iommu->flush.flush_context(iommu, 0, 0, 0,
3291 DMA_CCMD_GLOBAL_INVL);
3292 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3293 DMA_TLB_GLOBAL_FLUSH);
3294 if (iommu_enable_translation(iommu))
3295 return 1;
3296 iommu_disable_protect_mem_regions(iommu);
3297 }
3298
3299 return 0;
3300 }
3301
3302 static void iommu_flush_all(void)
3303 {
3304 struct dmar_drhd_unit *drhd;
3305 struct intel_iommu *iommu;
3306
3307 for_each_active_iommu(iommu, drhd) {
3308 iommu->flush.flush_context(iommu, 0, 0, 0,
3309 DMA_CCMD_GLOBAL_INVL);
3310 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3311 DMA_TLB_GLOBAL_FLUSH);
3312 }
3313 }
3314
3315 static int iommu_suspend(void)
3316 {
3317 struct dmar_drhd_unit *drhd;
3318 struct intel_iommu *iommu = NULL;
3319 unsigned long flag;
3320
3321 for_each_active_iommu(iommu, drhd) {
3322 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3323 GFP_ATOMIC);
3324 if (!iommu->iommu_state)
3325 goto nomem;
3326 }
3327
3328 iommu_flush_all();
3329
3330 for_each_active_iommu(iommu, drhd) {
3331 iommu_disable_translation(iommu);
3332
3333 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3334
3335 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3336 readl(iommu->reg + DMAR_FECTL_REG);
3337 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3338 readl(iommu->reg + DMAR_FEDATA_REG);
3339 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3340 readl(iommu->reg + DMAR_FEADDR_REG);
3341 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3342 readl(iommu->reg + DMAR_FEUADDR_REG);
3343
3344 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3345 }
3346 return 0;
3347
3348 nomem:
3349 for_each_active_iommu(iommu, drhd)
3350 kfree(iommu->iommu_state);
3351
3352 return -ENOMEM;
3353 }
3354
3355 static void iommu_resume(void)
3356 {
3357 struct dmar_drhd_unit *drhd;
3358 struct intel_iommu *iommu = NULL;
3359 unsigned long flag;
3360
3361 if (init_iommu_hw()) {
3362 if (force_on)
3363 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3364 else
3365 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3366 return;
3367 }
3368
3369 for_each_active_iommu(iommu, drhd) {
3370
3371 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3372
3373 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3374 iommu->reg + DMAR_FECTL_REG);
3375 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3376 iommu->reg + DMAR_FEDATA_REG);
3377 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3378 iommu->reg + DMAR_FEADDR_REG);
3379 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3380 iommu->reg + DMAR_FEUADDR_REG);
3381
3382 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3383 }
3384
3385 for_each_active_iommu(iommu, drhd)
3386 kfree(iommu->iommu_state);
3387 }
3388
3389 static struct syscore_ops iommu_syscore_ops = {
3390 .resume = iommu_resume,
3391 .suspend = iommu_suspend,
3392 };
3393
3394 static void __init init_iommu_pm_ops(void)
3395 {
3396 register_syscore_ops(&iommu_syscore_ops);
3397 }
3398
3399 #else
3400 static inline void init_iommu_pm_ops(void) {}
3401 #endif /* CONFIG_PM */
3402
3403 LIST_HEAD(dmar_rmrr_units);
3404
3405 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3406 {
3407 list_add(&rmrr->list, &dmar_rmrr_units);
3408 }
3409
3410
3411 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3412 {
3413 struct acpi_dmar_reserved_memory *rmrr;
3414 struct dmar_rmrr_unit *rmrru;
3415
3416 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3417 if (!rmrru)
3418 return -ENOMEM;
3419
3420 rmrru->hdr = header;
3421 rmrr = (struct acpi_dmar_reserved_memory *)header;
3422 rmrru->base_address = rmrr->base_address;
3423 rmrru->end_address = rmrr->end_address;
3424
3425 dmar_register_rmrr_unit(rmrru);
3426 return 0;
3427 }
3428
3429 static int __init
3430 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3431 {
3432 struct acpi_dmar_reserved_memory *rmrr;
3433 int ret;
3434
3435 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3436 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3437 ((void *)rmrr) + rmrr->header.length,
3438 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3439
3440 if (ret || (rmrru->devices_cnt == 0)) {
3441 list_del(&rmrru->list);
3442 kfree(rmrru);
3443 }
