]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iommu/intel-iommu.c
Merge remote-tracking branches 'asoc/topic/rockchip', 'asoc/topic/rt5514', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 * Joerg Roedel <jroedel@suse.de>
19 */
20
21 #define pr_fmt(fmt) "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/cpu.h>
37 #include <linux/timer.h>
38 #include <linux/io.h>
39 #include <linux/iova.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/tboot.h>
44 #include <linux/dmi.h>
45 #include <linux/pci-ats.h>
46 #include <linux/memblock.h>
47 #include <linux/dma-contiguous.h>
48 #include <linux/crash_dump.h>
49 #include <asm/irq_remapping.h>
50 #include <asm/cacheflush.h>
51 #include <asm/iommu.h>
52
53 #include "irq_remapping.h"
54
55 #define ROOT_SIZE VTD_PAGE_SIZE
56 #define CONTEXT_SIZE VTD_PAGE_SIZE
57
58 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
59 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
60 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
61 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
62
63 #define IOAPIC_RANGE_START (0xfee00000)
64 #define IOAPIC_RANGE_END (0xfeefffff)
65 #define IOVA_START_ADDR (0x1000)
66
67 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
68
69 #define MAX_AGAW_WIDTH 64
70 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
71
72 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
73 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
74
75 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
76 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
77 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
78 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
79 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
80
81 /* IO virtual address start page frame number */
82 #define IOVA_START_PFN (1)
83
84 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
85 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
86 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
87
88 /* page table handling */
89 #define LEVEL_STRIDE (9)
90 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
91
92 /*
93 * This bitmap is used to advertise the page sizes our hardware support
94 * to the IOMMU core, which will then use this information to split
95 * physically contiguous memory regions it is mapping into page sizes
96 * that we support.
97 *
98 * Traditionally the IOMMU core just handed us the mappings directly,
99 * after making sure the size is an order of a 4KiB page and that the
100 * mapping has natural alignment.
101 *
102 * To retain this behavior, we currently advertise that we support
103 * all page sizes that are an order of 4KiB.
104 *
105 * If at some point we'd like to utilize the IOMMU core's new behavior,
106 * we could change this to advertise the real page sizes we support.
107 */
108 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
109
110 static inline int agaw_to_level(int agaw)
111 {
112 return agaw + 2;
113 }
114
115 static inline int agaw_to_width(int agaw)
116 {
117 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
118 }
119
120 static inline int width_to_agaw(int width)
121 {
122 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
123 }
124
125 static inline unsigned int level_to_offset_bits(int level)
126 {
127 return (level - 1) * LEVEL_STRIDE;
128 }
129
130 static inline int pfn_level_offset(unsigned long pfn, int level)
131 {
132 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
133 }
134
135 static inline unsigned long level_mask(int level)
136 {
137 return -1UL << level_to_offset_bits(level);
138 }
139
140 static inline unsigned long level_size(int level)
141 {
142 return 1UL << level_to_offset_bits(level);
143 }
144
145 static inline unsigned long align_to_level(unsigned long pfn, int level)
146 {
147 return (pfn + level_size(level) - 1) & level_mask(level);
148 }
149
150 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
151 {
152 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
153 }
154
155 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
156 are never going to work. */
157 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
158 {
159 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
160 }
161
162 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
163 {
164 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
165 }
166 static inline unsigned long page_to_dma_pfn(struct page *pg)
167 {
168 return mm_to_dma_pfn(page_to_pfn(pg));
169 }
170 static inline unsigned long virt_to_dma_pfn(void *p)
171 {
172 return page_to_dma_pfn(virt_to_page(p));
173 }
174
175 /* global iommu list, set NULL for ignored DMAR units */
176 static struct intel_iommu **g_iommus;
177
178 static void __init check_tylersburg_isoch(void);
179 static int rwbf_quirk;
180
181 /*
182 * set to 1 to panic kernel if can't successfully enable VT-d
183 * (used when kernel is launched w/ TXT)
184 */
185 static int force_on = 0;
186
187 /*
188 * 0: Present
189 * 1-11: Reserved
190 * 12-63: Context Ptr (12 - (haw-1))
191 * 64-127: Reserved
192 */
193 struct root_entry {
194 u64 lo;
195 u64 hi;
196 };
197 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
198
199 /*
200 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
201 * if marked present.
202 */
203 static phys_addr_t root_entry_lctp(struct root_entry *re)
204 {
205 if (!(re->lo & 1))
206 return 0;
207
208 return re->lo & VTD_PAGE_MASK;
209 }
210
211 /*
212 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
213 * if marked present.
214 */
215 static phys_addr_t root_entry_uctp(struct root_entry *re)
216 {
217 if (!(re->hi & 1))
218 return 0;
219
220 return re->hi & VTD_PAGE_MASK;
221 }
222 /*
223 * low 64 bits:
224 * 0: present
225 * 1: fault processing disable
226 * 2-3: translation type
227 * 12-63: address space root
228 * high 64 bits:
229 * 0-2: address width
230 * 3-6: aval
231 * 8-23: domain id
232 */
233 struct context_entry {
234 u64 lo;
235 u64 hi;
236 };
237
238 static inline void context_clear_pasid_enable(struct context_entry *context)
239 {
240 context->lo &= ~(1ULL << 11);
241 }
242
243 static inline bool context_pasid_enabled(struct context_entry *context)
244 {
245 return !!(context->lo & (1ULL << 11));
246 }
247
248 static inline void context_set_copied(struct context_entry *context)
249 {
250 context->hi |= (1ull << 3);
251 }
252
253 static inline bool context_copied(struct context_entry *context)
254 {
255 return !!(context->hi & (1ULL << 3));
256 }
257
258 static inline bool __context_present(struct context_entry *context)
259 {
260 return (context->lo & 1);
261 }
262
263 static inline bool context_present(struct context_entry *context)
264 {
265 return context_pasid_enabled(context) ?
266 __context_present(context) :
267 __context_present(context) && !context_copied(context);
268 }
269
270 static inline void context_set_present(struct context_entry *context)
271 {
272 context->lo |= 1;
273 }
274
275 static inline void context_set_fault_enable(struct context_entry *context)
276 {
277 context->lo &= (((u64)-1) << 2) | 1;
278 }
279
280 static inline void context_set_translation_type(struct context_entry *context,
281 unsigned long value)
282 {
283 context->lo &= (((u64)-1) << 4) | 3;
284 context->lo |= (value & 3) << 2;
285 }
286
287 static inline void context_set_address_root(struct context_entry *context,
288 unsigned long value)
289 {
290 context->lo &= ~VTD_PAGE_MASK;
291 context->lo |= value & VTD_PAGE_MASK;
292 }
293
294 static inline void context_set_address_width(struct context_entry *context,
295 unsigned long value)
296 {
297 context->hi |= value & 7;
298 }
299
300 static inline void context_set_domain_id(struct context_entry *context,
301 unsigned long value)
302 {
303 context->hi |= (value & ((1 << 16) - 1)) << 8;
304 }
305
306 static inline int context_domain_id(struct context_entry *c)
307 {
308 return((c->hi >> 8) & 0xffff);
309 }
310
311 static inline void context_clear_entry(struct context_entry *context)
312 {
313 context->lo = 0;
314 context->hi = 0;
315 }
316
317 /*
318 * 0: readable
319 * 1: writable
320 * 2-6: reserved
321 * 7: super page
322 * 8-10: available
323 * 11: snoop behavior
324 * 12-63: Host physcial address
325 */
326 struct dma_pte {
327 u64 val;
328 };
329
330 static inline void dma_clear_pte(struct dma_pte *pte)
331 {
332 pte->val = 0;
333 }
334
335 static inline u64 dma_pte_addr(struct dma_pte *pte)
336 {
337 #ifdef CONFIG_64BIT
338 return pte->val & VTD_PAGE_MASK;
339 #else
340 /* Must have a full atomic 64-bit read */
341 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
342 #endif
343 }
344
345 static inline bool dma_pte_present(struct dma_pte *pte)
346 {
347 return (pte->val & 3) != 0;
348 }
349
350 static inline bool dma_pte_superpage(struct dma_pte *pte)
351 {
352 return (pte->val & DMA_PTE_LARGE_PAGE);
353 }
354
355 static inline int first_pte_in_page(struct dma_pte *pte)
356 {
357 return !((unsigned long)pte & ~VTD_PAGE_MASK);
358 }
359
360 /*
361 * This domain is a statically identity mapping domain.
362 * 1. This domain creats a static 1:1 mapping to all usable memory.
363 * 2. It maps to each iommu if successful.
364 * 3. Each iommu mapps to this domain if successful.
365 */
366 static struct dmar_domain *si_domain;
367 static int hw_pass_through = 1;
368
369 /*
370 * Domain represents a virtual machine, more than one devices
371 * across iommus may be owned in one domain, e.g. kvm guest.
372 */
373 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
374
375 /* si_domain contains mulitple devices */
376 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
377
378 #define for_each_domain_iommu(idx, domain) \
379 for (idx = 0; idx < g_num_of_iommus; idx++) \
380 if (domain->iommu_refcnt[idx])
381
382 struct dmar_domain {
383 int nid; /* node id */
384
385 unsigned iommu_refcnt[DMAR_UNITS_SUPPORTED];
386 /* Refcount of devices per iommu */
387
388
389 u16 iommu_did[DMAR_UNITS_SUPPORTED];
390 /* Domain ids per IOMMU. Use u16 since
391 * domain ids are 16 bit wide according
392 * to VT-d spec, section 9.3 */
393
394 bool has_iotlb_device;
395 struct list_head devices; /* all devices' list */
396 struct iova_domain iovad; /* iova's that belong to this domain */
397
398 struct dma_pte *pgd; /* virtual address */
399 int gaw; /* max guest address width */
400
401 /* adjusted guest address width, 0 is level 2 30-bit */
402 int agaw;
403
404 int flags; /* flags to find out type of domain */
405
406 int iommu_coherency;/* indicate coherency of iommu access */
407 int iommu_snooping; /* indicate snooping control feature*/
408 int iommu_count; /* reference count of iommu */
409 int iommu_superpage;/* Level of superpages supported:
410 0 == 4KiB (no superpages), 1 == 2MiB,
411 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
412 u64 max_addr; /* maximum mapped address */
413
414 struct iommu_domain domain; /* generic domain data structure for
415 iommu core */
416 };
417
418 /* PCI domain-device relationship */
419 struct device_domain_info {
420 struct list_head link; /* link to domain siblings */
421 struct list_head global; /* link to global list */
422 u8 bus; /* PCI bus number */
423 u8 devfn; /* PCI devfn number */
424 u8 pasid_supported:3;
425 u8 pasid_enabled:1;
426 u8 pri_supported:1;
427 u8 pri_enabled:1;
428 u8 ats_supported:1;
429 u8 ats_enabled:1;
430 u8 ats_qdep;
431 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
432 struct intel_iommu *iommu; /* IOMMU used by this device */
433 struct dmar_domain *domain; /* pointer to domain */
434 };
435
436 struct dmar_rmrr_unit {
437 struct list_head list; /* list of rmrr units */
438 struct acpi_dmar_header *hdr; /* ACPI header */
439 u64 base_address; /* reserved base address*/
440 u64 end_address; /* reserved end address */
441 struct dmar_dev_scope *devices; /* target devices */
442 int devices_cnt; /* target device count */
443 struct iommu_resv_region *resv; /* reserved region handle */
444 };
445
446 struct dmar_atsr_unit {
447 struct list_head list; /* list of ATSR units */
448 struct acpi_dmar_header *hdr; /* ACPI header */
449 struct dmar_dev_scope *devices; /* target devices */
450 int devices_cnt; /* target device count */
451 u8 include_all:1; /* include all ports */
452 };
453
454 static LIST_HEAD(dmar_atsr_units);
455 static LIST_HEAD(dmar_rmrr_units);
456
457 #define for_each_rmrr_units(rmrr) \
458 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
459
460 static void flush_unmaps_timeout(unsigned long data);
461
462 struct deferred_flush_entry {
463 unsigned long iova_pfn;
464 unsigned long nrpages;
465 struct dmar_domain *domain;
466 struct page *freelist;
467 };
468
469 #define HIGH_WATER_MARK 250
470 struct deferred_flush_table {
471 int next;
472 struct deferred_flush_entry entries[HIGH_WATER_MARK];
473 };
474
475 struct deferred_flush_data {
476 spinlock_t lock;
477 int timer_on;
478 struct timer_list timer;
479 long size;
480 struct deferred_flush_table *tables;
481 };
482
483 DEFINE_PER_CPU(struct deferred_flush_data, deferred_flush);
484
485 /* bitmap for indexing intel_iommus */
486 static int g_num_of_iommus;
487
488 static void domain_exit(struct dmar_domain *domain);
489 static void domain_remove_dev_info(struct dmar_domain *domain);
490 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
491 struct device *dev);
492 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
493 static void domain_context_clear(struct intel_iommu *iommu,
494 struct device *dev);
495 static int domain_detach_iommu(struct dmar_domain *domain,
496 struct intel_iommu *iommu);
497
498 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
499 int dmar_disabled = 0;
500 #else
501 int dmar_disabled = 1;
502 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
503
504 int intel_iommu_enabled = 0;
505 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
506
507 static int dmar_map_gfx = 1;
508 static int dmar_forcedac;
509 static int intel_iommu_strict;
510 static int intel_iommu_superpage = 1;
511 static int intel_iommu_ecs = 1;
512 static int intel_iommu_pasid28;
513 static int iommu_identity_mapping;
514
515 #define IDENTMAP_ALL 1
516 #define IDENTMAP_GFX 2
517 #define IDENTMAP_AZALIA 4
518
519 /* Broadwell and Skylake have broken ECS support — normal so-called "second
520 * level" translation of DMA requests-without-PASID doesn't actually happen
521 * unless you also set the NESTE bit in an extended context-entry. Which of
522 * course means that SVM doesn't work because it's trying to do nested
523 * translation of the physical addresses it finds in the process page tables,
524 * through the IOVA->phys mapping found in the "second level" page tables.
525 *
526 * The VT-d specification was retroactively changed to change the definition
527 * of the capability bits and pretend that Broadwell/Skylake never happened...
528 * but unfortunately the wrong bit was changed. It's ECS which is broken, but
529 * for some reason it was the PASID capability bit which was redefined (from
530 * bit 28 on BDW/SKL to bit 40 in future).
531 *
532 * So our test for ECS needs to eschew those implementations which set the old
533 * PASID capabiity bit 28, since those are the ones on which ECS is broken.
534 * Unless we are working around the 'pasid28' limitations, that is, by putting
535 * the device into passthrough mode for normal DMA and thus masking the bug.
536 */
537 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
538 (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
539 /* PASID support is thus enabled if ECS is enabled and *either* of the old
540 * or new capability bits are set. */
541 #define pasid_enabled(iommu) (ecs_enabled(iommu) && \
542 (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
543
544 int intel_iommu_gfx_mapped;
545 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
546
547 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
548 static DEFINE_SPINLOCK(device_domain_lock);
549 static LIST_HEAD(device_domain_list);
550
551 const struct iommu_ops intel_iommu_ops;
552
553 static bool translation_pre_enabled(struct intel_iommu *iommu)
554 {
555 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
556 }
557
558 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
559 {
560 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
561 }
562
563 static void init_translation_status(struct intel_iommu *iommu)
564 {
565 u32 gsts;
566
567 gsts = readl(iommu->reg + DMAR_GSTS_REG);
568 if (gsts & DMA_GSTS_TES)
569 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
570 }
571
572 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
573 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
574 {
575 return container_of(dom, struct dmar_domain, domain);
576 }
577
578 static int __init intel_iommu_setup(char *str)
579 {
580 if (!str)
581 return -EINVAL;
582 while (*str) {
583 if (!strncmp(str, "on", 2)) {
584 dmar_disabled = 0;
585 pr_info("IOMMU enabled\n");
586 } else if (!strncmp(str, "off", 3)) {
587 dmar_disabled = 1;
588 pr_info("IOMMU disabled\n");
589 } else if (!strncmp(str, "igfx_off", 8)) {
590 dmar_map_gfx = 0;
591 pr_info("Disable GFX device mapping\n");
592 } else if (!strncmp(str, "forcedac", 8)) {
593 pr_info("Forcing DAC for PCI devices\n");
594 dmar_forcedac = 1;
595 } else if (!strncmp(str, "strict", 6)) {
596 pr_info("Disable batched IOTLB flush\n");
597 intel_iommu_strict = 1;
598 } else if (!strncmp(str, "sp_off", 6)) {
599 pr_info("Disable supported super page\n");
600 intel_iommu_superpage = 0;
601 } else if (!strncmp(str, "ecs_off", 7)) {
602 printk(KERN_INFO
603 "Intel-IOMMU: disable extended context table support\n");
604 intel_iommu_ecs = 0;
605 } else if (!strncmp(str, "pasid28", 7)) {
606 printk(KERN_INFO
607 "Intel-IOMMU: enable pre-production PASID support\n");
608 intel_iommu_pasid28 = 1;
609 iommu_identity_mapping |= IDENTMAP_GFX;
610 }
611
612 str += strcspn(str, ",");
613 while (*str == ',')
614 str++;
615 }
616 return 0;
617 }
618 __setup("intel_iommu=", intel_iommu_setup);
619
620 static struct kmem_cache *iommu_domain_cache;
621 static struct kmem_cache *iommu_devinfo_cache;
622
623 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
624 {
625 struct dmar_domain **domains;
626 int idx = did >> 8;
627
628 domains = iommu->domains[idx];
629 if (!domains)
630 return NULL;
631
632 return domains[did & 0xff];
633 }
634
635 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
636 struct dmar_domain *domain)
637 {
638 struct dmar_domain **domains;
639 int idx = did >> 8;
640
641 if (!iommu->domains[idx]) {
642 size_t size = 256 * sizeof(struct dmar_domain *);
643 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
644 }
645
646 domains = iommu->domains[idx];
647 if (WARN_ON(!domains))
648 return;
649 else
650 domains[did & 0xff] = domain;
651 }
652
653 static inline void *alloc_pgtable_page(int node)
654 {
655 struct page *page;
656 void *vaddr = NULL;
657
658 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
659 if (page)
660 vaddr = page_address(page);
661 return vaddr;
662 }
663
664 static inline void free_pgtable_page(void *vaddr)
665 {
666 free_page((unsigned long)vaddr);
667 }
668
669 static inline void *alloc_domain_mem(void)
670 {
671 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
672 }
673
674 static void free_domain_mem(void *vaddr)
675 {
676 kmem_cache_free(iommu_domain_cache, vaddr);
677 }
678
679 static inline void * alloc_devinfo_mem(void)
680 {
681 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
682 }
683
684 static inline void free_devinfo_mem(void *vaddr)
685 {
686 kmem_cache_free(iommu_devinfo_cache, vaddr);
687 }
688
689 static inline int domain_type_is_vm(struct dmar_domain *domain)
690 {
691 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
692 }
693
694 static inline int domain_type_is_si(struct dmar_domain *domain)
695 {
696 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
697 }
698
699 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
700 {
701 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
702 DOMAIN_FLAG_STATIC_IDENTITY);
703 }
704
705 static inline int domain_pfn_supported(struct dmar_domain *domain,
706 unsigned long pfn)
707 {
708 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
709
710 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
711 }
712
713 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
714 {
715 unsigned long sagaw;
716 int agaw = -1;
717
718 sagaw = cap_sagaw(iommu->cap);
719 for (agaw = width_to_agaw(max_gaw);
720 agaw >= 0; agaw--) {
721 if (test_bit(agaw, &sagaw))
722 break;
723 }
724
725 return agaw;
726 }
727
728 /*
729 * Calculate max SAGAW for each iommu.
730 */
731 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
732 {
733 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
734 }
735
736 /*
737 * calculate agaw for each iommu.
738 * "SAGAW" may be different across iommus, use a default agaw, and
739 * get a supported less agaw for iommus that don't support the default agaw.
