]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/iommu/intel-iommu.c
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[mirror_ubuntu-zesty-kernel.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 * Joerg Roedel <jroedel@suse.de>
19 */
20
21 #define pr_fmt(fmt) "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <linux/dma-contiguous.h>
46 #include <linux/crash_dump.h>
47 #include <asm/irq_remapping.h>
48 #include <asm/cacheflush.h>
49 #include <asm/iommu.h>
50
51 #include "irq_remapping.h"
52
53 #define ROOT_SIZE VTD_PAGE_SIZE
54 #define CONTEXT_SIZE VTD_PAGE_SIZE
55
56 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
57 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
58 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
59 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
60
61 #define IOAPIC_RANGE_START (0xfee00000)
62 #define IOAPIC_RANGE_END (0xfeefffff)
63 #define IOVA_START_ADDR (0x1000)
64
65 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
66
67 #define MAX_AGAW_WIDTH 64
68 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
69
70 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
71 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
72
73 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
74 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
75 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
76 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
77 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
78
79 /* IO virtual address start page frame number */
80 #define IOVA_START_PFN (1)
81
82 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
83 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
84 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
85
86 /* page table handling */
87 #define LEVEL_STRIDE (9)
88 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
89
90 /*
91 * This bitmap is used to advertise the page sizes our hardware support
92 * to the IOMMU core, which will then use this information to split
93 * physically contiguous memory regions it is mapping into page sizes
94 * that we support.
95 *
96 * Traditionally the IOMMU core just handed us the mappings directly,
97 * after making sure the size is an order of a 4KiB page and that the
98 * mapping has natural alignment.
99 *
100 * To retain this behavior, we currently advertise that we support
101 * all page sizes that are an order of 4KiB.
102 *
103 * If at some point we'd like to utilize the IOMMU core's new behavior,
104 * we could change this to advertise the real page sizes we support.
105 */
106 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
107
108 static inline int agaw_to_level(int agaw)
109 {
110 return agaw + 2;
111 }
112
113 static inline int agaw_to_width(int agaw)
114 {
115 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
116 }
117
118 static inline int width_to_agaw(int width)
119 {
120 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
121 }
122
123 static inline unsigned int level_to_offset_bits(int level)
124 {
125 return (level - 1) * LEVEL_STRIDE;
126 }
127
128 static inline int pfn_level_offset(unsigned long pfn, int level)
129 {
130 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
131 }
132
133 static inline unsigned long level_mask(int level)
134 {
135 return -1UL << level_to_offset_bits(level);
136 }
137
138 static inline unsigned long level_size(int level)
139 {
140 return 1UL << level_to_offset_bits(level);
141 }
142
143 static inline unsigned long align_to_level(unsigned long pfn, int level)
144 {
145 return (pfn + level_size(level) - 1) & level_mask(level);
146 }
147
148 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
149 {
150 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
151 }
152
153 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
154 are never going to work. */
155 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
156 {
157 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 }
159
160 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
161 {
162 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
163 }
164 static inline unsigned long page_to_dma_pfn(struct page *pg)
165 {
166 return mm_to_dma_pfn(page_to_pfn(pg));
167 }
168 static inline unsigned long virt_to_dma_pfn(void *p)
169 {
170 return page_to_dma_pfn(virt_to_page(p));
171 }
172
173 /* global iommu list, set NULL for ignored DMAR units */
174 static struct intel_iommu **g_iommus;
175
176 static void __init check_tylersburg_isoch(void);
177 static int rwbf_quirk;
178
179 /*
180 * set to 1 to panic kernel if can't successfully enable VT-d
181 * (used when kernel is launched w/ TXT)
182 */
183 static int force_on = 0;
184
185 /*
186 * 0: Present
187 * 1-11: Reserved
188 * 12-63: Context Ptr (12 - (haw-1))
189 * 64-127: Reserved
190 */
191 struct root_entry {
192 u64 lo;
193 u64 hi;
194 };
195 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
196
197 /*
198 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
199 * if marked present.
200 */
201 static phys_addr_t root_entry_lctp(struct root_entry *re)
202 {
203 if (!(re->lo & 1))
204 return 0;
205
206 return re->lo & VTD_PAGE_MASK;
207 }
208
209 /*
210 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
211 * if marked present.