3444 return ret;
3445 }
3446
3447 static LIST_HEAD(dmar_atsr_units);
3448
3449 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3450 {
3451 struct acpi_dmar_atsr *atsr;
3452 struct dmar_atsr_unit *atsru;
3453
3454 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3455 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3456 if (!atsru)
3457 return -ENOMEM;
3458
3459 atsru->hdr = hdr;
3460 atsru->include_all = atsr->flags & 0x1;
3461
3462 list_add(&atsru->list, &dmar_atsr_units);
3463
3464 return 0;
3465 }
3466
3467 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3468 {
3469 int rc;
3470 struct acpi_dmar_atsr *atsr;
3471
3472 if (atsru->include_all)
3473 return 0;
3474
3475 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3476 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3477 (void *)atsr + atsr->header.length,
3478 &atsru->devices_cnt, &atsru->devices,
3479 atsr->segment);
3480 if (rc || !atsru->devices_cnt) {
3481 list_del(&atsru->list);
3482 kfree(atsru);
3483 }
3484
3485 return rc;
3486 }
3487
3488 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3489 {
3490 int i;
3491 struct pci_bus *bus;
3492 struct acpi_dmar_atsr *atsr;
3493 struct dmar_atsr_unit *atsru;
3494
3495 dev = pci_physfn(dev);
3496
3497 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3498 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3499 if (atsr->segment == pci_domain_nr(dev->bus))
3500 goto found;
3501 }
3502
3503 return 0;
3504
3505 found:
3506 for (bus = dev->bus; bus; bus = bus->parent) {
3507 struct pci_dev *bridge = bus->self;
3508
3509 if (!bridge || !pci_is_pcie(bridge) ||
3510 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
3511 return 0;
3512
3513 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
3514 for (i = 0; i < atsru->devices_cnt; i++)
3515 if (atsru->devices[i] == bridge)
3516 return 1;
3517 break;
3518 }
3519 }
3520
3521 if (atsru->include_all)
3522 return 1;
3523
3524 return 0;
3525 }
3526
3527 int dmar_parse_rmrr_atsr_dev(void)
3528 {
3529 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3530 struct dmar_atsr_unit *atsr, *atsr_n;
3531 int ret = 0;
3532
3533 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3534 ret = rmrr_parse_dev(rmrr);
3535 if (ret)
3536 return ret;
3537 }
3538
3539 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3540 ret = atsr_parse_dev(atsr);
3541 if (ret)
3542 return ret;
3543 }
3544
3545 return ret;
3546 }
3547
3548 /*
3549 * Here we only respond to action of unbound device from driver.
3550 *
3551 * Added device is not attached to its DMAR domain here yet. That will happen
3552 * when mapping the device to iova.
3553 */
3554 static int device_notifier(struct notifier_block *nb,
3555 unsigned long action, void *data)
3556 {
3557 struct device *dev = data;
3558 struct pci_dev *pdev = to_pci_dev(dev);
3559 struct dmar_domain *domain;
3560
3561 if (iommu_no_mapping(dev))
3562 return 0;
3563
3564 domain = find_domain(pdev);
3565 if (!domain)
3566 return 0;
3567
3568 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3569 domain_remove_one_dev_info(domain, pdev);
3570
3571 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3572 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3573 list_empty(&domain->devices))
3574 domain_exit(domain);
3575 }
3576
3577 return 0;
3578 }
3579
3580 static struct notifier_block device_nb = {
3581 .notifier_call = device_notifier,
3582 };
3583
3584 int __init intel_iommu_init(void)
3585 {
3586 int ret = 0;
3587
3588 /* VT-d is required for a TXT/tboot launch, so enforce that */
3589 force_on = tboot_force_iommu();
3590
3591 if (dmar_table_init()) {
3592 if (force_on)
3593 panic("tboot: Failed to initialize DMAR table\n");
3594 return -ENODEV;
3595 }
3596
3597 if (dmar_dev_scope_init() < 0) {
3598 if (force_on)
3599 panic("tboot: Failed to initialize DMAR device scope\n");
3600 return -ENODEV;
3601 }
3602
3603 if (no_iommu || dmar_disabled)
3604 return -ENODEV;
3605
3606 if (iommu_init_mempool()) {
3607 if (force_on)
3608 panic("tboot: Failed to initialize iommu memory\n");
3609 return -ENODEV;
3610 }
3611
3612 if (list_empty(&dmar_rmrr_units))
3613 printk(KERN_INFO "DMAR: No RMRR found\n");
3614
3615 if (list_empty(&dmar_atsr_units))
