]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/iommu/intel-iommu.c
iommu/vt-d: fix range computation when making room for large pages
[mirror_ubuntu-jammy-kernel.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 * Joerg Roedel <jroedel@suse.de>
19 */
20
21 #define pr_fmt(fmt) "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <linux/dma-contiguous.h>
46 #include <linux/crash_dump.h>
47 #include <asm/irq_remapping.h>
48 #include <asm/cacheflush.h>
49 #include <asm/iommu.h>
50
51 #include "irq_remapping.h"
52
53 #define ROOT_SIZE VTD_PAGE_SIZE
54 #define CONTEXT_SIZE VTD_PAGE_SIZE
55
56 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60
61 #define IOAPIC_RANGE_START (0xfee00000)
62 #define IOAPIC_RANGE_END (0xfeefffff)
63 #define IOVA_START_ADDR (0x1000)
64
65 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
66
67 #define MAX_AGAW_WIDTH 64
68 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
69
70 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
71 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
72
73 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
74 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
75 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
76 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
77 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78
79 /* IO virtual address start page frame number */
80 #define IOVA_START_PFN (1)
81
82 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
83 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
84 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
85
86 /* page table handling */
87 #define LEVEL_STRIDE (9)
88 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
89
90 /*
91 * This bitmap is used to advertise the page sizes our hardware support
92 * to the IOMMU core, which will then use this information to split
93 * physically contiguous memory regions it is mapping into page sizes
94 * that we support.
95 *
96 * Traditionally the IOMMU core just handed us the mappings directly,
97 * after making sure the size is an order of a 4KiB page and that the
98 * mapping has natural alignment.
99 *
100 * To retain this behavior, we currently advertise that we support
101 * all page sizes that are an order of 4KiB.
102 *
103 * If at some point we'd like to utilize the IOMMU core's new behavior,
104 * we could change this to advertise the real page sizes we support.
105 */
106 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
107
108 static inline int agaw_to_level(int agaw)
109 {
110 return agaw + 2;
111 }
112
113 static inline int agaw_to_width(int agaw)
114 {
115 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
116 }
117
118 static inline int width_to_agaw(int width)
119 {
120 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
121 }
122
123 static inline unsigned int level_to_offset_bits(int level)
124 {
125 return (level - 1) * LEVEL_STRIDE;
126 }
127
128 static inline int pfn_level_offset(unsigned long pfn, int level)
129 {
130 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
131 }
132
133 static inline unsigned long level_mask(int level)
134 {
135 return -1UL << level_to_offset_bits(level);
136 }
137
138 static inline unsigned long level_size(int level)
139 {
140 return 1UL << level_to_offset_bits(level);
141 }
142
143 static inline unsigned long align_to_level(unsigned long pfn, int level)
144 {
145 return (pfn + level_size(level) - 1) & level_mask(level);
146 }
147
148 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
149 {
150 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
151 }
152
153 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
154 are never going to work. */
155 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
156 {
157 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 }
159
160 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
161 {
162 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
163 }
164 static inline unsigned long page_to_dma_pfn(struct page *pg)
165 {
166 return mm_to_dma_pfn(page_to_pfn(pg));
167 }
168 static inline unsigned long virt_to_dma_pfn(void *p)
169 {
170 return page_to_dma_pfn(virt_to_page(p));
171 }
172
173 /* global iommu list, set NULL for ignored DMAR units */
174 static struct intel_iommu **g_iommus;
175
176 static void __init check_tylersburg_isoch(void);
177 static int rwbf_quirk;
178
179 /*
180 * set to 1 to panic kernel if can't successfully enable VT-d
181 * (used when kernel is launched w/ TXT)
182 */
183 static int force_on = 0;
184
185 /*
186 * 0: Present
187 * 1-11: Reserved
188 * 12-63: Context Ptr (12 - (haw-1))
189 * 64-127: Reserved
190 */
191 struct root_entry {
192 u64 lo;
193 u64 hi;
194 };
195 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
196
197 /*
198 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
199 * if marked present.
200 */
201 static phys_addr_t root_entry_lctp(struct root_entry *re)
202 {
203 if (!(re->lo & 1))
204 return 0;
205
206 return re->lo & VTD_PAGE_MASK;
207 }
208
209 /*
210 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
211 * if marked present.
212 */
213 static phys_addr_t root_entry_uctp(struct root_entry *re)
214 {
215 if (!(re->hi & 1))
216 return 0;
217
218 return re->hi & VTD_PAGE_MASK;
219 }
220 /*
221 * low 64 bits:
222 * 0: present
223 * 1: fault processing disable
224 * 2-3: translation type
225 * 12-63: address space root
226 * high 64 bits:
227 * 0-2: address width
228 * 3-6: aval
229 * 8-23: domain id
230 */
231 struct context_entry {
232 u64 lo;
233 u64 hi;
234 };
235
236 static inline void context_clear_pasid_enable(struct context_entry *context)
237 {
238 context->lo &= ~(1ULL << 11);
239 }
240
241 static inline bool context_pasid_enabled(struct context_entry *context)
242 {
243 return !!(context->lo & (1ULL << 11));
244 }
245
246 static inline void context_set_copied(struct context_entry *context)
247 {
248 context->hi |= (1ull << 3);
249 }
250
251 static inline bool context_copied(struct context_entry *context)
252 {
253 return !!(context->hi & (1ULL << 3));
254 }
255
256 static inline bool __context_present(struct context_entry *context)
257 {
258 return (context->lo & 1);
259 }
260
261 static inline bool context_present(struct context_entry *context)
262 {
263 return context_pasid_enabled(context) ?
264 __context_present(context) :
265 __context_present(context) && !context_copied(context);
266 }
267
268 static inline void context_set_present(struct context_entry *context)
269 {
270 context->lo |= 1;
271 }
272
273 static inline void context_set_fault_enable(struct context_entry *context)
274 {
275 context->lo &= (((u64)-1) << 2) | 1;
276 }
277
278 static inline void context_set_translation_type(struct context_entry *context,
279 unsigned long value)
280 {
281 context->lo &= (((u64)-1) << 4) | 3;
282 context->lo |= (value & 3) << 2;
283 }
284
285 static inline void context_set_address_root(struct context_entry *context,
286 unsigned long value)
287 {
288 context->lo &= ~VTD_PAGE_MASK;
289 context->lo |= value & VTD_PAGE_MASK;
290 }
291
292 static inline void context_set_address_width(struct context_entry *context,
293 unsigned long value)
294 {
295 context->hi |= value & 7;
296 }
297
298 static inline void context_set_domain_id(struct context_entry *context,
299 unsigned long value)
300 {
301 context->hi |= (value & ((1 << 16) - 1)) << 8;
302 }
303
304 static inline int context_domain_id(struct context_entry *c)
305 {
306 return((c->hi >> 8) & 0xffff);
307 }
308
309 static inline void context_clear_entry(struct context_entry *context)
310 {
311 context->lo = 0;
312 context->hi = 0;
313 }
314
315 /*
316 * 0: readable
317 * 1: writable
318 * 2-6: reserved
319 * 7: super page
320 * 8-10: available
321 * 11: snoop behavior
322 * 12-63: Host physcial address
323 */
324 struct dma_pte {
325 u64 val;
326 };
327
328 static inline void dma_clear_pte(struct dma_pte *pte)
329 {
330 pte->val = 0;
331 }
332
333 static inline u64 dma_pte_addr(struct dma_pte *pte)
334 {
335 #ifdef CONFIG_64BIT
336 return pte->val & VTD_PAGE_MASK;
337 #else
338 /* Must have a full atomic 64-bit read */
339 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
340 #endif
341 }
342
343 static inline bool dma_pte_present(struct dma_pte *pte)
344 {
345 return (pte->val & 3) != 0;
346 }
347
348 static inline bool dma_pte_superpage(struct dma_pte *pte)
349 {
350 return (pte->val & DMA_PTE_LARGE_PAGE);
351 }
352
353 static inline int first_pte_in_page(struct dma_pte *pte)
354 {
355 return !((unsigned long)pte & ~VTD_PAGE_MASK);
356 }
357
358 /*
359 * This domain is a statically identity mapping domain.
360 * 1. This domain creats a static 1:1 mapping to all usable memory.
361 * 2. It maps to each iommu if successful.
362 * 3. Each iommu mapps to this domain if successful.
363 */
364 static struct dmar_domain *si_domain;
365 static int hw_pass_through = 1;
366
367 /*
368 * Domain represents a virtual machine, more than one devices
369 * across iommus may be owned in one domain, e.g. kvm guest.
370 */
371 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
372
373 /* si_domain contains mulitple devices */
374 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
375
376 #define for_each_domain_iommu(idx, domain) \
377 for (idx = 0; idx < g_num_of_iommus; idx++) \
378 if (domain->iommu_refcnt[idx])
379
380 struct dmar_domain {
381 int nid; /* node id */
382
383 unsigned iommu_refcnt[DMAR_UNITS_SUPPORTED];
384 /* Refcount of devices per iommu */
385
386
387 u16 iommu_did[DMAR_UNITS_SUPPORTED];
388 /* Domain ids per IOMMU. Use u16 since
389 * domain ids are 16 bit wide according
390 * to VT-d spec, section 9.3 */
391
392 struct list_head devices; /* all devices' list */
393 struct iova_domain iovad; /* iova's that belong to this domain */
394
395 struct dma_pte *pgd; /* virtual address */
396 int gaw; /* max guest address width */
397
398 /* adjusted guest address width, 0 is level 2 30-bit */
399 int agaw;
400
401 int flags; /* flags to find out type of domain */
402
403 int iommu_coherency;/* indicate coherency of iommu access */
404 int iommu_snooping; /* indicate snooping control feature*/
405 int iommu_count; /* reference count of iommu */
406 int iommu_superpage;/* Level of superpages supported:
407 0 == 4KiB (no superpages), 1 == 2MiB,
408 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
409 u64 max_addr; /* maximum mapped address */
410
411 struct iommu_domain domain; /* generic domain data structure for
412 iommu core */
413 };
414
415 /* PCI domain-device relationship */
416 struct device_domain_info {
417 struct list_head link; /* link to domain siblings */
418 struct list_head global; /* link to global list */
419 u8 bus; /* PCI bus number */
420 u8 devfn; /* PCI devfn number */
421 struct {
422 u8 enabled:1;
423 u8 qdep;
424 } ats; /* ATS state */
425 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
426 struct intel_iommu *iommu; /* IOMMU used by this device */
427 struct dmar_domain *domain; /* pointer to domain */
428 };
429
430 struct dmar_rmrr_unit {
431 struct list_head list; /* list of rmrr units */
432 struct acpi_dmar_header *hdr; /* ACPI header */
433 u64 base_address; /* reserved base address*/
434 u64 end_address; /* reserved end address */
435 struct dmar_dev_scope *devices; /* target devices */
436 int devices_cnt; /* target device count */
437 };
438
439 struct dmar_atsr_unit {
440 struct list_head list; /* list of ATSR units */
441 struct acpi_dmar_header *hdr; /* ACPI header */
442 struct dmar_dev_scope *devices; /* target devices */
443 int devices_cnt; /* target device count */
444 u8 include_all:1; /* include all ports */
445 };
446
447 static LIST_HEAD(dmar_atsr_units);
448 static LIST_HEAD(dmar_rmrr_units);
449
450 #define for_each_rmrr_units(rmrr) \
451 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
452
453 static void flush_unmaps_timeout(unsigned long data);
454
455 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
456
457 #define HIGH_WATER_MARK 250
458 struct deferred_flush_tables {
459 int next;
460 struct iova *iova[HIGH_WATER_MARK];
461 struct dmar_domain *domain[HIGH_WATER_MARK];
462 struct page *freelist[HIGH_WATER_MARK];
463 };
464
465 static struct deferred_flush_tables *deferred_flush;
466
467 /* bitmap for indexing intel_iommus */
468 static int g_num_of_iommus;
469
470 static DEFINE_SPINLOCK(async_umap_flush_lock);
471 static LIST_HEAD(unmaps_to_do);
472
473 static int timer_on;
474 static long list_size;
475
476 static void domain_exit(struct dmar_domain *domain);
477 static void domain_remove_dev_info(struct dmar_domain *domain);
478 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
479 struct device *dev);
480 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
481 static void domain_context_clear(struct intel_iommu *iommu,
482 struct device *dev);
483 static int domain_detach_iommu(struct dmar_domain *domain,
484 struct intel_iommu *iommu);
485
486 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
487 int dmar_disabled = 0;
488 #else
489 int dmar_disabled = 1;
490 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
491
492 int intel_iommu_enabled = 0;
493 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
494
495 static int dmar_map_gfx = 1;
496 static int dmar_forcedac;
497 static int intel_iommu_strict;
498 static int intel_iommu_superpage = 1;
499 static int intel_iommu_ecs = 1;
500
501 /* We only actually use ECS when PASID support (on the new bit 40)
502 * is also advertised. Some early implementations — the ones with
503 * PASID support on bit 28 — have issues even when we *only* use
504 * extended root/context tables. */
505 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
506 ecap_pasid(iommu->ecap))
507
508 int intel_iommu_gfx_mapped;
509 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
510
511 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
512 static DEFINE_SPINLOCK(device_domain_lock);
513 static LIST_HEAD(device_domain_list);
514
515 static const struct iommu_ops intel_iommu_ops;
516
517 static bool translation_pre_enabled(struct intel_iommu *iommu)
518 {
519 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
520 }
521
522 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
523 {
524 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
525 }
526
527 static void init_translation_status(struct intel_iommu *iommu)
528 {
529 u32 gsts;
530
531 gsts = readl(iommu->reg + DMAR_GSTS_REG);
532 if (gsts & DMA_GSTS_TES)
533 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
534 }
535
536 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
537 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
538 {
539 return container_of(dom, struct dmar_domain, domain);
540 }
541
542 static int __init intel_iommu_setup(char *str)
543 {
544 if (!str)
545 return -EINVAL;
546 while (*str) {
547 if (!strncmp(str, "on", 2)) {
548 dmar_disabled = 0;
549 pr_info("IOMMU enabled\n");
550 } else if (!strncmp(str, "off", 3)) {
551 dmar_disabled = 1;
552 pr_info("IOMMU disabled\n");
553 } else if (!strncmp(str, "igfx_off", 8)) {
554 dmar_map_gfx = 0;
555 pr_info("Disable GFX device mapping\n");
556 } else if (!strncmp(str, "forcedac", 8)) {
557 pr_info("Forcing DAC for PCI devices\n");
558 dmar_forcedac = 1;
559 } else if (!strncmp(str, "strict", 6)) {
560 pr_info("Disable batched IOTLB flush\n");
561 intel_iommu_strict = 1;
562 } else if (!strncmp(str, "sp_off", 6)) {
563 pr_info("Disable supported super page\n");
564 intel_iommu_superpage = 0;
565 } else if (!strncmp(str, "ecs_off", 7)) {
566 printk(KERN_INFO
567 "Intel-IOMMU: disable extended context table support\n");
568 intel_iommu_ecs = 0;
569 }
570
571 str += strcspn(str, ",");
572 while (*str == ',')
573 str++;
574 }
575 return 0;
576 }
577 __setup("intel_iommu=", intel_iommu_setup);
578
579 static struct kmem_cache *iommu_domain_cache;
580 static struct kmem_cache *iommu_devinfo_cache;
581
582 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
583 {
584 struct dmar_domain **domains;
585 int idx = did >> 8;
586
587 domains = iommu->domains[idx];
588 if (!domains)
589 return NULL;
590
591 return domains[did & 0xff];
592 }
593
594 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
595 struct dmar_domain *domain)
596 {
597 struct dmar_domain **domains;
598 int idx = did >> 8;
599
600 if (!iommu->domains[idx]) {
601 size_t size = 256 * sizeof(struct dmar_domain *);
602 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
603 }
604
605 domains = iommu->domains[idx];
606 if (WARN_ON(!domains))
607 return;
608 else
609 domains[did & 0xff] = domain;
610 }
611
612 static inline void *alloc_pgtable_page(int node)
613 {
614 struct page *page;
615 void *vaddr = NULL;
616
617 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
618 if (page)
619 vaddr = page_address(page);
620 return vaddr;
621 }
622
623 static inline void free_pgtable_page(void *vaddr)
624 {
625 free_page((unsigned long)vaddr);
626 }
627
628 static inline void *alloc_domain_mem(void)
629 {
630 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
631 }
632
633 static void free_domain_mem(void *vaddr)
634 {
635 kmem_cache_free(iommu_domain_cache, vaddr);
636 }
637
638 static inline void * alloc_devinfo_mem(void)
639 {
640 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
641 }
642
643 static inline void free_devinfo_mem(void *vaddr)
644 {
645 kmem_cache_free(iommu_devinfo_cache, vaddr);
646 }
647
648 static inline int domain_type_is_vm(struct dmar_domain *domain)
649 {
650 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
651 }
652
653 static inline int domain_type_is_si(struct dmar_domain *domain)
654 {
655 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
656 }
657
658 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
659 {
660 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
661 DOMAIN_FLAG_STATIC_IDENTITY);
662 }
663
664 static inline int domain_pfn_supported(struct dmar_domain *domain,
665 unsigned long pfn)
666 {
667 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
668
669 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
670 }
671
672 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
673 {
674 unsigned long sagaw;
675 int agaw = -1;
676
677 sagaw = cap_sagaw(iommu->cap);
678 for (agaw = width_to_agaw(max_gaw);
679 agaw >= 0; agaw--) {
680 if (test_bit(agaw, &sagaw))
681 break;
682 }
683
684 return agaw;
685 }
686
687 /*
688 * Calculate max SAGAW for each iommu.