740 */
741 int iommu_calculate_agaw(struct intel_iommu *iommu)
742 {
743 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
744 }
745
746 /* This functionin only returns single iommu in a domain */
747 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
748 {
749 int iommu_id;
750
751 /* si_domain and vm domain should not get here. */
752 BUG_ON(domain_type_is_vm_or_si(domain));
753 for_each_domain_iommu(iommu_id, domain)
754 break;
755
756 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
757 return NULL;
758
759 return g_iommus[iommu_id];
760 }
761
762 static void domain_update_iommu_coherency(struct dmar_domain *domain)
763 {
764 struct dmar_drhd_unit *drhd;
765 struct intel_iommu *iommu;
766 bool found = false;
767 int i;
768
769 domain->iommu_coherency = 1;
770
771 for_each_domain_iommu(i, domain) {
772 found = true;
773 if (!ecap_coherent(g_iommus[i]->ecap)) {
774 domain->iommu_coherency = 0;
775 break;
776 }
777 }
778 if (found)
779 return;
780
781 /* No hardware attached; use lowest common denominator */
782 rcu_read_lock();
783 for_each_active_iommu(iommu, drhd) {
784 if (!ecap_coherent(iommu->ecap)) {
785 domain->iommu_coherency = 0;
786 break;
787 }
788 }
789 rcu_read_unlock();
790 }
791
792 static int domain_update_iommu_snooping(struct intel_iommu *skip)
793 {
794 struct dmar_drhd_unit *drhd;
795 struct intel_iommu *iommu;
796 int ret = 1;
797
798 rcu_read_lock();
799 for_each_active_iommu(iommu, drhd) {
800 if (iommu != skip) {
801 if (!ecap_sc_support(iommu->ecap)) {
802 ret = 0;
803 break;
804 }
805 }
806 }
807 rcu_read_unlock();
808
809 return ret;
810 }
811
812 static int domain_update_iommu_superpage(struct intel_iommu *skip)
813 {
814 struct dmar_drhd_unit *drhd;
815 struct intel_iommu *iommu;
816 int mask = 0xf;
817
818 if (!intel_iommu_superpage) {
819 return 0;
820 }
821
822 /* set iommu_superpage to the smallest common denominator */
823 rcu_read_lock();
824 for_each_active_iommu(iommu, drhd) {
825 if (iommu != skip) {
826 mask &= cap_super_page_val(iommu->cap);
827 if (!mask)
828 break;
829 }
830 }
831 rcu_read_unlock();
832
833 return fls(mask);
834 }
835
836 /* Some capabilities may be different across iommus */
837 static void domain_update_iommu_cap(struct dmar_domain *domain)
838 {
839 domain_update_iommu_coherency(domain);
840 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
841 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
842 }
843
844 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
845 u8 bus, u8 devfn, int alloc)
846 {
847 struct root_entry *root = &iommu->root_entry[bus];
848 struct context_entry *context;
849 u64 *entry;
850
851 entry = &root->lo;
852 if (ecs_enabled(iommu)) {
853 if (devfn >= 0x80) {
854 devfn -= 0x80;
855 entry = &root->hi;
856 }
857 devfn *= 2;
858 }
859 if (*entry & 1)
860 context = phys_to_virt(*entry & VTD_PAGE_MASK);
861 else {
862 unsigned long phy_addr;
863 if (!alloc)
864 return NULL;
865
866 context = alloc_pgtable_page(iommu->node);
867 if (!context)
868 return NULL;
869
870 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
871 phy_addr = virt_to_phys((void *)context);
872 *entry = phy_addr | 1;
873 __iommu_flush_cache(iommu, entry, sizeof(*entry));
874 }
875 return &context[devfn];
876 }
877
878 static int iommu_dummy(struct device *dev)
879 {
880 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
881 }
882
883 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
884 {
885 struct dmar_drhd_unit *drhd = NULL;
886 struct intel_iommu *iommu;
887 struct device *tmp;
888 struct pci_dev *ptmp, *pdev = NULL;
889 u16 segment = 0;
890 int i;
891
892 if (iommu_dummy(dev))
893 return NULL;
894
895 if (dev_is_pci(dev)) {
896 struct pci_dev *pf_pdev;
897
898 pdev = to_pci_dev(dev);
899 /* VFs aren't listed in scope tables; we need to look up
900 * the PF instead to find the IOMMU. */
901 pf_pdev = pci_physfn(pdev);
902 dev = &pf_pdev->dev;
903 segment = pci_domain_nr(pdev->bus);
904 } else if (has_acpi_companion(dev))
905 dev = &ACPI_COMPANION(dev)->dev;
906
907 rcu_read_lock();
908 for_each_active_iommu(iommu, drhd) {
909 if (pdev && segment != drhd->segment)
910 continue;
911
912 for_each_active_dev_scope(drhd->devices,
913 drhd->devices_cnt, i, tmp) {
914 if (tmp == dev) {
915 /* For a VF use its original BDF# not that of the PF
916 * which we used for the IOMMU lookup. Strictly speaking
917 * we could do this for all PCI devices; we only need to
918 * get the BDF# from the scope table for ACPI matches. */
919 if (pdev && pdev->is_virtfn)
920 goto got_pdev;
921
922 *bus = drhd->devices[i].bus;
923 *devfn = drhd->devices[i].devfn;
924 goto out;
925 }
926
927 if (!pdev || !dev_is_pci(tmp))
928 continue;
929
930 ptmp = to_pci_dev(tmp);
931 if (ptmp->subordinate &&
932 ptmp->subordinate->number <= pdev->bus->number &&
933 ptmp->subordinate->busn_res.end >= pdev->bus->number)
934 goto got_pdev;
935 }
936
937 if (pdev && drhd->include_all) {
938 got_pdev:
939 *bus = pdev->bus->number;
940 *devfn = pdev->devfn;
941 goto out;
942 }
943 }
944 iommu = NULL;
945 out:
946 rcu_read_unlock();
947
948 return iommu;
949 }
950
951 static void domain_flush_cache(struct dmar_domain *domain,
952 void *addr, int size)
953 {
954 if (!domain->iommu_coherency)
955 clflush_cache_range(addr, size);
956 }
957
958 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
959 {
960 struct context_entry *context;
961 int ret = 0;
962 unsigned long flags;
963
964 spin_lock_irqsave(&iommu->lock, flags);
965 context = iommu_context_addr(iommu, bus, devfn, 0);
966 if (context)
967 ret = context_present(context);
968 spin_unlock_irqrestore(&iommu->lock, flags);
969 return ret;
970 }
971
972 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
973 {
974 struct context_entry *context;
975 unsigned long flags;
976
977 spin_lock_irqsave(&iommu->lock, flags);
978 context = iommu_context_addr(iommu, bus, devfn, 0);
979 if (context) {
980 context_clear_entry(context);
981 __iommu_flush_cache(iommu, context, sizeof(*context));
982 }
983 spin_unlock_irqrestore(&iommu->lock, flags);
984 }
985
986 static void free_context_table(struct intel_iommu *iommu)
987 {
988 int i;
989 unsigned long flags;
990 struct context_entry *context;
991
992 spin_lock_irqsave(&iommu->lock, flags);
993 if (!iommu->root_entry) {
994 goto out;
995 }
996 for (i = 0; i < ROOT_ENTRY_NR; i++) {
997 context = iommu_context_addr(iommu, i, 0, 0);
998 if (context)
999 free_pgtable_page(context);
1000
1001 if (!ecs_enabled(iommu))
1002 continue;
1003
1004 context = iommu_context_addr(iommu, i, 0x80, 0);
1005 if (context)
1006 free_pgtable_page(context);
1007
1008 }
1009 free_pgtable_page(iommu->root_entry);
1010 iommu->root_entry = NULL;
1011 out:
1012 spin_unlock_irqrestore(&iommu->lock, flags);
1013 }
1014
1015 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
1016 unsigned long pfn, int *target_level)
1017 {
1018 struct dma_pte *parent, *pte = NULL;
1019 int level = agaw_to_level(domain->agaw);
1020 int offset;
1021
1022 BUG_ON(!domain->pgd);
1023
1024 if (!domain_pfn_supported(domain, pfn))
1025 /* Address beyond IOMMU's addressing capabilities. */
1026 return NULL;
1027
1028 parent = domain->pgd;
1029
1030 while (1) {
1031 void *tmp_page;
1032
1033 offset = pfn_level_offset(pfn, level);
1034 pte = &parent[offset];
1035 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1036 break;
1037 if (level == *target_level)
1038 break;
1039
1040 if (!dma_pte_present(pte)) {
1041 uint64_t pteval;
1042
1043 tmp_page = alloc_pgtable_page(domain->nid);
1044
1045 if (!tmp_page)
1046 return NULL;
1047
1048 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1049 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1050 if (cmpxchg64(&pte->val, 0ULL, pteval))
1051 /* Someone else set it while we were thinking; use theirs. */
1052 free_pgtable_page(tmp_page);
1053 else
1054 domain_flush_cache(domain, pte, sizeof(*pte));
1055 }
1056 if (level == 1)
1057 break;
1058
1059 parent = phys_to_virt(dma_pte_addr(pte));
1060 level--;
1061 }
1062
1063 if (!*target_level)
1064 *target_level = level;
1065
1066 return pte;
1067 }
1068
1069
1070 /* return address's pte at specific level */
1071 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1072 unsigned long pfn,
1073 int level, int *large_page)
1074 {
1075 struct dma_pte *parent, *pte = NULL;
1076 int total = agaw_to_level(domain->agaw);
1077 int offset;
1078
1079 parent = domain->pgd;
1080 while (level <= total) {
1081 offset = pfn_level_offset(pfn, total);
1082 pte = &parent[offset];
1083 if (level == total)
1084 return pte;
1085
1086 if (!dma_pte_present(pte)) {
1087 *large_page = total;
1088 break;
1089 }
1090
1091 if (dma_pte_superpage(pte)) {
1092 *large_page = total;
1093 return pte;
1094 }
1095
1096 parent = phys_to_virt(dma_pte_addr(pte));
1097 total--;
1098 }
1099 return NULL;
1100 }
1101
1102 /* clear last level pte, a tlb flush should be followed */
1103 static void dma_pte_clear_range(struct dmar_domain *domain,
1104 unsigned long start_pfn,
1105 unsigned long last_pfn)
1106 {
1107 unsigned int large_page = 1;
1108 struct dma_pte *first_pte, *pte;
1109
1110 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1111 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1112 BUG_ON(start_pfn > last_pfn);
1113
1114 /* we don't need lock here; nobody else touches the iova range */
1115 do {
1116 large_page = 1;
1117 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1118 if (!pte) {
1119 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1120 continue;
1121 }
1122 do {
1123 dma_clear_pte(pte);
1124 start_pfn += lvl_to_nr_pages(large_page);
1125 pte++;
1126 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1127
1128 domain_flush_cache(domain, first_pte,
1129 (void *)pte - (void *)first_pte);
1130
1131 } while (start_pfn && start_pfn <= last_pfn);
1132 }
1133
1134 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1135 struct dma_pte *pte, unsigned long pfn,
1136 unsigned long start_pfn, unsigned long last_pfn)
1137 {
1138 pfn = max(start_pfn, pfn);
1139 pte = &pte[pfn_level_offset(pfn, level)];
1140
1141 do {
1142 unsigned long level_pfn;
1143 struct dma_pte *level_pte;
1144
1145 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1146 goto next;
1147
1148 level_pfn = pfn & level_mask(level);
1149 level_pte = phys_to_virt(dma_pte_addr(pte));
1150
1151 if (level > 2)
1152 dma_pte_free_level(domain, level - 1, level_pte,
1153 level_pfn, start_pfn, last_pfn);
1154
1155 /* If range covers entire pagetable, free it */
1156 if (!(start_pfn > level_pfn ||
1157 last_pfn < level_pfn + level_size(level) - 1)) {
1158 dma_clear_pte(pte);
1159 domain_flush_cache(domain, pte, sizeof(*pte));
1160 free_pgtable_page(level_pte);
1161 }
1162 next:
1163 pfn += level_size(level);
1164 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1165 }
1166
1167 /* clear last level (leaf) ptes and free page table pages. */
1168 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1169 unsigned long start_pfn,
1170 unsigned long last_pfn)
1171 {
1172 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1173 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1174 BUG_ON(start_pfn > last_pfn);
1175
1176 dma_pte_clear_range(domain, start_pfn, last_pfn);
1177
1178 /* We don't need lock here; nobody else touches the iova range */
1179 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1180 domain->pgd, 0, start_pfn, last_pfn);
1181
1182 /* free pgd */
1183 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1184 free_pgtable_page(domain->pgd);
1185 domain->pgd = NULL;
1186 }
1187 }
1188
1189 /* When a page at a given level is being unlinked from its parent, we don't
1190 need to *modify* it at all. All we need to do is make a list of all the
1191 pages which can be freed just as soon as we've flushed the IOTLB and we
1192 know the hardware page-walk will no longer touch them.
1193 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1194 be freed. */
1195 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1196 int level, struct dma_pte *pte,
1197 struct page *freelist)
1198 {
1199 struct page *pg;
1200
1201 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1202 pg->freelist = freelist;
1203 freelist = pg;
1204
1205 if (level == 1)
1206 return freelist;
1207
1208 pte = page_address(pg);
1209 do {
1210 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1211 freelist = dma_pte_list_pagetables(domain, level - 1,
1212 pte, freelist);
1213 pte++;
1214 } while (!first_pte_in_page(pte));
1215
1216 return freelist;
1217 }
1218
1219 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1220 struct dma_pte *pte, unsigned long pfn,
1221 unsigned long start_pfn,
1222 unsigned long last_pfn,
1223 struct page *freelist)
1224 {
1225 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1226
1227 pfn = max(start_pfn, pfn);
1228 pte = &pte[pfn_level_offset(pfn, level)];
1229
1230 do {
1231 unsigned long level_pfn;
1232
1233 if (!dma_pte_present(pte))
1234 goto next;
1235
1236 level_pfn = pfn & level_mask(level);
1237
1238 /* If range covers entire pagetable, free it */
1239 if (start_pfn <= level_pfn &&
1240 last_pfn >= level_pfn + level_size(level) - 1) {
1241 /* These suborbinate page tables are going away entirely. Don't
1242 bother to clear them; we're just going to *free* them. */
1243 if (level > 1 && !dma_pte_superpage(pte))
1244 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1245
1246 dma_clear_pte(pte);
1247 if (!first_pte)
1248 first_pte = pte;
1249 last_pte = pte;
1250 } else if (level > 1) {
1251 /* Recurse down into a level that isn't *entirely* obsolete */
1252 freelist = dma_pte_clear_level(domain, level - 1,
1253 phys_to_virt(dma_pte_addr(pte)),
1254 level_pfn, start_pfn, last_pfn,
1255 freelist);
1256 }
1257 next:
1258 pfn += level_size(level);
1259 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1260
1261 if (first_pte)
1262 domain_flush_cache(domain, first_pte,
1263 (void *)++last_pte - (void *)first_pte);
1264
1265 return freelist;
1266 }
1267
1268 /* We can't just free the pages because the IOMMU may still be walking
1269 the page tables, and may have cached the intermediate levels. The
1270 pages can only be freed after the IOTLB flush has been done. */
1271 static struct page *domain_unmap(struct dmar_domain *domain,
1272 unsigned long start_pfn,
1273 unsigned long last_pfn)
1274 {
1275 struct page *freelist = NULL;
1276
1277 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1278 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1279 BUG_ON(start_pfn > last_pfn);
1280
1281 /* we don't need lock here; nobody else touches the iova range */
1282 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1283 domain->pgd, 0, start_pfn, last_pfn, NULL);
1284
1285 /* free pgd */
1286 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1287 struct page *pgd_page = virt_to_page(domain->pgd);
1288 pgd_page->freelist = freelist;
1289 freelist = pgd_page;
1290
1291 domain->pgd = NULL;
1292 }
1293
1294 return freelist;
1295 }
1296
1297 static void dma_free_pagelist(struct page *freelist)
1298 {
1299 struct page *pg;
1300
1301 while ((pg = freelist)) {
1302 freelist = pg->freelist;
1303 free_pgtable_page(page_address(pg));
1304 }
1305 }
1306
1307 /* iommu handling */
1308 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1309 {
1310 struct root_entry *root;
1311 unsigned long flags;
1312
1313 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1314 if (!root) {
1315 pr_err("Allocating root entry for %s failed\n",
1316 iommu->name);
1317 return -ENOMEM;
1318 }
1319
1320 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1321
1322 spin_lock_irqsave(&iommu->lock, flags);
1323 iommu->root_entry = root;
1324 spin_unlock_irqrestore(&iommu->lock, flags);
1325
1326 return 0;
1327 }
1328
1329 static void iommu_set_root_entry(struct intel_iommu *iommu)
1330 {
1331 u64 addr;
1332 u32 sts;
1333 unsigned long flag;
1334
1335 addr = virt_to_phys(iommu->root_entry);
1336 if (ecs_enabled(iommu))
1337 addr |= DMA_RTADDR_RTT;
1338
1339 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1340 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1341
1342 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1343
1344 /* Make sure hardware complete it */
1345 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1346 readl, (sts & DMA_GSTS_RTPS), sts);
1347
1348 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1349 }
1350
1351 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1352 {
1353 u32 val;
1354 unsigned long flag;
1355
1356 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1357 return;
1358
1359 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1360 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1361
1362 /* Make sure hardware complete it */
1363 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1364 readl, (!(val & DMA_GSTS_WBFS)), val);
1365
1366 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1367 }
1368
1369 /* return value determine if we need a write buffer flush */
1370 static void __iommu_flush_context(struct intel_iommu *iommu,
1371 u16 did, u16 source_id, u8 function_mask,
1372 u64 type)
1373 {
1374 u64 val = 0;
1375 unsigned long flag;
1376
1377 switch (type) {
1378 case DMA_CCMD_GLOBAL_INVL:
1379 val = DMA_CCMD_GLOBAL_INVL;
1380 break;
1381 case DMA_CCMD_DOMAIN_INVL:
1382 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1383 break;
1384 case DMA_CCMD_DEVICE_INVL:
1385 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1386 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1387 break;
1388 default:
1389 BUG();
1390 }
1391 val |= DMA_CCMD_ICC;
1392
1393 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1394 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1395
1396 /* Make sure hardware complete it */
1397 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1398 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1399
1400 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1401 }
1402
1403 /* return value determine if we need a write buffer flush */
1404 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1405 u64 addr, unsigned int size_order, u64 type)
1406 {
1407 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1408 u64 val = 0, val_iva = 0;
1409 unsigned long flag;
1410
1411 switch (type) {
1412 case DMA_TLB_GLOBAL_FLUSH:
1413 /* global flush doesn't need set IVA_REG */
1414 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1415 break;
1416 case DMA_TLB_DSI_FLUSH:
1417 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1418 break;
1419 case DMA_TLB_PSI_FLUSH:
1420 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1421 /* IH bit is passed in as part of address */
1422 val_iva = size_order | addr;
1423 break;
1424 default:
1425 BUG();
1426 }
1427 /* Note: set drain read/write */
1428 #if 0
1429 /*
1430 * This is probably to be super secure.. Looks like we can
1431 * ignore it without any impact.