3616 printk(KERN_INFO "DMAR: No ATSR found\n");
3617
3618 if (dmar_init_reserved_ranges()) {
3619 if (force_on)
3620 panic("tboot: Failed to reserve iommu ranges\n");
3621 return -ENODEV;
3622 }
3623
3624 init_no_remapping_devices();
3625
3626 ret = init_dmars();
3627 if (ret) {
3628 if (force_on)
3629 panic("tboot: Failed to initialize DMARs\n");
3630 printk(KERN_ERR "IOMMU: dmar init failed\n");
3631 put_iova_domain(&reserved_iova_list);
3632 iommu_exit_mempool();
3633 return ret;
3634 }
3635 printk(KERN_INFO
3636 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3637
3638 init_timer(&unmap_timer);
3639 #ifdef CONFIG_SWIOTLB
3640 swiotlb = 0;
3641 #endif
3642 dma_ops = &intel_dma_ops;
3643
3644 init_iommu_pm_ops();
3645
3646 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3647
3648 bus_register_notifier(&pci_bus_type, &device_nb);
3649
3650 return 0;
3651 }
3652
3653 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3654 struct pci_dev *pdev)
3655 {
3656 struct pci_dev *tmp, *parent;
3657
3658 if (!iommu || !pdev)
3659 return;
3660
3661 /* dependent device detach */
3662 tmp = pci_find_upstream_pcie_bridge(pdev);
3663 /* Secondary interface's bus number and devfn 0 */
3664 if (tmp) {
3665 parent = pdev->bus->self;
3666 while (parent != tmp) {
3667 iommu_detach_dev(iommu, parent->bus->number,
3668 parent->devfn);
3669 parent = parent->bus->self;
3670 }
3671 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3672 iommu_detach_dev(iommu,
3673 tmp->subordinate->number, 0);
3674 else /* this is a legacy PCI bridge */
3675 iommu_detach_dev(iommu, tmp->bus->number,
3676 tmp->devfn);
3677 }
3678 }
3679
3680 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3681 struct pci_dev *pdev)
3682 {
3683 struct device_domain_info *info;
3684 struct intel_iommu *iommu;
3685 unsigned long flags;
3686 int found = 0;
3687 struct list_head *entry, *tmp;
3688
3689 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3690 pdev->devfn);
3691 if (!iommu)
3692 return;
3693
3694 spin_lock_irqsave(&device_domain_lock, flags);
3695 list_for_each_safe(entry, tmp, &domain->devices) {
3696 info = list_entry(entry, struct device_domain_info, link);
3697 if (info->segment == pci_domain_nr(pdev->bus) &&
3698 info->bus == pdev->bus->number &&
3699 info->devfn == pdev->devfn) {
3700 list_del(&info->link);
3701 list_del(&info->global);
3702 if (info->dev)
3703 info->dev->dev.archdata.iommu = NULL;
3704 spin_unlock_irqrestore(&device_domain_lock, flags);
3705
3706 iommu_disable_dev_iotlb(info);
3707 iommu_detach_dev(iommu, info->bus, info->devfn);
3708 iommu_detach_dependent_devices(iommu, pdev);
3709 free_devinfo_mem(info);
3710
3711 spin_lock_irqsave(&device_domain_lock, flags);
3712
3713 if (found)
3714 break;
3715 else
3716 continue;
3717 }
3718
3719 /* if there is no other devices under the same iommu
3720 * owned by this domain, clear this iommu in iommu_bmp
3721 * update iommu count and coherency
3722 */
3723 if (iommu == device_to_iommu(info->segment, info->bus,
3724 info->devfn))
3725 found = 1;
3726 }
3727
3728 spin_unlock_irqrestore(&device_domain_lock, flags);
3729
3730 if (found == 0) {
3731 unsigned long tmp_flags;
3732 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3733 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3734 domain->iommu_count--;
3735 domain_update_iommu_cap(domain);
3736 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3737
3738 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3739 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3740 spin_lock_irqsave(&iommu->lock, tmp_flags);
3741 clear_bit(domain->id, iommu->domain_ids);
3742 iommu->domains[domain->id] = NULL;
3743 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3744 }
3745 }
3746 }
3747
3748 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3749 {
3750 struct device_domain_info *info;
3751 struct intel_iommu *iommu;
3752 unsigned long flags1, flags2;
3753
3754 spin_lock_irqsave(&device_domain_lock, flags1);
3755 while (!list_empty(&domain->devices)) {
3756 info = list_entry(domain->devices.next,
3757 struct device_domain_info, link);
3758 list_del(&info->link);
3759 list_del(&info->global);
3760 if (info->dev)
3761 info->dev->dev.archdata.iommu = NULL;