689 */
690 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
691 {
692 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
693 }
694
695 /*
696 * calculate agaw for each iommu.
697 * "SAGAW" may be different across iommus, use a default agaw, and
698 * get a supported less agaw for iommus that don't support the default agaw.
699 */
700 int iommu_calculate_agaw(struct intel_iommu *iommu)
701 {
702 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
703 }
704
705 /* This functionin only returns single iommu in a domain */
706 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
707 {
708 int iommu_id;
709
710 /* si_domain and vm domain should not get here. */
711 BUG_ON(domain_type_is_vm_or_si(domain));
712 for_each_domain_iommu(iommu_id, domain)
713 break;
714
715 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
716 return NULL;
717
718 return g_iommus[iommu_id];
719 }
720
721 static void domain_update_iommu_coherency(struct dmar_domain *domain)
722 {
723 struct dmar_drhd_unit *drhd;
724 struct intel_iommu *iommu;
725 bool found = false;
726 int i;
727
728 domain->iommu_coherency = 1;
729
730 for_each_domain_iommu(i, domain) {
731 found = true;
732 if (!ecap_coherent(g_iommus[i]->ecap)) {
733 domain->iommu_coherency = 0;
734 break;
735 }
736 }
737 if (found)
738 return;
739
740 /* No hardware attached; use lowest common denominator */
741 rcu_read_lock();
742 for_each_active_iommu(iommu, drhd) {
743 if (!ecap_coherent(iommu->ecap)) {
744 domain->iommu_coherency = 0;
745 break;
746 }
747 }
748 rcu_read_unlock();
749 }
750
751 static int domain_update_iommu_snooping(struct intel_iommu *skip)
752 {
753 struct dmar_drhd_unit *drhd;
754 struct intel_iommu *iommu;
755 int ret = 1;
756
757 rcu_read_lock();
758 for_each_active_iommu(iommu, drhd) {
759 if (iommu != skip) {
760 if (!ecap_sc_support(iommu->ecap)) {
761 ret = 0;
762 break;
763 }
764 }
765 }
766 rcu_read_unlock();
767
768 return ret;
769 }
770
771 static int domain_update_iommu_superpage(struct intel_iommu *skip)
772 {
773 struct dmar_drhd_unit *drhd;
774 struct intel_iommu *iommu;
775 int mask = 0xf;
776
777 if (!intel_iommu_superpage) {
778 return 0;
779 }
780
781 /* set iommu_superpage to the smallest common denominator */
782 rcu_read_lock();
783 for_each_active_iommu(iommu, drhd) {
784 if (iommu != skip) {
785 mask &= cap_super_page_val(iommu->cap);
786 if (!mask)
787 break;
788 }
789 }
790 rcu_read_unlock();
791
792 return fls(mask);
793 }
794
795 /* Some capabilities may be different across iommus */
796 static void domain_update_iommu_cap(struct dmar_domain *domain)
797 {
798 domain_update_iommu_coherency(domain);
799 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
800 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
801 }
802
803 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
804 u8 bus, u8 devfn, int alloc)
805 {
806 struct root_entry *root = &iommu->root_entry[bus];
807 struct context_entry *context;
808 u64 *entry;
809
810 entry = &root->lo;
811 if (ecs_enabled(iommu)) {
812 if (devfn >= 0x80) {
813 devfn -= 0x80;
814 entry = &root->hi;
815 }
816 devfn *= 2;
817 }
818 if (*entry & 1)
819 context = phys_to_virt(*entry & VTD_PAGE_MASK);
820 else {
821 unsigned long phy_addr;
822 if (!alloc)
823 return NULL;
824
825 context = alloc_pgtable_page(iommu->node);
826 if (!context)
827 return NULL;
828
829 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
830 phy_addr = virt_to_phys((void *)context);
831 *entry = phy_addr | 1;
832 __iommu_flush_cache(iommu, entry, sizeof(*entry));
833 }
834 return &context[devfn];
835 }
836
837 static int iommu_dummy(struct device *dev)
838 {
839 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
840 }
841
842 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
843 {
844 struct dmar_drhd_unit *drhd = NULL;
845 struct intel_iommu *iommu;
846 struct device *tmp;
847 struct pci_dev *ptmp, *pdev = NULL;
848 u16 segment = 0;
849 int i;
850
851 if (iommu_dummy(dev))
852 return NULL;
853
854 if (dev_is_pci(dev)) {
855 pdev = to_pci_dev(dev);
856 segment = pci_domain_nr(pdev->bus);
857 } else if (has_acpi_companion(dev))
858 dev = &ACPI_COMPANION(dev)->dev;
859
860 rcu_read_lock();
861 for_each_active_iommu(iommu, drhd) {
862 if (pdev && segment != drhd->segment)
863 continue;
864
865 for_each_active_dev_scope(drhd->devices,
866 drhd->devices_cnt, i, tmp) {
867 if (tmp == dev) {
868 *bus = drhd->devices[i].bus;
869 *devfn = drhd->devices[i].devfn;
870 goto out;
871 }
872
873 if (!pdev || !dev_is_pci(tmp))
874 continue;
875
876 ptmp = to_pci_dev(tmp);
877 if (ptmp->subordinate &&
878 ptmp->subordinate->number <= pdev->bus->number &&
879 ptmp->subordinate->busn_res.end >= pdev->bus->number)
880 goto got_pdev;
881 }
882
883 if (pdev && drhd->include_all) {
884 got_pdev:
885 *bus = pdev->bus->number;
886 *devfn = pdev->devfn;
887 goto out;
888 }
889 }
890 iommu = NULL;
891 out:
892 rcu_read_unlock();
893
894 return iommu;
895 }
896
897 static void domain_flush_cache(struct dmar_domain *domain,
898 void *addr, int size)
899 {
900 if (!domain->iommu_coherency)
901 clflush_cache_range(addr, size);
902 }
903
904 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
905 {
906 struct context_entry *context;
907 int ret = 0;
908 unsigned long flags;
909
910 spin_lock_irqsave(&iommu->lock, flags);
911 context = iommu_context_addr(iommu, bus, devfn, 0);
912 if (context)
913 ret = context_present(context);
914 spin_unlock_irqrestore(&iommu->lock, flags);
915 return ret;
916 }
917
918 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
919 {
920 struct context_entry *context;
921 unsigned long flags;
922
923 spin_lock_irqsave(&iommu->lock, flags);
924 context = iommu_context_addr(iommu, bus, devfn, 0);
925 if (context) {
926 context_clear_entry(context);
927 __iommu_flush_cache(iommu, context, sizeof(*context));
928 }
929 spin_unlock_irqrestore(&iommu->lock, flags);
930 }
931
932 static void free_context_table(struct intel_iommu *iommu)
933 {
934 int i;
935 unsigned long flags;
936 struct context_entry *context;
937
938 spin_lock_irqsave(&iommu->lock, flags);
939 if (!iommu->root_entry) {
940 goto out;
941 }
942 for (i = 0; i < ROOT_ENTRY_NR; i++) {
943 context = iommu_context_addr(iommu, i, 0, 0);
944 if (context)
945 free_pgtable_page(context);
946
947 if (!ecs_enabled(iommu))
948 continue;
949
950 context = iommu_context_addr(iommu, i, 0x80, 0);
951 if (context)
952 free_pgtable_page(context);
953
954 }
955 free_pgtable_page(iommu->root_entry);
956 iommu->root_entry = NULL;
957 out:
958 spin_unlock_irqrestore(&iommu->lock, flags);
959 }
960
961 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
962 unsigned long pfn, int *target_level)
963 {
964 struct dma_pte *parent, *pte = NULL;
965 int level = agaw_to_level(domain->agaw);
966 int offset;
967
968 BUG_ON(!domain->pgd);
969
970 if (!domain_pfn_supported(domain, pfn))
971 /* Address beyond IOMMU's addressing capabilities. */
972 return NULL;
973
974 parent = domain->pgd;
975
976 while (1) {
977 void *tmp_page;
978
979 offset = pfn_level_offset(pfn, level);
980 pte = &parent[offset];
981 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
982 break;
983 if (level == *target_level)
984 break;
985
986 if (!dma_pte_present(pte)) {
987 uint64_t pteval;
988
989 tmp_page = alloc_pgtable_page(domain->nid);
990
991 if (!tmp_page)
992 return NULL;
993
994 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
995 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
996 if (cmpxchg64(&pte->val, 0ULL, pteval))
997 /* Someone else set it while we were thinking; use theirs. */
998 free_pgtable_page(tmp_page);
999 else
1000 domain_flush_cache(domain, pte, sizeof(*pte));
1001 }
1002 if (level == 1)
1003 break;
1004
1005 parent = phys_to_virt(dma_pte_addr(pte));
1006 level--;
1007 }
1008
1009 if (!*target_level)
1010 *target_level = level;
1011
1012 return pte;
1013 }
1014
1015
1016 /* return address's pte at specific level */
1017 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1018 unsigned long pfn,
1019 int level, int *large_page)
1020 {
1021 struct dma_pte *parent, *pte = NULL;
1022 int total = agaw_to_level(domain->agaw);
1023 int offset;
1024
1025 parent = domain->pgd;
1026 while (level <= total) {
1027 offset = pfn_level_offset(pfn, total);
1028 pte = &parent[offset];
1029 if (level == total)
1030 return pte;
1031
1032 if (!dma_pte_present(pte)) {
1033 *large_page = total;
1034 break;
1035 }
1036
1037 if (dma_pte_superpage(pte)) {
1038 *large_page = total;
1039 return pte;
1040 }
1041
1042 parent = phys_to_virt(dma_pte_addr(pte));
1043 total--;
1044 }
1045 return NULL;
1046 }
1047
1048 /* clear last level pte, a tlb flush should be followed */
1049 static void dma_pte_clear_range(struct dmar_domain *domain,
1050 unsigned long start_pfn,
1051 unsigned long last_pfn)
1052 {
1053 unsigned int large_page = 1;
1054 struct dma_pte *first_pte, *pte;
1055
1056 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1057 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1058 BUG_ON(start_pfn > last_pfn);
1059
1060 /* we don't need lock here; nobody else touches the iova range */
1061 do {
1062 large_page = 1;
1063 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1064 if (!pte) {
1065 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1066 continue;
1067 }
1068 do {
1069 dma_clear_pte(pte);
1070 start_pfn += lvl_to_nr_pages(large_page);
1071 pte++;
1072 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1073
1074 domain_flush_cache(domain, first_pte,
1075 (void *)pte - (void *)first_pte);
1076
1077 } while (start_pfn && start_pfn <= last_pfn);
1078 }
1079
1080 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1081 struct dma_pte *pte, unsigned long pfn,
1082 unsigned long start_pfn, unsigned long last_pfn)
1083 {
1084 pfn = max(start_pfn, pfn);
1085 pte = &pte[pfn_level_offset(pfn, level)];
1086
1087 do {
1088 unsigned long level_pfn;
1089 struct dma_pte *level_pte;
1090
1091 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1092 goto next;
1093
1094 level_pfn = pfn & level_mask(level - 1);
1095 level_pte = phys_to_virt(dma_pte_addr(pte));
1096
1097 if (level > 2)
1098 dma_pte_free_level(domain, level - 1, level_pte,
1099 level_pfn, start_pfn, last_pfn);
1100
1101 /* If range covers entire pagetable, free it */
1102 if (!(start_pfn > level_pfn ||
1103 last_pfn < level_pfn + level_size(level) - 1)) {
1104 dma_clear_pte(pte);
1105 domain_flush_cache(domain, pte, sizeof(*pte));
1106 free_pgtable_page(level_pte);
1107 }
1108 next:
1109 pfn += level_size(level);
1110 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1111 }
1112
1113 /* free page table pages. last level pte should already be cleared */
1114 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1115 unsigned long start_pfn,
1116 unsigned long last_pfn)
1117 {
1118 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1119 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1120 BUG_ON(start_pfn > last_pfn);
1121
1122 dma_pte_clear_range(domain, start_pfn, last_pfn);
1123
1124 /* We don't need lock here; nobody else touches the iova range */
1125 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1126 domain->pgd, 0, start_pfn, last_pfn);
1127
1128 /* free pgd */
1129 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1130 free_pgtable_page(domain->pgd);
1131 domain->pgd = NULL;
1132 }
1133 }
1134
1135 /* When a page at a given level is being unlinked from its parent, we don't
1136 need to *modify* it at all. All we need to do is make a list of all the
1137 pages which can be freed just as soon as we've flushed the IOTLB and we
1138 know the hardware page-walk will no longer touch them.
1139 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1140 be freed. */
1141 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1142 int level, struct dma_pte *pte,
1143 struct page *freelist)
1144 {
1145 struct page *pg;
1146
1147 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1148 pg->freelist = freelist;
1149 freelist = pg;
1150
1151 if (level == 1)
1152 return freelist;
1153
1154 pte = page_address(pg);
1155 do {
1156 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1157 freelist = dma_pte_list_pagetables(domain, level - 1,
1158 pte, freelist);
1159 pte++;
1160 } while (!first_pte_in_page(pte));
1161
1162 return freelist;
1163 }
1164
1165 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1166 struct dma_pte *pte, unsigned long pfn,
1167 unsigned long start_pfn,
1168 unsigned long last_pfn,
1169 struct page *freelist)
1170 {
1171 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1172
1173 pfn = max(start_pfn, pfn);
1174 pte = &pte[pfn_level_offset(pfn, level)];
1175
1176 do {
1177 unsigned long level_pfn;
1178
1179 if (!dma_pte_present(pte))
1180 goto next;
1181
1182 level_pfn = pfn & level_mask(level);
1183
1184 /* If range covers entire pagetable, free it */
1185 if (start_pfn <= level_pfn &&
1186 last_pfn >= level_pfn + level_size(level) - 1) {
1187 /* These suborbinate page tables are going away entirely. Don't
1188 bother to clear them; we're just going to *free* them. */
1189 if (level > 1 && !dma_pte_superpage(pte))
1190 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1191
1192 dma_clear_pte(pte);
1193 if (!first_pte)
1194 first_pte = pte;
1195 last_pte = pte;
1196 } else if (level > 1) {
1197 /* Recurse down into a level that isn't *entirely* obsolete */
1198 freelist = dma_pte_clear_level(domain, level - 1,
1199 phys_to_virt(dma_pte_addr(pte)),
1200 level_pfn, start_pfn, last_pfn,
1201 freelist);
1202 }
1203 next:
1204 pfn += level_size(level);
1205 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1206
1207 if (first_pte)
1208 domain_flush_cache(domain, first_pte,
1209 (void *)++last_pte - (void *)first_pte);
1210
1211 return freelist;
1212 }
1213
1214 /* We can't just free the pages because the IOMMU may still be walking
1215 the page tables, and may have cached the intermediate levels. The
1216 pages can only be freed after the IOTLB flush has been done. */
1217 static struct page *domain_unmap(struct dmar_domain *domain,
1218 unsigned long start_pfn,
1219 unsigned long last_pfn)
1220 {
1221 struct page *freelist = NULL;
1222
1223 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1224 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1225 BUG_ON(start_pfn > last_pfn);
1226
1227 /* we don't need lock here; nobody else touches the iova range */
1228 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1229 domain->pgd, 0, start_pfn, last_pfn, NULL);
1230
1231 /* free pgd */
1232 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1233 struct page *pgd_page = virt_to_page(domain->pgd);
1234 pgd_page->freelist = freelist;
1235 freelist = pgd_page;
1236
1237 domain->pgd = NULL;
1238 }
1239
1240 return freelist;
1241 }
1242
1243 static void dma_free_pagelist(struct page *freelist)
1244 {
1245 struct page *pg;
1246
1247 while ((pg = freelist)) {
1248 freelist = pg->freelist;
1249 free_pgtable_page(page_address(pg));
1250 }
1251 }
1252
1253 /* iommu handling */
1254 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1255 {
1256 struct root_entry *root;
1257 unsigned long flags;
1258
1259 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1260 if (!root) {
1261 pr_err("Allocating root entry for %s failed\n",
1262 iommu->name);
1263 return -ENOMEM;
1264 }
1265
1266 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1267
1268 spin_lock_irqsave(&iommu->lock, flags);
1269 iommu->root_entry = root;
1270 spin_unlock_irqrestore(&iommu->lock, flags);
1271
1272 return 0;
1273 }
1274
1275 static void iommu_set_root_entry(struct intel_iommu *iommu)
1276 {
1277 u64 addr;
1278 u32 sts;
1279 unsigned long flag;
1280
1281 addr = virt_to_phys(iommu->root_entry);
1282 if (ecs_enabled(iommu))
1283 addr |= DMA_RTADDR_RTT;
1284
1285 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1286 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1287
1288 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1289
1290 /* Make sure hardware complete it */
1291 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1292 readl, (sts & DMA_GSTS_RTPS), sts);
1293
1294 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1295 }
1296
1297 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1298 {
1299 u32 val;
1300 unsigned long flag;
1301
1302 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1303 return;
1304
1305 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1306 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1307
1308 /* Make sure hardware complete it */
1309 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1310 readl, (!(val & DMA_GSTS_WBFS)), val);
1311
1312 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1313 }
1314
1315 /* return value determine if we need a write buffer flush */
1316 static void __iommu_flush_context(struct intel_iommu *iommu,
1317 u16 did, u16 source_id, u8 function_mask,
1318 u64 type)
1319 {
1320 u64 val = 0;
1321 unsigned long flag;
1322
1323 switch (type) {
1324 case DMA_CCMD_GLOBAL_INVL:
1325 val = DMA_CCMD_GLOBAL_INVL;
1326 break;
1327 case DMA_CCMD_DOMAIN_INVL:
1328 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1329 break;
1330 case DMA_CCMD_DEVICE_INVL:
1331 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1332 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1333 break;
1334 default:
1335 BUG();
1336 }
1337 val |= DMA_CCMD_ICC;
1338
1339 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1340 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1341
1342 /* Make sure hardware complete it */
1343 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1344 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1345
1346 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1347 }
1348
1349 /* return value determine if we need a write buffer flush */
1350 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1351 u64 addr, unsigned int size_order, u64 type)
1352 {
1353 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1354 u64 val = 0, val_iva = 0;
1355 unsigned long flag;
1356
1357 switch (type) {
1358 case DMA_TLB_GLOBAL_FLUSH:
1359 /* global flush doesn't need set IVA_REG */
1360 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1361 break;
1362 case DMA_TLB_DSI_FLUSH:
1363 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1364 break;
1365 case DMA_TLB_PSI_FLUSH:
1366 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1367 /* IH bit is passed in as part of address */
1368 val_iva = size_order | addr;
1369 break;
1370 default:
1371 BUG();
1372 }
1373 /* Note: set drain read/write */
1374 #if 0
1375 /*
1376 * This is probably to be super secure.. Looks like we can
1377 * ignore it without any impact.