212 */
213 static phys_addr_t root_entry_uctp(struct root_entry *re)
214 {
215 if (!(re->hi & 1))
216 return 0;
217
218 return re->hi & VTD_PAGE_MASK;
219 }
220 /*
221 * low 64 bits:
222 * 0: present
223 * 1: fault processing disable
224 * 2-3: translation type
225 * 12-63: address space root
226 * high 64 bits:
227 * 0-2: address width
228 * 3-6: aval
229 * 8-23: domain id
230 */
231 struct context_entry {
232 u64 lo;
233 u64 hi;
234 };
235
236 static inline void context_clear_pasid_enable(struct context_entry *context)
237 {
238 context->lo &= ~(1ULL << 11);
239 }
240
241 static inline bool context_pasid_enabled(struct context_entry *context)
242 {
243 return !!(context->lo & (1ULL << 11));
244 }
245
246 static inline void context_set_copied(struct context_entry *context)
247 {
248 context->hi |= (1ull << 3);
249 }
250
251 static inline bool context_copied(struct context_entry *context)
252 {
253 return !!(context->hi & (1ULL << 3));
254 }
255
256 static inline bool __context_present(struct context_entry *context)
257 {
258 return (context->lo & 1);
259 }
260
261 static inline bool context_present(struct context_entry *context)
262 {
263 return context_pasid_enabled(context) ?
264 __context_present(context) :
265 __context_present(context) && !context_copied(context);
266 }
267
268 static inline void context_set_present(struct context_entry *context)
269 {
270 context->lo |= 1;
271 }
272
273 static inline void context_set_fault_enable(struct context_entry *context)
274 {
275 context->lo &= (((u64)-1) << 2) | 1;
276 }
277
278 static inline void context_set_translation_type(struct context_entry *context,
279 unsigned long value)
280 {
281 context->lo &= (((u64)-1) << 4) | 3;
282 context->lo |= (value & 3) << 2;
283 }
284
285 static inline void context_set_address_root(struct context_entry *context,
286 unsigned long value)
287 {
288 context->lo &= ~VTD_PAGE_MASK;
289 context->lo |= value & VTD_PAGE_MASK;
290 }
291
292 static inline void context_set_address_width(struct context_entry *context,
293 unsigned long value)
294 {
295 context->hi |= value & 7;
296 }
297
298 static inline void context_set_domain_id(struct context_entry *context,
299 unsigned long value)
300 {
301 context->hi |= (value & ((1 << 16) - 1)) << 8;
302 }
303
304 static inline int context_domain_id(struct context_entry *c)
305 {
306 return((c->hi >> 8) & 0xffff);
307 }
308
309 static inline void context_clear_entry(struct context_entry *context)
310 {
311 context->lo = 0;
312 context->hi = 0;
313 }
314
315 /*
316 * 0: readable
317 * 1: writable
318 * 2-6: reserved
319 * 7: super page
320 * 8-10: available
321 * 11: snoop behavior
322 * 12-63: Host physcial address
323 */
324 struct dma_pte {
325 u64 val;
326 };
327
328 static inline void dma_clear_pte(struct dma_pte *pte)
329 {
330 pte->val = 0;
331 }
332
333 static inline u64 dma_pte_addr(struct dma_pte *pte)
334 {
335 #ifdef CONFIG_64BIT
336 return pte->val & VTD_PAGE_MASK;
337 #else
338 /* Must have a full atomic 64-bit read */
339 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
340 #endif
341 }
342
343 static inline bool dma_pte_present(struct dma_pte *pte)
344 {
345 return (pte->val & 3) != 0;
346 }
347
348 static inline bool dma_pte_superpage(struct dma_pte *pte)
349 {
350 return (pte->val & DMA_PTE_LARGE_PAGE);
351 }
352
353 static inline int first_pte_in_page(struct dma_pte *pte)
354 {
355 return !((unsigned long)pte & ~VTD_PAGE_MASK);
356 }
357
358 /*
359 * This domain is a statically identity mapping domain.
360 * 1. This domain creats a static 1:1 mapping to all usable memory.
361 * 2. It maps to each iommu if successful.
362 * 3. Each iommu mapps to this domain if successful.
363 */
364 static struct dmar_domain *si_domain;
365 static int hw_pass_through = 1;
366
367 /*
368 * Domain represents a virtual machine, more than one devices
369 * across iommus may be owned in one domain, e.g. kvm guest.