1432 */
1433 if (cap_read_drain(iommu->cap))
1434 val |= DMA_TLB_READ_DRAIN;
1435 #endif
1436 if (cap_write_drain(iommu->cap))
1437 val |= DMA_TLB_WRITE_DRAIN;
1438
1439 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1440 /* Note: Only uses first TLB reg currently */
1441 if (val_iva)
1442 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1443 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1444
1445 /* Make sure hardware complete it */
1446 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1447 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1448
1449 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1450
1451 /* check IOTLB invalidation granularity */
1452 if (DMA_TLB_IAIG(val) == 0)
1453 pr_err("Flush IOTLB failed\n");
1454 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1455 pr_debug("TLB flush request %Lx, actual %Lx\n",
1456 (unsigned long long)DMA_TLB_IIRG(type),
1457 (unsigned long long)DMA_TLB_IAIG(val));
1458 }
1459
1460 static struct device_domain_info *
1461 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1462 u8 bus, u8 devfn)
1463 {
1464 struct device_domain_info *info;
1465
1466 assert_spin_locked(&device_domain_lock);
1467
1468 if (!iommu->qi)
1469 return NULL;
1470
1471 list_for_each_entry(info, &domain->devices, link)
1472 if (info->iommu == iommu && info->bus == bus &&
1473 info->devfn == devfn) {
1474 if (info->ats_supported && info->dev)
1475 return info;
1476 break;
1477 }
1478
1479 return NULL;
1480 }
1481
1482 static void domain_update_iotlb(struct dmar_domain *domain)
1483 {
1484 struct device_domain_info *info;
1485 bool has_iotlb_device = false;
1486
1487 assert_spin_locked(&device_domain_lock);
1488
1489 list_for_each_entry(info, &domain->devices, link) {
1490 struct pci_dev *pdev;
1491
1492 if (!info->dev || !dev_is_pci(info->dev))
1493 continue;
1494
1495 pdev = to_pci_dev(info->dev);
1496 if (pdev->ats_enabled) {
1497 has_iotlb_device = true;
1498 break;
1499 }
1500 }
1501
1502 domain->has_iotlb_device = has_iotlb_device;
1503 }
1504
1505 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1506 {
1507 struct pci_dev *pdev;
1508
1509 assert_spin_locked(&device_domain_lock);
1510
1511 if (!info || !dev_is_pci(info->dev))
1512 return;
1513
1514 pdev = to_pci_dev(info->dev);
1515
1516 #ifdef CONFIG_INTEL_IOMMU_SVM
1517 /* The PCIe spec, in its wisdom, declares that the behaviour of
1518 the device if you enable PASID support after ATS support is
1519 undefined. So always enable PASID support on devices which
1520 have it, even if we can't yet know if we're ever going to
1521 use it. */
1522 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1523 info->pasid_enabled = 1;
1524
1525 if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1526 info->pri_enabled = 1;
1527 #endif
1528 if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1529 info->ats_enabled = 1;
1530 domain_update_iotlb(info->domain);
1531 info->ats_qdep = pci_ats_queue_depth(pdev);
1532 }
1533 }
1534
1535 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1536 {
1537 struct pci_dev *pdev;
1538
1539 assert_spin_locked(&device_domain_lock);
1540
1541 if (!dev_is_pci(info->dev))
1542 return;
1543
1544 pdev = to_pci_dev(info->dev);
1545
1546 if (info->ats_enabled) {
1547 pci_disable_ats(pdev);
1548 info->ats_enabled = 0;
1549 domain_update_iotlb(info->domain);
1550 }
1551 #ifdef CONFIG_INTEL_IOMMU_SVM
1552 if (info->pri_enabled) {
1553 pci_disable_pri(pdev);
1554 info->pri_enabled = 0;
1555 }
1556 if (info->pasid_enabled) {
1557 pci_disable_pasid(pdev);
1558 info->pasid_enabled = 0;
1559 }
1560 #endif
1561 }
1562
1563 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1564 u64 addr, unsigned mask)
1565 {
1566 u16 sid, qdep;
1567 unsigned long flags;
1568 struct device_domain_info *info;
1569
1570 if (!domain->has_iotlb_device)
1571 return;
1572
1573 spin_lock_irqsave(&device_domain_lock, flags);
1574 list_for_each_entry(info, &domain->devices, link) {
1575 if (!info->ats_enabled)
1576 continue;
1577
1578 sid = info->bus << 8 | info->devfn;
1579 qdep = info->ats_qdep;
1580 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1581 }
1582 spin_unlock_irqrestore(&device_domain_lock, flags);
1583 }
1584
1585 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1586 struct dmar_domain *domain,
1587 unsigned long pfn, unsigned int pages,
1588 int ih, int map)
1589 {
1590 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1591 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1592 u16 did = domain->iommu_did[iommu->seq_id];
1593
1594 BUG_ON(pages == 0);
1595
1596 if (ih)
1597 ih = 1 << 6;
1598 /*
1599 * Fallback to domain selective flush if no PSI support or the size is
1600 * too big.
1601 * PSI requires page size to be 2 ^ x, and the base address is naturally
1602 * aligned to the size
1603 */
1604 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1605 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1606 DMA_TLB_DSI_FLUSH);
1607 else
1608 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1609 DMA_TLB_PSI_FLUSH);
1610
1611 /*
1612 * In caching mode, changes of pages from non-present to present require
1613 * flush. However, device IOTLB doesn't need to be flushed in this case.
1614 */
1615 if (!cap_caching_mode(iommu->cap) || !map)
1616 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1617 addr, mask);
1618 }
1619
1620 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1621 {
1622 u32 pmen;
1623 unsigned long flags;
1624
1625 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1626 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1627 pmen &= ~DMA_PMEN_EPM;
1628 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1629
1630 /* wait for the protected region status bit to clear */
1631 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1632 readl, !(pmen & DMA_PMEN_PRS), pmen);
1633
1634 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1635 }
1636
1637 static void iommu_enable_translation(struct intel_iommu *iommu)
1638 {
1639 u32 sts;
1640 unsigned long flags;
1641
1642 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1643 iommu->gcmd |= DMA_GCMD_TE;
1644 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1645
1646 /* Make sure hardware complete it */
1647 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1648 readl, (sts & DMA_GSTS_TES), sts);
1649
1650 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1651 }
1652
1653 static void iommu_disable_translation(struct intel_iommu *iommu)
1654 {
1655 u32 sts;
1656 unsigned long flag;
1657
1658 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1659 iommu->gcmd &= ~DMA_GCMD_TE;
1660 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1661
1662 /* Make sure hardware complete it */
1663 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1664 readl, (!(sts & DMA_GSTS_TES)), sts);
1665
1666 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1667 }
1668
1669
1670 static int iommu_init_domains(struct intel_iommu *iommu)
1671 {
1672 u32 ndomains, nlongs;
1673 size_t size;
1674
1675 ndomains = cap_ndoms(iommu->cap);
1676 pr_debug("%s: Number of Domains supported <%d>\n",
1677 iommu->name, ndomains);
1678 nlongs = BITS_TO_LONGS(ndomains);
1679
1680 spin_lock_init(&iommu->lock);
1681
1682 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1683 if (!iommu->domain_ids) {
1684 pr_err("%s: Allocating domain id array failed\n",
1685 iommu->name);
1686 return -ENOMEM;
1687 }
1688
1689 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1690 iommu->domains = kzalloc(size, GFP_KERNEL);
1691
1692 if (iommu->domains) {
1693 size = 256 * sizeof(struct dmar_domain *);
1694 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1695 }
1696
1697 if (!iommu->domains || !iommu->domains[0]) {
1698 pr_err("%s: Allocating domain array failed\n",
1699 iommu->name);
1700 kfree(iommu->domain_ids);
1701 kfree(iommu->domains);
1702 iommu->domain_ids = NULL;
1703 iommu->domains = NULL;
1704 return -ENOMEM;
1705 }
1706
1707
1708
1709 /*
1710 * If Caching mode is set, then invalid translations are tagged
1711 * with domain-id 0, hence we need to pre-allocate it. We also
1712 * use domain-id 0 as a marker for non-allocated domain-id, so
1713 * make sure it is not used for a real domain.
1714 */
1715 set_bit(0, iommu->domain_ids);
1716
1717 return 0;
1718 }
1719
1720 static void disable_dmar_iommu(struct intel_iommu *iommu)
1721 {
1722 struct device_domain_info *info, *tmp;
1723 unsigned long flags;
1724
1725 if (!iommu->domains || !iommu->domain_ids)
1726 return;
1727
1728 again:
1729 spin_lock_irqsave(&device_domain_lock, flags);
1730 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1731 struct dmar_domain *domain;
1732
1733 if (info->iommu != iommu)
1734 continue;
1735
1736 if (!info->dev || !info->domain)
1737 continue;
1738
1739 domain = info->domain;
1740
1741 __dmar_remove_one_dev_info(info);
1742
1743 if (!domain_type_is_vm_or_si(domain)) {
1744 /*
1745 * The domain_exit() function can't be called under
1746 * device_domain_lock, as it takes this lock itself.
1747 * So release the lock here and re-run the loop
1748 * afterwards.
1749 */
1750 spin_unlock_irqrestore(&device_domain_lock, flags);
1751 domain_exit(domain);
1752 goto again;
1753 }
1754 }
1755 spin_unlock_irqrestore(&device_domain_lock, flags);
1756
1757 if (iommu->gcmd & DMA_GCMD_TE)
1758 iommu_disable_translation(iommu);
1759 }
1760
1761 static void free_dmar_iommu(struct intel_iommu *iommu)
1762 {
1763 if ((iommu->domains) && (iommu->domain_ids)) {
1764 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1765 int i;
1766
1767 for (i = 0; i < elems; i++)
1768 kfree(iommu->domains[i]);
1769 kfree(iommu->domains);
1770 kfree(iommu->domain_ids);
1771 iommu->domains = NULL;
1772 iommu->domain_ids = NULL;
1773 }
1774
1775 g_iommus[iommu->seq_id] = NULL;
1776
1777 /* free context mapping */
1778 free_context_table(iommu);
1779
1780 #ifdef CONFIG_INTEL_IOMMU_SVM
1781 if (pasid_enabled(iommu)) {
1782 if (ecap_prs(iommu->ecap))
1783 intel_svm_finish_prq(iommu);
1784 intel_svm_free_pasid_tables(iommu);
1785 }
1786 #endif
1787 }
1788
1789 static struct dmar_domain *alloc_domain(int flags)
1790 {
1791 struct dmar_domain *domain;
1792
1793 domain = alloc_domain_mem();
1794 if (!domain)
1795 return NULL;
1796
1797 memset(domain, 0, sizeof(*domain));
1798 domain->nid = -1;
1799 domain->flags = flags;
1800 domain->has_iotlb_device = false;
1801 INIT_LIST_HEAD(&domain->devices);
1802
1803 return domain;
1804 }
1805
1806 /* Must be called with iommu->lock */
1807 static int domain_attach_iommu(struct dmar_domain *domain,
1808 struct intel_iommu *iommu)
1809 {
1810 unsigned long ndomains;
1811 int num;
1812
1813 assert_spin_locked(&device_domain_lock);
1814 assert_spin_locked(&iommu->lock);
1815
1816 domain->iommu_refcnt[iommu->seq_id] += 1;
1817 domain->iommu_count += 1;
1818 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1819 ndomains = cap_ndoms(iommu->cap);
1820 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1821
1822 if (num >= ndomains) {
1823 pr_err("%s: No free domain ids\n", iommu->name);
1824 domain->iommu_refcnt[iommu->seq_id] -= 1;
1825 domain->iommu_count -= 1;
1826 return -ENOSPC;
1827 }
1828
1829 set_bit(num, iommu->domain_ids);
1830 set_iommu_domain(iommu, num, domain);
1831
1832 domain->iommu_did[iommu->seq_id] = num;
1833 domain->nid = iommu->node;
1834
1835 domain_update_iommu_cap(domain);
1836 }
1837
1838 return 0;
1839 }
1840
1841 static int domain_detach_iommu(struct dmar_domain *domain,
1842 struct intel_iommu *iommu)
1843 {
1844 int num, count = INT_MAX;
1845
1846 assert_spin_locked(&device_domain_lock);
1847 assert_spin_locked(&iommu->lock);
1848
1849 domain->iommu_refcnt[iommu->seq_id] -= 1;
1850 count = --domain->iommu_count;
1851 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1852 num = domain->iommu_did[iommu->seq_id];
1853 clear_bit(num, iommu->domain_ids);
1854 set_iommu_domain(iommu, num, NULL);
1855
1856 domain_update_iommu_cap(domain);
1857 domain->iommu_did[iommu->seq_id] = 0;
1858 }
1859
1860 return count;
1861 }
1862
1863 static struct iova_domain reserved_iova_list;
1864 static struct lock_class_key reserved_rbtree_key;
1865
1866 static int dmar_init_reserved_ranges(void)
1867 {
1868 struct pci_dev *pdev = NULL;
1869 struct iova *iova;
1870 int i;
1871
1872 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1873 DMA_32BIT_PFN);
1874
1875 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1876 &reserved_rbtree_key);
1877
1878 /* IOAPIC ranges shouldn't be accessed by DMA */
1879 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1880 IOVA_PFN(IOAPIC_RANGE_END));
1881 if (!iova) {
1882 pr_err("Reserve IOAPIC range failed\n");
1883 return -ENODEV;
1884 }
1885
1886 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1887 for_each_pci_dev(pdev) {
1888 struct resource *r;
1889
1890 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1891 r = &pdev->resource[i];
1892 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1893 continue;
1894 iova = reserve_iova(&reserved_iova_list,
1895 IOVA_PFN(r->start),
1896 IOVA_PFN(r->end));
1897 if (!iova) {
1898 pr_err("Reserve iova failed\n");
1899 return -ENODEV;
1900 }
1901 }
1902 }
1903 return 0;
1904 }
1905
1906 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1907 {
1908 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1909 }
1910
1911 static inline int guestwidth_to_adjustwidth(int gaw)
1912 {
1913 int agaw;
1914 int r = (gaw - 12) % 9;
1915
1916 if (r == 0)
1917 agaw = gaw;
1918 else
1919 agaw = gaw + 9 - r;
1920 if (agaw > 64)
1921 agaw = 64;
1922 return agaw;
1923 }
1924
1925 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1926 int guest_width)
1927 {
1928 int adjust_width, agaw;
1929 unsigned long sagaw;
1930
1931 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1932 DMA_32BIT_PFN);
1933 domain_reserve_special_ranges(domain);
1934
1935 /* calculate AGAW */
1936 if (guest_width > cap_mgaw(iommu->cap))
1937 guest_width = cap_mgaw(iommu->cap);
1938 domain->gaw = guest_width;
1939 adjust_width = guestwidth_to_adjustwidth(guest_width);
1940 agaw = width_to_agaw(adjust_width);
1941 sagaw = cap_sagaw(iommu->cap);
1942 if (!test_bit(agaw, &sagaw)) {
1943 /* hardware doesn't support it, choose a bigger one */
1944 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1945 agaw = find_next_bit(&sagaw, 5, agaw);
1946 if (agaw >= 5)
1947 return -ENODEV;
1948 }
1949 domain->agaw = agaw;
1950
1951 if (ecap_coherent(iommu->ecap))
1952 domain->iommu_coherency = 1;
1953 else
1954 domain->iommu_coherency = 0;
1955
1956 if (ecap_sc_support(iommu->ecap))
1957 domain->iommu_snooping = 1;
1958 else
1959 domain->iommu_snooping = 0;
1960
1961 if (intel_iommu_superpage)
1962 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1963 else
1964 domain->iommu_superpage = 0;
1965
1966 domain->nid = iommu->node;
1967
1968 /* always allocate the top pgd */
1969 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1970 if (!domain->pgd)
1971 return -ENOMEM;
1972 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1973 return 0;
1974 }
1975
1976 static void domain_exit(struct dmar_domain *domain)
1977 {
1978 struct page *freelist = NULL;
1979
1980 /* Domain 0 is reserved, so dont process it */
1981 if (!domain)
1982 return;
1983
1984 /* Flush any lazy unmaps that may reference this domain */
1985 if (!intel_iommu_strict) {
1986 int cpu;
1987
1988 for_each_possible_cpu(cpu)
1989 flush_unmaps_timeout(cpu);
1990 }
1991
1992 /* Remove associated devices and clear attached or cached domains */
1993 rcu_read_lock();
1994 domain_remove_dev_info(domain);
1995 rcu_read_unlock();
1996
1997 /* destroy iovas */
1998 put_iova_domain(&domain->iovad);
1999
2000 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2001
2002 dma_free_pagelist(freelist);
2003
2004 free_domain_mem(domain);
2005 }
2006
2007 static int domain_context_mapping_one(struct dmar_domain *domain,
2008 struct intel_iommu *iommu,
2009 u8 bus, u8 devfn)
2010 {
2011 u16 did = domain->iommu_did[iommu->seq_id];
2012 int translation = CONTEXT_TT_MULTI_LEVEL;
2013 struct device_domain_info *info = NULL;
2014 struct context_entry *context;
2015 unsigned long flags;
2016 struct dma_pte *pgd;
2017 int ret, agaw;
2018
2019 WARN_ON(did == 0);
2020
2021 if (hw_pass_through && domain_type_is_si(domain))
2022 translation = CONTEXT_TT_PASS_THROUGH;
2023
2024 pr_debug("Set context mapping for %02x:%02x.%d\n",
2025 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2026
2027 BUG_ON(!domain->pgd);
2028
2029 spin_lock_irqsave(&device_domain_lock, flags);
2030 spin_lock(&iommu->lock);
2031
2032 ret = -ENOMEM;
2033 context = iommu_context_addr(iommu, bus, devfn, 1);
2034 if (!context)
2035 goto out_unlock;
2036
2037 ret = 0;
2038 if (context_present(context))
2039 goto out_unlock;
2040
2041 /*
2042 * For kdump cases, old valid entries may be cached due to the
2043 * in-flight DMA and copied pgtable, but there is no unmapping
2044 * behaviour for them, thus we need an explicit cache flush for
2045 * the newly-mapped device. For kdump, at this point, the device
2046 * is supposed to finish reset at its driver probe stage, so no
2047 * in-flight DMA will exist, and we don't need to worry anymore
2048 * hereafter.
2049 */
2050 if (context_copied(context)) {
2051 u16 did_old = context_domain_id(context);
2052
2053 if (did_old >= 0 && did_old < cap_ndoms(iommu->cap))
2054 iommu->flush.flush_context(iommu, did_old,
2055 (((u16)bus) << 8) | devfn,
2056 DMA_CCMD_MASK_NOBIT,
2057 DMA_CCMD_DEVICE_INVL);
2058 }
2059
2060 pgd = domain->pgd;
2061
2062 context_clear_entry(context);
2063 context_set_domain_id(context, did);
2064
2065 /*
2066 * Skip top levels of page tables for iommu which has less agaw
2067 * than default. Unnecessary for PT mode.
2068 */
2069 if (translation != CONTEXT_TT_PASS_THROUGH) {
2070 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2071 ret = -ENOMEM;
2072 pgd = phys_to_virt(dma_pte_addr(pgd));
2073 if (!dma_pte_present(pgd))
2074 goto out_unlock;
2075 }
2076
2077 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2078 if (info && info->ats_supported)
2079 translation = CONTEXT_TT_DEV_IOTLB;
2080 else
2081 translation = CONTEXT_TT_MULTI_LEVEL;
2082
2083 context_set_address_root(context, virt_to_phys(pgd));
2084 context_set_address_width(context, iommu->agaw);
2085 } else {
2086 /*
2087 * In pass through mode, AW must be programmed to
2088 * indicate the largest AGAW value supported by
2089 * hardware. And ASR is ignored by hardware.