1378 */
1379 if (cap_read_drain(iommu->cap))
1380 val |= DMA_TLB_READ_DRAIN;
1381 #endif
1382 if (cap_write_drain(iommu->cap))
1383 val |= DMA_TLB_WRITE_DRAIN;
1384
1385 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1386 /* Note: Only uses first TLB reg currently */
1387 if (val_iva)
1388 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1389 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1390
1391 /* Make sure hardware complete it */
1392 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1393 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1394
1395 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1396
1397 /* check IOTLB invalidation granularity */
1398 if (DMA_TLB_IAIG(val) == 0)
1399 pr_err("Flush IOTLB failed\n");
1400 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1401 pr_debug("TLB flush request %Lx, actual %Lx\n",
1402 (unsigned long long)DMA_TLB_IIRG(type),
1403 (unsigned long long)DMA_TLB_IAIG(val));
1404 }
1405
1406 static struct device_domain_info *
1407 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1408 u8 bus, u8 devfn)
1409 {
1410 bool found = false;
1411 struct device_domain_info *info;
1412 struct pci_dev *pdev;
1413
1414 assert_spin_locked(&device_domain_lock);
1415
1416 if (!ecap_dev_iotlb_support(iommu->ecap))
1417 return NULL;
1418
1419 if (!iommu->qi)
1420 return NULL;
1421
1422 list_for_each_entry(info, &domain->devices, link)
1423 if (info->iommu == iommu && info->bus == bus &&
1424 info->devfn == devfn) {
1425 found = true;
1426 break;
1427 }
1428
1429 if (!found || !info->dev || !dev_is_pci(info->dev))
1430 return NULL;
1431
1432 pdev = to_pci_dev(info->dev);
1433
1434 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1435 return NULL;
1436
1437 if (!dmar_find_matched_atsr_unit(pdev))
1438 return NULL;
1439
1440 return info;
1441 }
1442
1443 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1444 {
1445 struct pci_dev *pdev;
1446
1447 if (!info || !dev_is_pci(info->dev))
1448 return;
1449
1450 pdev = to_pci_dev(info->dev);
1451 if (pci_enable_ats(pdev, VTD_PAGE_SHIFT))
1452 return;
1453
1454 info->ats.enabled = 1;
1455 info->ats.qdep = pci_ats_queue_depth(pdev);
1456 }
1457
1458 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1459 {
1460 if (!info->ats.enabled)
1461 return;
1462
1463 pci_disable_ats(to_pci_dev(info->dev));
1464 info->ats.enabled = 0;
1465 }
1466
1467 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1468 u64 addr, unsigned mask)
1469 {
1470 u16 sid, qdep;
1471 unsigned long flags;
1472 struct device_domain_info *info;
1473
1474 spin_lock_irqsave(&device_domain_lock, flags);
1475 list_for_each_entry(info, &domain->devices, link) {
1476 if (!info->ats.enabled)
1477 continue;
1478
1479 sid = info->bus << 8 | info->devfn;
1480 qdep = info->ats.qdep;
1481 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1482 }
1483 spin_unlock_irqrestore(&device_domain_lock, flags);
1484 }
1485
1486 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1487 struct dmar_domain *domain,
1488 unsigned long pfn, unsigned int pages,
1489 int ih, int map)
1490 {
1491 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1492 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1493 u16 did = domain->iommu_did[iommu->seq_id];
1494
1495 BUG_ON(pages == 0);
1496
1497 if (ih)
1498 ih = 1 << 6;
1499 /*
1500 * Fallback to domain selective flush if no PSI support or the size is
1501 * too big.
1502 * PSI requires page size to be 2 ^ x, and the base address is naturally
1503 * aligned to the size
1504 */
1505 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1506 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1507 DMA_TLB_DSI_FLUSH);
1508 else
1509 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1510 DMA_TLB_PSI_FLUSH);
1511
1512 /*
1513 * In caching mode, changes of pages from non-present to present require
1514 * flush. However, device IOTLB doesn't need to be flushed in this case.
1515 */
1516 if (!cap_caching_mode(iommu->cap) || !map)
1517 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1518 addr, mask);
1519 }
1520
1521 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1522 {
1523 u32 pmen;
1524 unsigned long flags;
1525
1526 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1527 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1528 pmen &= ~DMA_PMEN_EPM;
1529 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1530
1531 /* wait for the protected region status bit to clear */
1532 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1533 readl, !(pmen & DMA_PMEN_PRS), pmen);
1534
1535 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1536 }
1537
1538 static void iommu_enable_translation(struct intel_iommu *iommu)
1539 {
1540 u32 sts;
1541 unsigned long flags;
1542
1543 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1544 iommu->gcmd |= DMA_GCMD_TE;
1545 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1546
1547 /* Make sure hardware complete it */
1548 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1549 readl, (sts & DMA_GSTS_TES), sts);
1550
1551 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1552 }
1553
1554 static void iommu_disable_translation(struct intel_iommu *iommu)
1555 {
1556 u32 sts;
1557 unsigned long flag;
1558
1559 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1560 iommu->gcmd &= ~DMA_GCMD_TE;
1561 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1562
1563 /* Make sure hardware complete it */
1564 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1565 readl, (!(sts & DMA_GSTS_TES)), sts);
1566
1567 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1568 }
1569
1570
1571 static int iommu_init_domains(struct intel_iommu *iommu)
1572 {
1573 u32 ndomains, nlongs;
1574 size_t size;
1575
1576 ndomains = cap_ndoms(iommu->cap);
1577 pr_debug("%s: Number of Domains supported <%d>\n",
1578 iommu->name, ndomains);
1579 nlongs = BITS_TO_LONGS(ndomains);
1580
1581 spin_lock_init(&iommu->lock);
1582
1583 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1584 if (!iommu->domain_ids) {
1585 pr_err("%s: Allocating domain id array failed\n",
1586 iommu->name);
1587 return -ENOMEM;
1588 }
1589
1590 size = ((ndomains >> 8) + 1) * sizeof(struct dmar_domain **);
1591 iommu->domains = kzalloc(size, GFP_KERNEL);
1592
1593 if (iommu->domains) {
1594 size = 256 * sizeof(struct dmar_domain *);
1595 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1596 }
1597
1598 if (!iommu->domains || !iommu->domains[0]) {
1599 pr_err("%s: Allocating domain array failed\n",
1600 iommu->name);
1601 kfree(iommu->domain_ids);
1602 kfree(iommu->domains);
1603 iommu->domain_ids = NULL;
1604 iommu->domains = NULL;
1605 return -ENOMEM;
1606 }
1607
1608
1609
1610 /*
1611 * If Caching mode is set, then invalid translations are tagged
1612 * with domain-id 0, hence we need to pre-allocate it. We also
1613 * use domain-id 0 as a marker for non-allocated domain-id, so
1614 * make sure it is not used for a real domain.
1615 */
1616 set_bit(0, iommu->domain_ids);
1617
1618 return 0;
1619 }
1620
1621 static void disable_dmar_iommu(struct intel_iommu *iommu)
1622 {
1623 struct device_domain_info *info, *tmp;
1624 unsigned long flags;
1625
1626 if (!iommu->domains || !iommu->domain_ids)
1627 return;
1628
1629 spin_lock_irqsave(&device_domain_lock, flags);
1630 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1631 struct dmar_domain *domain;
1632
1633 if (info->iommu != iommu)
1634 continue;
1635
1636 if (!info->dev || !info->domain)
1637 continue;
1638
1639 domain = info->domain;
1640
1641 dmar_remove_one_dev_info(domain, info->dev);
1642
1643 if (!domain_type_is_vm_or_si(domain))
1644 domain_exit(domain);
1645 }
1646 spin_unlock_irqrestore(&device_domain_lock, flags);
1647
1648 if (iommu->gcmd & DMA_GCMD_TE)
1649 iommu_disable_translation(iommu);
1650 }
1651
1652 static void free_dmar_iommu(struct intel_iommu *iommu)
1653 {
1654 if ((iommu->domains) && (iommu->domain_ids)) {
1655 int elems = (cap_ndoms(iommu->cap) >> 8) + 1;
1656 int i;
1657
1658 for (i = 0; i < elems; i++)
1659 kfree(iommu->domains[i]);
1660 kfree(iommu->domains);
1661 kfree(iommu->domain_ids);
1662 iommu->domains = NULL;
1663 iommu->domain_ids = NULL;
1664 }
1665
1666 g_iommus[iommu->seq_id] = NULL;
1667
1668 /* free context mapping */
1669 free_context_table(iommu);
1670 }
1671
1672 static struct dmar_domain *alloc_domain(int flags)
1673 {
1674 struct dmar_domain *domain;
1675
1676 domain = alloc_domain_mem();
1677 if (!domain)
1678 return NULL;
1679
1680 memset(domain, 0, sizeof(*domain));
1681 domain->nid = -1;
1682 domain->flags = flags;
1683 INIT_LIST_HEAD(&domain->devices);
1684
1685 return domain;
1686 }
1687
1688 /* Must be called with iommu->lock */
1689 static int domain_attach_iommu(struct dmar_domain *domain,
1690 struct intel_iommu *iommu)
1691 {
1692 unsigned long ndomains;
1693 int num;
1694
1695 assert_spin_locked(&device_domain_lock);
1696 assert_spin_locked(&iommu->lock);
1697
1698 domain->iommu_refcnt[iommu->seq_id] += 1;
1699 domain->iommu_count += 1;
1700 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1701 ndomains = cap_ndoms(iommu->cap);
1702 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1703
1704 if (num >= ndomains) {
1705 pr_err("%s: No free domain ids\n", iommu->name);
1706 domain->iommu_refcnt[iommu->seq_id] -= 1;
1707 domain->iommu_count -= 1;
1708 return -ENOSPC;
1709 }
1710
1711 set_bit(num, iommu->domain_ids);
1712 set_iommu_domain(iommu, num, domain);
1713
1714 domain->iommu_did[iommu->seq_id] = num;
1715 domain->nid = iommu->node;
1716
1717 domain_update_iommu_cap(domain);
1718 }
1719
1720 return 0;
1721 }
1722
1723 static int domain_detach_iommu(struct dmar_domain *domain,
1724 struct intel_iommu *iommu)
1725 {
1726 int num, count = INT_MAX;
1727
1728 assert_spin_locked(&device_domain_lock);
1729 assert_spin_locked(&iommu->lock);
1730
1731 domain->iommu_refcnt[iommu->seq_id] -= 1;
1732 count = --domain->iommu_count;
1733 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1734 num = domain->iommu_did[iommu->seq_id];
1735 clear_bit(num, iommu->domain_ids);
1736 set_iommu_domain(iommu, num, NULL);
1737
1738 domain_update_iommu_cap(domain);
1739 domain->iommu_did[iommu->seq_id] = 0;
1740 }
1741
1742 return count;
1743 }
1744
1745 static struct iova_domain reserved_iova_list;
1746 static struct lock_class_key reserved_rbtree_key;
1747
1748 static int dmar_init_reserved_ranges(void)
1749 {
1750 struct pci_dev *pdev = NULL;
1751 struct iova *iova;
1752 int i;
1753
1754 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1755 DMA_32BIT_PFN);
1756
1757 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1758 &reserved_rbtree_key);
1759
1760 /* IOAPIC ranges shouldn't be accessed by DMA */
1761 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1762 IOVA_PFN(IOAPIC_RANGE_END));
1763 if (!iova) {
1764 pr_err("Reserve IOAPIC range failed\n");
1765 return -ENODEV;
1766 }
1767
1768 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1769 for_each_pci_dev(pdev) {
1770 struct resource *r;
1771
1772 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1773 r = &pdev->resource[i];
1774 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1775 continue;
1776 iova = reserve_iova(&reserved_iova_list,
1777 IOVA_PFN(r->start),
1778 IOVA_PFN(r->end));
1779 if (!iova) {
1780 pr_err("Reserve iova failed\n");
1781 return -ENODEV;
1782 }
1783 }
1784 }
1785 return 0;
1786 }
1787
1788 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1789 {
1790 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1791 }
1792
1793 static inline int guestwidth_to_adjustwidth(int gaw)
1794 {
1795 int agaw;
1796 int r = (gaw - 12) % 9;
1797
1798 if (r == 0)
1799 agaw = gaw;
1800 else
1801 agaw = gaw + 9 - r;
1802 if (agaw > 64)
1803 agaw = 64;
1804 return agaw;
1805 }
1806
1807 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1808 int guest_width)
1809 {
1810 int adjust_width, agaw;
1811 unsigned long sagaw;
1812
1813 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1814 DMA_32BIT_PFN);
1815 domain_reserve_special_ranges(domain);
1816
1817 /* calculate AGAW */
1818 if (guest_width > cap_mgaw(iommu->cap))
1819 guest_width = cap_mgaw(iommu->cap);
1820 domain->gaw = guest_width;
1821 adjust_width = guestwidth_to_adjustwidth(guest_width);
1822 agaw = width_to_agaw(adjust_width);
1823 sagaw = cap_sagaw(iommu->cap);
1824 if (!test_bit(agaw, &sagaw)) {
1825 /* hardware doesn't support it, choose a bigger one */
1826 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1827 agaw = find_next_bit(&sagaw, 5, agaw);
1828 if (agaw >= 5)
1829 return -ENODEV;
1830 }
1831 domain->agaw = agaw;
1832
1833 if (ecap_coherent(iommu->ecap))
1834 domain->iommu_coherency = 1;
1835 else
1836 domain->iommu_coherency = 0;
1837
1838 if (ecap_sc_support(iommu->ecap))
1839 domain->iommu_snooping = 1;
1840 else
1841 domain->iommu_snooping = 0;
1842
1843 if (intel_iommu_superpage)
1844 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1845 else
1846 domain->iommu_superpage = 0;
1847
1848 domain->nid = iommu->node;
1849
1850 /* always allocate the top pgd */
1851 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1852 if (!domain->pgd)
1853 return -ENOMEM;
1854 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1855 return 0;
1856 }
1857
1858 static void domain_exit(struct dmar_domain *domain)
1859 {
1860 struct page *freelist = NULL;
1861
1862 /* Domain 0 is reserved, so dont process it */
1863 if (!domain)
1864 return;
1865
1866 /* Flush any lazy unmaps that may reference this domain */
1867 if (!intel_iommu_strict)
1868 flush_unmaps_timeout(0);
1869
1870 /* Remove associated devices and clear attached or cached domains */
1871 rcu_read_lock();
1872 domain_remove_dev_info(domain);
1873 rcu_read_unlock();
1874
1875 /* destroy iovas */
1876 put_iova_domain(&domain->iovad);
1877
1878 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1879
1880 dma_free_pagelist(freelist);
1881
1882 free_domain_mem(domain);
1883 }
1884
1885 static int domain_context_mapping_one(struct dmar_domain *domain,
1886 struct intel_iommu *iommu,
1887 u8 bus, u8 devfn)
1888 {
1889 u16 did = domain->iommu_did[iommu->seq_id];
1890 int translation = CONTEXT_TT_MULTI_LEVEL;
1891 struct device_domain_info *info = NULL;
1892 struct context_entry *context;
1893 unsigned long flags;
1894 struct dma_pte *pgd;
1895 int ret, agaw;
1896
1897 WARN_ON(did == 0);
1898
1899 if (hw_pass_through && domain_type_is_si(domain))
1900 translation = CONTEXT_TT_PASS_THROUGH;
1901
1902 pr_debug("Set context mapping for %02x:%02x.%d\n",
1903 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1904
1905 BUG_ON(!domain->pgd);
1906
1907 spin_lock_irqsave(&device_domain_lock, flags);
1908 spin_lock(&iommu->lock);
1909
1910 ret = -ENOMEM;
1911 context = iommu_context_addr(iommu, bus, devfn, 1);
1912 if (!context)
1913 goto out_unlock;
1914
1915 ret = 0;
1916 if (context_present(context))
1917 goto out_unlock;
1918
1919 pgd = domain->pgd;
1920
1921 context_clear_entry(context);
1922 context_set_domain_id(context, did);
1923
1924 /*
1925 * Skip top levels of page tables for iommu which has less agaw
1926 * than default. Unnecessary for PT mode.
1927 */
1928 if (translation != CONTEXT_TT_PASS_THROUGH) {
1929 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1930 ret = -ENOMEM;
1931 pgd = phys_to_virt(dma_pte_addr(pgd));
1932 if (!dma_pte_present(pgd))
1933 goto out_unlock;
1934 }
1935
1936 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1937 translation = info ? CONTEXT_TT_DEV_IOTLB :
1938 CONTEXT_TT_MULTI_LEVEL;
1939
1940 context_set_address_root(context, virt_to_phys(pgd));
1941 context_set_address_width(context, iommu->agaw);
1942 } else {
1943 /*
1944 * In pass through mode, AW must be programmed to
1945 * indicate the largest AGAW value supported by
1946 * hardware. And ASR is ignored by hardware.