370 */
371 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
372
373 /* si_domain contains mulitple devices */
374 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
375
376 #define for_each_domain_iommu(idx, domain) \
377 for (idx = 0; idx < g_num_of_iommus; idx++) \
378 if (domain->iommu_refcnt[idx])
379
380 struct dmar_domain {
381 int nid; /* node id */
382
383 unsigned iommu_refcnt[DMAR_UNITS_SUPPORTED];
384 /* Refcount of devices per iommu */
385
386
387 u16 iommu_did[DMAR_UNITS_SUPPORTED];
388 /* Domain ids per IOMMU. Use u16 since
389 * domain ids are 16 bit wide according
390 * to VT-d spec, section 9.3 */
391
392 struct list_head devices; /* all devices' list */
393 struct iova_domain iovad; /* iova's that belong to this domain */
394
395 struct dma_pte *pgd; /* virtual address */
396 int gaw; /* max guest address width */
397
398 /* adjusted guest address width, 0 is level 2 30-bit */
399 int agaw;
400
401 int flags; /* flags to find out type of domain */
402
403 int iommu_coherency;/* indicate coherency of iommu access */
404 int iommu_snooping; /* indicate snooping control feature*/
405 int iommu_count; /* reference count of iommu */
406 int iommu_superpage;/* Level of superpages supported:
407 0 == 4KiB (no superpages), 1 == 2MiB,
408 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
409 u64 max_addr; /* maximum mapped address */
410
411 struct iommu_domain domain; /* generic domain data structure for
412 iommu core */
413 };
414
415 /* PCI domain-device relationship */
416 struct device_domain_info {
417 struct list_head link; /* link to domain siblings */
418 struct list_head global; /* link to global list */
419 u8 bus; /* PCI bus number */
420 u8 devfn; /* PCI devfn number */
421 struct {
422 u8 enabled:1;
423 u8 qdep;
424 } ats; /* ATS state */
425 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
426 struct intel_iommu *iommu; /* IOMMU used by this device */
427 struct dmar_domain *domain; /* pointer to domain */
428 };
429
430 struct dmar_rmrr_unit {
431 struct list_head list; /* list of rmrr units */
432 struct acpi_dmar_header *hdr; /* ACPI header */
433 u64 base_address; /* reserved base address*/
434 u64 end_address; /* reserved end address */
435 struct dmar_dev_scope *devices; /* target devices */
436 int devices_cnt; /* target device count */
437 };
438
439 struct dmar_atsr_unit {
440 struct list_head list; /* list of ATSR units */
441 struct acpi_dmar_header *hdr; /* ACPI header */
442 struct dmar_dev_scope *devices; /* target devices */
443 int devices_cnt; /* target device count */
444 u8 include_all:1; /* include all ports */
445 };
446
447 static LIST_HEAD(dmar_atsr_units);
448 static LIST_HEAD(dmar_rmrr_units);
449
450 #define for_each_rmrr_units(rmrr) \
451 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
452
453 static void flush_unmaps_timeout(unsigned long data);
454
455 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
456
457 #define HIGH_WATER_MARK 250
458 struct deferred_flush_tables {
459 int next;
460 struct iova *iova[HIGH_WATER_MARK];
461 struct dmar_domain *domain[HIGH_WATER_MARK];
462 struct page *freelist[HIGH_WATER_MARK];
463 };
464
465 static struct deferred_flush_tables *deferred_flush;
466
467 /* bitmap for indexing intel_iommus */
468 static int g_num_of_iommus;
469
470 static DEFINE_SPINLOCK(async_umap_flush_lock);
471 static LIST_HEAD(unmaps_to_do);
472
473 static int timer_on;
474 static long list_size;
475
476 static void domain_exit(struct dmar_domain *domain);
477 static void domain_remove_dev_info(struct dmar_domain *domain);
478 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
479 struct device *dev);
480 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
481 static void domain_context_clear(struct intel_iommu *iommu,
482 struct device *dev);
483 static int domain_detach_iommu(struct dmar_domain *domain,
484 struct intel_iommu *iommu);
485
486 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
487 int dmar_disabled = 0;
488 #else
489 int dmar_disabled = 1;
490 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
491
492 int intel_iommu_enabled = 0;
493 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
494
495 static int dmar_map_gfx = 1;
496 static int dmar_forcedac;
497 static int intel_iommu_strict;
498 static int intel_iommu_superpage = 1;
499 static int intel_iommu_ecs = 1;
500
501 /* We only actually use ECS when PASID support (on the new bit 40)
502 * is also advertised. Some early implementations — the ones with
503 * PASID support on bit 28 — have issues even when we *only* use
504 * extended root/context tables. */
505 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
506 ecap_pasid(iommu->ecap))
507