2090 */
2091 context_set_address_width(context, iommu->msagaw);
2092 }
2093
2094 context_set_translation_type(context, translation);
2095 context_set_fault_enable(context);
2096 context_set_present(context);
2097 domain_flush_cache(domain, context, sizeof(*context));
2098
2099 /*
2100 * It's a non-present to present mapping. If hardware doesn't cache
2101 * non-present entry we only need to flush the write-buffer. If the
2102 * _does_ cache non-present entries, then it does so in the special
2103 * domain #0, which we have to flush:
2104 */
2105 if (cap_caching_mode(iommu->cap)) {
2106 iommu->flush.flush_context(iommu, 0,
2107 (((u16)bus) << 8) | devfn,
2108 DMA_CCMD_MASK_NOBIT,
2109 DMA_CCMD_DEVICE_INVL);
2110 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2111 } else {
2112 iommu_flush_write_buffer(iommu);
2113 }
2114 iommu_enable_dev_iotlb(info);
2115
2116 ret = 0;
2117
2118 out_unlock:
2119 spin_unlock(&iommu->lock);
2120 spin_unlock_irqrestore(&device_domain_lock, flags);
2121
2122 return ret;
2123 }
2124
2125 struct domain_context_mapping_data {
2126 struct dmar_domain *domain;
2127 struct intel_iommu *iommu;
2128 };
2129
2130 static int domain_context_mapping_cb(struct pci_dev *pdev,
2131 u16 alias, void *opaque)
2132 {
2133 struct domain_context_mapping_data *data = opaque;
2134
2135 return domain_context_mapping_one(data->domain, data->iommu,
2136 PCI_BUS_NUM(alias), alias & 0xff);
2137 }
2138
2139 static int
2140 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2141 {
2142 struct intel_iommu *iommu;
2143 u8 bus, devfn;
2144 struct domain_context_mapping_data data;
2145
2146 iommu = device_to_iommu(dev, &bus, &devfn);
2147 if (!iommu)
2148 return -ENODEV;
2149
2150 if (!dev_is_pci(dev))
2151 return domain_context_mapping_one(domain, iommu, bus, devfn);
2152
2153 data.domain = domain;
2154 data.iommu = iommu;
2155
2156 return pci_for_each_dma_alias(to_pci_dev(dev),
2157 &domain_context_mapping_cb, &data);
2158 }
2159
2160 static int domain_context_mapped_cb(struct pci_dev *pdev,
2161 u16 alias, void *opaque)
2162 {
2163 struct intel_iommu *iommu = opaque;
2164
2165 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2166 }
2167
2168 static int domain_context_mapped(struct device *dev)
2169 {
2170 struct intel_iommu *iommu;
2171 u8 bus, devfn;
2172
2173 iommu = device_to_iommu(dev, &bus, &devfn);
2174 if (!iommu)
2175 return -ENODEV;
2176
2177 if (!dev_is_pci(dev))
2178 return device_context_mapped(iommu, bus, devfn);
2179
2180 return !pci_for_each_dma_alias(to_pci_dev(dev),
2181 domain_context_mapped_cb, iommu);
2182 }
2183
2184 /* Returns a number of VTD pages, but aligned to MM page size */
2185 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2186 size_t size)
2187 {
2188 host_addr &= ~PAGE_MASK;
2189 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2190 }
2191
2192 /* Return largest possible superpage level for a given mapping */
2193 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2194 unsigned long iov_pfn,
2195 unsigned long phy_pfn,
2196 unsigned long pages)
2197 {
2198 int support, level = 1;
2199 unsigned long pfnmerge;
2200
2201 support = domain->iommu_superpage;
2202
2203 /* To use a large page, the virtual *and* physical addresses
2204 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2205 of them will mean we have to use smaller pages. So just
2206 merge them and check both at once. */
2207 pfnmerge = iov_pfn | phy_pfn;
2208
2209 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2210 pages >>= VTD_STRIDE_SHIFT;
2211 if (!pages)
2212 break;
2213 pfnmerge >>= VTD_STRIDE_SHIFT;
2214 level++;
2215 support--;
2216 }
2217 return level;
2218 }
2219
2220 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2221 struct scatterlist *sg, unsigned long phys_pfn,
2222 unsigned long nr_pages, int prot)
2223 {
2224 struct dma_pte *first_pte = NULL, *pte = NULL;
2225 phys_addr_t uninitialized_var(pteval);
2226 unsigned long sg_res = 0;
2227 unsigned int largepage_lvl = 0;
2228 unsigned long lvl_pages = 0;
2229
2230 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2231
2232 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2233 return -EINVAL;
2234
2235 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2236
2237 if (!sg) {
2238 sg_res = nr_pages;
2239 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2240 }
2241
2242 while (nr_pages > 0) {
2243 uint64_t tmp;
2244
2245 if (!sg_res) {
2246 sg_res = aligned_nrpages(sg->offset, sg->length);
2247 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2248 sg->dma_length = sg->length;
2249 pteval = page_to_phys(sg_page(sg)) | prot;
2250 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2251 }
2252
2253 if (!pte) {
2254 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2255
2256 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2257 if (!pte)
2258 return -ENOMEM;
2259 /* It is large page*/
2260 if (largepage_lvl > 1) {
2261 unsigned long nr_superpages, end_pfn;
2262
2263 pteval |= DMA_PTE_LARGE_PAGE;
2264 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2265
2266 nr_superpages = sg_res / lvl_pages;
2267 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2268
2269 /*
2270 * Ensure that old small page tables are
2271 * removed to make room for superpage(s).
2272 */
2273 dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
2274 } else {
2275 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2276 }
2277
2278 }
2279 /* We don't need lock here, nobody else
2280 * touches the iova range
2281 */
2282 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2283 if (tmp) {
2284 static int dumps = 5;
2285 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2286 iov_pfn, tmp, (unsigned long long)pteval);
2287 if (dumps) {
2288 dumps--;
2289 debug_dma_dump_mappings(NULL);
2290 }
2291 WARN_ON(1);
2292 }
2293
2294 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2295
2296 BUG_ON(nr_pages < lvl_pages);
2297 BUG_ON(sg_res < lvl_pages);
2298
2299 nr_pages -= lvl_pages;
2300 iov_pfn += lvl_pages;
2301 phys_pfn += lvl_pages;
2302 pteval += lvl_pages * VTD_PAGE_SIZE;
2303 sg_res -= lvl_pages;
2304
2305 /* If the next PTE would be the first in a new page, then we
2306 need to flush the cache on the entries we've just written.
2307 And then we'll need to recalculate 'pte', so clear it and
2308 let it get set again in the if (!pte) block above.
2309
2310 If we're done (!nr_pages) we need to flush the cache too.
2311
2312 Also if we've been setting superpages, we may need to
2313 recalculate 'pte' and switch back to smaller pages for the
2314 end of the mapping, if the trailing size is not enough to
2315 use another superpage (i.e. sg_res < lvl_pages). */
2316 pte++;
2317 if (!nr_pages || first_pte_in_page(pte) ||
2318 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2319 domain_flush_cache(domain, first_pte,
2320 (void *)pte - (void *)first_pte);
2321 pte = NULL;
2322 }
2323
2324 if (!sg_res && nr_pages)
2325 sg = sg_next(sg);
2326 }
2327 return 0;
2328 }
2329
2330 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2331 struct scatterlist *sg, unsigned long nr_pages,
2332 int prot)
2333 {
2334 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2335 }
2336
2337 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2338 unsigned long phys_pfn, unsigned long nr_pages,
2339 int prot)
2340 {
2341 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2342 }
2343
2344 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2345 {
2346 if (!iommu)
2347 return;
2348
2349 clear_context_table(iommu, bus, devfn);
2350 iommu->flush.flush_context(iommu, 0, 0, 0,
2351 DMA_CCMD_GLOBAL_INVL);
2352 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2353 }
2354
2355 static inline void unlink_domain_info(struct device_domain_info *info)
2356 {
2357 assert_spin_locked(&device_domain_lock);
2358 list_del(&info->link);
2359 list_del(&info->global);
2360 if (info->dev)
2361 info->dev->archdata.iommu = NULL;
2362 }
2363
2364 static void domain_remove_dev_info(struct dmar_domain *domain)
2365 {
2366 struct device_domain_info *info, *tmp;
2367 unsigned long flags;
2368
2369 spin_lock_irqsave(&device_domain_lock, flags);
2370 list_for_each_entry_safe(info, tmp, &domain->devices, link)
2371 __dmar_remove_one_dev_info(info);
2372 spin_unlock_irqrestore(&device_domain_lock, flags);
2373 }
2374
2375 /*
2376 * find_domain
2377 * Note: we use struct device->archdata.iommu stores the info
2378 */
2379 static struct dmar_domain *find_domain(struct device *dev)
2380 {
2381 struct device_domain_info *info;
2382
2383 /* No lock here, assumes no domain exit in normal case */
2384 info = dev->archdata.iommu;
2385 if (info)
2386 return info->domain;
2387 return NULL;
2388 }
2389
2390 static inline struct device_domain_info *
2391 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2392 {
2393 struct device_domain_info *info;
2394
2395 list_for_each_entry(info, &device_domain_list, global)
2396 if (info->iommu->segment == segment && info->bus == bus &&
2397 info->devfn == devfn)
2398 return info;
2399
2400 return NULL;
2401 }
2402
2403 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2404 int bus, int devfn,
2405 struct device *dev,
2406 struct dmar_domain *domain)
2407 {
2408 struct dmar_domain *found = NULL;
2409 struct device_domain_info *info;
2410 unsigned long flags;
2411 int ret;
2412
2413 info = alloc_devinfo_mem();
2414 if (!info)
2415 return NULL;
2416
2417 info->bus = bus;
2418 info->devfn = devfn;
2419 info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2420 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2421 info->ats_qdep = 0;
2422 info->dev = dev;
2423 info->domain = domain;
2424 info->iommu = iommu;
2425
2426 if (dev && dev_is_pci(dev)) {
2427 struct pci_dev *pdev = to_pci_dev(info->dev);
2428
2429 if (ecap_dev_iotlb_support(iommu->ecap) &&
2430 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2431 dmar_find_matched_atsr_unit(pdev))
2432 info->ats_supported = 1;
2433
2434 if (ecs_enabled(iommu)) {
2435 if (pasid_enabled(iommu)) {
2436 int features = pci_pasid_features(pdev);
2437 if (features >= 0)
2438 info->pasid_supported = features | 1;
2439 }
2440
2441 if (info->ats_supported && ecap_prs(iommu->ecap) &&
2442 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2443 info->pri_supported = 1;
2444 }
2445 }
2446
2447 spin_lock_irqsave(&device_domain_lock, flags);
2448 if (dev)
2449 found = find_domain(dev);
2450
2451 if (!found) {
2452 struct device_domain_info *info2;
2453 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2454 if (info2) {
2455 found = info2->domain;
2456 info2->dev = dev;
2457 }
2458 }
2459
2460 if (found) {
2461 spin_unlock_irqrestore(&device_domain_lock, flags);
2462 free_devinfo_mem(info);
2463 /* Caller must free the original domain */
2464 return found;
2465 }
2466
2467 spin_lock(&iommu->lock);
2468 ret = domain_attach_iommu(domain, iommu);
2469 spin_unlock(&iommu->lock);
2470
2471 if (ret) {
2472 spin_unlock_irqrestore(&device_domain_lock, flags);
2473 free_devinfo_mem(info);
2474 return NULL;
2475 }
2476
2477 list_add(&info->link, &domain->devices);
2478 list_add(&info->global, &device_domain_list);
2479 if (dev)
2480 dev->archdata.iommu = info;
2481 spin_unlock_irqrestore(&device_domain_lock, flags);
2482
2483 if (dev && domain_context_mapping(domain, dev)) {
2484 pr_err("Domain context map for %s failed\n", dev_name(dev));
2485 dmar_remove_one_dev_info(domain, dev);
2486 return NULL;
2487 }
2488
2489 return domain;
2490 }
2491
2492 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2493 {
2494 *(u16 *)opaque = alias;
2495 return 0;
2496 }
2497
2498 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2499 {
2500 struct device_domain_info *info = NULL;
2501 struct dmar_domain *domain = NULL;
2502 struct intel_iommu *iommu;
2503 u16 req_id, dma_alias;
2504 unsigned long flags;
2505 u8 bus, devfn;
2506
2507 iommu = device_to_iommu(dev, &bus, &devfn);
2508 if (!iommu)
2509 return NULL;
2510
2511 req_id = ((u16)bus << 8) | devfn;
2512
2513 if (dev_is_pci(dev)) {
2514 struct pci_dev *pdev = to_pci_dev(dev);
2515
2516 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2517
2518 spin_lock_irqsave(&device_domain_lock, flags);
2519 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2520 PCI_BUS_NUM(dma_alias),
2521 dma_alias & 0xff);
2522 if (info) {
2523 iommu = info->iommu;
2524 domain = info->domain;
2525 }
2526 spin_unlock_irqrestore(&device_domain_lock, flags);
2527
2528 /* DMA alias already has a domain, use it */
2529 if (info)
2530 goto out;
2531 }
2532
2533 /* Allocate and initialize new domain for the device */
2534 domain = alloc_domain(0);
2535 if (!domain)
2536 return NULL;
2537 if (domain_init(domain, iommu, gaw)) {
2538 domain_exit(domain);
2539 return NULL;
2540 }
2541
2542 out:
2543
2544 return domain;
2545 }
2546
2547 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2548 struct dmar_domain *domain)
2549 {
2550 struct intel_iommu *iommu;
2551 struct dmar_domain *tmp;
2552 u16 req_id, dma_alias;
2553 u8 bus, devfn;
2554
2555 iommu = device_to_iommu(dev, &bus, &devfn);
2556 if (!iommu)
2557 return NULL;
2558
2559 req_id = ((u16)bus << 8) | devfn;
2560
2561 if (dev_is_pci(dev)) {
2562 struct pci_dev *pdev = to_pci_dev(dev);
2563
2564 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2565
2566 /* register PCI DMA alias device */
2567 if (req_id != dma_alias) {
2568 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2569 dma_alias & 0xff, NULL, domain);
2570
2571 if (!tmp || tmp != domain)
2572 return tmp;
2573 }
2574 }
2575
2576 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2577 if (!tmp || tmp != domain)
2578 return tmp;
2579
2580 return domain;
2581 }
2582
2583 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2584 {
2585 struct dmar_domain *domain, *tmp;
2586
2587 domain = find_domain(dev);
2588 if (domain)
2589 goto out;
2590
2591 domain = find_or_alloc_domain(dev, gaw);
2592 if (!domain)
2593 goto out;
2594
2595 tmp = set_domain_for_dev(dev, domain);
2596 if (!tmp || domain != tmp) {
2597 domain_exit(domain);
2598 domain = tmp;
2599 }
2600
2601 out:
2602
2603 return domain;
2604 }
2605
2606 static int iommu_domain_identity_map(struct dmar_domain *domain,
2607 unsigned long long start,
2608 unsigned long long end)
2609 {
2610 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2611 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2612
2613 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2614 dma_to_mm_pfn(last_vpfn))) {
2615 pr_err("Reserving iova failed\n");
2616 return -ENOMEM;
2617 }
2618
2619 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2620 /*
2621 * RMRR range might have overlap with physical memory range,
2622 * clear it first
2623 */
2624 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2625
2626 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2627 last_vpfn - first_vpfn + 1,
2628 DMA_PTE_READ|DMA_PTE_WRITE);
2629 }
2630
2631 static int domain_prepare_identity_map(struct device *dev,
2632 struct dmar_domain *domain,
2633 unsigned long long start,
2634 unsigned long long end)
2635 {
2636 /* For _hardware_ passthrough, don't bother. But for software
2637 passthrough, we do it anyway -- it may indicate a memory
2638 range which is reserved in E820, so which didn't get set
2639 up to start with in si_domain */
2640 if (domain == si_domain && hw_pass_through) {
2641 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2642 dev_name(dev), start, end);
2643 return 0;
2644 }
2645
2646 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2647 dev_name(dev), start, end);
2648
2649 if (end < start) {
2650 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2651 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2652 dmi_get_system_info(DMI_BIOS_VENDOR),
2653 dmi_get_system_info(DMI_BIOS_VERSION),
2654 dmi_get_system_info(DMI_PRODUCT_VERSION));
2655 return -EIO;
2656 }
2657
2658 if (end >> agaw_to_width(domain->agaw)) {
2659 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2660 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2661 agaw_to_width(domain->agaw),
2662 dmi_get_system_info(DMI_BIOS_VENDOR),
2663 dmi_get_system_info(DMI_BIOS_VERSION),
2664 dmi_get_system_info(DMI_PRODUCT_VERSION));
2665 return -EIO;
2666 }
2667
2668 return iommu_domain_identity_map(domain, start, end);
2669 }
2670
2671 static int iommu_prepare_identity_map(struct device *dev,
2672 unsigned long long start,
2673 unsigned long long end)
2674 {
2675 struct dmar_domain *domain;
2676 int ret;
2677
2678 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2679 if (!domain)
2680 return -ENOMEM;
2681
2682 ret = domain_prepare_identity_map(dev, domain, start, end);
2683 if (ret)
2684 domain_exit(domain);
2685
2686 return ret;
2687 }
2688
2689 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2690 struct device *dev)
2691 {
2692 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2693 return 0;
2694 return iommu_prepare_identity_map(dev, rmrr->base_address,
2695 rmrr->end_address);
2696 }
2697
2698 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2699 static inline void iommu_prepare_isa(void)
2700 {
2701 struct pci_dev *pdev;
2702 int ret;
2703
2704 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2705 if (!pdev)
2706 return;
2707
2708 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2709 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2710
2711 if (ret)
2712 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2713
2714 pci_dev_put(pdev);
2715 }
2716 #else
2717 static inline void iommu_prepare_isa(void)
2718 {
2719 return;
2720 }
2721 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2722
2723 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2724
2725 static int __init si_domain_init(int hw)
2726 {
2727 int nid, ret = 0;
2728
2729 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2730 if (!si_domain)
2731 return -EFAULT;
2732
2733 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2734 domain_exit(si_domain);
2735 return -EFAULT;
2736 }
2737
2738 pr_debug("Identity mapping domain allocated\n");
2739
2740 if (hw)
2741 return 0;
2742
2743 for_each_online_node(nid) {
2744 unsigned long start_pfn, end_pfn;
2745 int i;
2746
2747 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2748 ret = iommu_domain_identity_map(si_domain,
2749 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2750 if (ret)
2751 return ret;
2752 }
2753 }
2754
2755 return 0;
2756 }
2757
2758 static int identity_mapping(struct device *dev)
2759 {
2760 struct device_domain_info *info;
2761
2762 if (likely(!iommu_identity_mapping))
2763 return 0;
2764
2765 info = dev->archdata.iommu;
2766 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2767 return (info->domain == si_domain);
2768
2769 return 0;
2770 }
2771
2772 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2773 {
2774 struct dmar_domain *ndomain;
2775 struct intel_iommu *iommu;
2776 u8 bus, devfn;
2777
2778 iommu = device_to_iommu(dev, &bus, &devfn);
2779 if (!iommu)
2780 return -ENODEV;
2781
2782 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2783 if (ndomain != domain)
2784 return -EBUSY;
2785
2786 return 0;
2787 }
2788
2789 static bool device_has_rmrr(struct device *dev)
2790 {
2791 struct dmar_rmrr_unit *rmrr;
2792 struct device *tmp;
2793 int i;
2794
2795 rcu_read_lock();
2796 for_each_rmrr_units(rmrr) {
2797 /*
2798 * Return TRUE if this RMRR contains the device that
2799 * is passed in.
2800 */
2801 for_each_active_dev_scope(rmrr->devices,
2802 rmrr->devices_cnt, i, tmp)
2803 if (tmp == dev) {
2804 rcu_read_unlock();
2805 return true;
2806 }
2807 }
2808 rcu_read_unlock();
2809 return false;
2810 }
2811
2812 /*
2813 * There are a couple cases where we need to restrict the functionality of
2814 * devices associated with RMRRs. The first is when evaluating a device for
2815 * identity mapping because problems exist when devices are moved in and out
2816 * of domains and their respective RMRR information is lost. This means that
2817 * a device with associated RMRRs will never be in a "passthrough" domain.
2818 * The second is use of the device through the IOMMU API. This interface
2819 * expects to have full control of the IOVA space for the device. We cannot
2820 * satisfy both the requirement that RMRR access is maintained and have an
2821 * unencumbered IOVA space. We also have no ability to quiesce the device's
2822 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2823 * We therefore prevent devices associated with an RMRR from participating in
2824 * the IOMMU API, which eliminates them from device assignment.
2825 *
2826 * In both cases we assume that PCI USB devices with RMRRs have them largely
2827 * for historical reasons and that the RMRR space is not actively used post
2828 * boot. This exclusion may change if vendors begin to abuse it.