1947 */
1948 context_set_address_width(context, iommu->msagaw);
1949 }
1950
1951 context_set_translation_type(context, translation);
1952 context_set_fault_enable(context);
1953 context_set_present(context);
1954 domain_flush_cache(domain, context, sizeof(*context));
1955
1956 /*
1957 * It's a non-present to present mapping. If hardware doesn't cache
1958 * non-present entry we only need to flush the write-buffer. If the
1959 * _does_ cache non-present entries, then it does so in the special
1960 * domain #0, which we have to flush:
1961 */
1962 if (cap_caching_mode(iommu->cap)) {
1963 iommu->flush.flush_context(iommu, 0,
1964 (((u16)bus) << 8) | devfn,
1965 DMA_CCMD_MASK_NOBIT,
1966 DMA_CCMD_DEVICE_INVL);
1967 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1968 } else {
1969 iommu_flush_write_buffer(iommu);
1970 }
1971 iommu_enable_dev_iotlb(info);
1972
1973 ret = 0;
1974
1975 out_unlock:
1976 spin_unlock(&iommu->lock);
1977 spin_unlock_irqrestore(&device_domain_lock, flags);
1978
1979 return 0;
1980 }
1981
1982 struct domain_context_mapping_data {
1983 struct dmar_domain *domain;
1984 struct intel_iommu *iommu;
1985 };
1986
1987 static int domain_context_mapping_cb(struct pci_dev *pdev,
1988 u16 alias, void *opaque)
1989 {
1990 struct domain_context_mapping_data *data = opaque;
1991
1992 return domain_context_mapping_one(data->domain, data->iommu,
1993 PCI_BUS_NUM(alias), alias & 0xff);
1994 }
1995
1996 static int
1997 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
1998 {
1999 struct intel_iommu *iommu;
2000 u8 bus, devfn;
2001 struct domain_context_mapping_data data;
2002
2003 iommu = device_to_iommu(dev, &bus, &devfn);
2004 if (!iommu)
2005 return -ENODEV;
2006
2007 if (!dev_is_pci(dev))
2008 return domain_context_mapping_one(domain, iommu, bus, devfn);
2009
2010 data.domain = domain;
2011 data.iommu = iommu;
2012
2013 return pci_for_each_dma_alias(to_pci_dev(dev),
2014 &domain_context_mapping_cb, &data);
2015 }
2016
2017 static int domain_context_mapped_cb(struct pci_dev *pdev,
2018 u16 alias, void *opaque)
2019 {
2020 struct intel_iommu *iommu = opaque;
2021
2022 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2023 }
2024
2025 static int domain_context_mapped(struct device *dev)
2026 {
2027 struct intel_iommu *iommu;
2028 u8 bus, devfn;
2029
2030 iommu = device_to_iommu(dev, &bus, &devfn);
2031 if (!iommu)
2032 return -ENODEV;
2033
2034 if (!dev_is_pci(dev))
2035 return device_context_mapped(iommu, bus, devfn);
2036
2037 return !pci_for_each_dma_alias(to_pci_dev(dev),
2038 domain_context_mapped_cb, iommu);
2039 }
2040
2041 /* Returns a number of VTD pages, but aligned to MM page size */
2042 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2043 size_t size)
2044 {
2045 host_addr &= ~PAGE_MASK;
2046 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2047 }
2048
2049 /* Return largest possible superpage level for a given mapping */
2050 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2051 unsigned long iov_pfn,
2052 unsigned long phy_pfn,
2053 unsigned long pages)
2054 {
2055 int support, level = 1;
2056 unsigned long pfnmerge;
2057
2058 support = domain->iommu_superpage;
2059
2060 /* To use a large page, the virtual *and* physical addresses
2061 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2062 of them will mean we have to use smaller pages. So just
2063 merge them and check both at once. */
2064 pfnmerge = iov_pfn | phy_pfn;
2065
2066 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2067 pages >>= VTD_STRIDE_SHIFT;
2068 if (!pages)
2069 break;
2070 pfnmerge >>= VTD_STRIDE_SHIFT;
2071 level++;
2072 support--;
2073 }
2074 return level;
2075 }
2076
2077 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2078 struct scatterlist *sg, unsigned long phys_pfn,
2079 unsigned long nr_pages, int prot)
2080 {
2081 struct dma_pte *first_pte = NULL, *pte = NULL;
2082 phys_addr_t uninitialized_var(pteval);
2083 unsigned long sg_res = 0;
2084 unsigned int largepage_lvl = 0;
2085 unsigned long lvl_pages = 0;
2086
2087 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2088
2089 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2090 return -EINVAL;
2091
2092 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2093
2094 if (!sg) {
2095 sg_res = nr_pages;
2096 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2097 }
2098
2099 while (nr_pages > 0) {
2100 uint64_t tmp;
2101
2102 if (!sg_res) {
2103 sg_res = aligned_nrpages(sg->offset, sg->length);
2104 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2105 sg->dma_length = sg->length;
2106 pteval = (sg_phys(sg) & PAGE_MASK) | prot;
2107 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2108 }
2109
2110 if (!pte) {
2111 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2112
2113 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2114 if (!pte)
2115 return -ENOMEM;
2116 /* It is large page*/
2117 if (largepage_lvl > 1) {
2118 unsigned long nr_superpages, end_pfn;
2119
2120 pteval |= DMA_PTE_LARGE_PAGE;
2121 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2122
2123 nr_superpages = sg_res / lvl_pages;
2124 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2125
2126 /*
2127 * Ensure that old small page tables are
2128 * removed to make room for superpage(s).
2129 */
2130 dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
2131 } else {
2132 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2133 }
2134
2135 }
2136 /* We don't need lock here, nobody else
2137 * touches the iova range
2138 */
2139 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2140 if (tmp) {
2141 static int dumps = 5;
2142 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2143 iov_pfn, tmp, (unsigned long long)pteval);
2144 if (dumps) {
2145 dumps--;
2146 debug_dma_dump_mappings(NULL);
2147 }
2148 WARN_ON(1);
2149 }
2150
2151 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2152
2153 BUG_ON(nr_pages < lvl_pages);
2154 BUG_ON(sg_res < lvl_pages);
2155
2156 nr_pages -= lvl_pages;
2157 iov_pfn += lvl_pages;
2158 phys_pfn += lvl_pages;
2159 pteval += lvl_pages * VTD_PAGE_SIZE;
2160 sg_res -= lvl_pages;
2161
2162 /* If the next PTE would be the first in a new page, then we
2163 need to flush the cache on the entries we've just written.
2164 And then we'll need to recalculate 'pte', so clear it and
2165 let it get set again in the if (!pte) block above.
2166
2167 If we're done (!nr_pages) we need to flush the cache too.
2168
2169 Also if we've been setting superpages, we may need to
2170 recalculate 'pte' and switch back to smaller pages for the
2171 end of the mapping, if the trailing size is not enough to
2172 use another superpage (i.e. sg_res < lvl_pages). */
2173 pte++;
2174 if (!nr_pages || first_pte_in_page(pte) ||
2175 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2176 domain_flush_cache(domain, first_pte,
2177 (void *)pte - (void *)first_pte);
2178 pte = NULL;
2179 }
2180
2181 if (!sg_res && nr_pages)
2182 sg = sg_next(sg);
2183 }
2184 return 0;
2185 }
2186
2187 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2188 struct scatterlist *sg, unsigned long nr_pages,
2189 int prot)
2190 {
2191 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2192 }
2193
2194 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2195 unsigned long phys_pfn, unsigned long nr_pages,
2196 int prot)
2197 {
2198 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2199 }
2200
2201 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2202 {
2203 if (!iommu)
2204 return;
2205
2206 clear_context_table(iommu, bus, devfn);
2207 iommu->flush.flush_context(iommu, 0, 0, 0,
2208 DMA_CCMD_GLOBAL_INVL);
2209 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2210 }
2211
2212 static inline void unlink_domain_info(struct device_domain_info *info)
2213 {
2214 assert_spin_locked(&device_domain_lock);
2215 list_del(&info->link);
2216 list_del(&info->global);
2217 if (info->dev)
2218 info->dev->archdata.iommu = NULL;
2219 }
2220
2221 static void domain_remove_dev_info(struct dmar_domain *domain)
2222 {
2223 struct device_domain_info *info, *tmp;
2224 unsigned long flags;
2225
2226 spin_lock_irqsave(&device_domain_lock, flags);
2227 list_for_each_entry_safe(info, tmp, &domain->devices, link)
2228 __dmar_remove_one_dev_info(info);
2229 spin_unlock_irqrestore(&device_domain_lock, flags);
2230 }
2231
2232 /*
2233 * find_domain
2234 * Note: we use struct device->archdata.iommu stores the info
2235 */
2236 static struct dmar_domain *find_domain(struct device *dev)
2237 {
2238 struct device_domain_info *info;
2239
2240 /* No lock here, assumes no domain exit in normal case */
2241 info = dev->archdata.iommu;
2242 if (info)
2243 return info->domain;
2244 return NULL;
2245 }
2246
2247 static inline struct device_domain_info *
2248 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2249 {
2250 struct device_domain_info *info;
2251
2252 list_for_each_entry(info, &device_domain_list, global)
2253 if (info->iommu->segment == segment && info->bus == bus &&
2254 info->devfn == devfn)
2255 return info;
2256
2257 return NULL;
2258 }
2259
2260 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2261 int bus, int devfn,
2262 struct device *dev,
2263 struct dmar_domain *domain)
2264 {
2265 struct dmar_domain *found = NULL;
2266 struct device_domain_info *info;
2267 unsigned long flags;
2268 int ret;
2269
2270 info = alloc_devinfo_mem();
2271 if (!info)
2272 return NULL;
2273
2274 info->bus = bus;
2275 info->devfn = devfn;
2276 info->ats.enabled = 0;
2277 info->ats.qdep = 0;
2278 info->dev = dev;
2279 info->domain = domain;
2280 info->iommu = iommu;
2281
2282 spin_lock_irqsave(&device_domain_lock, flags);
2283 if (dev)
2284 found = find_domain(dev);
2285
2286 if (!found) {
2287 struct device_domain_info *info2;
2288 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2289 if (info2) {
2290 found = info2->domain;
2291 info2->dev = dev;
2292 }
2293 }
2294
2295 if (found) {
2296 spin_unlock_irqrestore(&device_domain_lock, flags);
2297 free_devinfo_mem(info);
2298 /* Caller must free the original domain */
2299 return found;
2300 }
2301
2302 spin_lock(&iommu->lock);
2303 ret = domain_attach_iommu(domain, iommu);
2304 spin_unlock(&iommu->lock);
2305
2306 if (ret) {
2307 spin_unlock_irqrestore(&device_domain_lock, flags);
2308 return NULL;
2309 }
2310
2311 list_add(&info->link, &domain->devices);
2312 list_add(&info->global, &device_domain_list);
2313 if (dev)
2314 dev->archdata.iommu = info;
2315 spin_unlock_irqrestore(&device_domain_lock, flags);
2316
2317 if (dev && domain_context_mapping(domain, dev)) {
2318 pr_err("Domain context map for %s failed\n", dev_name(dev));
2319 dmar_remove_one_dev_info(domain, dev);
2320 return NULL;
2321 }
2322
2323 return domain;
2324 }
2325
2326 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2327 {
2328 *(u16 *)opaque = alias;
2329 return 0;
2330 }
2331
2332 /* domain is initialized */
2333 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2334 {
2335 struct device_domain_info *info = NULL;
2336 struct dmar_domain *domain, *tmp;
2337 struct intel_iommu *iommu;
2338 u16 req_id, dma_alias;
2339 unsigned long flags;
2340 u8 bus, devfn;
2341
2342 domain = find_domain(dev);
2343 if (domain)
2344 return domain;
2345
2346 iommu = device_to_iommu(dev, &bus, &devfn);
2347 if (!iommu)
2348 return NULL;
2349
2350 req_id = ((u16)bus << 8) | devfn;
2351
2352 if (dev_is_pci(dev)) {
2353 struct pci_dev *pdev = to_pci_dev(dev);
2354
2355 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2356
2357 spin_lock_irqsave(&device_domain_lock, flags);
2358 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2359 PCI_BUS_NUM(dma_alias),
2360 dma_alias & 0xff);
2361 if (info) {
2362 iommu = info->iommu;
2363 domain = info->domain;
2364 }
2365 spin_unlock_irqrestore(&device_domain_lock, flags);
2366
2367 /* DMA alias already has a domain, uses it */
2368 if (info)
2369 goto found_domain;
2370 }
2371
2372 /* Allocate and initialize new domain for the device */
2373 domain = alloc_domain(0);
2374 if (!domain)
2375 return NULL;
2376 if (domain_init(domain, iommu, gaw)) {
2377 domain_exit(domain);
2378 return NULL;
2379 }
2380
2381 /* register PCI DMA alias device */
2382 if (req_id != dma_alias && dev_is_pci(dev)) {
2383 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2384 dma_alias & 0xff, NULL, domain);
2385
2386 if (!tmp || tmp != domain) {
2387 domain_exit(domain);
2388 domain = tmp;
2389 }
2390
2391 if (!domain)
2392 return NULL;
2393 }
2394
2395 found_domain:
2396 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2397
2398 if (!tmp || tmp != domain) {
2399 domain_exit(domain);
2400 domain = tmp;
2401 }
2402
2403 return domain;
2404 }
2405
2406 static int iommu_identity_mapping;
2407 #define IDENTMAP_ALL 1
2408 #define IDENTMAP_GFX 2
2409 #define IDENTMAP_AZALIA 4
2410
2411 static int iommu_domain_identity_map(struct dmar_domain *domain,
2412 unsigned long long start,
2413 unsigned long long end)
2414 {
2415 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2416 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2417
2418 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2419 dma_to_mm_pfn(last_vpfn))) {
2420 pr_err("Reserving iova failed\n");
2421 return -ENOMEM;
2422 }
2423
2424 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2425 /*
2426 * RMRR range might have overlap with physical memory range,
2427 * clear it first
2428 */
2429 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2430
2431 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2432 last_vpfn - first_vpfn + 1,
2433 DMA_PTE_READ|DMA_PTE_WRITE);
2434 }
2435
2436 static int iommu_prepare_identity_map(struct device *dev,
2437 unsigned long long start,
2438 unsigned long long end)
2439 {
2440 struct dmar_domain *domain;
2441 int ret;
2442
2443 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2444 if (!domain)
2445 return -ENOMEM;
2446
2447 /* For _hardware_ passthrough, don't bother. But for software
2448 passthrough, we do it anyway -- it may indicate a memory
2449 range which is reserved in E820, so which didn't get set
2450 up to start with in si_domain */
2451 if (domain == si_domain && hw_pass_through) {
2452 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2453 dev_name(dev), start, end);
2454 return 0;
2455 }
2456
2457 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2458 dev_name(dev), start, end);
2459
2460 if (end < start) {
2461 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2462 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2463 dmi_get_system_info(DMI_BIOS_VENDOR),
2464 dmi_get_system_info(DMI_BIOS_VERSION),
2465 dmi_get_system_info(DMI_PRODUCT_VERSION));
2466 ret = -EIO;
2467 goto error;
2468 }
2469
2470 if (end >> agaw_to_width(domain->agaw)) {
2471 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2472 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2473 agaw_to_width(domain->agaw),
2474 dmi_get_system_info(DMI_BIOS_VENDOR),
2475 dmi_get_system_info(DMI_BIOS_VERSION),
2476 dmi_get_system_info(DMI_PRODUCT_VERSION));
2477 ret = -EIO;
2478 goto error;
2479 }
2480
2481 ret = iommu_domain_identity_map(domain, start, end);
2482 if (ret)
2483 goto error;
2484
2485 return 0;
2486
2487 error:
2488 domain_exit(domain);
2489 return ret;
2490 }
2491
2492 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2493 struct device *dev)
2494 {
2495 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2496 return 0;
2497 return iommu_prepare_identity_map(dev, rmrr->base_address,
2498 rmrr->end_address);
2499 }
2500
2501 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2502 static inline void iommu_prepare_isa(void)
2503 {
2504 struct pci_dev *pdev;
2505 int ret;
2506
2507 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2508 if (!pdev)
2509 return;
2510
2511 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2512 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2513
2514 if (ret)
2515 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2516
2517 pci_dev_put(pdev);
2518 }
2519 #else
2520 static inline void iommu_prepare_isa(void)
2521 {
2522 return;
2523 }
2524 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2525
2526 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2527
2528 static int __init si_domain_init(int hw)
2529 {
2530 int nid, ret = 0;
2531
2532 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2533 if (!si_domain)
2534 return -EFAULT;
2535
2536 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2537 domain_exit(si_domain);
2538 return -EFAULT;
2539 }
2540
2541 pr_debug("Identity mapping domain allocated\n");
2542
2543 if (hw)
2544 return 0;
2545
2546 for_each_online_node(nid) {
2547 unsigned long start_pfn, end_pfn;
2548 int i;
2549
2550 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2551 ret = iommu_domain_identity_map(si_domain,
2552 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2553 if (ret)
2554 return ret;
2555 }
2556 }
2557
2558 return 0;
2559 }
2560
2561 static int identity_mapping(struct device *dev)
2562 {
2563 struct device_domain_info *info;
2564
2565 if (likely(!iommu_identity_mapping))
2566 return 0;
2567
2568 info = dev->archdata.iommu;
2569 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2570 return (info->domain == si_domain);
2571
2572 return 0;
2573 }
2574
2575 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2576 {
2577 struct dmar_domain *ndomain;
2578 struct intel_iommu *iommu;
2579 u8 bus, devfn;
2580
2581 iommu = device_to_iommu(dev, &bus, &devfn);
2582 if (!iommu)
2583 return -ENODEV;
2584
2585 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2586 if (ndomain != domain)
2587 return -EBUSY;
2588
2589 return 0;
2590 }
2591
2592 static bool device_has_rmrr(struct device *dev)
2593 {
2594 struct dmar_rmrr_unit *rmrr;
2595 struct device *tmp;
2596 int i;
2597
2598 rcu_read_lock();
2599 for_each_rmrr_units(rmrr) {
2600 /*
2601 * Return TRUE if this RMRR contains the device that
2602 * is passed in.