508 int intel_iommu_gfx_mapped;
509 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
510
511 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
512 static DEFINE_SPINLOCK(device_domain_lock);
513 static LIST_HEAD(device_domain_list);
514
515 static const struct iommu_ops intel_iommu_ops;
516
517 static bool translation_pre_enabled(struct intel_iommu *iommu)
518 {
519 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
520 }
521
522 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
523 {
524 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
525 }
526
527 static void init_translation_status(struct intel_iommu *iommu)
528 {
529 u32 gsts;
530
531 gsts = readl(iommu->reg + DMAR_GSTS_REG);
532 if (gsts & DMA_GSTS_TES)
533 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
534 }
535
536 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
537 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
538 {
539 return container_of(dom, struct dmar_domain, domain);
540 }
541
542 static int __init intel_iommu_setup(char *str)
543 {
544 if (!str)
545 return -EINVAL;
546 while (*str) {
547 if (!strncmp(str, "on", 2)) {
548 dmar_disabled = 0;
549 pr_info("IOMMU enabled\n");
550 } else if (!strncmp(str, "off", 3)) {
551 dmar_disabled = 1;
552 pr_info("IOMMU disabled\n");
553 } else if (!strncmp(str, "igfx_off", 8)) {
554 dmar_map_gfx = 0;
555 pr_info("Disable GFX device mapping\n");
556 } else if (!strncmp(str, "forcedac", 8)) {
557 pr_info("Forcing DAC for PCI devices\n");
558 dmar_forcedac = 1;
559 } else if (!strncmp(str, "strict", 6)) {
560 pr_info("Disable batched IOTLB flush\n");
561 intel_iommu_strict = 1;
562 } else if (!strncmp(str, "sp_off", 6)) {
563 pr_info("Disable supported super page\n");
564 intel_iommu_superpage = 0;
565 } else if (!strncmp(str, "ecs_off", 7)) {
566 printk(KERN_INFO
567 "Intel-IOMMU: disable extended context table support\n");
568 intel_iommu_ecs = 0;
569 }
570
571 str += strcspn(str, ",");
572 while (*str == ',')
573 str++;
574 }
575 return 0;
576 }
577 __setup("intel_iommu=", intel_iommu_setup);
578
579 static struct kmem_cache *iommu_domain_cache;
580 static struct kmem_cache *iommu_devinfo_cache;
581
582 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
583 {
584 struct dmar_domain **domains;
585 int idx = did >> 8;
586
587 domains = iommu->domains[idx];
588 if (!domains)
589 return NULL;
590
591 return domains[did & 0xff];
592 }
593
594 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
595 struct dmar_domain *domain)
596 {
597 struct dmar_domain **domains;
598 int idx = did >> 8;
599
600 if (!iommu->domains[idx]) {
601 size_t size = 256 * sizeof(struct dmar_domain *);
602 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
603 }
604
605 domains = iommu->domains[idx];
606 if (WARN_ON(!domains))
607 return;
608 else
609 domains[did & 0xff] = domain;
610 }
611
612 static inline void *alloc_pgtable_page(int node)
613 {
614 struct page *page;
615 void *vaddr = NULL;
616
617 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
618 if (page)
619 vaddr = page_address(page);
620 return vaddr;
621 }
622
623 static inline void free_pgtable_page(void *vaddr)
624 {
625 free_page((unsigned long)vaddr);
626 }
627
628 static inline void *alloc_domain_mem(void)
629 {
630 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
631 }
632
633 static void free_domain_mem(void *vaddr)
634 {
635 kmem_cache_free(iommu_domain_cache, vaddr);
636 }
637
638 static inline void * alloc_devinfo_mem(void)
639 {
640 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
641 }
642
643 static inline void free_devinfo_mem(void *vaddr)
644 {
645 kmem_cache_free(iommu_devinfo_cache, vaddr);
646 }
647
648 static inline int domain_type_is_vm(struct dmar_domain *domain)
649 {
650 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
651 }
652
653 static inline int domain_type_is_si(struct dmar_domain *domain)
654 {
655 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
656 }
657
658 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
659 {
660 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
661 DOMAIN_FLAG_STATIC_IDENTITY);
662 }
663
664 static inline int domain_pfn_supported(struct dmar_domain *domain,
665 unsigned long pfn)
666 {
667 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
668
669 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
670 }
671
672 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
673 {
674 unsigned long sagaw;
675 int agaw = -1;
676
677 sagaw = cap_sagaw(iommu->cap);
678 for (agaw = width_to_agaw(max_gaw);
679 agaw >= 0; agaw--) {
680 if (test_bit(agaw, &sagaw))
681 break;
682 }
683
684 return agaw;
685 }
686
687 /*
688 * Calculate max SAGAW for each iommu.