2829 *
2830 * The same exception is made for graphics devices, with the requirement that
2831 * any use of the RMRR regions will be torn down before assigning the device
2832 * to a guest.
2833 */
2834 static bool device_is_rmrr_locked(struct device *dev)
2835 {
2836 if (!device_has_rmrr(dev))
2837 return false;
2838
2839 if (dev_is_pci(dev)) {
2840 struct pci_dev *pdev = to_pci_dev(dev);
2841
2842 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2843 return false;
2844 }
2845
2846 return true;
2847 }
2848
2849 static int iommu_should_identity_map(struct device *dev, int startup)
2850 {
2851
2852 if (dev_is_pci(dev)) {
2853 struct pci_dev *pdev = to_pci_dev(dev);
2854
2855 if (device_is_rmrr_locked(dev))
2856 return 0;
2857
2858 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2859 return 1;
2860
2861 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2862 return 1;
2863
2864 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2865 return 0;
2866
2867 /*
2868 * We want to start off with all devices in the 1:1 domain, and
2869 * take them out later if we find they can't access all of memory.
2870 *
2871 * However, we can't do this for PCI devices behind bridges,
2872 * because all PCI devices behind the same bridge will end up
2873 * with the same source-id on their transactions.
2874 *
2875 * Practically speaking, we can't change things around for these
2876 * devices at run-time, because we can't be sure there'll be no
2877 * DMA transactions in flight for any of their siblings.
2878 *
2879 * So PCI devices (unless they're on the root bus) as well as
2880 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2881 * the 1:1 domain, just in _case_ one of their siblings turns out
2882 * not to be able to map all of memory.
2883 */
2884 if (!pci_is_pcie(pdev)) {
2885 if (!pci_is_root_bus(pdev->bus))
2886 return 0;
2887 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2888 return 0;
2889 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2890 return 0;
2891 } else {
2892 if (device_has_rmrr(dev))
2893 return 0;
2894 }
2895
2896 /*
2897 * At boot time, we don't yet know if devices will be 64-bit capable.
2898 * Assume that they will — if they turn out not to be, then we can
2899 * take them out of the 1:1 domain later.
2900 */
2901 if (!startup) {
2902 /*
2903 * If the device's dma_mask is less than the system's memory
2904 * size then this is not a candidate for identity mapping.
2905 */
2906 u64 dma_mask = *dev->dma_mask;
2907
2908 if (dev->coherent_dma_mask &&
2909 dev->coherent_dma_mask < dma_mask)
2910 dma_mask = dev->coherent_dma_mask;
2911
2912 return dma_mask >= dma_get_required_mask(dev);
2913 }
2914
2915 return 1;
2916 }
2917
2918 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2919 {
2920 int ret;
2921
2922 if (!iommu_should_identity_map(dev, 1))
2923 return 0;
2924
2925 ret = domain_add_dev_info(si_domain, dev);
2926 if (!ret)
2927 pr_info("%s identity mapping for device %s\n",
2928 hw ? "Hardware" : "Software", dev_name(dev));
2929 else if (ret == -ENODEV)
2930 /* device not associated with an iommu */
2931 ret = 0;
2932
2933 return ret;
2934 }
2935
2936
2937 static int __init iommu_prepare_static_identity_mapping(int hw)
2938 {
2939 struct pci_dev *pdev = NULL;
2940 struct dmar_drhd_unit *drhd;
2941 struct intel_iommu *iommu;
2942 struct device *dev;
2943 int i;
2944 int ret = 0;
2945
2946 for_each_pci_dev(pdev) {
2947 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2948 if (ret)
2949 return ret;
2950 }
2951
2952 for_each_active_iommu(iommu, drhd)
2953 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2954 struct acpi_device_physical_node *pn;
2955 struct acpi_device *adev;
2956
2957 if (dev->bus != &acpi_bus_type)
2958 continue;
2959
2960 adev= to_acpi_device(dev);
2961 mutex_lock(&adev->physical_node_lock);
2962 list_for_each_entry(pn, &adev->physical_node_list, node) {
2963 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2964 if (ret)
2965 break;
2966 }
2967 mutex_unlock(&adev->physical_node_lock);
2968 if (ret)
2969 return ret;
2970 }
2971
2972 return 0;
2973 }
2974
2975 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2976 {
2977 /*
2978 * Start from the sane iommu hardware state.
2979 * If the queued invalidation is already initialized by us
2980 * (for example, while enabling interrupt-remapping) then
2981 * we got the things already rolling from a sane state.
2982 */
2983 if (!iommu->qi) {
2984 /*
2985 * Clear any previous faults.
2986 */
2987 dmar_fault(-1, iommu);
2988 /*
2989 * Disable queued invalidation if supported and already enabled
2990 * before OS handover.
2991 */
2992 dmar_disable_qi(iommu);
2993 }
2994
2995 if (dmar_enable_qi(iommu)) {
2996 /*
2997 * Queued Invalidate not enabled, use Register Based Invalidate
2998 */
2999 iommu->flush.flush_context = __iommu_flush_context;
3000 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3001 pr_info("%s: Using Register based invalidation\n",
3002 iommu->name);
3003 } else {
3004 iommu->flush.flush_context = qi_flush_context;
3005 iommu->flush.flush_iotlb = qi_flush_iotlb;
3006 pr_info("%s: Using Queued invalidation\n", iommu->name);
3007 }
3008 }
3009
3010 static int copy_context_table(struct intel_iommu *iommu,
3011 struct root_entry *old_re,
3012 struct context_entry **tbl,
3013 int bus, bool ext)
3014 {
3015 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3016 struct context_entry *new_ce = NULL, ce;
3017 struct context_entry *old_ce = NULL;
3018 struct root_entry re;
3019 phys_addr_t old_ce_phys;
3020
3021 tbl_idx = ext ? bus * 2 : bus;
3022 memcpy(&re, old_re, sizeof(re));
3023
3024 for (devfn = 0; devfn < 256; devfn++) {
3025 /* First calculate the correct index */
3026 idx = (ext ? devfn * 2 : devfn) % 256;
3027
3028 if (idx == 0) {
3029 /* First save what we may have and clean up */
3030 if (new_ce) {
3031 tbl[tbl_idx] = new_ce;
3032 __iommu_flush_cache(iommu, new_ce,
3033 VTD_PAGE_SIZE);
3034 pos = 1;
3035 }
3036
3037 if (old_ce)
3038 iounmap(old_ce);
3039
3040 ret = 0;
3041 if (devfn < 0x80)
3042 old_ce_phys = root_entry_lctp(&re);
3043 else
3044 old_ce_phys = root_entry_uctp(&re);
3045
3046 if (!old_ce_phys) {
3047 if (ext && devfn == 0) {
3048 /* No LCTP, try UCTP */
3049 devfn = 0x7f;
3050 continue;
3051 } else {
3052 goto out;
3053 }
3054 }
3055
3056 ret = -ENOMEM;
3057 old_ce = memremap(old_ce_phys, PAGE_SIZE,
3058 MEMREMAP_WB);
3059 if (!old_ce)
3060 goto out;
3061
3062 new_ce = alloc_pgtable_page(iommu->node);
3063 if (!new_ce)
3064 goto out_unmap;
3065
3066 ret = 0;
3067 }
3068
3069 /* Now copy the context entry */
3070 memcpy(&ce, old_ce + idx, sizeof(ce));
3071
3072 if (!__context_present(&ce))
3073 continue;
3074
3075 did = context_domain_id(&ce);
3076 if (did >= 0 && did < cap_ndoms(iommu->cap))
3077 set_bit(did, iommu->domain_ids);
3078
3079 /*
3080 * We need a marker for copied context entries. This
3081 * marker needs to work for the old format as well as
3082 * for extended context entries.
3083 *
3084 * Bit 67 of the context entry is used. In the old
3085 * format this bit is available to software, in the
3086 * extended format it is the PGE bit, but PGE is ignored
3087 * by HW if PASIDs are disabled (and thus still
3088 * available).
3089 *
3090 * So disable PASIDs first and then mark the entry
3091 * copied. This means that we don't copy PASID
3092 * translations from the old kernel, but this is fine as
3093 * faults there are not fatal.
3094 */
3095 context_clear_pasid_enable(&ce);
3096 context_set_copied(&ce);
3097
3098 new_ce[idx] = ce;
3099 }
3100
3101 tbl[tbl_idx + pos] = new_ce;
3102
3103 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3104
3105 out_unmap:
3106 memunmap(old_ce);
3107
3108 out:
3109 return ret;
3110 }
3111
3112 static int copy_translation_tables(struct intel_iommu *iommu)
3113 {
3114 struct context_entry **ctxt_tbls;
3115 struct root_entry *old_rt;
3116 phys_addr_t old_rt_phys;
3117 int ctxt_table_entries;
3118 unsigned long flags;
3119 u64 rtaddr_reg;
3120 int bus, ret;
3121 bool new_ext, ext;
3122
3123 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3124 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
3125 new_ext = !!ecap_ecs(iommu->ecap);
3126
3127 /*
3128 * The RTT bit can only be changed when translation is disabled,
3129 * but disabling translation means to open a window for data
3130 * corruption. So bail out and don't copy anything if we would
3131 * have to change the bit.
3132 */
3133 if (new_ext != ext)
3134 return -EINVAL;
3135
3136 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3137 if (!old_rt_phys)
3138 return -EINVAL;
3139
3140 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3141 if (!old_rt)
3142 return -ENOMEM;
3143
3144 /* This is too big for the stack - allocate it from slab */
3145 ctxt_table_entries = ext ? 512 : 256;
3146 ret = -ENOMEM;
3147 ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3148 if (!ctxt_tbls)
3149 goto out_unmap;
3150
3151 for (bus = 0; bus < 256; bus++) {
3152 ret = copy_context_table(iommu, &old_rt[bus],
3153 ctxt_tbls, bus, ext);
3154 if (ret) {
3155 pr_err("%s: Failed to copy context table for bus %d\n",
3156 iommu->name, bus);
3157 continue;
3158 }
3159 }
3160
3161 spin_lock_irqsave(&iommu->lock, flags);
3162
3163 /* Context tables are copied, now write them to the root_entry table */
3164 for (bus = 0; bus < 256; bus++) {
3165 int idx = ext ? bus * 2 : bus;
3166 u64 val;
3167
3168 if (ctxt_tbls[idx]) {
3169 val = virt_to_phys(ctxt_tbls[idx]) | 1;
3170 iommu->root_entry[bus].lo = val;
3171 }
3172
3173 if (!ext || !ctxt_tbls[idx + 1])
3174 continue;
3175
3176 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3177 iommu->root_entry[bus].hi = val;
3178 }
3179
3180 spin_unlock_irqrestore(&iommu->lock, flags);
3181
3182 kfree(ctxt_tbls);
3183
3184 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3185
3186 ret = 0;
3187
3188 out_unmap:
3189 memunmap(old_rt);
3190
3191 return ret;
3192 }
3193
3194 static int __init init_dmars(void)
3195 {
3196 struct dmar_drhd_unit *drhd;
3197 struct dmar_rmrr_unit *rmrr;
3198 bool copied_tables = false;
3199 struct device *dev;
3200 struct intel_iommu *iommu;
3201 int i, ret, cpu;
3202
3203 /*
3204 * for each drhd
3205 * allocate root
3206 * initialize and program root entry to not present
3207 * endfor
3208 */
3209 for_each_drhd_unit(drhd) {
3210 /*
3211 * lock not needed as this is only incremented in the single
3212 * threaded kernel __init code path all other access are read
3213 * only
3214 */
3215 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3216 g_num_of_iommus++;
3217 continue;
3218 }
3219 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3220 }
3221
3222 /* Preallocate enough resources for IOMMU hot-addition */
3223 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3224 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3225
3226 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3227 GFP_KERNEL);
3228 if (!g_iommus) {
3229 pr_err("Allocating global iommu array failed\n");
3230 ret = -ENOMEM;
3231 goto error;
3232 }
3233
3234 for_each_possible_cpu(cpu) {
3235 struct deferred_flush_data *dfd = per_cpu_ptr(&deferred_flush,
3236 cpu);
3237
3238 dfd->tables = kzalloc(g_num_of_iommus *
3239 sizeof(struct deferred_flush_table),
3240 GFP_KERNEL);
3241 if (!dfd->tables) {
3242 ret = -ENOMEM;
3243 goto free_g_iommus;
3244 }
3245
3246 spin_lock_init(&dfd->lock);
3247 setup_timer(&dfd->timer, flush_unmaps_timeout, cpu);
3248 }
3249
3250 for_each_active_iommu(iommu, drhd) {
3251 g_iommus[iommu->seq_id] = iommu;
3252
3253 intel_iommu_init_qi(iommu);
3254
3255 ret = iommu_init_domains(iommu);
3256 if (ret)
3257 goto free_iommu;
3258
3259 init_translation_status(iommu);
3260
3261 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3262 iommu_disable_translation(iommu);
3263 clear_translation_pre_enabled(iommu);
3264 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3265 iommu->name);
3266 }
3267
3268 /*
3269 * TBD:
3270 * we could share the same root & context tables
3271 * among all IOMMU's. Need to Split it later.
3272 */
3273 ret = iommu_alloc_root_entry(iommu);
3274 if (ret)
3275 goto free_iommu;
3276
3277 if (translation_pre_enabled(iommu)) {
3278 pr_info("Translation already enabled - trying to copy translation structures\n");
3279
3280 ret = copy_translation_tables(iommu);
3281 if (ret) {
3282 /*
3283 * We found the IOMMU with translation
3284 * enabled - but failed to copy over the
3285 * old root-entry table. Try to proceed
3286 * by disabling translation now and
3287 * allocating a clean root-entry table.
3288 * This might cause DMAR faults, but
3289 * probably the dump will still succeed.
3290 */
3291 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3292 iommu->name);
3293 iommu_disable_translation(iommu);
3294 clear_translation_pre_enabled(iommu);
3295 } else {
3296 pr_info("Copied translation tables from previous kernel for %s\n",
3297 iommu->name);
3298 copied_tables = true;
3299 }
3300 }
3301
3302 if (!ecap_pass_through(iommu->ecap))
3303 hw_pass_through = 0;
3304 #ifdef CONFIG_INTEL_IOMMU_SVM
3305 if (pasid_enabled(iommu))
3306 intel_svm_alloc_pasid_tables(iommu);
3307 #endif
3308 }
3309
3310 /*
3311 * Now that qi is enabled on all iommus, set the root entry and flush
3312 * caches. This is required on some Intel X58 chipsets, otherwise the
3313 * flush_context function will loop forever and the boot hangs.
3314 */
3315 for_each_active_iommu(iommu, drhd) {
3316 iommu_flush_write_buffer(iommu);
3317 iommu_set_root_entry(iommu);
3318 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3319 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3320 }
3321
3322 if (iommu_pass_through)
3323 iommu_identity_mapping |= IDENTMAP_ALL;
3324
3325 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3326 iommu_identity_mapping |= IDENTMAP_GFX;
3327 #endif
3328
3329 check_tylersburg_isoch();
3330
3331 if (iommu_identity_mapping) {
3332 ret = si_domain_init(hw_pass_through);
3333 if (ret)
3334 goto free_iommu;
3335 }
3336
3337
3338 /*
3339 * If we copied translations from a previous kernel in the kdump
3340 * case, we can not assign the devices to domains now, as that
3341 * would eliminate the old mappings. So skip this part and defer
3342 * the assignment to device driver initialization time.
3343 */
3344 if (copied_tables)
3345 goto domains_done;
3346
3347 /*
3348 * If pass through is not set or not enabled, setup context entries for
3349 * identity mappings for rmrr, gfx, and isa and may fall back to static
3350 * identity mapping if iommu_identity_mapping is set.
3351 */
3352 if (iommu_identity_mapping) {
3353 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3354 if (ret) {
3355 pr_crit("Failed to setup IOMMU pass-through\n");
3356 goto free_iommu;
3357 }
3358 }
3359 /*
3360 * For each rmrr
3361 * for each dev attached to rmrr
3362 * do
3363 * locate drhd for dev, alloc domain for dev
3364 * allocate free domain
3365 * allocate page table entries for rmrr
3366 * if context not allocated for bus
3367 * allocate and init context
3368 * set present in root table for this bus
3369 * init context with domain, translation etc
3370 * endfor
3371 * endfor
3372 */
3373 pr_info("Setting RMRR:\n");
3374 for_each_rmrr_units(rmrr) {
3375 /* some BIOS lists non-exist devices in DMAR table. */
3376 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3377 i, dev) {
3378 ret = iommu_prepare_rmrr_dev(rmrr, dev);
3379 if (ret)
3380 pr_err("Mapping reserved region failed\n");
3381 }
3382 }
3383
3384 iommu_prepare_isa();
3385
3386 domains_done:
3387
3388 /*
3389 * for each drhd
3390 * enable fault log
3391 * global invalidate context cache
3392 * global invalidate iotlb
3393 * enable translation
3394 */
3395 for_each_iommu(iommu, drhd) {
3396 if (drhd->ignored) {
3397 /*
3398 * we always have to disable PMRs or DMA may fail on
3399 * this device
3400 */
3401 if (force_on)
3402 iommu_disable_protect_mem_regions(iommu);
3403 continue;
3404 }
3405
3406 iommu_flush_write_buffer(iommu);
3407
3408 #ifdef CONFIG_INTEL_IOMMU_SVM
3409 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3410 ret = intel_svm_enable_prq(iommu);
3411 if (ret)
3412 goto free_iommu;
3413 }
3414 #endif
3415 ret = dmar_set_interrupt(iommu);
3416 if (ret)
3417 goto free_iommu;
3418
3419 if (!translation_pre_enabled(iommu))
3420 iommu_enable_translation(iommu);
3421
3422 iommu_disable_protect_mem_regions(iommu);
3423 }
3424
3425 return 0;
3426
3427 free_iommu:
3428 for_each_active_iommu(iommu, drhd) {
3429 disable_dmar_iommu(iommu);
3430 free_dmar_iommu(iommu);
3431 }
3432 free_g_iommus:
3433 for_each_possible_cpu(cpu)
3434 kfree(per_cpu_ptr(&deferred_flush, cpu)->tables);
3435 kfree(g_iommus);
3436 error:
3437 return ret;
3438 }
3439
3440 /* This takes a number of _MM_ pages, not VTD pages */
3441 static unsigned long intel_alloc_iova(struct device *dev,
3442 struct dmar_domain *domain,
3443 unsigned long nrpages, uint64_t dma_mask)
3444 {
3445 unsigned long iova_pfn = 0;
3446
3447 /* Restrict dma_mask to the width that the iommu can handle */
3448 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3449 /* Ensure we reserve the whole size-aligned region */
3450 nrpages = __roundup_pow_of_two(nrpages);
3451
3452 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3453 /*
3454 * First try to allocate an io virtual address in
3455 * DMA_BIT_MASK(32) and if that fails then try allocating
3456 * from higher range
3457 */
3458 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3459 IOVA_PFN(DMA_BIT_MASK(32)));
3460 if (iova_pfn)
3461 return iova_pfn;
3462 }
3463 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, IOVA_PFN(dma_mask));
3464 if (unlikely(!iova_pfn)) {
3465 pr_err("Allocating %ld-page iova for %s failed",
3466 nrpages, dev_name(dev));
3467 return 0;
3468 }
3469
3470 return iova_pfn;
3471 }
3472
3473 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3474 {
3475 struct dmar_domain *domain, *tmp;
3476 struct dmar_rmrr_unit *rmrr;
3477 struct device *i_dev;
3478 int i, ret;
3479
3480 domain = find_domain(dev);
3481 if (domain)
3482 goto out;
3483
3484 domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3485 if (!domain)
3486 goto out;
3487
3488 /* We have a new domain - setup possible RMRRs for the device */
3489 rcu_read_lock();
3490 for_each_rmrr_units(rmrr) {
3491 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3492 i, i_dev) {
3493 if (i_dev != dev)
3494 continue;
3495
3496 ret = domain_prepare_identity_map(dev, domain,
3497 rmrr->base_address,
3498 rmrr->end_address);
3499 if (ret)
3500 dev_err(dev, "Mapping reserved region failed\n");
3501 }
3502 }
3503 rcu_read_unlock();
3504
3505 tmp = set_domain_for_dev(dev, domain);
3506 if (!tmp || domain != tmp) {
3507 domain_exit(domain);
3508 domain = tmp;
3509 }
3510
3511 out:
3512
3513 if (!domain)
3514 pr_err("Allocating domain for %s failed\n", dev_name(dev));
3515
3516
3517 return domain;
3518 }
3519
3520 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3521 {
3522 struct device_domain_info *info;
3523
3524 /* No lock here, assumes no domain exit in normal case */
3525 info = dev->archdata.iommu;
3526 if (likely(info))
3527 return info->domain;
3528
3529 return __get_valid_domain_for_dev(dev);
3530 }
3531
3532 /* Check if the dev needs to go through non-identity map and unmap process.*/
3533 static int iommu_no_mapping(struct device *dev)
3534 {
3535 int found;
3536
3537 if (iommu_dummy(dev))
3538 return 1;
3539
3540 if (!iommu_identity_mapping)
3541 return 0;
3542
3543 found = identity_mapping(dev);
3544 if (found) {
3545 if (iommu_should_identity_map(dev, 0))
3546 return 1;
3547 else {
3548 /*
3549 * 32 bit DMA is removed from si_domain and fall back
3550 * to non-identity mapping.