2603 */
2604 for_each_active_dev_scope(rmrr->devices,
2605 rmrr->devices_cnt, i, tmp)
2606 if (tmp == dev) {
2607 rcu_read_unlock();
2608 return true;
2609 }
2610 }
2611 rcu_read_unlock();
2612 return false;
2613 }
2614
2615 /*
2616 * There are a couple cases where we need to restrict the functionality of
2617 * devices associated with RMRRs. The first is when evaluating a device for
2618 * identity mapping because problems exist when devices are moved in and out
2619 * of domains and their respective RMRR information is lost. This means that
2620 * a device with associated RMRRs will never be in a "passthrough" domain.
2621 * The second is use of the device through the IOMMU API. This interface
2622 * expects to have full control of the IOVA space for the device. We cannot
2623 * satisfy both the requirement that RMRR access is maintained and have an
2624 * unencumbered IOVA space. We also have no ability to quiesce the device's
2625 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2626 * We therefore prevent devices associated with an RMRR from participating in
2627 * the IOMMU API, which eliminates them from device assignment.
2628 *
2629 * In both cases we assume that PCI USB devices with RMRRs have them largely
2630 * for historical reasons and that the RMRR space is not actively used post
2631 * boot. This exclusion may change if vendors begin to abuse it.
2632 *
2633 * The same exception is made for graphics devices, with the requirement that
2634 * any use of the RMRR regions will be torn down before assigning the device
2635 * to a guest.
2636 */
2637 static bool device_is_rmrr_locked(struct device *dev)
2638 {
2639 if (!device_has_rmrr(dev))
2640 return false;
2641
2642 if (dev_is_pci(dev)) {
2643 struct pci_dev *pdev = to_pci_dev(dev);
2644
2645 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2646 return false;
2647 }
2648
2649 return true;
2650 }
2651
2652 static int iommu_should_identity_map(struct device *dev, int startup)
2653 {
2654
2655 if (dev_is_pci(dev)) {
2656 struct pci_dev *pdev = to_pci_dev(dev);
2657
2658 if (device_is_rmrr_locked(dev))
2659 return 0;
2660
2661 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2662 return 1;
2663
2664 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2665 return 1;
2666
2667 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2668 return 0;
2669
2670 /*
2671 * We want to start off with all devices in the 1:1 domain, and
2672 * take them out later if we find they can't access all of memory.
2673 *
2674 * However, we can't do this for PCI devices behind bridges,
2675 * because all PCI devices behind the same bridge will end up
2676 * with the same source-id on their transactions.
2677 *
2678 * Practically speaking, we can't change things around for these
2679 * devices at run-time, because we can't be sure there'll be no
2680 * DMA transactions in flight for any of their siblings.
2681 *
2682 * So PCI devices (unless they're on the root bus) as well as
2683 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2684 * the 1:1 domain, just in _case_ one of their siblings turns out
2685 * not to be able to map all of memory.
2686 */
2687 if (!pci_is_pcie(pdev)) {
2688 if (!pci_is_root_bus(pdev->bus))
2689 return 0;
2690 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2691 return 0;
2692 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2693 return 0;
2694 } else {
2695 if (device_has_rmrr(dev))
2696 return 0;
2697 }
2698
2699 /*
2700 * At boot time, we don't yet know if devices will be 64-bit capable.
2701 * Assume that they will — if they turn out not to be, then we can
2702 * take them out of the 1:1 domain later.
2703 */
2704 if (!startup) {
2705 /*
2706 * If the device's dma_mask is less than the system's memory
2707 * size then this is not a candidate for identity mapping.
2708 */
2709 u64 dma_mask = *dev->dma_mask;
2710
2711 if (dev->coherent_dma_mask &&
2712 dev->coherent_dma_mask < dma_mask)
2713 dma_mask = dev->coherent_dma_mask;
2714
2715 return dma_mask >= dma_get_required_mask(dev);
2716 }
2717
2718 return 1;
2719 }
2720
2721 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2722 {
2723 int ret;
2724
2725 if (!iommu_should_identity_map(dev, 1))
2726 return 0;
2727
2728 ret = domain_add_dev_info(si_domain, dev);
2729 if (!ret)
2730 pr_info("%s identity mapping for device %s\n",
2731 hw ? "Hardware" : "Software", dev_name(dev));
2732 else if (ret == -ENODEV)
2733 /* device not associated with an iommu */
2734 ret = 0;
2735
2736 return ret;
2737 }
2738
2739
2740 static int __init iommu_prepare_static_identity_mapping(int hw)
2741 {
2742 struct pci_dev *pdev = NULL;
2743 struct dmar_drhd_unit *drhd;
2744 struct intel_iommu *iommu;
2745 struct device *dev;
2746 int i;
2747 int ret = 0;
2748
2749 for_each_pci_dev(pdev) {
2750 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2751 if (ret)
2752 return ret;
2753 }
2754
2755 for_each_active_iommu(iommu, drhd)
2756 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2757 struct acpi_device_physical_node *pn;
2758 struct acpi_device *adev;
2759
2760 if (dev->bus != &acpi_bus_type)
2761 continue;
2762
2763 adev= to_acpi_device(dev);
2764 mutex_lock(&adev->physical_node_lock);
2765 list_for_each_entry(pn, &adev->physical_node_list, node) {
2766 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2767 if (ret)
2768 break;
2769 }
2770 mutex_unlock(&adev->physical_node_lock);
2771 if (ret)
2772 return ret;
2773 }
2774
2775 return 0;
2776 }
2777
2778 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2779 {
2780 /*
2781 * Start from the sane iommu hardware state.
2782 * If the queued invalidation is already initialized by us
2783 * (for example, while enabling interrupt-remapping) then
2784 * we got the things already rolling from a sane state.
2785 */
2786 if (!iommu->qi) {
2787 /*
2788 * Clear any previous faults.
2789 */
2790 dmar_fault(-1, iommu);
2791 /*
2792 * Disable queued invalidation if supported and already enabled
2793 * before OS handover.
2794 */
2795 dmar_disable_qi(iommu);
2796 }
2797
2798 if (dmar_enable_qi(iommu)) {
2799 /*
2800 * Queued Invalidate not enabled, use Register Based Invalidate
2801 */
2802 iommu->flush.flush_context = __iommu_flush_context;
2803 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2804 pr_info("%s: Using Register based invalidation\n",
2805 iommu->name);
2806 } else {
2807 iommu->flush.flush_context = qi_flush_context;
2808 iommu->flush.flush_iotlb = qi_flush_iotlb;
2809 pr_info("%s: Using Queued invalidation\n", iommu->name);
2810 }
2811 }
2812
2813 static int copy_context_table(struct intel_iommu *iommu,
2814 struct root_entry __iomem *old_re,
2815 struct context_entry **tbl,
2816 int bus, bool ext)
2817 {
2818 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2819 struct context_entry __iomem *old_ce = NULL;
2820 struct context_entry *new_ce = NULL, ce;
2821 struct root_entry re;
2822 phys_addr_t old_ce_phys;
2823
2824 tbl_idx = ext ? bus * 2 : bus;
2825 memcpy_fromio(&re, old_re, sizeof(re));
2826
2827 for (devfn = 0; devfn < 256; devfn++) {
2828 /* First calculate the correct index */
2829 idx = (ext ? devfn * 2 : devfn) % 256;
2830
2831 if (idx == 0) {
2832 /* First save what we may have and clean up */
2833 if (new_ce) {
2834 tbl[tbl_idx] = new_ce;
2835 __iommu_flush_cache(iommu, new_ce,
2836 VTD_PAGE_SIZE);
2837 pos = 1;
2838 }
2839
2840 if (old_ce)
2841 iounmap(old_ce);
2842
2843 ret = 0;
2844 if (devfn < 0x80)
2845 old_ce_phys = root_entry_lctp(&re);
2846 else
2847 old_ce_phys = root_entry_uctp(&re);
2848
2849 if (!old_ce_phys) {
2850 if (ext && devfn == 0) {
2851 /* No LCTP, try UCTP */
2852 devfn = 0x7f;
2853 continue;
2854 } else {
2855 goto out;
2856 }
2857 }
2858
2859 ret = -ENOMEM;
2860 old_ce = ioremap_cache(old_ce_phys, PAGE_SIZE);
2861 if (!old_ce)
2862 goto out;
2863
2864 new_ce = alloc_pgtable_page(iommu->node);
2865 if (!new_ce)
2866 goto out_unmap;
2867
2868 ret = 0;
2869 }
2870
2871 /* Now copy the context entry */
2872 memcpy_fromio(&ce, old_ce + idx, sizeof(ce));
2873
2874 if (!__context_present(&ce))
2875 continue;
2876
2877 did = context_domain_id(&ce);
2878 if (did >= 0 && did < cap_ndoms(iommu->cap))
2879 set_bit(did, iommu->domain_ids);
2880
2881 /*
2882 * We need a marker for copied context entries. This
2883 * marker needs to work for the old format as well as
2884 * for extended context entries.
2885 *
2886 * Bit 67 of the context entry is used. In the old
2887 * format this bit is available to software, in the
2888 * extended format it is the PGE bit, but PGE is ignored
2889 * by HW if PASIDs are disabled (and thus still
2890 * available).
2891 *
2892 * So disable PASIDs first and then mark the entry
2893 * copied. This means that we don't copy PASID
2894 * translations from the old kernel, but this is fine as
2895 * faults there are not fatal.
2896 */
2897 context_clear_pasid_enable(&ce);
2898 context_set_copied(&ce);
2899
2900 new_ce[idx] = ce;
2901 }
2902
2903 tbl[tbl_idx + pos] = new_ce;
2904
2905 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2906
2907 out_unmap:
2908 iounmap(old_ce);
2909
2910 out:
2911 return ret;
2912 }
2913
2914 static int copy_translation_tables(struct intel_iommu *iommu)
2915 {
2916 struct root_entry __iomem *old_rt;
2917 struct context_entry **ctxt_tbls;
2918 phys_addr_t old_rt_phys;
2919 int ctxt_table_entries;
2920 unsigned long flags;
2921 u64 rtaddr_reg;
2922 int bus, ret;
2923 bool new_ext, ext;
2924
2925 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
2926 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
2927 new_ext = !!ecap_ecs(iommu->ecap);
2928
2929 /*
2930 * The RTT bit can only be changed when translation is disabled,
2931 * but disabling translation means to open a window for data
2932 * corruption. So bail out and don't copy anything if we would
2933 * have to change the bit.
2934 */
2935 if (new_ext != ext)
2936 return -EINVAL;
2937
2938 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
2939 if (!old_rt_phys)
2940 return -EINVAL;
2941
2942 old_rt = ioremap_cache(old_rt_phys, PAGE_SIZE);
2943 if (!old_rt)
2944 return -ENOMEM;
2945
2946 /* This is too big for the stack - allocate it from slab */
2947 ctxt_table_entries = ext ? 512 : 256;
2948 ret = -ENOMEM;
2949 ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
2950 if (!ctxt_tbls)
2951 goto out_unmap;
2952
2953 for (bus = 0; bus < 256; bus++) {
2954 ret = copy_context_table(iommu, &old_rt[bus],
2955 ctxt_tbls, bus, ext);
2956 if (ret) {
2957 pr_err("%s: Failed to copy context table for bus %d\n",
2958 iommu->name, bus);
2959 continue;
2960 }
2961 }
2962
2963 spin_lock_irqsave(&iommu->lock, flags);
2964
2965 /* Context tables are copied, now write them to the root_entry table */
2966 for (bus = 0; bus < 256; bus++) {
2967 int idx = ext ? bus * 2 : bus;
2968 u64 val;
2969
2970 if (ctxt_tbls[idx]) {
2971 val = virt_to_phys(ctxt_tbls[idx]) | 1;
2972 iommu->root_entry[bus].lo = val;
2973 }
2974
2975 if (!ext || !ctxt_tbls[idx + 1])
2976 continue;
2977
2978 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
2979 iommu->root_entry[bus].hi = val;
2980 }
2981
2982 spin_unlock_irqrestore(&iommu->lock, flags);
2983
2984 kfree(ctxt_tbls);
2985
2986 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
2987
2988 ret = 0;
2989
2990 out_unmap:
2991 iounmap(old_rt);
2992
2993 return ret;
2994 }
2995
2996 static int __init init_dmars(void)
2997 {
2998 struct dmar_drhd_unit *drhd;
2999 struct dmar_rmrr_unit *rmrr;
3000 bool copied_tables = false;
3001 struct device *dev;
3002 struct intel_iommu *iommu;
3003 int i, ret;
3004
3005 /*
3006 * for each drhd
3007 * allocate root
3008 * initialize and program root entry to not present
3009 * endfor
3010 */
3011 for_each_drhd_unit(drhd) {
3012 /*
3013 * lock not needed as this is only incremented in the single
3014 * threaded kernel __init code path all other access are read
3015 * only
3016 */
3017 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3018 g_num_of_iommus++;
3019 continue;
3020 }
3021 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3022 }
3023
3024 /* Preallocate enough resources for IOMMU hot-addition */
3025 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3026 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3027
3028 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3029 GFP_KERNEL);
3030 if (!g_iommus) {
3031 pr_err("Allocating global iommu array failed\n");
3032 ret = -ENOMEM;
3033 goto error;
3034 }
3035
3036 deferred_flush = kzalloc(g_num_of_iommus *
3037 sizeof(struct deferred_flush_tables), GFP_KERNEL);
3038 if (!deferred_flush) {
3039 ret = -ENOMEM;
3040 goto free_g_iommus;
3041 }
3042
3043 for_each_active_iommu(iommu, drhd) {
3044 g_iommus[iommu->seq_id] = iommu;
3045
3046 intel_iommu_init_qi(iommu);
3047
3048 ret = iommu_init_domains(iommu);
3049 if (ret)
3050 goto free_iommu;
3051
3052 init_translation_status(iommu);
3053
3054 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3055 iommu_disable_translation(iommu);
3056 clear_translation_pre_enabled(iommu);
3057 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3058 iommu->name);
3059 }
3060
3061 /*
3062 * TBD:
3063 * we could share the same root & context tables
3064 * among all IOMMU's. Need to Split it later.
3065 */
3066 ret = iommu_alloc_root_entry(iommu);
3067 if (ret)
3068 goto free_iommu;
3069
3070 if (translation_pre_enabled(iommu)) {
3071 pr_info("Translation already enabled - trying to copy translation structures\n");
3072
3073 ret = copy_translation_tables(iommu);
3074 if (ret) {
3075 /*
3076 * We found the IOMMU with translation
3077 * enabled - but failed to copy over the
3078 * old root-entry table. Try to proceed
3079 * by disabling translation now and
3080 * allocating a clean root-entry table.
3081 * This might cause DMAR faults, but
3082 * probably the dump will still succeed.
3083 */
3084 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3085 iommu->name);
3086 iommu_disable_translation(iommu);
3087 clear_translation_pre_enabled(iommu);
3088 } else {
3089 pr_info("Copied translation tables from previous kernel for %s\n",
3090 iommu->name);
3091 copied_tables = true;
3092 }
3093 }
3094
3095 iommu_flush_write_buffer(iommu);
3096 iommu_set_root_entry(iommu);
3097 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3098 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3099
3100 if (!ecap_pass_through(iommu->ecap))
3101 hw_pass_through = 0;
3102 }
3103
3104 if (iommu_pass_through)
3105 iommu_identity_mapping |= IDENTMAP_ALL;
3106
3107 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3108 iommu_identity_mapping |= IDENTMAP_GFX;
3109 #endif
3110
3111 if (iommu_identity_mapping) {
3112 ret = si_domain_init(hw_pass_through);
3113 if (ret)
3114 goto free_iommu;
3115 }
3116
3117 check_tylersburg_isoch();
3118
3119 /*
3120 * If we copied translations from a previous kernel in the kdump
3121 * case, we can not assign the devices to domains now, as that
3122 * would eliminate the old mappings. So skip this part and defer
3123 * the assignment to device driver initialization time.
3124 */
3125 if (copied_tables)
3126 goto domains_done;
3127
3128 /*
3129 * If pass through is not set or not enabled, setup context entries for
3130 * identity mappings for rmrr, gfx, and isa and may fall back to static
3131 * identity mapping if iommu_identity_mapping is set.