3762
3763 spin_unlock_irqrestore(&device_domain_lock, flags1);
3764
3765 iommu_disable_dev_iotlb(info);
3766 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3767 iommu_detach_dev(iommu, info->bus, info->devfn);
3768 iommu_detach_dependent_devices(iommu, info->dev);
3769
3770 /* clear this iommu in iommu_bmp, update iommu count
3771 * and capabilities
3772 */
3773 spin_lock_irqsave(&domain->iommu_lock, flags2);
3774 if (test_and_clear_bit(iommu->seq_id,
3775 &domain->iommu_bmp)) {
3776 domain->iommu_count--;
3777 domain_update_iommu_cap(domain);
3778 }
3779 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3780
3781 free_devinfo_mem(info);
3782 spin_lock_irqsave(&device_domain_lock, flags1);
3783 }
3784 spin_unlock_irqrestore(&device_domain_lock, flags1);
3785 }
3786
3787 /* domain id for virtual machine, it won't be set in context */
3788 static unsigned long vm_domid;
3789
3790 static struct dmar_domain *iommu_alloc_vm_domain(void)
3791 {
3792 struct dmar_domain *domain;
3793
3794 domain = alloc_domain_mem();
3795 if (!domain)
3796 return NULL;
3797
3798 domain->id = vm_domid++;
3799 domain->nid = -1;
3800 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3801 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3802
3803 return domain;
3804 }
3805
3806 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3807 {
3808 int adjust_width;
3809
3810 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3811 spin_lock_init(&domain->iommu_lock);
3812
3813 domain_reserve_special_ranges(domain);
3814
3815 /* calculate AGAW */
3816 domain->gaw = guest_width;
3817 adjust_width = guestwidth_to_adjustwidth(guest_width);
3818 domain->agaw = width_to_agaw(adjust_width);
3819
3820 INIT_LIST_HEAD(&domain->devices);
3821
3822 domain->iommu_count = 0;
3823 domain->iommu_coherency = 0;
3824 domain->iommu_snooping = 0;
3825 domain->iommu_superpage = 0;
3826 domain->max_addr = 0;
3827 domain->nid = -1;
3828
3829 /* always allocate the top pgd */
3830 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3831 if (!domain->pgd)
3832 return -ENOMEM;
3833 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3834 return 0;
3835 }
3836
3837 static void iommu_free_vm_domain(struct dmar_domain *domain)
3838 {
3839 unsigned long flags;
3840 struct dmar_drhd_unit *drhd;
3841 struct intel_iommu *iommu;
3842 unsigned long i;
3843 unsigned long ndomains;
3844
3845 for_each_drhd_unit(drhd) {
3846 if (drhd->ignored)
3847 continue;
3848 iommu = drhd->iommu;
3849
3850 ndomains = cap_ndoms(iommu->cap);
3851 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3852 if (iommu->domains[i] == domain) {
3853 spin_lock_irqsave(&iommu->lock, flags);
3854 clear_bit(i, iommu->domain_ids);
3855 iommu->domains[i] = NULL;
3856 spin_unlock_irqrestore(&iommu->lock, flags);
3857 break;
3858 }
3859 }
3860 }
3861 }
3862
3863 static void vm_domain_exit(struct dmar_domain *domain)
3864 {
3865 /* Domain 0 is reserved, so dont process it */
3866 if (!domain)
3867 return;
3868
3869 vm_domain_remove_all_dev_info(domain);
3870 /* destroy iovas */
3871 put_iova_domain(&domain->iovad);
3872
3873 /* clear ptes */
3874 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3875
3876 /* free page tables */
3877 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3878
3879 iommu_free_vm_domain(domain);
3880 free_domain_mem(domain);
3881 }
3882
3883 static int intel_iommu_domain_init(struct iommu_domain *domain)
3884 {
3885 struct dmar_domain *dmar_domain;
3886
3887 dmar_domain = iommu_alloc_vm_domain();
3888 if (!dmar_domain) {
3889 printk(KERN_ERR
3890 "intel_iommu_domain_init: dmar_domain == NULL\n");
3891 return -ENOMEM;
3892 }
3893 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3894 printk(KERN_ERR
3895 "intel_iommu_domain_init() failed\n");
3896 vm_domain_exit(dmar_domain);
3897 return -ENOMEM;
3898 }
3899 domain_update_iommu_cap(dmar_domain);
3900 domain->priv = dmar_domain;
3901
3902 return 0;
3903 }
3904
3905 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3906 {
3907 struct dmar_domain *dmar_domain = domain->priv;
3908
3909 domain->priv = NULL;
3910 vm_domain_exit(dmar_domain);
3911 }
3912
3913 static int intel_iommu_attach_device(struct iommu_domain *domain,