3551 */
3552 dmar_remove_one_dev_info(si_domain, dev);
3553 pr_info("32bit %s uses non-identity mapping\n",
3554 dev_name(dev));
3555 return 0;
3556 }
3557 } else {
3558 /*
3559 * In case of a detached 64 bit DMA device from vm, the device
3560 * is put into si_domain for identity mapping.
3561 */
3562 if (iommu_should_identity_map(dev, 0)) {
3563 int ret;
3564 ret = domain_add_dev_info(si_domain, dev);
3565 if (!ret) {
3566 pr_info("64bit %s uses identity mapping\n",
3567 dev_name(dev));
3568 return 1;
3569 }
3570 }
3571 }
3572
3573 return 0;
3574 }
3575
3576 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3577 size_t size, int dir, u64 dma_mask)
3578 {
3579 struct dmar_domain *domain;
3580 phys_addr_t start_paddr;
3581 unsigned long iova_pfn;
3582 int prot = 0;
3583 int ret;
3584 struct intel_iommu *iommu;
3585 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3586
3587 BUG_ON(dir == DMA_NONE);
3588
3589 if (iommu_no_mapping(dev))
3590 return paddr;
3591
3592 domain = get_valid_domain_for_dev(dev);
3593 if (!domain)
3594 return 0;
3595
3596 iommu = domain_get_iommu(domain);
3597 size = aligned_nrpages(paddr, size);
3598
3599 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3600 if (!iova_pfn)
3601 goto error;
3602
3603 /*
3604 * Check if DMAR supports zero-length reads on write only
3605 * mappings..
3606 */
3607 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3608 !cap_zlr(iommu->cap))
3609 prot |= DMA_PTE_READ;
3610 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3611 prot |= DMA_PTE_WRITE;
3612 /*
3613 * paddr - (paddr + size) might be partial page, we should map the whole
3614 * page. Note: if two part of one page are separately mapped, we
3615 * might have two guest_addr mapping to the same host paddr, but this
3616 * is not a big problem
3617 */
3618 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3619 mm_to_dma_pfn(paddr_pfn), size, prot);
3620 if (ret)
3621 goto error;
3622
3623 /* it's a non-present to present mapping. Only flush if caching mode */
3624 if (cap_caching_mode(iommu->cap))
3625 iommu_flush_iotlb_psi(iommu, domain,
3626 mm_to_dma_pfn(iova_pfn),
3627 size, 0, 1);
3628 else
3629 iommu_flush_write_buffer(iommu);
3630
3631 start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3632 start_paddr += paddr & ~PAGE_MASK;
3633 return start_paddr;
3634
3635 error:
3636 if (iova_pfn)
3637 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3638 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3639 dev_name(dev), size, (unsigned long long)paddr, dir);
3640 return 0;
3641 }
3642
3643 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3644 unsigned long offset, size_t size,
3645 enum dma_data_direction dir,
3646 unsigned long attrs)
3647 {
3648 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3649 dir, *dev->dma_mask);
3650 }
3651
3652 static void flush_unmaps(struct deferred_flush_data *flush_data)
3653 {
3654 int i, j;
3655
3656 flush_data->timer_on = 0;
3657
3658 /* just flush them all */
3659 for (i = 0; i < g_num_of_iommus; i++) {
3660 struct intel_iommu *iommu = g_iommus[i];
3661 struct deferred_flush_table *flush_table =
3662 &flush_data->tables[i];
3663 if (!iommu)
3664 continue;
3665
3666 if (!flush_table->next)
3667 continue;
3668
3669 /* In caching mode, global flushes turn emulation expensive */
3670 if (!cap_caching_mode(iommu->cap))
3671 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3672 DMA_TLB_GLOBAL_FLUSH);
3673 for (j = 0; j < flush_table->next; j++) {
3674 unsigned long mask;
3675 struct deferred_flush_entry *entry =
3676 &flush_table->entries[j];
3677 unsigned long iova_pfn = entry->iova_pfn;
3678 unsigned long nrpages = entry->nrpages;
3679 struct dmar_domain *domain = entry->domain;
3680 struct page *freelist = entry->freelist;
3681
3682 /* On real hardware multiple invalidations are expensive */
3683 if (cap_caching_mode(iommu->cap))
3684 iommu_flush_iotlb_psi(iommu, domain,
3685 mm_to_dma_pfn(iova_pfn),
3686 nrpages, !freelist, 0);
3687 else {
3688 mask = ilog2(nrpages);
3689 iommu_flush_dev_iotlb(domain,
3690 (uint64_t)iova_pfn << PAGE_SHIFT, mask);
3691 }
3692 free_iova_fast(&domain->iovad, iova_pfn, nrpages);
3693 if (freelist)
3694 dma_free_pagelist(freelist);
3695 }
3696 flush_table->next = 0;
3697 }
3698
3699 flush_data->size = 0;
3700 }
3701
3702 static void flush_unmaps_timeout(unsigned long cpuid)
3703 {
3704 struct deferred_flush_data *flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3705 unsigned long flags;
3706
3707 spin_lock_irqsave(&flush_data->lock, flags);
3708 flush_unmaps(flush_data);
3709 spin_unlock_irqrestore(&flush_data->lock, flags);
3710 }
3711
3712 static void add_unmap(struct dmar_domain *dom, unsigned long iova_pfn,
3713 unsigned long nrpages, struct page *freelist)
3714 {
3715 unsigned long flags;
3716 int entry_id, iommu_id;
3717 struct intel_iommu *iommu;
3718 struct deferred_flush_entry *entry;
3719 struct deferred_flush_data *flush_data;
3720 unsigned int cpuid;
3721
3722 cpuid = get_cpu();
3723 flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3724
3725 /* Flush all CPUs' entries to avoid deferring too much. If
3726 * this becomes a bottleneck, can just flush us, and rely on
3727 * flush timer for the rest.
3728 */
3729 if (flush_data->size == HIGH_WATER_MARK) {
3730 int cpu;
3731
3732 for_each_online_cpu(cpu)
3733 flush_unmaps_timeout(cpu);
3734 }
3735
3736 spin_lock_irqsave(&flush_data->lock, flags);
3737
3738 iommu = domain_get_iommu(dom);
3739 iommu_id = iommu->seq_id;
3740
3741 entry_id = flush_data->tables[iommu_id].next;
3742 ++(flush_data->tables[iommu_id].next);
3743
3744 entry = &flush_data->tables[iommu_id].entries[entry_id];
3745 entry->domain = dom;
3746 entry->iova_pfn = iova_pfn;
3747 entry->nrpages = nrpages;
3748 entry->freelist = freelist;
3749
3750 if (!flush_data->timer_on) {
3751 mod_timer(&flush_data->timer, jiffies + msecs_to_jiffies(10));
3752 flush_data->timer_on = 1;
3753 }
3754 flush_data->size++;
3755 spin_unlock_irqrestore(&flush_data->lock, flags);
3756
3757 put_cpu();
3758 }
3759
3760 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3761 {
3762 struct dmar_domain *domain;
3763 unsigned long start_pfn, last_pfn;
3764 unsigned long nrpages;
3765 unsigned long iova_pfn;
3766 struct intel_iommu *iommu;
3767 struct page *freelist;
3768
3769 if (iommu_no_mapping(dev))
3770 return;
3771
3772 domain = find_domain(dev);
3773 BUG_ON(!domain);
3774
3775 iommu = domain_get_iommu(domain);
3776
3777 iova_pfn = IOVA_PFN(dev_addr);
3778
3779 nrpages = aligned_nrpages(dev_addr, size);
3780 start_pfn = mm_to_dma_pfn(iova_pfn);
3781 last_pfn = start_pfn + nrpages - 1;
3782
3783 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3784 dev_name(dev), start_pfn, last_pfn);
3785
3786 freelist = domain_unmap(domain, start_pfn, last_pfn);
3787
3788 if (intel_iommu_strict) {
3789 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3790 nrpages, !freelist, 0);
3791 /* free iova */
3792 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3793 dma_free_pagelist(freelist);
3794 } else {
3795 add_unmap(domain, iova_pfn, nrpages, freelist);
3796 /*
3797 * queue up the release of the unmap to save the 1/6th of the
3798 * cpu used up by the iotlb flush operation...
3799 */
3800 }
3801 }
3802
3803 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3804 size_t size, enum dma_data_direction dir,
3805 unsigned long attrs)
3806 {
3807 intel_unmap(dev, dev_addr, size);
3808 }
3809
3810 static void *intel_alloc_coherent(struct device *dev, size_t size,
3811 dma_addr_t *dma_handle, gfp_t flags,
3812 unsigned long attrs)
3813 {
3814 struct page *page = NULL;
3815 int order;
3816
3817 size = PAGE_ALIGN(size);
3818 order = get_order(size);
3819
3820 if (!iommu_no_mapping(dev))
3821 flags &= ~(GFP_DMA | GFP_DMA32);
3822 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3823 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3824 flags |= GFP_DMA;
3825 else
3826 flags |= GFP_DMA32;
3827 }
3828
3829 if (gfpflags_allow_blocking(flags)) {
3830 unsigned int count = size >> PAGE_SHIFT;
3831
3832 page = dma_alloc_from_contiguous(dev, count, order, flags);
3833 if (page && iommu_no_mapping(dev) &&
3834 page_to_phys(page) + size > dev->coherent_dma_mask) {
3835 dma_release_from_contiguous(dev, page, count);
3836 page = NULL;
3837 }
3838 }
3839
3840 if (!page)
3841 page = alloc_pages(flags, order);
3842 if (!page)
3843 return NULL;
3844 memset(page_address(page), 0, size);
3845
3846 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3847 DMA_BIDIRECTIONAL,
3848 dev->coherent_dma_mask);
3849 if (*dma_handle)
3850 return page_address(page);
3851 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3852 __free_pages(page, order);
3853
3854 return NULL;
3855 }
3856
3857 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3858 dma_addr_t dma_handle, unsigned long attrs)
3859 {
3860 int order;
3861 struct page *page = virt_to_page(vaddr);
3862
3863 size = PAGE_ALIGN(size);
3864 order = get_order(size);
3865
3866 intel_unmap(dev, dma_handle, size);
3867 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3868 __free_pages(page, order);
3869 }
3870
3871 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3872 int nelems, enum dma_data_direction dir,
3873 unsigned long attrs)
3874 {
3875 dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3876 unsigned long nrpages = 0;
3877 struct scatterlist *sg;
3878 int i;
3879
3880 for_each_sg(sglist, sg, nelems, i) {
3881 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3882 }
3883
3884 intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3885 }
3886
3887 static int intel_nontranslate_map_sg(struct device *hddev,
3888 struct scatterlist *sglist, int nelems, int dir)
3889 {
3890 int i;
3891 struct scatterlist *sg;
3892
3893 for_each_sg(sglist, sg, nelems, i) {
3894 BUG_ON(!sg_page(sg));
3895 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3896 sg->dma_length = sg->length;
3897 }
3898 return nelems;
3899 }
3900
3901 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3902 enum dma_data_direction dir, unsigned long attrs)
3903 {
3904 int i;
3905 struct dmar_domain *domain;
3906 size_t size = 0;
3907 int prot = 0;
3908 unsigned long iova_pfn;
3909 int ret;
3910 struct scatterlist *sg;
3911 unsigned long start_vpfn;
3912 struct intel_iommu *iommu;
3913
3914 BUG_ON(dir == DMA_NONE);
3915 if (iommu_no_mapping(dev))
3916 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3917
3918 domain = get_valid_domain_for_dev(dev);
3919 if (!domain)
3920 return 0;
3921
3922 iommu = domain_get_iommu(domain);
3923
3924 for_each_sg(sglist, sg, nelems, i)
3925 size += aligned_nrpages(sg->offset, sg->length);
3926
3927 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3928 *dev->dma_mask);
3929 if (!iova_pfn) {
3930 sglist->dma_length = 0;
3931 return 0;
3932 }
3933
3934 /*
3935 * Check if DMAR supports zero-length reads on write only
3936 * mappings..
3937 */
3938 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3939 !cap_zlr(iommu->cap))
3940 prot |= DMA_PTE_READ;
3941 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3942 prot |= DMA_PTE_WRITE;
3943
3944 start_vpfn = mm_to_dma_pfn(iova_pfn);
3945
3946 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3947 if (unlikely(ret)) {
3948 dma_pte_free_pagetable(domain, start_vpfn,
3949 start_vpfn + size - 1);
3950 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3951 return 0;
3952 }
3953
3954 /* it's a non-present to present mapping. Only flush if caching mode */
3955 if (cap_caching_mode(iommu->cap))
3956 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3957 else
3958 iommu_flush_write_buffer(iommu);
3959
3960 return nelems;
3961 }
3962
3963 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3964 {
3965 return !dma_addr;
3966 }
3967
3968 struct dma_map_ops intel_dma_ops = {
3969 .alloc = intel_alloc_coherent,
3970 .free = intel_free_coherent,
3971 .map_sg = intel_map_sg,
3972 .unmap_sg = intel_unmap_sg,
3973 .map_page = intel_map_page,
3974 .unmap_page = intel_unmap_page,
3975 .mapping_error = intel_mapping_error,
3976 };
3977
3978 static inline int iommu_domain_cache_init(void)
3979 {
3980 int ret = 0;
3981
3982 iommu_domain_cache = kmem_cache_create("iommu_domain",
3983 sizeof(struct dmar_domain),
3984 0,
3985 SLAB_HWCACHE_ALIGN,
3986
3987 NULL);
3988 if (!iommu_domain_cache) {
3989 pr_err("Couldn't create iommu_domain cache\n");
3990 ret = -ENOMEM;
3991 }
3992
3993 return ret;
3994 }
3995
3996 static inline int iommu_devinfo_cache_init(void)
3997 {
3998 int ret = 0;
3999
4000 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
4001 sizeof(struct device_domain_info),
4002 0,
4003 SLAB_HWCACHE_ALIGN,
4004 NULL);
4005 if (!iommu_devinfo_cache) {
4006 pr_err("Couldn't create devinfo cache\n");
4007 ret = -ENOMEM;
4008 }
4009
4010 return ret;
4011 }
4012
4013 static int __init iommu_init_mempool(void)
4014 {
4015 int ret;
4016 ret = iova_cache_get();
4017 if (ret)
4018 return ret;
4019
4020 ret = iommu_domain_cache_init();
4021 if (ret)
4022 goto domain_error;
4023
4024 ret = iommu_devinfo_cache_init();
4025 if (!ret)
4026 return ret;
4027
4028 kmem_cache_destroy(iommu_domain_cache);
4029 domain_error:
4030 iova_cache_put();
4031
4032 return -ENOMEM;
4033 }
4034
4035 static void __init iommu_exit_mempool(void)
4036 {
4037 kmem_cache_destroy(iommu_devinfo_cache);
4038 kmem_cache_destroy(iommu_domain_cache);
4039 iova_cache_put();
4040 }
4041
4042 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4043 {
4044 struct dmar_drhd_unit *drhd;
4045 u32 vtbar;
4046 int rc;
4047
4048 /* We know that this device on this chipset has its own IOMMU.
4049 * If we find it under a different IOMMU, then the BIOS is lying
4050 * to us. Hope that the IOMMU for this device is actually
4051 * disabled, and it needs no translation...