3132 */
3133 if (iommu_identity_mapping) {
3134 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3135 if (ret) {
3136 pr_crit("Failed to setup IOMMU pass-through\n");
3137 goto free_iommu;
3138 }
3139 }
3140 /*
3141 * For each rmrr
3142 * for each dev attached to rmrr
3143 * do
3144 * locate drhd for dev, alloc domain for dev
3145 * allocate free domain
3146 * allocate page table entries for rmrr
3147 * if context not allocated for bus
3148 * allocate and init context
3149 * set present in root table for this bus
3150 * init context with domain, translation etc
3151 * endfor
3152 * endfor
3153 */
3154 pr_info("Setting RMRR:\n");
3155 for_each_rmrr_units(rmrr) {
3156 /* some BIOS lists non-exist devices in DMAR table. */
3157 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3158 i, dev) {
3159 ret = iommu_prepare_rmrr_dev(rmrr, dev);
3160 if (ret)
3161 pr_err("Mapping reserved region failed\n");
3162 }
3163 }
3164
3165 iommu_prepare_isa();
3166
3167 domains_done:
3168
3169 /*
3170 * for each drhd
3171 * enable fault log
3172 * global invalidate context cache
3173 * global invalidate iotlb
3174 * enable translation
3175 */
3176 for_each_iommu(iommu, drhd) {
3177 if (drhd->ignored) {
3178 /*
3179 * we always have to disable PMRs or DMA may fail on
3180 * this device
3181 */
3182 if (force_on)
3183 iommu_disable_protect_mem_regions(iommu);
3184 continue;
3185 }
3186
3187 iommu_flush_write_buffer(iommu);
3188
3189 ret = dmar_set_interrupt(iommu);
3190 if (ret)
3191 goto free_iommu;
3192
3193 if (!translation_pre_enabled(iommu))
3194 iommu_enable_translation(iommu);
3195
3196 iommu_disable_protect_mem_regions(iommu);
3197 }
3198
3199 return 0;
3200
3201 free_iommu:
3202 for_each_active_iommu(iommu, drhd) {
3203 disable_dmar_iommu(iommu);
3204 free_dmar_iommu(iommu);
3205 }
3206 kfree(deferred_flush);
3207 free_g_iommus:
3208 kfree(g_iommus);
3209 error:
3210 return ret;
3211 }
3212
3213 /* This takes a number of _MM_ pages, not VTD pages */
3214 static struct iova *intel_alloc_iova(struct device *dev,
3215 struct dmar_domain *domain,
3216 unsigned long nrpages, uint64_t dma_mask)
3217 {
3218 struct iova *iova = NULL;
3219
3220 /* Restrict dma_mask to the width that the iommu can handle */
3221 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3222 /* Ensure we reserve the whole size-aligned region */
3223 nrpages = __roundup_pow_of_two(nrpages);
3224
3225 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3226 /*
3227 * First try to allocate an io virtual address in
3228 * DMA_BIT_MASK(32) and if that fails then try allocating
3229 * from higher range
3230 */
3231 iova = alloc_iova(&domain->iovad, nrpages,
3232 IOVA_PFN(DMA_BIT_MASK(32)), 1);
3233 if (iova)
3234 return iova;
3235 }
3236 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
3237 if (unlikely(!iova)) {
3238 pr_err("Allocating %ld-page iova for %s failed",
3239 nrpages, dev_name(dev));
3240 return NULL;
3241 }
3242
3243 return iova;
3244 }
3245
3246 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3247 {
3248 struct dmar_domain *domain;
3249
3250 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3251 if (!domain) {
3252 pr_err("Allocating domain for %s failed\n",
3253 dev_name(dev));
3254 return NULL;
3255 }
3256
3257 return domain;
3258 }
3259
3260 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3261 {
3262 struct device_domain_info *info;
3263
3264 /* No lock here, assumes no domain exit in normal case */
3265 info = dev->archdata.iommu;
3266 if (likely(info))
3267 return info->domain;
3268
3269 return __get_valid_domain_for_dev(dev);
3270 }
3271
3272 /* Check if the dev needs to go through non-identity map and unmap process.*/
3273 static int iommu_no_mapping(struct device *dev)
3274 {
3275 int found;
3276
3277 if (iommu_dummy(dev))
3278 return 1;
3279
3280 if (!iommu_identity_mapping)
3281 return 0;
3282
3283 found = identity_mapping(dev);
3284 if (found) {
3285 if (iommu_should_identity_map(dev, 0))
3286 return 1;
3287 else {
3288 /*
3289 * 32 bit DMA is removed from si_domain and fall back
3290 * to non-identity mapping.
3291 */
3292 dmar_remove_one_dev_info(si_domain, dev);
3293 pr_info("32bit %s uses non-identity mapping\n",
3294 dev_name(dev));
3295 return 0;
3296 }
3297 } else {
3298 /*
3299 * In case of a detached 64 bit DMA device from vm, the device
3300 * is put into si_domain for identity mapping.
3301 */
3302 if (iommu_should_identity_map(dev, 0)) {
3303 int ret;
3304 ret = domain_add_dev_info(si_domain, dev);
3305 if (!ret) {
3306 pr_info("64bit %s uses identity mapping\n",
3307 dev_name(dev));
3308 return 1;
3309 }
3310 }
3311 }
3312
3313 return 0;
3314 }
3315
3316 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3317 size_t size, int dir, u64 dma_mask)
3318 {
3319 struct dmar_domain *domain;
3320 phys_addr_t start_paddr;
3321 struct iova *iova;
3322 int prot = 0;
3323 int ret;
3324 struct intel_iommu *iommu;
3325 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3326
3327 BUG_ON(dir == DMA_NONE);
3328
3329 if (iommu_no_mapping(dev))
3330 return paddr;
3331
3332 domain = get_valid_domain_for_dev(dev);
3333 if (!domain)
3334 return 0;
3335
3336 iommu = domain_get_iommu(domain);
3337 size = aligned_nrpages(paddr, size);
3338
3339 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3340 if (!iova)
3341 goto error;
3342
3343 /*
3344 * Check if DMAR supports zero-length reads on write only
3345 * mappings..
3346 */
3347 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3348 !cap_zlr(iommu->cap))
3349 prot |= DMA_PTE_READ;
3350 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3351 prot |= DMA_PTE_WRITE;
3352 /*
3353 * paddr - (paddr + size) might be partial page, we should map the whole
3354 * page. Note: if two part of one page are separately mapped, we
3355 * might have two guest_addr mapping to the same host paddr, but this
3356 * is not a big problem
3357 */
3358 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3359 mm_to_dma_pfn(paddr_pfn), size, prot);
3360 if (ret)
3361 goto error;
3362
3363 /* it's a non-present to present mapping. Only flush if caching mode */
3364 if (cap_caching_mode(iommu->cap))
3365 iommu_flush_iotlb_psi(iommu, domain,
3366 mm_to_dma_pfn(iova->pfn_lo),
3367 size, 0, 1);
3368 else
3369 iommu_flush_write_buffer(iommu);
3370
3371 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3372 start_paddr += paddr & ~PAGE_MASK;
3373 return start_paddr;
3374
3375 error:
3376 if (iova)
3377 __free_iova(&domain->iovad, iova);
3378 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3379 dev_name(dev), size, (unsigned long long)paddr, dir);
3380 return 0;
3381 }
3382
3383 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3384 unsigned long offset, size_t size,
3385 enum dma_data_direction dir,
3386 struct dma_attrs *attrs)
3387 {
3388 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3389 dir, *dev->dma_mask);
3390 }
3391
3392 static void flush_unmaps(void)
3393 {
3394 int i, j;
3395
3396 timer_on = 0;
3397
3398 /* just flush them all */
3399 for (i = 0; i < g_num_of_iommus; i++) {
3400 struct intel_iommu *iommu = g_iommus[i];
3401 if (!iommu)
3402 continue;
3403
3404 if (!deferred_flush[i].next)
3405 continue;
3406
3407 /* In caching mode, global flushes turn emulation expensive */
3408 if (!cap_caching_mode(iommu->cap))
3409 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3410 DMA_TLB_GLOBAL_FLUSH);
3411 for (j = 0; j < deferred_flush[i].next; j++) {
3412 unsigned long mask;
3413 struct iova *iova = deferred_flush[i].iova[j];
3414 struct dmar_domain *domain = deferred_flush[i].domain[j];
3415
3416 /* On real hardware multiple invalidations are expensive */
3417 if (cap_caching_mode(iommu->cap))
3418 iommu_flush_iotlb_psi(iommu, domain,
3419 iova->pfn_lo, iova_size(iova),
3420 !deferred_flush[i].freelist[j], 0);
3421 else {
3422 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
3423 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3424 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3425 }
3426 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3427 if (deferred_flush[i].freelist[j])
3428 dma_free_pagelist(deferred_flush[i].freelist[j]);
3429 }
3430 deferred_flush[i].next = 0;
3431 }
3432
3433 list_size = 0;
3434 }
3435
3436 static void flush_unmaps_timeout(unsigned long data)
3437 {
3438 unsigned long flags;
3439
3440 spin_lock_irqsave(&async_umap_flush_lock, flags);
3441 flush_unmaps();
3442 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3443 }
3444
3445 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3446 {
3447 unsigned long flags;
3448 int next, iommu_id;
3449 struct intel_iommu *iommu;
3450
3451 spin_lock_irqsave(&async_umap_flush_lock, flags);
3452 if (list_size == HIGH_WATER_MARK)
3453 flush_unmaps();
3454
3455 iommu = domain_get_iommu(dom);
3456 iommu_id = iommu->seq_id;
3457
3458 next = deferred_flush[iommu_id].next;
3459 deferred_flush[iommu_id].domain[next] = dom;
3460 deferred_flush[iommu_id].iova[next] = iova;
3461 deferred_flush[iommu_id].freelist[next] = freelist;
3462 deferred_flush[iommu_id].next++;
3463
3464 if (!timer_on) {
3465 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3466 timer_on = 1;
3467 }
3468 list_size++;
3469 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3470 }
3471
3472 static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
3473 {
3474 struct dmar_domain *domain;
3475 unsigned long start_pfn, last_pfn;
3476 struct iova *iova;
3477 struct intel_iommu *iommu;
3478 struct page *freelist;
3479
3480 if (iommu_no_mapping(dev))
3481 return;
3482
3483 domain = find_domain(dev);
3484 BUG_ON(!domain);
3485
3486 iommu = domain_get_iommu(domain);
3487
3488 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3489 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3490 (unsigned long long)dev_addr))
3491 return;
3492
3493 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3494 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3495
3496 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3497 dev_name(dev), start_pfn, last_pfn);
3498
3499 freelist = domain_unmap(domain, start_pfn, last_pfn);
3500
3501 if (intel_iommu_strict) {
3502 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3503 last_pfn - start_pfn + 1, !freelist, 0);
3504 /* free iova */
3505 __free_iova(&domain->iovad, iova);
3506 dma_free_pagelist(freelist);
3507 } else {
3508 add_unmap(domain, iova, freelist);
3509 /*
3510 * queue up the release of the unmap to save the 1/6th of the
3511 * cpu used up by the iotlb flush operation...
3512 */
3513 }
3514 }
3515
3516 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3517 size_t size, enum dma_data_direction dir,
3518 struct dma_attrs *attrs)
3519 {
3520 intel_unmap(dev, dev_addr);
3521 }
3522
3523 static void *intel_alloc_coherent(struct device *dev, size_t size,
3524 dma_addr_t *dma_handle, gfp_t flags,
3525 struct dma_attrs *attrs)
3526 {
3527 struct page *page = NULL;
3528 int order;
3529
3530 size = PAGE_ALIGN(size);
3531 order = get_order(size);
3532
3533 if (!iommu_no_mapping(dev))
3534 flags &= ~(GFP_DMA | GFP_DMA32);
3535 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3536 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3537 flags |= GFP_DMA;
3538 else
3539 flags |= GFP_DMA32;
3540 }
3541
3542 if (flags & __GFP_WAIT) {
3543 unsigned int count = size >> PAGE_SHIFT;
3544
3545 page = dma_alloc_from_contiguous(dev, count, order);
3546 if (page && iommu_no_mapping(dev) &&
3547 page_to_phys(page) + size > dev->coherent_dma_mask) {
3548 dma_release_from_contiguous(dev, page, count);
3549 page = NULL;
3550 }
3551 }
3552
3553 if (!page)
3554 page = alloc_pages(flags, order);
3555 if (!page)
3556 return NULL;
3557 memset(page_address(page), 0, size);
3558
3559 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3560 DMA_BIDIRECTIONAL,
3561 dev->coherent_dma_mask);
3562 if (*dma_handle)
3563 return page_address(page);
3564 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3565 __free_pages(page, order);
3566
3567 return NULL;
3568 }
3569
3570 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3571 dma_addr_t dma_handle, struct dma_attrs *attrs)
3572 {
3573 int order;
3574 struct page *page = virt_to_page(vaddr);
3575
3576 size = PAGE_ALIGN(size);
3577 order = get_order(size);
3578
3579 intel_unmap(dev, dma_handle);
3580 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3581 __free_pages(page, order);
3582 }
3583
3584 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3585 int nelems, enum dma_data_direction dir,
3586 struct dma_attrs *attrs)
3587 {
3588 intel_unmap(dev, sglist[0].dma_address);
3589 }
3590
3591 static int intel_nontranslate_map_sg(struct device *hddev,
3592 struct scatterlist *sglist, int nelems, int dir)
3593 {
3594 int i;
3595 struct scatterlist *sg;
3596
3597 for_each_sg(sglist, sg, nelems, i) {
3598 BUG_ON(!sg_page(sg));
3599 sg->dma_address = sg_phys(sg);
3600 sg->dma_length = sg->length;
3601 }
3602 return nelems;
3603 }
3604
3605 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3606 enum dma_data_direction dir, struct dma_attrs *attrs)
3607 {
3608 int i;
3609 struct dmar_domain *domain;
3610 size_t size = 0;
3611 int prot = 0;
3612 struct iova *iova = NULL;
3613 int ret;
3614 struct scatterlist *sg;
3615 unsigned long start_vpfn;
3616 struct intel_iommu *iommu;
3617
3618 BUG_ON(dir == DMA_NONE);
3619 if (iommu_no_mapping(dev))
3620 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3621
3622 domain = get_valid_domain_for_dev(dev);
3623 if (!domain)
3624 return 0;
3625
3626 iommu = domain_get_iommu(domain);
3627
3628 for_each_sg(sglist, sg, nelems, i)
3629 size += aligned_nrpages(sg->offset, sg->length);
3630
3631 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3632 *dev->dma_mask);
3633 if (!iova) {
3634 sglist->dma_length = 0;
3635 return 0;
3636 }
3637
3638 /*
3639 * Check if DMAR supports zero-length reads on write only
3640 * mappings..
3641 */
3642 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3643 !cap_zlr(iommu->cap))
3644 prot |= DMA_PTE_READ;
3645 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3646 prot |= DMA_PTE_WRITE;
3647
3648 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3649
3650 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3651 if (unlikely(ret)) {
3652 dma_pte_free_pagetable(domain, start_vpfn,
3653 start_vpfn + size - 1);
3654 __free_iova(&domain->iovad, iova);
3655 return 0;
3656 }
3657
3658 /* it's a non-present to present mapping. Only flush if caching mode */
3659 if (cap_caching_mode(iommu->cap))
3660 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3661 else
3662 iommu_flush_write_buffer(iommu);
3663
3664 return nelems;
3665 }
3666
3667 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3668 {
3669 return !dma_addr;
3670 }
3671
3672 struct dma_map_ops intel_dma_ops = {
3673 .alloc = intel_alloc_coherent,
3674 .free = intel_free_coherent,
3675 .map_sg = intel_map_sg,
3676 .unmap_sg = intel_unmap_sg,
3677 .map_page = intel_map_page,
3678 .unmap_page = intel_unmap_page,
3679 .mapping_error = intel_mapping_error,
3680 };
3681
3682 static inline int iommu_domain_cache_init(void)
3683 {
3684 int ret = 0;
3685
3686 iommu_domain_cache = kmem_cache_create("iommu_domain",
3687 sizeof(struct dmar_domain),
3688 0,
3689 SLAB_HWCACHE_ALIGN,
3690
3691 NULL);
3692 if (!iommu_domain_cache) {
3693 pr_err("Couldn't create iommu_domain cache\n");
3694 ret = -ENOMEM;
3695 }
3696
3697 return ret;
3698 }
3699
3700 static inline int iommu_devinfo_cache_init(void)
3701 {
3702 int ret = 0;
3703
3704 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3705 sizeof(struct device_domain_info),
3706 0,
3707 SLAB_HWCACHE_ALIGN,
3708 NULL);
3709 if (!iommu_devinfo_cache) {
3710 pr_err("Couldn't create devinfo cache\n");
3711 ret = -ENOMEM;
3712 }
3713
3714 return ret;
3715 }
3716
3717 static int __init iommu_init_mempool(void)
3718 {
3719 int ret;
3720 ret = iova_cache_get();
3721 if (ret)
3722 return ret;
3723
3724 ret = iommu_domain_cache_init();
3725 if (ret)
3726 goto domain_error;
3727
3728 ret = iommu_devinfo_cache_init();
3729 if (!ret)
3730 return ret;
3731
3732 kmem_cache_destroy(iommu_domain_cache);
3733 domain_error:
3734 iova_cache_put();
3735
3736 return -ENOMEM;
3737 }
3738
3739 static void __init iommu_exit_mempool(void)
3740 {
3741 kmem_cache_destroy(iommu_devinfo_cache);
3742 kmem_cache_destroy(iommu_domain_cache);
3743 iova_cache_put();
3744 }
3745
3746 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3747 {
3748 struct dmar_drhd_unit *drhd;
3749 u32 vtbar;
3750 int rc;
3751
3752 /* We know that this device on this chipset has its own IOMMU.
3753 * If we find it under a different IOMMU, then the BIOS is lying
3754 * to us. Hope that the IOMMU for this device is actually
3755 * disabled, and it needs no translation...