3914 struct device *dev)
3915 {
3916 struct dmar_domain *dmar_domain = domain->priv;
3917 struct pci_dev *pdev = to_pci_dev(dev);
3918 struct intel_iommu *iommu;
3919 int addr_width;
3920
3921 /* normally pdev is not mapped */
3922 if (unlikely(domain_context_mapped(pdev))) {
3923 struct dmar_domain *old_domain;
3924
3925 old_domain = find_domain(pdev);
3926 if (old_domain) {
3927 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3928 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3929 domain_remove_one_dev_info(old_domain, pdev);
3930 else
3931 domain_remove_dev_info(old_domain);
3932 }
3933 }
3934
3935 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3936 pdev->devfn);
3937 if (!iommu)
3938 return -ENODEV;
3939
3940 /* check if this iommu agaw is sufficient for max mapped address */
3941 addr_width = agaw_to_width(iommu->agaw);
3942 if (addr_width > cap_mgaw(iommu->cap))
3943 addr_width = cap_mgaw(iommu->cap);
3944
3945 if (dmar_domain->max_addr > (1LL << addr_width)) {
3946 printk(KERN_ERR "%s: iommu width (%d) is not "
3947 "sufficient for the mapped address (%llx)\n",
3948 __func__, addr_width, dmar_domain->max_addr);
3949 return -EFAULT;
3950 }
3951 dmar_domain->gaw = addr_width;
3952
3953 /*
3954 * Knock out extra levels of page tables if necessary
3955 */
3956 while (iommu->agaw < dmar_domain->agaw) {
3957 struct dma_pte *pte;
3958
3959 pte = dmar_domain->pgd;
3960 if (dma_pte_present(pte)) {
3961 dmar_domain->pgd = (struct dma_pte *)
3962 phys_to_virt(dma_pte_addr(pte));
3963 free_pgtable_page(pte);
3964 }
3965 dmar_domain->agaw--;
3966 }
3967
3968 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3969 }
3970
3971 static void intel_iommu_detach_device(struct iommu_domain *domain,
3972 struct device *dev)
3973 {
3974 struct dmar_domain *dmar_domain = domain->priv;
3975 struct pci_dev *pdev = to_pci_dev(dev);
3976
3977 domain_remove_one_dev_info(dmar_domain, pdev);
3978 }
3979
3980 static int intel_iommu_map(struct iommu_domain *domain,
3981 unsigned long iova, phys_addr_t hpa,
3982 int gfp_order, int iommu_prot)
3983 {
3984 struct dmar_domain *dmar_domain = domain->priv;
3985 u64 max_addr;
3986 int prot = 0;
3987 size_t size;
3988 int ret;
3989
3990 if (iommu_prot & IOMMU_READ)
3991 prot |= DMA_PTE_READ;
3992 if (iommu_prot & IOMMU_WRITE)
3993 prot |= DMA_PTE_WRITE;
3994 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3995 prot |= DMA_PTE_SNP;
3996
3997 size = PAGE_SIZE << gfp_order;
3998 max_addr = iova + size;
3999 if (dmar_domain->max_addr < max_addr) {
4000 u64 end;
4001
4002 /* check if minimum agaw is sufficient for mapped address */
4003 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4004 if (end < max_addr) {
4005 printk(KERN_ERR "%s: iommu width (%d) is not "
4006 "sufficient for the mapped address (%llx)\n",
4007 __func__, dmar_domain->gaw, max_addr);
4008 return -EFAULT;
4009 }
4010 dmar_domain->max_addr = max_addr;
4011 }
4012 /* Round up size to next multiple of PAGE_SIZE, if it and
4013 the low bits of hpa would take us onto the next page */
4014 size = aligned_nrpages(hpa, size);
4015 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4016 hpa >> VTD_PAGE_SHIFT, size, prot);
4017 return ret;
4018 }
4019
4020 static int intel_iommu_unmap(struct iommu_domain *domain,
4021 unsigned long iova, int gfp_order)
4022 {
4023 struct dmar_domain *dmar_domain = domain->priv;
4024 size_t size = PAGE_SIZE << gfp_order;
4025 int order;
4026
4027 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4028 (iova + size - 1) >> VTD_PAGE_SHIFT);
4029
4030 if (dmar_domain->max_addr == iova + size)
4031 dmar_domain->max_addr = iova;
4032
4033 return order;
4034 }
4035
4036 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4037 unsigned long iova)
4038 {
4039 struct dmar_domain *dmar_domain = domain->priv;
4040 struct dma_pte *pte;
4041 u64 phys = 0;
4042
4043 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4044 if (pte)
4045 phys = dma_pte_addr(pte);
4046
4047 return phys;
4048 }
4049
4050 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4051 unsigned long cap)
4052 {
4053 struct dmar_domain *dmar_domain = domain->priv;
4054
4055 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4056 return dmar_domain->iommu_snooping;