4052 */
4053 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4054 if (rc) {
4055 /* "can't" happen */
4056 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4057 return;
4058 }
4059 vtbar &= 0xffff0000;
4060
4061 /* we know that the this iommu should be at offset 0xa000 from vtbar */
4062 drhd = dmar_find_matched_drhd_unit(pdev);
4063 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4064 TAINT_FIRMWARE_WORKAROUND,
4065 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4066 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4067 }
4068 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4069
4070 static void __init init_no_remapping_devices(void)
4071 {
4072 struct dmar_drhd_unit *drhd;
4073 struct device *dev;
4074 int i;
4075
4076 for_each_drhd_unit(drhd) {
4077 if (!drhd->include_all) {
4078 for_each_active_dev_scope(drhd->devices,
4079 drhd->devices_cnt, i, dev)
4080 break;
4081 /* ignore DMAR unit if no devices exist */
4082 if (i == drhd->devices_cnt)
4083 drhd->ignored = 1;
4084 }
4085 }
4086
4087 for_each_active_drhd_unit(drhd) {
4088 if (drhd->include_all)
4089 continue;
4090
4091 for_each_active_dev_scope(drhd->devices,
4092 drhd->devices_cnt, i, dev)
4093 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4094 break;
4095 if (i < drhd->devices_cnt)
4096 continue;
4097
4098 /* This IOMMU has *only* gfx devices. Either bypass it or
4099 set the gfx_mapped flag, as appropriate */
4100 if (dmar_map_gfx) {
4101 intel_iommu_gfx_mapped = 1;
4102 } else {
4103 drhd->ignored = 1;
4104 for_each_active_dev_scope(drhd->devices,
4105 drhd->devices_cnt, i, dev)
4106 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4107 }
4108 }
4109 }
4110
4111 #ifdef CONFIG_SUSPEND
4112 static int init_iommu_hw(void)
4113 {
4114 struct dmar_drhd_unit *drhd;
4115 struct intel_iommu *iommu = NULL;
4116
4117 for_each_active_iommu(iommu, drhd)
4118 if (iommu->qi)
4119 dmar_reenable_qi(iommu);
4120
4121 for_each_iommu(iommu, drhd) {
4122 if (drhd->ignored) {
4123 /*
4124 * we always have to disable PMRs or DMA may fail on
4125 * this device
4126 */
4127 if (force_on)
4128 iommu_disable_protect_mem_regions(iommu);
4129 continue;
4130 }
4131
4132 iommu_flush_write_buffer(iommu);
4133
4134 iommu_set_root_entry(iommu);
4135
4136 iommu->flush.flush_context(iommu, 0, 0, 0,
4137 DMA_CCMD_GLOBAL_INVL);
4138 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4139 iommu_enable_translation(iommu);
4140 iommu_disable_protect_mem_regions(iommu);
4141 }
4142
4143 return 0;
4144 }
4145
4146 static void iommu_flush_all(void)
4147 {
4148 struct dmar_drhd_unit *drhd;
4149 struct intel_iommu *iommu;
4150
4151 for_each_active_iommu(iommu, drhd) {
4152 iommu->flush.flush_context(iommu, 0, 0, 0,
4153 DMA_CCMD_GLOBAL_INVL);
4154 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4155 DMA_TLB_GLOBAL_FLUSH);
4156 }
4157 }
4158
4159 static int iommu_suspend(void)
4160 {
4161 struct dmar_drhd_unit *drhd;
4162 struct intel_iommu *iommu = NULL;
4163 unsigned long flag;
4164
4165 for_each_active_iommu(iommu, drhd) {
4166 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
4167 GFP_ATOMIC);
4168 if (!iommu->iommu_state)
4169 goto nomem;
4170 }
4171
4172 iommu_flush_all();
4173
4174 for_each_active_iommu(iommu, drhd) {
4175 iommu_disable_translation(iommu);
4176
4177 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4178
4179 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4180 readl(iommu->reg + DMAR_FECTL_REG);
4181 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4182 readl(iommu->reg + DMAR_FEDATA_REG);
4183 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4184 readl(iommu->reg + DMAR_FEADDR_REG);
4185 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4186 readl(iommu->reg + DMAR_FEUADDR_REG);
4187
4188 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4189 }
4190 return 0;
4191
4192 nomem:
4193 for_each_active_iommu(iommu, drhd)
4194 kfree(iommu->iommu_state);
4195
4196 return -ENOMEM;
4197 }
4198
4199 static void iommu_resume(void)
4200 {
4201 struct dmar_drhd_unit *drhd;
4202 struct intel_iommu *iommu = NULL;
4203 unsigned long flag;
4204
4205 if (init_iommu_hw()) {
4206 if (force_on)
4207 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4208 else
4209 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4210 return;
4211 }
4212
4213 for_each_active_iommu(iommu, drhd) {
4214
4215 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4216
4217 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4218 iommu->reg + DMAR_FECTL_REG);
4219 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4220 iommu->reg + DMAR_FEDATA_REG);
4221 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4222 iommu->reg + DMAR_FEADDR_REG);
4223 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4224 iommu->reg + DMAR_FEUADDR_REG);
4225
4226 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4227 }
4228
4229 for_each_active_iommu(iommu, drhd)
4230 kfree(iommu->iommu_state);
4231 }
4232
4233 static struct syscore_ops iommu_syscore_ops = {
4234 .resume = iommu_resume,
4235 .suspend = iommu_suspend,
4236 };
4237
4238 static void __init init_iommu_pm_ops(void)
4239 {
4240 register_syscore_ops(&iommu_syscore_ops);
4241 }
4242
4243 #else
4244 static inline void init_iommu_pm_ops(void) {}
4245 #endif /* CONFIG_PM */
4246
4247
4248 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4249 {
4250 struct acpi_dmar_reserved_memory *rmrr;
4251 int prot = DMA_PTE_READ|DMA_PTE_WRITE;
4252 struct dmar_rmrr_unit *rmrru;
4253 size_t length;
4254
4255 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4256 if (!rmrru)
4257 goto out;
4258
4259 rmrru->hdr = header;
4260 rmrr = (struct acpi_dmar_reserved_memory *)header;
4261 rmrru->base_address = rmrr->base_address;
4262 rmrru->end_address = rmrr->end_address;
4263
4264 length = rmrr->end_address - rmrr->base_address + 1;
4265 rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot,
4266 IOMMU_RESV_DIRECT);
4267 if (!rmrru->resv)
4268 goto free_rmrru;
4269
4270 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4271 ((void *)rmrr) + rmrr->header.length,
4272 &rmrru->devices_cnt);
4273 if (rmrru->devices_cnt && rmrru->devices == NULL)
4274 goto free_all;
4275
4276 list_add(&rmrru->list, &dmar_rmrr_units);
4277
4278 return 0;
4279 free_all:
4280 kfree(rmrru->resv);
4281 free_rmrru:
4282 kfree(rmrru);
4283 out:
4284 return -ENOMEM;
4285 }
4286
4287 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4288 {
4289 struct dmar_atsr_unit *atsru;
4290 struct acpi_dmar_atsr *tmp;
4291
4292 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4293 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4294 if (atsr->segment != tmp->segment)
4295 continue;
4296 if (atsr->header.length != tmp->header.length)
4297 continue;
4298 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4299 return atsru;
4300 }
4301
4302 return NULL;
4303 }
4304
4305 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4306 {
4307 struct acpi_dmar_atsr *atsr;
4308 struct dmar_atsr_unit *atsru;
4309
4310 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4311 return 0;
4312
4313 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4314 atsru = dmar_find_atsr(atsr);
4315 if (atsru)
4316 return 0;
4317
4318 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4319 if (!atsru)
4320 return -ENOMEM;
4321
4322 /*
4323 * If memory is allocated from slab by ACPI _DSM method, we need to
4324 * copy the memory content because the memory buffer will be freed
4325 * on return.
4326 */
4327 atsru->hdr = (void *)(atsru + 1);
4328 memcpy(atsru->hdr, hdr, hdr->length);
4329 atsru->include_all = atsr->flags & 0x1;
4330 if (!atsru->include_all) {
4331 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4332 (void *)atsr + atsr->header.length,
4333 &atsru->devices_cnt);
4334 if (atsru->devices_cnt && atsru->devices == NULL) {
4335 kfree(atsru);
4336 return -ENOMEM;
4337 }
4338 }
4339
4340 list_add_rcu(&atsru->list, &dmar_atsr_units);
4341
4342 return 0;
4343 }
4344
4345 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4346 {
4347 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4348 kfree(atsru);
4349 }
4350
4351 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4352 {
4353 struct acpi_dmar_atsr *atsr;
4354 struct dmar_atsr_unit *atsru;
4355
4356 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4357 atsru = dmar_find_atsr(atsr);
4358 if (atsru) {
4359 list_del_rcu(&atsru->list);
4360 synchronize_rcu();
4361 intel_iommu_free_atsr(atsru);
4362 }
4363
4364 return 0;
4365 }
4366
4367 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4368 {
4369 int i;
4370 struct device *dev;
4371 struct acpi_dmar_atsr *atsr;
4372 struct dmar_atsr_unit *atsru;
4373
4374 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4375 atsru = dmar_find_atsr(atsr);
4376 if (!atsru)
4377 return 0;
4378
4379 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4380 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4381 i, dev)
4382 return -EBUSY;
4383 }
4384
4385 return 0;
4386 }
4387
4388 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4389 {
4390 int sp, ret = 0;
4391 struct intel_iommu *iommu = dmaru->iommu;
4392
4393 if (g_iommus[iommu->seq_id])
4394 return 0;
4395
4396 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4397 pr_warn("%s: Doesn't support hardware pass through.\n",
4398 iommu->name);
4399 return -ENXIO;
4400 }
4401 if (!ecap_sc_support(iommu->ecap) &&
4402 domain_update_iommu_snooping(iommu)) {
4403 pr_warn("%s: Doesn't support snooping.\n",
4404 iommu->name);
4405 return -ENXIO;
4406 }
4407 sp = domain_update_iommu_superpage(iommu) - 1;
4408 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4409 pr_warn("%s: Doesn't support large page.\n",
4410 iommu->name);
4411 return -ENXIO;
4412 }
4413
4414 /*
4415 * Disable translation if already enabled prior to OS handover.
4416 */
4417 if (iommu->gcmd & DMA_GCMD_TE)
4418 iommu_disable_translation(iommu);
4419
4420 g_iommus[iommu->seq_id] = iommu;
4421 ret = iommu_init_domains(iommu);
4422 if (ret == 0)
4423 ret = iommu_alloc_root_entry(iommu);
4424 if (ret)
4425 goto out;
4426
4427 #ifdef CONFIG_INTEL_IOMMU_SVM
4428 if (pasid_enabled(iommu))
4429 intel_svm_alloc_pasid_tables(iommu);
4430 #endif
4431
4432 if (dmaru->ignored) {
4433 /*
4434 * we always have to disable PMRs or DMA may fail on this device
4435 */
4436 if (force_on)
4437 iommu_disable_protect_mem_regions(iommu);
4438 return 0;
4439 }
4440
4441 intel_iommu_init_qi(iommu);
4442 iommu_flush_write_buffer(iommu);
4443
4444 #ifdef CONFIG_INTEL_IOMMU_SVM
4445 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4446 ret = intel_svm_enable_prq(iommu);
4447 if (ret)
4448 goto disable_iommu;
4449 }
4450 #endif
4451 ret = dmar_set_interrupt(iommu);
4452 if (ret)
4453 goto disable_iommu;
4454
4455 iommu_set_root_entry(iommu);
4456 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4457 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4458 iommu_enable_translation(iommu);
4459
4460 iommu_disable_protect_mem_regions(iommu);
4461 return 0;
4462
4463 disable_iommu:
4464 disable_dmar_iommu(iommu);
4465 out:
4466 free_dmar_iommu(iommu);
4467 return ret;
4468 }
4469
4470 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4471 {
4472 int ret = 0;
4473 struct intel_iommu *iommu = dmaru->iommu;
4474
4475 if (!intel_iommu_enabled)
4476 return 0;
4477 if (iommu == NULL)
4478 return -EINVAL;
4479
4480 if (insert) {
4481 ret = intel_iommu_add(dmaru);
4482 } else {
4483 disable_dmar_iommu(iommu);
4484 free_dmar_iommu(iommu);
4485 }
4486
4487 return ret;
4488 }
4489
4490 static void intel_iommu_free_dmars(void)
4491 {
4492 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4493 struct dmar_atsr_unit *atsru, *atsr_n;
4494
4495 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4496 list_del(&rmrru->list);
4497 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4498 kfree(rmrru->resv);
4499 kfree(rmrru);
4500 }
4501
4502 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4503 list_del(&atsru->list);
4504 intel_iommu_free_atsr(atsru);
4505 }
4506 }
4507
4508 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4509 {
4510 int i, ret = 1;
4511 struct pci_bus *bus;
4512 struct pci_dev *bridge = NULL;
4513 struct device *tmp;
4514 struct acpi_dmar_atsr *atsr;
4515 struct dmar_atsr_unit *atsru;
4516
4517 dev = pci_physfn(dev);
4518 for (bus = dev->bus; bus; bus = bus->parent) {
4519 bridge = bus->self;
4520 /* If it's an integrated device, allow ATS */
4521 if (!bridge)
4522 return 1;
4523 /* Connected via non-PCIe: no ATS */
4524 if (!pci_is_pcie(bridge) ||
4525 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4526 return 0;
4527 /* If we found the root port, look it up in the ATSR */
4528 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4529 break;
4530 }
4531
4532 rcu_read_lock();
4533 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4534 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4535 if (atsr->segment != pci_domain_nr(dev->bus))
4536 continue;
4537
4538 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4539 if (tmp == &bridge->dev)
4540 goto out;
4541
4542 if (atsru->include_all)
4543 goto out;
4544 }
4545 ret = 0;
4546 out:
4547 rcu_read_unlock();
4548
4549 return ret;
4550 }
4551
4552 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4553 {
4554 int ret = 0;
4555 struct dmar_rmrr_unit *rmrru;
4556 struct dmar_atsr_unit *atsru;
4557 struct acpi_dmar_atsr *atsr;
4558 struct acpi_dmar_reserved_memory *rmrr;
4559
4560 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4561 return 0;
4562
4563 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4564 rmrr = container_of(rmrru->hdr,
4565 struct acpi_dmar_reserved_memory, header);
4566 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4567 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4568 ((void *)rmrr) + rmrr->header.length,
4569 rmrr->segment, rmrru->devices,
4570 rmrru->devices_cnt);
4571 if(ret < 0)
4572 return ret;
4573 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4574 dmar_remove_dev_scope(info, rmrr->segment,
4575 rmrru->devices, rmrru->devices_cnt);
4576 }
4577 }
4578
4579 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4580 if (atsru->include_all)
4581 continue;
4582
4583 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4584 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4585 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4586 (void *)atsr + atsr->header.length,
4587 atsr->segment, atsru->devices,
4588 atsru->devices_cnt);
4589 if (ret > 0)
4590 break;
4591 else if(ret < 0)
4592 return ret;
4593 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4594 if (dmar_remove_dev_scope(info, atsr->segment,
4595 atsru->devices, atsru->devices_cnt))
4596 break;
4597 }
4598 }
4599
4600 return 0;
4601 }
4602
4603 /*
4604 * Here we only respond to action of unbound device from driver.
4605 *
4606 * Added device is not attached to its DMAR domain here yet. That will happen
4607 * when mapping the device to iova.
4608 */
4609 static int device_notifier(struct notifier_block *nb,
4610 unsigned long action, void *data)
4611 {
4612 struct device *dev = data;
4613 struct dmar_domain *domain;
4614
4615 if (iommu_dummy(dev))
4616 return 0;
4617
4618 if (action != BUS_NOTIFY_REMOVED_DEVICE)
4619 return 0;
4620
4621 domain = find_domain(dev);
4622 if (!domain)
4623 return 0;
4624
4625 dmar_remove_one_dev_info(domain, dev);
4626 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4627 domain_exit(domain);
4628
4629 return 0;
4630 }
4631
4632 static struct notifier_block device_nb = {
4633 .notifier_call = device_notifier,
4634 };
4635
4636 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4637 unsigned long val, void *v)
4638 {
4639 struct memory_notify *mhp = v;
4640 unsigned long long start, end;
4641 unsigned long start_vpfn, last_vpfn;
4642
4643 switch (val) {
4644 case MEM_GOING_ONLINE:
4645 start = mhp->start_pfn << PAGE_SHIFT;
4646 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4647 if (iommu_domain_identity_map(si_domain, start, end)) {
4648 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4649 start, end);
4650 return NOTIFY_BAD;
4651 }
4652 break;
4653
4654 case MEM_OFFLINE:
4655 case MEM_CANCEL_ONLINE:
4656 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4657 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4658 while (start_vpfn <= last_vpfn) {
4659 struct iova *iova;
4660 struct dmar_drhd_unit *drhd;
4661 struct intel_iommu *iommu;
4662 struct page *freelist;
4663
4664 iova = find_iova(&si_domain->iovad, start_vpfn);
4665 if (iova == NULL) {
4666 pr_debug("Failed get IOVA for PFN %lx\n",
4667 start_vpfn);
4668 break;
4669 }
4670
4671 iova = split_and_remove_iova(&si_domain->iovad, iova,
4672 start_vpfn, last_vpfn);
4673 if (iova == NULL) {
4674 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4675 start_vpfn, last_vpfn);
4676 return NOTIFY_BAD;
4677 }
4678
4679 freelist = domain_unmap(si_domain, iova->pfn_lo,
4680 iova->pfn_hi);
4681
4682 rcu_read_lock();
4683 for_each_active_iommu(iommu, drhd)
4684 iommu_flush_iotlb_psi(iommu, si_domain,
4685 iova->pfn_lo, iova_size(iova),
4686 !freelist, 0);
4687 rcu_read_unlock();
4688 dma_free_pagelist(freelist);
4689
4690 start_vpfn = iova->pfn_hi + 1;
4691 free_iova_mem(iova);
4692 }
4693 break;
4694 }
4695
4696 return NOTIFY_OK;
4697 }
4698
4699 static struct notifier_block intel_iommu_memory_nb = {
4700 .notifier_call = intel_iommu_memory_notifier,
4701 .priority = 0
4702 };
4703
4704 static void free_all_cpu_cached_iovas(unsigned int cpu)
4705 {
4706 int i;
4707
4708 for (i = 0; i < g_num_of_iommus; i++) {
4709 struct intel_iommu *iommu = g_iommus[i];
4710 struct dmar_domain *domain;
4711 int did;
4712
4713 if (!iommu)
4714 continue;
4715
4716 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4717 domain = get_iommu_domain(iommu, (u16)did);
4718
4719 if (!domain)
4720 continue;
4721 free_cpu_cached_iovas(cpu, &domain->iovad);
4722 }
4723 }
4724 }
4725
4726 static int intel_iommu_cpu_dead(unsigned int cpu)
4727 {
4728 free_all_cpu_cached_iovas(cpu);
4729 flush_unmaps_timeout(cpu);
4730 return 0;
4731 }
4732
4733 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4734 {
4735 return container_of(dev, struct intel_iommu, iommu.dev);
4736 }
4737
4738 static ssize_t intel_iommu_show_version(struct device *dev,
4739 struct device_attribute *attr,
4740 char *buf)
4741 {
4742 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4743 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4744 return sprintf(buf, "%d:%d\n",
4745 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4746 }
4747 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4748
4749 static ssize_t intel_iommu_show_address(struct device *dev,
4750 struct device_attribute *attr,
4751 char *buf)
4752 {
4753 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4754 return sprintf(buf, "%llx\n", iommu->reg_phys);
4755 }
4756 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4757
4758 static ssize_t intel_iommu_show_cap(struct device *dev,
4759 struct device_attribute *attr,
4760 char *buf)
4761 {
4762 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4763 return sprintf(buf, "%llx\n", iommu->cap);
4764 }
4765 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4766
4767 static ssize_t intel_iommu_show_ecap(struct device *dev,
4768 struct device_attribute *attr,
4769 char *buf)
4770 {
4771 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4772 return sprintf(buf, "%llx\n", iommu->ecap);
4773 }
4774 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4775
4776 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4777 struct device_attribute *attr,
4778 char *buf)
4779 {
4780 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4781 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4782 }
4783 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4784
4785 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4786 struct device_attribute *attr,
4787 char *buf)
4788 {
4789 struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4790 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4791 cap_ndoms(iommu->cap)));
4792 }
4793 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4794
4795 static struct attribute *intel_iommu_attrs[] = {
4796 &dev_attr_version.attr,
4797 &dev_attr_address.attr,
4798 &dev_attr_cap.attr,
4799 &dev_attr_ecap.attr,
4800 &dev_attr_domains_supported.attr,
4801 &dev_attr_domains_used.attr,
4802 NULL,
4803 };
4804
4805 static struct attribute_group intel_iommu_group = {
4806 .name = "intel-iommu",
4807 .attrs = intel_iommu_attrs,
4808 };
4809
4810 const struct attribute_group *intel_iommu_groups[] = {
4811 &intel_iommu_group,
4812 NULL,
4813 };
4814
4815 int __init intel_iommu_init(void)
4816 {
4817 int ret = -ENODEV;
4818 struct dmar_drhd_unit *drhd;
4819 struct intel_iommu *iommu;
4820
4821 /* VT-d is required for a TXT/tboot launch, so enforce that */
4822 force_on = tboot_force_iommu();
4823
4824 if (iommu_init_mempool()) {
4825 if (force_on)
4826 panic("tboot: Failed to initialize iommu memory\n");
4827 return -ENOMEM;
4828 }
4829
4830 down_write(&dmar_global_lock);
4831 if (dmar_table_init()) {
4832 if (force_on)
4833 panic("tboot: Failed to initialize DMAR table\n");
4834 goto out_free_dmar;
4835 }
4836
4837 if (dmar_dev_scope_init() < 0) {
4838 if (force_on)
4839 panic("tboot: Failed to initialize DMAR device scope\n");
4840 goto out_free_dmar;
4841 }
4842
4843 if (no_iommu || dmar_disabled)
4844 goto out_free_dmar;
4845
4846 if (list_empty(&dmar_rmrr_units))
4847 pr_info("No RMRR found\n");
4848
4849 if (list_empty(&dmar_atsr_units))
4850 pr_info("No ATSR found\n");
4851
4852 if (dmar_init_reserved_ranges()) {
4853 if (force_on)
4854 panic("tboot: Failed to reserve iommu ranges\n");
4855 goto out_free_reserved_range;
4856 }
4857
4858 init_no_remapping_devices();
4859
4860 ret = init_dmars();
4861 if (ret) {
4862 if (force_on)
4863 panic("tboot: Failed to initialize DMARs\n");
4864 pr_err("Initialization failed\n");
4865 goto out_free_reserved_range;
4866 }
4867 up_write(&dmar_global_lock);
4868 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4869
4870 #ifdef CONFIG_SWIOTLB
4871 swiotlb = 0;
4872 #endif
4873 dma_ops = &intel_dma_ops;
4874
4875 init_iommu_pm_ops();
4876
4877 for_each_active_iommu(iommu, drhd) {
4878 iommu_device_sysfs_add(&iommu->iommu, NULL,
4879 intel_iommu_groups,
4880 "%s", iommu->name);
4881 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4882 iommu_device_register(&iommu->iommu);
4883 }
4884
4885 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4886 bus_register_notifier(&pci_bus_type, &device_nb);
4887 if (si_domain && !hw_pass_through)
4888 register_memory_notifier(&intel_iommu_memory_nb);
4889 cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4890 intel_iommu_cpu_dead);
4891 intel_iommu_enabled = 1;
4892
4893 return 0;
4894
4895 out_free_reserved_range:
4896 put_iova_domain(&reserved_iova_list);
4897 out_free_dmar:
4898 intel_iommu_free_dmars();
4899 up_write(&dmar_global_lock);
4900 iommu_exit_mempool();
4901 return ret;
4902 }
4903
4904 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4905 {
4906 struct intel_iommu *iommu = opaque;
4907
4908 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4909 return 0;
4910 }
4911
4912 /*
4913 * NB - intel-iommu lacks any sort of reference counting for the users of
4914 * dependent devices. If multiple endpoints have intersecting dependent
4915 * devices, unbinding the driver from any one of them will possibly leave
4916 * the others unable to operate.