3756 */
3757 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3758 if (rc) {
3759 /* "can't" happen */
3760 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3761 return;
3762 }
3763 vtbar &= 0xffff0000;
3764
3765 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3766 drhd = dmar_find_matched_drhd_unit(pdev);
3767 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3768 TAINT_FIRMWARE_WORKAROUND,
3769 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3770 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3771 }
3772 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3773
3774 static void __init init_no_remapping_devices(void)
3775 {
3776 struct dmar_drhd_unit *drhd;
3777 struct device *dev;
3778 int i;
3779
3780 for_each_drhd_unit(drhd) {
3781 if (!drhd->include_all) {
3782 for_each_active_dev_scope(drhd->devices,
3783 drhd->devices_cnt, i, dev)
3784 break;
3785 /* ignore DMAR unit if no devices exist */
3786 if (i == drhd->devices_cnt)
3787 drhd->ignored = 1;
3788 }
3789 }
3790
3791 for_each_active_drhd_unit(drhd) {
3792 if (drhd->include_all)
3793 continue;
3794
3795 for_each_active_dev_scope(drhd->devices,
3796 drhd->devices_cnt, i, dev)
3797 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3798 break;
3799 if (i < drhd->devices_cnt)
3800 continue;
3801
3802 /* This IOMMU has *only* gfx devices. Either bypass it or
3803 set the gfx_mapped flag, as appropriate */
3804 if (dmar_map_gfx) {
3805 intel_iommu_gfx_mapped = 1;
3806 } else {
3807 drhd->ignored = 1;
3808 for_each_active_dev_scope(drhd->devices,
3809 drhd->devices_cnt, i, dev)
3810 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3811 }
3812 }
3813 }
3814
3815 #ifdef CONFIG_SUSPEND
3816 static int init_iommu_hw(void)
3817 {
3818 struct dmar_drhd_unit *drhd;
3819 struct intel_iommu *iommu = NULL;
3820
3821 for_each_active_iommu(iommu, drhd)
3822 if (iommu->qi)
3823 dmar_reenable_qi(iommu);
3824
3825 for_each_iommu(iommu, drhd) {
3826 if (drhd->ignored) {
3827 /*
3828 * we always have to disable PMRs or DMA may fail on
3829 * this device
3830 */
3831 if (force_on)
3832 iommu_disable_protect_mem_regions(iommu);
3833 continue;
3834 }
3835
3836 iommu_flush_write_buffer(iommu);
3837
3838 iommu_set_root_entry(iommu);
3839
3840 iommu->flush.flush_context(iommu, 0, 0, 0,
3841 DMA_CCMD_GLOBAL_INVL);
3842 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3843 iommu_enable_translation(iommu);
3844 iommu_disable_protect_mem_regions(iommu);
3845 }
3846
3847 return 0;
3848 }
3849
3850 static void iommu_flush_all(void)
3851 {
3852 struct dmar_drhd_unit *drhd;
3853 struct intel_iommu *iommu;
3854
3855 for_each_active_iommu(iommu, drhd) {
3856 iommu->flush.flush_context(iommu, 0, 0, 0,
3857 DMA_CCMD_GLOBAL_INVL);
3858 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3859 DMA_TLB_GLOBAL_FLUSH);
3860 }
3861 }
3862
3863 static int iommu_suspend(void)
3864 {
3865 struct dmar_drhd_unit *drhd;
3866 struct intel_iommu *iommu = NULL;
3867 unsigned long flag;
3868
3869 for_each_active_iommu(iommu, drhd) {
3870 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3871 GFP_ATOMIC);
3872 if (!iommu->iommu_state)
3873 goto nomem;
3874 }
3875
3876 iommu_flush_all();
3877
3878 for_each_active_iommu(iommu, drhd) {
3879 iommu_disable_translation(iommu);
3880
3881 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3882
3883 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3884 readl(iommu->reg + DMAR_FECTL_REG);
3885 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3886 readl(iommu->reg + DMAR_FEDATA_REG);
3887 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3888 readl(iommu->reg + DMAR_FEADDR_REG);
3889 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3890 readl(iommu->reg + DMAR_FEUADDR_REG);
3891
3892 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3893 }
3894 return 0;
3895
3896 nomem:
3897 for_each_active_iommu(iommu, drhd)
3898 kfree(iommu->iommu_state);
3899
3900 return -ENOMEM;
3901 }
3902
3903 static void iommu_resume(void)
3904 {
3905 struct dmar_drhd_unit *drhd;
3906 struct intel_iommu *iommu = NULL;
3907 unsigned long flag;
3908
3909 if (init_iommu_hw()) {
3910 if (force_on)
3911 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3912 else
3913 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3914 return;
3915 }
3916
3917 for_each_active_iommu(iommu, drhd) {
3918
3919 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3920
3921 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3922 iommu->reg + DMAR_FECTL_REG);
3923 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3924 iommu->reg + DMAR_FEDATA_REG);
3925 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3926 iommu->reg + DMAR_FEADDR_REG);
3927 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3928 iommu->reg + DMAR_FEUADDR_REG);
3929
3930 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3931 }
3932
3933 for_each_active_iommu(iommu, drhd)
3934 kfree(iommu->iommu_state);
3935 }
3936
3937 static struct syscore_ops iommu_syscore_ops = {
3938 .resume = iommu_resume,
3939 .suspend = iommu_suspend,
3940 };
3941
3942 static void __init init_iommu_pm_ops(void)
3943 {
3944 register_syscore_ops(&iommu_syscore_ops);
3945 }
3946
3947 #else
3948 static inline void init_iommu_pm_ops(void) {}
3949 #endif /* CONFIG_PM */
3950
3951
3952 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3953 {
3954 struct acpi_dmar_reserved_memory *rmrr;
3955 struct dmar_rmrr_unit *rmrru;
3956
3957 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3958 if (!rmrru)
3959 return -ENOMEM;
3960
3961 rmrru->hdr = header;
3962 rmrr = (struct acpi_dmar_reserved_memory *)header;
3963 rmrru->base_address = rmrr->base_address;
3964 rmrru->end_address = rmrr->end_address;
3965 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3966 ((void *)rmrr) + rmrr->header.length,
3967 &rmrru->devices_cnt);
3968 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3969 kfree(rmrru);
3970 return -ENOMEM;
3971 }
3972
3973 list_add(&rmrru->list, &dmar_rmrr_units);
3974
3975 return 0;
3976 }
3977
3978 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
3979 {
3980 struct dmar_atsr_unit *atsru;
3981 struct acpi_dmar_atsr *tmp;
3982
3983 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3984 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
3985 if (atsr->segment != tmp->segment)
3986 continue;
3987 if (atsr->header.length != tmp->header.length)
3988 continue;
3989 if (memcmp(atsr, tmp, atsr->header.length) == 0)
3990 return atsru;
3991 }
3992
3993 return NULL;
3994 }
3995
3996 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3997 {
3998 struct acpi_dmar_atsr *atsr;
3999 struct dmar_atsr_unit *atsru;
4000
4001 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4002 return 0;
4003
4004 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4005 atsru = dmar_find_atsr(atsr);
4006 if (atsru)
4007 return 0;
4008
4009 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4010 if (!atsru)
4011 return -ENOMEM;
4012
4013 /*
4014 * If memory is allocated from slab by ACPI _DSM method, we need to
4015 * copy the memory content because the memory buffer will be freed
4016 * on return.
4017 */
4018 atsru->hdr = (void *)(atsru + 1);
4019 memcpy(atsru->hdr, hdr, hdr->length);
4020 atsru->include_all = atsr->flags & 0x1;
4021 if (!atsru->include_all) {
4022 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4023 (void *)atsr + atsr->header.length,
4024 &atsru->devices_cnt);
4025 if (atsru->devices_cnt && atsru->devices == NULL) {
4026 kfree(atsru);
4027 return -ENOMEM;
4028 }
4029 }
4030
4031 list_add_rcu(&atsru->list, &dmar_atsr_units);
4032
4033 return 0;
4034 }
4035
4036 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4037 {
4038 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4039 kfree(atsru);
4040 }
4041
4042 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4043 {
4044 struct acpi_dmar_atsr *atsr;
4045 struct dmar_atsr_unit *atsru;
4046
4047 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4048 atsru = dmar_find_atsr(atsr);
4049 if (atsru) {
4050 list_del_rcu(&atsru->list);
4051 synchronize_rcu();
4052 intel_iommu_free_atsr(atsru);
4053 }
4054
4055 return 0;
4056 }
4057
4058 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4059 {
4060 int i;
4061 struct device *dev;
4062 struct acpi_dmar_atsr *atsr;
4063 struct dmar_atsr_unit *atsru;
4064
4065 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4066 atsru = dmar_find_atsr(atsr);
4067 if (!atsru)
4068 return 0;
4069
4070 if (!atsru->include_all && atsru->devices && atsru->devices_cnt)
4071 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4072 i, dev)
4073 return -EBUSY;
4074
4075 return 0;
4076 }
4077
4078 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4079 {
4080 int sp, ret = 0;
4081 struct intel_iommu *iommu = dmaru->iommu;
4082
4083 if (g_iommus[iommu->seq_id])
4084 return 0;
4085
4086 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4087 pr_warn("%s: Doesn't support hardware pass through.\n",
4088 iommu->name);
4089 return -ENXIO;
4090 }
4091 if (!ecap_sc_support(iommu->ecap) &&
4092 domain_update_iommu_snooping(iommu)) {
4093 pr_warn("%s: Doesn't support snooping.\n",
4094 iommu->name);
4095 return -ENXIO;
4096 }
4097 sp = domain_update_iommu_superpage(iommu) - 1;
4098 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4099 pr_warn("%s: Doesn't support large page.\n",
4100 iommu->name);
4101 return -ENXIO;
4102 }
4103
4104 /*
4105 * Disable translation if already enabled prior to OS handover.
4106 */
4107 if (iommu->gcmd & DMA_GCMD_TE)
4108 iommu_disable_translation(iommu);
4109
4110 g_iommus[iommu->seq_id] = iommu;
4111 ret = iommu_init_domains(iommu);
4112 if (ret == 0)
4113 ret = iommu_alloc_root_entry(iommu);
4114 if (ret)
4115 goto out;
4116
4117 if (dmaru->ignored) {
4118 /*
4119 * we always have to disable PMRs or DMA may fail on this device
4120 */
4121 if (force_on)
4122 iommu_disable_protect_mem_regions(iommu);
4123 return 0;
4124 }
4125
4126 intel_iommu_init_qi(iommu);
4127 iommu_flush_write_buffer(iommu);
4128 ret = dmar_set_interrupt(iommu);
4129 if (ret)
4130 goto disable_iommu;
4131
4132 iommu_set_root_entry(iommu);
4133 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4134 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4135 iommu_enable_translation(iommu);
4136
4137 iommu_disable_protect_mem_regions(iommu);
4138 return 0;
4139
4140 disable_iommu:
4141 disable_dmar_iommu(iommu);
4142 out:
4143 free_dmar_iommu(iommu);
4144 return ret;
4145 }
4146
4147 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4148 {
4149 int ret = 0;
4150 struct intel_iommu *iommu = dmaru->iommu;
4151
4152 if (!intel_iommu_enabled)
4153 return 0;
4154 if (iommu == NULL)
4155 return -EINVAL;
4156
4157 if (insert) {
4158 ret = intel_iommu_add(dmaru);
4159 } else {
4160 disable_dmar_iommu(iommu);
4161 free_dmar_iommu(iommu);
4162 }
4163
4164 return ret;
4165 }
4166
4167 static void intel_iommu_free_dmars(void)
4168 {
4169 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4170 struct dmar_atsr_unit *atsru, *atsr_n;
4171
4172 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4173 list_del(&rmrru->list);
4174 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4175 kfree(rmrru);
4176 }
4177
4178 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4179 list_del(&atsru->list);
4180 intel_iommu_free_atsr(atsru);
4181 }
4182 }
4183
4184 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4185 {
4186 int i, ret = 1;
4187 struct pci_bus *bus;
4188 struct pci_dev *bridge = NULL;
4189 struct device *tmp;
4190 struct acpi_dmar_atsr *atsr;
4191 struct dmar_atsr_unit *atsru;
4192
4193 dev = pci_physfn(dev);
4194 for (bus = dev->bus; bus; bus = bus->parent) {
4195 bridge = bus->self;
4196 if (!bridge || !pci_is_pcie(bridge) ||
4197 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4198 return 0;
4199 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4200 break;
4201 }
4202 if (!bridge)
4203 return 0;
4204
4205 rcu_read_lock();
4206 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4207 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4208 if (atsr->segment != pci_domain_nr(dev->bus))
4209 continue;
4210
4211 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4212 if (tmp == &bridge->dev)
4213 goto out;
4214
4215 if (atsru->include_all)
4216 goto out;
4217 }
4218 ret = 0;
4219 out:
4220 rcu_read_unlock();
4221
4222 return ret;
4223 }
4224
4225 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4226 {
4227 int ret = 0;
4228 struct dmar_rmrr_unit *rmrru;
4229 struct dmar_atsr_unit *atsru;
4230 struct acpi_dmar_atsr *atsr;
4231 struct acpi_dmar_reserved_memory *rmrr;
4232
4233 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4234 return 0;
4235
4236 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4237 rmrr = container_of(rmrru->hdr,
4238 struct acpi_dmar_reserved_memory, header);
4239 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4240 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4241 ((void *)rmrr) + rmrr->header.length,
4242 rmrr->segment, rmrru->devices,
4243 rmrru->devices_cnt);
4244 if(ret < 0)
4245 return ret;
4246 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4247 dmar_remove_dev_scope(info, rmrr->segment,
4248 rmrru->devices, rmrru->devices_cnt);
4249 }
4250 }
4251
4252 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4253 if (atsru->include_all)
4254 continue;
4255
4256 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4257 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4258 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4259 (void *)atsr + atsr->header.length,
4260 atsr->segment, atsru->devices,
4261 atsru->devices_cnt);
4262 if (ret > 0)
4263 break;
4264 else if(ret < 0)
4265 return ret;
4266 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4267 if (dmar_remove_dev_scope(info, atsr->segment,
4268 atsru->devices, atsru->devices_cnt))
4269 break;
4270 }
4271 }
4272
4273 return 0;
4274 }
4275
4276 /*
4277 * Here we only respond to action of unbound device from driver.
4278 *
4279 * Added device is not attached to its DMAR domain here yet. That will happen
4280 * when mapping the device to iova.