689 */
690 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
691 {
692 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
693 }
694
695 /*
696 * calculate agaw for each iommu.
697 * "SAGAW" may be different across iommus, use a default agaw, and
698 * get a supported less agaw for iommus that don't support the default agaw.
699 */
700 int iommu_calculate_agaw(struct intel_iommu *iommu)
701 {
702 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
703 }
704
705 /* This functionin only returns single iommu in a domain */
706 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
707 {
708 int iommu_id;
709
710 /* si_domain and vm domain should not get here. */
711 BUG_ON(domain_type_is_vm_or_si(domain));
712 for_each_domain_iommu(iommu_id, domain)
713 break;
714
715 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
716 return NULL;
717
718 return g_iommus[iommu_id];
719 }
720
721 static void domain_update_iommu_coherency(struct dmar_domain *domain)
722 {
723 struct dmar_drhd_unit *drhd;
724 struct intel_iommu *iommu;
725 bool found = false;
726 int i;
727
728 domain->iommu_coherency = 1;
729
730 for_each_domain_iommu(i, domain) {
731 found = true;
732 if (!ecap_coherent(g_iommus[i]->ecap)) {
733 domain->iommu_coherency = 0;
734 break;
735 }
736 }
737 if (found)
738 return;
739
740 /* No hardware attached; use lowest common denominator */
741 rcu_read_lock();
742 for_each_active_iommu(iommu, drhd) {
743 if (!ecap_coherent(iommu->ecap)) {
744 domain->iommu_coherency = 0;
745 break;
746 }
747 }
748 rcu_read_unlock();
749 }
750
751 static int domain_update_iommu_snooping(struct intel_iommu *skip)
752 {
753 struct dmar_drhd_unit *drhd;
754 struct intel_iommu *iommu;
755 int ret = 1;
756
757 rcu_read_lock();
758 for_each_active_iommu(iommu, drhd) {
759 if (iommu != skip) {
760 if (!ecap_sc_support(iommu->ecap)) {
761 ret = 0;
762 break;
763 }
764 }
765 }
766 rcu_read_unlock();
767
768 return ret;
769 }
770
771 static int domain_update_iommu_superpage(struct intel_iommu *skip)
772 {
773 struct dmar_drhd_unit *drhd;
774 struct intel_iommu *iommu;
775 int mask = 0xf;
776
777 if (!intel_iommu_superpage) {
778 return 0;
779 }
780
781 /* set iommu_superpage to the smallest common denominator */
782 rcu_read_lock();
783 for_each_active_iommu(iommu, drhd) {
784 if (iommu != skip) {
785 mask &= cap_super_page_val(iommu->cap);
786 if (!mask)
787 break;
788 }
789 }
790 rcu_read_unlock();
791
792 return fls(mask);
793 }
794
795 /* Some capabilities may be different across iommus */
796 static void domain_update_iommu_cap(struct dmar_domain *domain)
797 {
798 domain_update_iommu_coherency(domain);
799 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
800 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
801 }
802
803 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
804 u8 bus, u8 devfn, int alloc)
805 {
806 struct root_entry *root = &iommu->root_entry[bus];
807 struct context_entry *context;
808 u64 *entry;
809
810 entry = &root->lo;
811 if (ecs_enabled(iommu)) {
812 if (devfn >= 0x80) {
813 devfn -= 0x80;
814 entry = &root->hi;
815 }
816 devfn *= 2;
817 }
818 if (*entry & 1)
819 context = phys_to_virt(*entry & VTD_PAGE_MASK);
820 else {
821 unsigned long phy_addr;
822 if (!alloc)
823 return NULL;
824
825 context = alloc_pgtable_page(iommu->node);
826 if (!context)
827 return NULL;
828
829 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
830 phy_addr = virt_to_phys((void *)context);
831 *entry = phy_addr | 1;
832 __iommu_flush_cache(iommu, entry, sizeof(*entry));
833 }
834 return &context[devfn];
835 }
836
837 static int iommu_dummy(struct device *dev)