4917 */
4918 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4919 {
4920 if (!iommu || !dev || !dev_is_pci(dev))
4921 return;
4922
4923 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4924 }
4925
4926 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4927 {
4928 struct intel_iommu *iommu;
4929 unsigned long flags;
4930
4931 assert_spin_locked(&device_domain_lock);
4932
4933 if (WARN_ON(!info))
4934 return;
4935
4936 iommu = info->iommu;
4937
4938 if (info->dev) {
4939 iommu_disable_dev_iotlb(info);
4940 domain_context_clear(iommu, info->dev);
4941 }
4942
4943 unlink_domain_info(info);
4944
4945 spin_lock_irqsave(&iommu->lock, flags);
4946 domain_detach_iommu(info->domain, iommu);
4947 spin_unlock_irqrestore(&iommu->lock, flags);
4948
4949 free_devinfo_mem(info);
4950 }
4951
4952 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4953 struct device *dev)
4954 {
4955 struct device_domain_info *info;
4956 unsigned long flags;
4957
4958 spin_lock_irqsave(&device_domain_lock, flags);
4959 info = dev->archdata.iommu;
4960 __dmar_remove_one_dev_info(info);
4961 spin_unlock_irqrestore(&device_domain_lock, flags);
4962 }
4963
4964 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4965 {
4966 int adjust_width;
4967
4968 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4969 DMA_32BIT_PFN);
4970 domain_reserve_special_ranges(domain);
4971
4972 /* calculate AGAW */
4973 domain->gaw = guest_width;
4974 adjust_width = guestwidth_to_adjustwidth(guest_width);
4975 domain->agaw = width_to_agaw(adjust_width);
4976
4977 domain->iommu_coherency = 0;
4978 domain->iommu_snooping = 0;
4979 domain->iommu_superpage = 0;
4980 domain->max_addr = 0;
4981
4982 /* always allocate the top pgd */
4983 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4984 if (!domain->pgd)
4985 return -ENOMEM;
4986 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4987 return 0;
4988 }
4989
4990 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4991 {
4992 struct dmar_domain *dmar_domain;
4993 struct iommu_domain *domain;
4994
4995 if (type != IOMMU_DOMAIN_UNMANAGED)
4996 return NULL;
4997
4998 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4999 if (!dmar_domain) {
5000 pr_err("Can't allocate dmar_domain\n");
5001 return NULL;
5002 }
5003 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
5004 pr_err("Domain initialization failed\n");
5005 domain_exit(dmar_domain);
5006 return NULL;
5007 }
5008 domain_update_iommu_cap(dmar_domain);
5009
5010 domain = &dmar_domain->domain;
5011 domain->geometry.aperture_start = 0;
5012 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
5013 domain->geometry.force_aperture = true;
5014
5015 return domain;
5016 }
5017
5018 static void intel_iommu_domain_free(struct iommu_domain *domain)
5019 {
5020 domain_exit(to_dmar_domain(domain));
5021 }
5022
5023 static int intel_iommu_attach_device(struct iommu_domain *domain,
5024 struct device *dev)
5025 {
5026 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5027 struct intel_iommu *iommu;
5028 int addr_width;
5029 u8 bus, devfn;
5030
5031 if (device_is_rmrr_locked(dev)) {
5032 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
5033 return -EPERM;
5034 }
5035
5036 /* normally dev is not mapped */
5037 if (unlikely(domain_context_mapped(dev))) {
5038 struct dmar_domain *old_domain;
5039
5040 old_domain = find_domain(dev);
5041 if (old_domain) {
5042 rcu_read_lock();
5043 dmar_remove_one_dev_info(old_domain, dev);
5044 rcu_read_unlock();
5045
5046 if (!domain_type_is_vm_or_si(old_domain) &&
5047 list_empty(&old_domain->devices))
5048 domain_exit(old_domain);
5049 }
5050 }
5051
5052 iommu = device_to_iommu(dev, &bus, &devfn);
5053 if (!iommu)
5054 return -ENODEV;
5055
5056 /* check if this iommu agaw is sufficient for max mapped address */
5057 addr_width = agaw_to_width(iommu->agaw);
5058 if (addr_width > cap_mgaw(iommu->cap))
5059 addr_width = cap_mgaw(iommu->cap);
5060
5061 if (dmar_domain->max_addr > (1LL << addr_width)) {
5062 pr_err("%s: iommu width (%d) is not "
5063 "sufficient for the mapped address (%llx)\n",
5064 __func__, addr_width, dmar_domain->max_addr);
5065 return -EFAULT;
5066 }
5067 dmar_domain->gaw = addr_width;
5068
5069 /*
5070 * Knock out extra levels of page tables if necessary
5071 */
5072 while (iommu->agaw < dmar_domain->agaw) {
5073 struct dma_pte *pte;
5074
5075 pte = dmar_domain->pgd;
5076 if (dma_pte_present(pte)) {
5077 dmar_domain->pgd = (struct dma_pte *)
5078 phys_to_virt(dma_pte_addr(pte));
5079 free_pgtable_page(pte);
5080 }
5081 dmar_domain->agaw--;
5082 }
5083
5084 return domain_add_dev_info(dmar_domain, dev);
5085 }
5086
5087 static void intel_iommu_detach_device(struct iommu_domain *domain,
5088 struct device *dev)
5089 {
5090 dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5091 }
5092
5093 static int intel_iommu_map(struct iommu_domain *domain,
5094 unsigned long iova, phys_addr_t hpa,
5095 size_t size, int iommu_prot)
5096 {
5097 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5098 u64 max_addr;
5099 int prot = 0;
5100 int ret;
5101
5102 if (iommu_prot & IOMMU_READ)
5103 prot |= DMA_PTE_READ;
5104 if (iommu_prot & IOMMU_WRITE)
5105 prot |= DMA_PTE_WRITE;
5106 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5107 prot |= DMA_PTE_SNP;
5108
5109 max_addr = iova + size;
5110 if (dmar_domain->max_addr < max_addr) {
5111 u64 end;
5112
5113 /* check if minimum agaw is sufficient for mapped address */
5114 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5115 if (end < max_addr) {
5116 pr_err("%s: iommu width (%d) is not "
5117 "sufficient for the mapped address (%llx)\n",
5118 __func__, dmar_domain->gaw, max_addr);
5119 return -EFAULT;
5120 }
5121 dmar_domain->max_addr = max_addr;
5122 }
5123 /* Round up size to next multiple of PAGE_SIZE, if it and
5124 the low bits of hpa would take us onto the next page */
5125 size = aligned_nrpages(hpa, size);
5126 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5127 hpa >> VTD_PAGE_SHIFT, size, prot);
5128 return ret;
5129 }
5130
5131 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5132 unsigned long iova, size_t size)
5133 {
5134 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5135 struct page *freelist = NULL;
5136 struct intel_iommu *iommu;
5137 unsigned long start_pfn, last_pfn;
5138 unsigned int npages;
5139 int iommu_id, level = 0;
5140
5141 /* Cope with horrid API which requires us to unmap more than the
5142 size argument if it happens to be a large-page mapping. */
5143 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5144
5145 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5146 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5147
5148 start_pfn = iova >> VTD_PAGE_SHIFT;
5149 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5150
5151 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5152
5153 npages = last_pfn - start_pfn + 1;
5154
5155 for_each_domain_iommu(iommu_id, dmar_domain) {
5156 iommu = g_iommus[iommu_id];
5157
5158 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5159 start_pfn, npages, !freelist, 0);
5160 }
5161
5162 dma_free_pagelist(freelist);
5163
5164 if (dmar_domain->max_addr == iova + size)
5165 dmar_domain->max_addr = iova;
5166
5167 return size;
5168 }
5169
5170 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5171 dma_addr_t iova)
5172 {
5173 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5174 struct dma_pte *pte;
5175 int level = 0;
5176 u64 phys = 0;
5177
5178 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5179 if (pte)
5180 phys = dma_pte_addr(pte);
5181
5182 return phys;
5183 }
5184
5185 static bool intel_iommu_capable(enum iommu_cap cap)
5186 {
5187 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5188 return domain_update_iommu_snooping(NULL) == 1;
5189 if (cap == IOMMU_CAP_INTR_REMAP)
5190 return irq_remapping_enabled == 1;
5191
5192 return false;
5193 }
5194
5195 static int intel_iommu_add_device(struct device *dev)
5196 {
5197 struct intel_iommu *iommu;
5198 struct iommu_group *group;
5199 u8 bus, devfn;
5200
5201 iommu = device_to_iommu(dev, &bus, &devfn);
5202 if (!iommu)
5203 return -ENODEV;
5204
5205 iommu_device_link(&iommu->iommu, dev);
5206
5207 group = iommu_group_get_for_dev(dev);
5208
5209 if (IS_ERR(group))
5210 return PTR_ERR(group);
5211
5212 iommu_group_put(group);
5213 return 0;
5214 }
5215
5216 static void intel_iommu_remove_device(struct device *dev)
5217 {
5218 struct intel_iommu *iommu;
5219 u8 bus, devfn;
5220
5221 iommu = device_to_iommu(dev, &bus, &devfn);
5222 if (!iommu)
5223 return;
5224
5225 iommu_group_remove_device(dev);
5226
5227 iommu_device_unlink(&iommu->iommu, dev);
5228 }
5229
5230 static void intel_iommu_get_resv_regions(struct device *device,
5231 struct list_head *head)
5232 {
5233 struct iommu_resv_region *reg;
5234 struct dmar_rmrr_unit *rmrr;
5235 struct device *i_dev;
5236 int i;
5237
5238 rcu_read_lock();
5239 for_each_rmrr_units(rmrr) {
5240 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5241 i, i_dev) {
5242 if (i_dev != device)
5243 continue;
5244
5245 list_add_tail(&rmrr->resv->list, head);
5246 }
5247 }
5248 rcu_read_unlock();
5249
5250 reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5251 IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5252 0, IOMMU_RESV_MSI);
5253 if (!reg)
5254 return;
5255 list_add_tail(&reg->list, head);
5256 }
5257
5258 static void intel_iommu_put_resv_regions(struct device *dev,
5259 struct list_head *head)
5260 {
5261 struct iommu_resv_region *entry, *next;
5262
5263 list_for_each_entry_safe(entry, next, head, list) {
5264 if (entry->type == IOMMU_RESV_RESERVED)
5265 kfree(entry);
5266 }
5267 }
5268
5269 #ifdef CONFIG_INTEL_IOMMU_SVM
5270 #define MAX_NR_PASID_BITS (20)
5271 static inline unsigned long intel_iommu_get_pts(struct intel_iommu *iommu)
5272 {
5273 /*
5274 * Convert ecap_pss to extend context entry pts encoding, also
5275 * respect the soft pasid_max value set by the iommu.
5276 * - number of PASID bits = ecap_pss + 1
5277 * - number of PASID table entries = 2^(pts + 5)
5278 * Therefore, pts = ecap_pss - 4
5279 * e.g. KBL ecap_pss = 0x13, PASID has 20 bits, pts = 15
5280 */
5281 if (ecap_pss(iommu->ecap) < 5)
5282 return 0;
5283
5284 /* pasid_max is encoded as actual number of entries not the bits */
5285 return find_first_bit((unsigned long *)&iommu->pasid_max,
5286 MAX_NR_PASID_BITS) - 5;
5287 }
5288
5289 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5290 {
5291 struct device_domain_info *info;
5292 struct context_entry *context;
5293 struct dmar_domain *domain;
5294 unsigned long flags;
5295 u64 ctx_lo;
5296 int ret;
5297
5298 domain = get_valid_domain_for_dev(sdev->dev);
5299 if (!domain)
5300 return -EINVAL;
5301
5302 spin_lock_irqsave(&device_domain_lock, flags);
5303 spin_lock(&iommu->lock);
5304
5305 ret = -EINVAL;
5306 info = sdev->dev->archdata.iommu;
5307 if (!info || !info->pasid_supported)
5308 goto out;
5309
5310 context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5311 if (WARN_ON(!context))
5312 goto out;
5313
5314 ctx_lo = context[0].lo;
5315
5316 sdev->did = domain->iommu_did[iommu->seq_id];
5317 sdev->sid = PCI_DEVID(info->bus, info->devfn);
5318
5319 if (!(ctx_lo & CONTEXT_PASIDE)) {
5320 context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5321 context[1].lo = (u64)virt_to_phys(iommu->pasid_table) |
5322 intel_iommu_get_pts(iommu);
5323
5324 wmb();
5325 /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5326 * extended to permit requests-with-PASID if the PASIDE bit
5327 * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5328 * however, the PASIDE bit is ignored and requests-with-PASID
5329 * are unconditionally blocked. Which makes less sense.
5330 * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5331 * "guest mode" translation types depending on whether ATS
5332 * is available or not. Annoyingly, we can't use the new
5333 * modes *unless* PASIDE is set. */
5334 if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5335 ctx_lo &= ~CONTEXT_TT_MASK;
5336 if (info->ats_supported)
5337 ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5338 else
5339 ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5340 }
5341 ctx_lo |= CONTEXT_PASIDE;
5342 if (iommu->pasid_state_table)
5343 ctx_lo |= CONTEXT_DINVE;
5344 if (info->pri_supported)
5345 ctx_lo |= CONTEXT_PRS;
5346 context[0].lo = ctx_lo;
5347 wmb();
5348 iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5349 DMA_CCMD_MASK_NOBIT,
5350 DMA_CCMD_DEVICE_INVL);
5351 }
5352
5353 /* Enable PASID support in the device, if it wasn't already */
5354 if (!info->pasid_enabled)
5355 iommu_enable_dev_iotlb(info);
5356
5357 if (info->ats_enabled) {
5358 sdev->dev_iotlb = 1;
5359 sdev->qdep = info->ats_qdep;
5360 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5361 sdev->qdep = 0;
5362 }
5363 ret = 0;
5364
5365 out:
5366 spin_unlock(&iommu->lock);
5367 spin_unlock_irqrestore(&device_domain_lock, flags);
5368
5369 return ret;
5370 }
5371
5372 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5373 {
5374 struct intel_iommu *iommu;
5375 u8 bus, devfn;
5376
5377 if (iommu_dummy(dev)) {
5378 dev_warn(dev,
5379 "No IOMMU translation for device; cannot enable SVM\n");
5380 return NULL;
5381 }
5382
5383 iommu = device_to_iommu(dev, &bus, &devfn);
5384 if ((!iommu)) {
5385 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5386 return NULL;
5387 }
5388
5389 if (!iommu->pasid_table) {
5390 dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
5391 return NULL;
5392 }
5393
5394 return iommu;
5395 }
5396 #endif /* CONFIG_INTEL_IOMMU_SVM */
5397
5398 const struct iommu_ops intel_iommu_ops = {
5399 .capable = intel_iommu_capable,
5400 .domain_alloc = intel_iommu_domain_alloc,
5401 .domain_free = intel_iommu_domain_free,
5402 .attach_dev = intel_iommu_attach_device,
5403 .detach_dev = intel_iommu_detach_device,
5404 .map = intel_iommu_map,
5405 .unmap = intel_iommu_unmap,
5406 .map_sg = default_iommu_map_sg,
5407 .iova_to_phys = intel_iommu_iova_to_phys,
5408 .add_device = intel_iommu_add_device,
5409 .remove_device = intel_iommu_remove_device,
5410 .get_resv_regions = intel_iommu_get_resv_regions,
5411 .put_resv_regions = intel_iommu_put_resv_regions,
5412 .device_group = pci_device_group,
5413 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
5414 };
5415
5416 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5417 {
5418 /* G4x/GM45 integrated gfx dmar support is totally busted. */
5419 pr_info("Disabling IOMMU for graphics on this chipset\n");
5420 dmar_map_gfx = 0;
5421 }
5422
5423 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5424 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5425 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5426 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5427 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5428 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5429 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5430
5431 static void quirk_iommu_rwbf(struct pci_dev *dev)
5432 {
5433 /*
5434 * Mobile 4 Series Chipset neglects to set RWBF capability,
5435 * but needs it. Same seems to hold for the desktop versions.
5436 */
5437 pr_info("Forcing write-buffer flush capability\n");
5438 rwbf_quirk = 1;
5439 }
5440
5441 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5442 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5443 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5444 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5445 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5446 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5447 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5448
5449 #define GGC 0x52
5450 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
5451 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
5452 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
5453 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
5454 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
5455 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
5456 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
5457 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
5458
5459 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5460 {
5461 unsigned short ggc;
5462
5463 if (pci_read_config_word(dev, GGC, &ggc))
5464 return;
5465
5466 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5467 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5468 dmar_map_gfx = 0;
5469 } else if (dmar_map_gfx) {
5470 /* we have to ensure the gfx device is idle before we flush */
5471 pr_info("Disabling batched IOTLB flush on Ironlake\n");
5472 intel_iommu_strict = 1;
5473 }
5474 }
5475 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5476 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5477 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5478 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5479
5480 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5481 ISOCH DMAR unit for the Azalia sound device, but not give it any
5482 TLB entries, which causes it to deadlock. Check for that. We do
5483 this in a function called from init_dmars(), instead of in a PCI
5484 quirk, because we don't want to print the obnoxious "BIOS broken"
5485 message if VT-d is actually disabled.
5486 */
5487 static void __init check_tylersburg_isoch(void)
5488 {
5489 struct pci_dev *pdev;
5490 uint32_t vtisochctrl;
5491
5492 /* If there's no Azalia in the system anyway, forget it. */
5493 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5494 if (!pdev)
5495 return;
5496 pci_dev_put(pdev);
5497
5498 /* System Management Registers. Might be hidden, in which case
5499 we can't do the sanity check. But that's OK, because the
5500 known-broken BIOSes _don't_ actually hide it, so far. */
5501 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5502 if (!pdev)
5503 return;
5504
5505 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5506 pci_dev_put(pdev);
5507 return;
5508 }
5509
5510 pci_dev_put(pdev);
5511
5512 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5513 if (vtisochctrl & 1)
5514 return;
5515
5516 /* Drop all bits other than the number of TLB entries */
5517 vtisochctrl &= 0x1c;
5518
5519 /* If we have the recommended number of TLB entries (16), fine. */
5520 if (vtisochctrl == 0x10)
5521 return;
5522
5523 /* Zero TLB entries? You get to ride the short bus to school. */
5524 if (!vtisochctrl) {
5525 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5526 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5527 dmi_get_system_info(DMI_BIOS_VENDOR),
5528 dmi_get_system_info(DMI_BIOS_VERSION),
5529 dmi_get_system_info(DMI_PRODUCT_VERSION));
5530 iommu_identity_mapping |= IDENTMAP_AZALIA;
5531 return;
5532 }
5533
5534 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5535 vtisochctrl);
5536 }