4281 */
4282 static int device_notifier(struct notifier_block *nb,
4283 unsigned long action, void *data)
4284 {
4285 struct device *dev = data;
4286 struct dmar_domain *domain;
4287
4288 if (iommu_dummy(dev))
4289 return 0;
4290
4291 if (action != BUS_NOTIFY_REMOVED_DEVICE)
4292 return 0;
4293
4294 domain = find_domain(dev);
4295 if (!domain)
4296 return 0;
4297
4298 dmar_remove_one_dev_info(domain, dev);
4299 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4300 domain_exit(domain);
4301
4302 return 0;
4303 }
4304
4305 static struct notifier_block device_nb = {
4306 .notifier_call = device_notifier,
4307 };
4308
4309 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4310 unsigned long val, void *v)
4311 {
4312 struct memory_notify *mhp = v;
4313 unsigned long long start, end;
4314 unsigned long start_vpfn, last_vpfn;
4315
4316 switch (val) {
4317 case MEM_GOING_ONLINE:
4318 start = mhp->start_pfn << PAGE_SHIFT;
4319 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4320 if (iommu_domain_identity_map(si_domain, start, end)) {
4321 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4322 start, end);
4323 return NOTIFY_BAD;
4324 }
4325 break;
4326
4327 case MEM_OFFLINE:
4328 case MEM_CANCEL_ONLINE:
4329 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4330 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4331 while (start_vpfn <= last_vpfn) {
4332 struct iova *iova;
4333 struct dmar_drhd_unit *drhd;
4334 struct intel_iommu *iommu;
4335 struct page *freelist;
4336
4337 iova = find_iova(&si_domain->iovad, start_vpfn);
4338 if (iova == NULL) {
4339 pr_debug("Failed get IOVA for PFN %lx\n",
4340 start_vpfn);
4341 break;
4342 }
4343
4344 iova = split_and_remove_iova(&si_domain->iovad, iova,
4345 start_vpfn, last_vpfn);
4346 if (iova == NULL) {
4347 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4348 start_vpfn, last_vpfn);
4349 return NOTIFY_BAD;
4350 }
4351
4352 freelist = domain_unmap(si_domain, iova->pfn_lo,
4353 iova->pfn_hi);
4354
4355 rcu_read_lock();
4356 for_each_active_iommu(iommu, drhd)
4357 iommu_flush_iotlb_psi(iommu, si_domain,
4358 iova->pfn_lo, iova_size(iova),
4359 !freelist, 0);
4360 rcu_read_unlock();
4361 dma_free_pagelist(freelist);
4362
4363 start_vpfn = iova->pfn_hi + 1;
4364 free_iova_mem(iova);
4365 }
4366 break;
4367 }
4368
4369 return NOTIFY_OK;
4370 }
4371
4372 static struct notifier_block intel_iommu_memory_nb = {
4373 .notifier_call = intel_iommu_memory_notifier,
4374 .priority = 0
4375 };
4376
4377
4378 static ssize_t intel_iommu_show_version(struct device *dev,
4379 struct device_attribute *attr,
4380 char *buf)
4381 {
4382 struct intel_iommu *iommu = dev_get_drvdata(dev);
4383 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4384 return sprintf(buf, "%d:%d\n",
4385 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4386 }
4387 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4388
4389 static ssize_t intel_iommu_show_address(struct device *dev,
4390 struct device_attribute *attr,
4391 char *buf)
4392 {
4393 struct intel_iommu *iommu = dev_get_drvdata(dev);
4394 return sprintf(buf, "%llx\n", iommu->reg_phys);
4395 }
4396 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4397
4398 static ssize_t intel_iommu_show_cap(struct device *dev,
4399 struct device_attribute *attr,
4400 char *buf)
4401 {
4402 struct intel_iommu *iommu = dev_get_drvdata(dev);
4403 return sprintf(buf, "%llx\n", iommu->cap);
4404 }
4405 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4406
4407 static ssize_t intel_iommu_show_ecap(struct device *dev,
4408 struct device_attribute *attr,
4409 char *buf)
4410 {
4411 struct intel_iommu *iommu = dev_get_drvdata(dev);
4412 return sprintf(buf, "%llx\n", iommu->ecap);
4413 }
4414 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4415
4416 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4417 struct device_attribute *attr,
4418 char *buf)
4419 {
4420 struct intel_iommu *iommu = dev_get_drvdata(dev);
4421 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4422 }
4423 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4424
4425 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4426 struct device_attribute *attr,
4427 char *buf)
4428 {
4429 struct intel_iommu *iommu = dev_get_drvdata(dev);
4430 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4431 cap_ndoms(iommu->cap)));
4432 }
4433 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4434
4435 static struct attribute *intel_iommu_attrs[] = {
4436 &dev_attr_version.attr,
4437 &dev_attr_address.attr,
4438 &dev_attr_cap.attr,
4439 &dev_attr_ecap.attr,
4440 &dev_attr_domains_supported.attr,
4441 &dev_attr_domains_used.attr,
4442 NULL,
4443 };
4444
4445 static struct attribute_group intel_iommu_group = {
4446 .name = "intel-iommu",
4447 .attrs = intel_iommu_attrs,
4448 };
4449
4450 const struct attribute_group *intel_iommu_groups[] = {
4451 &intel_iommu_group,
4452 NULL,
4453 };
4454
4455 int __init intel_iommu_init(void)
4456 {
4457 int ret = -ENODEV;
4458 struct dmar_drhd_unit *drhd;
4459 struct intel_iommu *iommu;
4460
4461 /* VT-d is required for a TXT/tboot launch, so enforce that */
4462 force_on = tboot_force_iommu();
4463
4464 if (iommu_init_mempool()) {
4465 if (force_on)
4466 panic("tboot: Failed to initialize iommu memory\n");
4467 return -ENOMEM;
4468 }
4469
4470 down_write(&dmar_global_lock);
4471 if (dmar_table_init()) {
4472 if (force_on)
4473 panic("tboot: Failed to initialize DMAR table\n");
4474 goto out_free_dmar;
4475 }
4476
4477 if (dmar_dev_scope_init() < 0) {
4478 if (force_on)
4479 panic("tboot: Failed to initialize DMAR device scope\n");
4480 goto out_free_dmar;
4481 }
4482
4483 if (no_iommu || dmar_disabled)
4484 goto out_free_dmar;
4485
4486 if (list_empty(&dmar_rmrr_units))
4487 pr_info("No RMRR found\n");
4488
4489 if (list_empty(&dmar_atsr_units))
4490 pr_info("No ATSR found\n");
4491
4492 if (dmar_init_reserved_ranges()) {
4493 if (force_on)
4494 panic("tboot: Failed to reserve iommu ranges\n");
4495 goto out_free_reserved_range;
4496 }
4497
4498 init_no_remapping_devices();
4499
4500 ret = init_dmars();
4501 if (ret) {
4502 if (force_on)
4503 panic("tboot: Failed to initialize DMARs\n");
4504 pr_err("Initialization failed\n");
4505 goto out_free_reserved_range;
4506 }
4507 up_write(&dmar_global_lock);
4508 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4509
4510 init_timer(&unmap_timer);
4511 #ifdef CONFIG_SWIOTLB
4512 swiotlb = 0;
4513 #endif
4514 dma_ops = &intel_dma_ops;
4515
4516 init_iommu_pm_ops();
4517
4518 for_each_active_iommu(iommu, drhd)
4519 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4520 intel_iommu_groups,
4521 "%s", iommu->name);
4522
4523 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4524 bus_register_notifier(&pci_bus_type, &device_nb);
4525 if (si_domain && !hw_pass_through)
4526 register_memory_notifier(&intel_iommu_memory_nb);
4527
4528 intel_iommu_enabled = 1;
4529
4530 return 0;
4531
4532 out_free_reserved_range:
4533 put_iova_domain(&reserved_iova_list);
4534 out_free_dmar:
4535 intel_iommu_free_dmars();
4536 up_write(&dmar_global_lock);
4537 iommu_exit_mempool();
4538 return ret;
4539 }
4540
4541 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4542 {
4543 struct intel_iommu *iommu = opaque;
4544
4545 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4546 return 0;
4547 }
4548
4549 /*
4550 * NB - intel-iommu lacks any sort of reference counting for the users of
4551 * dependent devices. If multiple endpoints have intersecting dependent
4552 * devices, unbinding the driver from any one of them will possibly leave
4553 * the others unable to operate.
4554 */
4555 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4556 {
4557 if (!iommu || !dev || !dev_is_pci(dev))
4558 return;
4559
4560 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4561 }
4562
4563 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4564 {
4565 struct intel_iommu *iommu;
4566 unsigned long flags;
4567
4568 assert_spin_locked(&device_domain_lock);
4569
4570 if (WARN_ON(!info))
4571 return;
4572
4573 iommu = info->iommu;
4574
4575 if (info->dev) {
4576 iommu_disable_dev_iotlb(info);
4577 domain_context_clear(iommu, info->dev);
4578 }
4579
4580 unlink_domain_info(info);
4581
4582 spin_lock_irqsave(&iommu->lock, flags);
4583 domain_detach_iommu(info->domain, iommu);
4584 spin_unlock_irqrestore(&iommu->lock, flags);
4585
4586 free_devinfo_mem(info);
4587 }
4588
4589 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4590 struct device *dev)
4591 {
4592 struct device_domain_info *info;
4593 unsigned long flags;
4594
4595 spin_lock_irqsave(&device_domain_lock, flags);
4596 info = dev->archdata.iommu;
4597 __dmar_remove_one_dev_info(info);
4598 spin_unlock_irqrestore(&device_domain_lock, flags);
4599 }
4600
4601 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4602 {
4603 int adjust_width;
4604
4605 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4606 DMA_32BIT_PFN);
4607 domain_reserve_special_ranges(domain);
4608
4609 /* calculate AGAW */
4610 domain->gaw = guest_width;
4611 adjust_width = guestwidth_to_adjustwidth(guest_width);
4612 domain->agaw = width_to_agaw(adjust_width);
4613
4614 domain->iommu_coherency = 0;
4615 domain->iommu_snooping = 0;
4616 domain->iommu_superpage = 0;
4617 domain->max_addr = 0;
4618
4619 /* always allocate the top pgd */
4620 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4621 if (!domain->pgd)
4622 return -ENOMEM;
4623 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4624 return 0;
4625 }
4626
4627 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4628 {
4629 struct dmar_domain *dmar_domain;
4630 struct iommu_domain *domain;
4631
4632 if (type != IOMMU_DOMAIN_UNMANAGED)
4633 return NULL;
4634
4635 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4636 if (!dmar_domain) {
4637 pr_err("Can't allocate dmar_domain\n");
4638 return NULL;
4639 }
4640 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4641 pr_err("Domain initialization failed\n");
4642 domain_exit(dmar_domain);
4643 return NULL;
4644 }
4645 domain_update_iommu_cap(dmar_domain);
4646
4647 domain = &dmar_domain->domain;
4648 domain->geometry.aperture_start = 0;
4649 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4650 domain->geometry.force_aperture = true;
4651
4652 return domain;
4653 }
4654
4655 static void intel_iommu_domain_free(struct iommu_domain *domain)
4656 {
4657 domain_exit(to_dmar_domain(domain));
4658 }
4659
4660 static int intel_iommu_attach_device(struct iommu_domain *domain,
4661 struct device *dev)
4662 {
4663 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4664 struct intel_iommu *iommu;
4665 int addr_width;
4666 u8 bus, devfn;
4667
4668 if (device_is_rmrr_locked(dev)) {
4669 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4670 return -EPERM;
4671 }
4672
4673 /* normally dev is not mapped */
4674 if (unlikely(domain_context_mapped(dev))) {
4675 struct dmar_domain *old_domain;
4676
4677 old_domain = find_domain(dev);
4678 if (old_domain) {
4679 rcu_read_lock();
4680 dmar_remove_one_dev_info(old_domain, dev);
4681 rcu_read_unlock();
4682
4683 if (!domain_type_is_vm_or_si(old_domain) &&
4684 list_empty(&old_domain->devices))
4685 domain_exit(old_domain);
4686 }
4687 }
4688
4689 iommu = device_to_iommu(dev, &bus, &devfn);
4690 if (!iommu)
4691 return -ENODEV;
4692
4693 /* check if this iommu agaw is sufficient for max mapped address */
4694 addr_width = agaw_to_width(iommu->agaw);
4695 if (addr_width > cap_mgaw(iommu->cap))
4696 addr_width = cap_mgaw(iommu->cap);
4697
4698 if (dmar_domain->max_addr > (1LL << addr_width)) {
4699 pr_err("%s: iommu width (%d) is not "
4700 "sufficient for the mapped address (%llx)\n",
4701 __func__, addr_width, dmar_domain->max_addr);
4702 return -EFAULT;
4703 }
4704 dmar_domain->gaw = addr_width;
4705
4706 /*
4707 * Knock out extra levels of page tables if necessary
4708 */
4709 while (iommu->agaw < dmar_domain->agaw) {
4710 struct dma_pte *pte;
4711
4712 pte = dmar_domain->pgd;
4713 if (dma_pte_present(pte)) {
4714 dmar_domain->pgd = (struct dma_pte *)
4715 phys_to_virt(dma_pte_addr(pte));
4716 free_pgtable_page(pte);
4717 }
4718 dmar_domain->agaw--;
4719 }
4720
4721 return domain_add_dev_info(dmar_domain, dev);
4722 }
4723
4724 static void intel_iommu_detach_device(struct iommu_domain *domain,
4725 struct device *dev)
4726 {
4727 dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
4728 }
4729
4730 static int intel_iommu_map(struct iommu_domain *domain,
4731 unsigned long iova, phys_addr_t hpa,
4732 size_t size, int iommu_prot)
4733 {
4734 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4735 u64 max_addr;
4736 int prot = 0;
4737 int ret;
4738
4739 if (iommu_prot & IOMMU_READ)
4740 prot |= DMA_PTE_READ;
4741 if (iommu_prot & IOMMU_WRITE)
4742 prot |= DMA_PTE_WRITE;
4743 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4744 prot |= DMA_PTE_SNP;
4745
4746 max_addr = iova + size;
4747 if (dmar_domain->max_addr < max_addr) {
4748 u64 end;
4749
4750 /* check if minimum agaw is sufficient for mapped address */
4751 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4752 if (end < max_addr) {
4753 pr_err("%s: iommu width (%d) is not "
4754 "sufficient for the mapped address (%llx)\n",
4755 __func__, dmar_domain->gaw, max_addr);
4756 return -EFAULT;
4757 }
4758 dmar_domain->max_addr = max_addr;
4759 }
4760 /* Round up size to next multiple of PAGE_SIZE, if it and
4761 the low bits of hpa would take us onto the next page */
4762 size = aligned_nrpages(hpa, size);
4763 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4764 hpa >> VTD_PAGE_SHIFT, size, prot);
4765 return ret;
4766 }
4767
4768 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4769 unsigned long iova, size_t size)
4770 {
4771 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4772 struct page *freelist = NULL;
4773 struct intel_iommu *iommu;
4774 unsigned long start_pfn, last_pfn;
4775 unsigned int npages;
4776 int iommu_id, level = 0;
4777
4778 /* Cope with horrid API which requires us to unmap more than the
4779 size argument if it happens to be a large-page mapping. */
4780 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
4781
4782 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4783 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4784
4785 start_pfn = iova >> VTD_PAGE_SHIFT;
4786 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4787
4788 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4789
4790 npages = last_pfn - start_pfn + 1;
4791
4792 for_each_domain_iommu(iommu_id, dmar_domain) {
4793 iommu = g_iommus[iommu_id];
4794
4795 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
4796 start_pfn, npages, !freelist, 0);
4797 }
4798
4799 dma_free_pagelist(freelist);
4800
4801 if (dmar_domain->max_addr == iova + size)
4802 dmar_domain->max_addr = iova;
4803
4804 return size;
4805 }
4806
4807 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4808 dma_addr_t iova)
4809 {
4810 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4811 struct dma_pte *pte;
4812 int level = 0;
4813 u64 phys = 0;
4814
4815 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4816 if (pte)
4817 phys = dma_pte_addr(pte);
4818
4819 return phys;
4820 }
4821
4822 static bool intel_iommu_capable(enum iommu_cap cap)
4823 {
4824 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4825 return domain_update_iommu_snooping(NULL) == 1;
4826 if (cap == IOMMU_CAP_INTR_REMAP)
4827 return irq_remapping_enabled == 1;
4828
4829 return false;
4830 }
4831
4832 static int intel_iommu_add_device(struct device *dev)
4833 {
4834 struct intel_iommu *iommu;
4835 struct iommu_group *group;
4836 u8 bus, devfn;
4837
4838 iommu = device_to_iommu(dev, &bus, &devfn);
4839 if (!iommu)
4840 return -ENODEV;
4841
4842 iommu_device_link(iommu->iommu_dev, dev);
4843
4844 group = iommu_group_get_for_dev(dev);
4845
4846 if (IS_ERR(group))
4847 return PTR_ERR(group);
4848
4849 iommu_group_put(group);
4850 return 0;
4851 }
4852
4853 static void intel_iommu_remove_device(struct device *dev)
4854 {
4855 struct intel_iommu *iommu;
4856 u8 bus, devfn;
4857
4858 iommu = device_to_iommu(dev, &bus, &devfn);
4859 if (!iommu)
4860 return;
4861
4862 iommu_group_remove_device(dev);
4863
4864 iommu_device_unlink(iommu->iommu_dev, dev);
4865 }
4866
4867 static const struct iommu_ops intel_iommu_ops = {
4868 .capable = intel_iommu_capable,
4869 .domain_alloc = intel_iommu_domain_alloc,
4870 .domain_free = intel_iommu_domain_free,
4871 .attach_dev = intel_iommu_attach_device,
4872 .detach_dev = intel_iommu_detach_device,
4873 .map = intel_iommu_map,
4874 .unmap = intel_iommu_unmap,
4875 .map_sg = default_iommu_map_sg,
4876 .iova_to_phys = intel_iommu_iova_to_phys,
4877 .add_device = intel_iommu_add_device,
4878 .remove_device = intel_iommu_remove_device,
4879 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4880 };
4881
4882 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4883 {
4884 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4885 pr_info("Disabling IOMMU for graphics on this chipset\n");
4886 dmar_map_gfx = 0;
4887 }
4888
4889 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4890 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4891 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4892 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4893 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4894 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4895 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4896
4897 static void quirk_iommu_rwbf(struct pci_dev *dev)
4898 {
4899 /*
4900 * Mobile 4 Series Chipset neglects to set RWBF capability,
4901 * but needs it. Same seems to hold for the desktop versions.
4902 */
4903 pr_info("Forcing write-buffer flush capability\n");
4904 rwbf_quirk = 1;
4905 }
4906
4907 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4908 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4909 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4910 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4911 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4912 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4913 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4914
4915 #define GGC 0x52
4916 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4917 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4918 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4919 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4920 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4921 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4922 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4923 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4924
4925 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4926 {
4927 unsigned short ggc;
4928
4929 if (pci_read_config_word(dev, GGC, &ggc))
4930 return;
4931
4932 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4933 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4934 dmar_map_gfx = 0;
4935 } else if (dmar_map_gfx) {
4936 /* we have to ensure the gfx device is idle before we flush */
4937 pr_info("Disabling batched IOTLB flush on Ironlake\n");
4938 intel_iommu_strict = 1;
4939 }
4940 }
4941 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4942 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4943 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4944 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4945
4946 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4947 ISOCH DMAR unit for the Azalia sound device, but not give it any
4948 TLB entries, which causes it to deadlock. Check for that. We do
4949 this in a function called from init_dmars(), instead of in a PCI
4950 quirk, because we don't want to print the obnoxious "BIOS broken"
4951 message if VT-d is actually disabled.
4952 */
4953 static void __init check_tylersburg_isoch(void)
4954 {
4955 struct pci_dev *pdev;
4956 uint32_t vtisochctrl;
4957
4958 /* If there's no Azalia in the system anyway, forget it. */
4959 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4960 if (!pdev)
4961 return;
4962 pci_dev_put(pdev);
4963
4964 /* System Management Registers. Might be hidden, in which case
4965 we can't do the sanity check. But that's OK, because the
4966 known-broken BIOSes _don't_ actually hide it, so far. */
4967 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4968 if (!pdev)
4969 return;
4970
4971 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4972 pci_dev_put(pdev);
4973 return;
4974 }
4975
4976 pci_dev_put(pdev);
4977
4978 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4979 if (vtisochctrl & 1)
4980 return;
4981
4982 /* Drop all bits other than the number of TLB entries */
4983 vtisochctrl &= 0x1c;
4984
4985 /* If we have the recommended number of TLB entries (16), fine. */
4986 if (vtisochctrl == 0x10)
4987 return;
4988
4989 /* Zero TLB entries? You get to ride the short bus to school. */
4990 if (!vtisochctrl) {
4991 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4992 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4993 dmi_get_system_info(DMI_BIOS_VENDOR),
4994 dmi_get_system_info(DMI_BIOS_VERSION),
4995 dmi_get_system_info(DMI_PRODUCT_VERSION));
4996 iommu_identity_mapping |= IDENTMAP_AZALIA;
4997 return;
4998 }
4999
5000 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5001 vtisochctrl);
5002 }