4057 if (cap == IOMMU_CAP_INTR_REMAP)
4058 return intr_remapping_enabled;
4059
4060 return 0;
4061 }
4062
4063 static struct iommu_ops intel_iommu_ops = {
4064 .domain_init = intel_iommu_domain_init,
4065 .domain_destroy = intel_iommu_domain_destroy,
4066 .attach_dev = intel_iommu_attach_device,
4067 .detach_dev = intel_iommu_detach_device,
4068 .map = intel_iommu_map,
4069 .unmap = intel_iommu_unmap,
4070 .iova_to_phys = intel_iommu_iova_to_phys,
4071 .domain_has_cap = intel_iommu_domain_has_cap,
4072 };
4073
4074 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
4075 {
4076 /*
4077 * Mobile 4 Series Chipset neglects to set RWBF capability,
4078 * but needs it:
4079 */
4080 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4081 rwbf_quirk = 1;
4082
4083 /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
4084 if (dev->revision == 0x07) {
4085 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4086 dmar_map_gfx = 0;
4087 }
4088 }
4089
4090 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4091
4092 #define GGC 0x52
4093 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4094 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4095 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4096 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4097 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4098 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4099 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4100 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4101
4102 static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4103 {
4104 unsigned short ggc;
4105
4106 if (pci_read_config_word(dev, GGC, &ggc))
4107 return;
4108
4109 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4110 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4111 dmar_map_gfx = 0;
4112 } else if (dmar_map_gfx) {
4113 /* we have to ensure the gfx device is idle before we flush */
4114 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4115 intel_iommu_strict = 1;
4116 }
4117 }
4118 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4119 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4120 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4121 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4122
4123 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4124 ISOCH DMAR unit for the Azalia sound device, but not give it any
4125 TLB entries, which causes it to deadlock. Check for that. We do
4126 this in a function called from init_dmars(), instead of in a PCI
4127 quirk, because we don't want to print the obnoxious "BIOS broken"
4128 message if VT-d is actually disabled.
4129 */
4130 static void __init check_tylersburg_isoch(void)
4131 {
4132 struct pci_dev *pdev;
4133 uint32_t vtisochctrl;
4134
4135 /* If there's no Azalia in the system anyway, forget it. */
4136 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4137 if (!pdev)
4138 return;
4139 pci_dev_put(pdev);
4140
4141 /* System Management Registers. Might be hidden, in which case
4142 we can't do the sanity check. But that's OK, because the
4143 known-broken BIOSes _don't_ actually hide it, so far. */
4144 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4145 if (!pdev)
4146 return;
4147
4148 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4149 pci_dev_put(pdev);
4150 return;
4151 }
4152
4153 pci_dev_put(pdev);
4154
4155 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4156 if (vtisochctrl & 1)
4157 return;
4158
4159 /* Drop all bits other than the number of TLB entries */
4160 vtisochctrl &= 0x1c;
4161
4162 /* If we have the recommended number of TLB entries (16), fine. */
4163 if (vtisochctrl == 0x10)
4164 return;
4165
4166 /* Zero TLB entries? You get to ride the short bus to school. */
4167 if (!vtisochctrl) {
4168 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4169 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4170 dmi_get_system_info(DMI_BIOS_VENDOR),
4171 dmi_get_system_info(DMI_BIOS_VERSION),
4172 dmi_get_system_info(DMI_PRODUCT_VERSION));
4173 iommu_identity_mapping |= IDENTMAP_AZALIA;
4174 return;
4175 }
4176
4177 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4178 vtisochctrl);
4179 }