838 {
839 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
840 }
841
842 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
843 {
844 struct dmar_drhd_unit *drhd = NULL;
845 struct intel_iommu *iommu;
846 struct device *tmp;
847 struct pci_dev *ptmp, *pdev = NULL;
848 u16 segment = 0;
849 int i;
850
851 if (iommu_dummy(dev))
852 return NULL;
853
854 if (dev_is_pci(dev)) {
855 pdev = to_pci_dev(dev);
856 segment = pci_domain_nr(pdev->bus);
857 } else if (has_acpi_companion(dev))
858 dev = &ACPI_COMPANION(dev)->dev;
859
860 rcu_read_lock();
861 for_each_active_iommu(iommu, drhd) {
862 if (pdev && segment != drhd->segment)
863 continue;
864
865 for_each_active_dev_scope(drhd->devices,
866 drhd->devices_cnt, i, tmp) {
867 if (tmp == dev) {
868 *bus = drhd->devices[i].bus;
869 *devfn = drhd->devices[i].devfn;
870 goto out;
871 }
872
873 if (!pdev || !dev_is_pci(tmp))
874 continue;
875
876 ptmp = to_pci_dev(tmp);
877 if (ptmp->subordinate &&
878 ptmp->subordinate->number <= pdev->bus->number &&
879 ptmp->subordinate->busn_res.end >= pdev->bus->number)
880 goto got_pdev;
881 }
882
883 if (pdev && drhd->include_all) {
884 got_pdev:
885 *bus = pdev->bus->number;
886 *devfn = pdev->devfn;
887 goto out;
888 }
889 }
890 iommu = NULL;
891 out:
892 rcu_read_unlock();
893
894 return iommu;
895 }
896
897 static void domain_flush_cache(struct dmar_domain *domain,
898 void *addr, int size)
899 {
900 if (!domain->iommu_coherency)
901 clflush_cache_range(addr, size);
902 }
903
904 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
905 {
906 struct context_entry *context;
907 int ret = 0;
908 unsigned long flags;
909
910 spin_lock_irqsave(&iommu->lock, flags);
911 context = iommu_context_addr(iommu, bus, devfn, 0);
912 if (context)
913 ret = context_present(context);
914 spin_unlock_irqrestore(&iommu->lock, flags);
915 return ret;
916 }
917
918 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
919 {
920 struct context_entry *context;
921 unsigned long flags;
922
923 spin_lock_irqsave(&iommu->lock, flags);
924 context = iommu_context_addr(iommu, bus, devfn, 0);
925 if (context) {
926 context_clear_entry(context);
927 __iommu_flush_cache(iommu, context, sizeof(*context));
928 }
929 spin_unlock_irqrestore(&iommu->lock, flags);
930 }
931
932 static void free_context_table(struct intel_iommu *iommu)
933 {
934 int i;
935 unsigned long flags;
936 struct context_entry *context;
937
938 spin_lock_irqsave(&iommu->lock, flags);
939 if (!iommu->root_entry) {
940 goto out;
941 }
942 for (i = 0; i < ROOT_ENTRY_NR; i++) {
943 context = iommu_context_addr(iommu, i, 0, 0);
944 if (context)
945 free_pgtable_page(context);
946
947 if (!ecs_enabled(iommu))
948 continue;
949
950 context = iommu_context_addr(iommu, i, 0x80, 0);
951 if (context)
952 free_pgtable_page(context);
953
954 }
955 free_pgtable_page(iommu->root_entry);
956 iommu->root_entry = NULL;
957 out:
958 spin_unlock_irqrestore(&iommu->lock, flags);
959 }
960
961 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
962 unsigned long pfn, int *target_level)
963 {
964 struct dma_pte *parent, *pte = NULL;
965 int level = agaw_to_level(domain->agaw);
966 int offset;
967
968 BUG_ON(!domain->pgd);
969
970 if (!domain_pfn_supported(domain, pfn))
971 /* Address beyond IOMMU's addressing capabilities. */
972 return NULL;
973
974 parent = domain->pgd;
975
976 while (1) {
977 void *tmp_page;
978
979 offset = pfn_level_offset(pfn, level);
980 pte = &parent[offset];
981 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
982 break;
983 if (level == *target_level)
984 break;
985
986 if (!dma_pte_present(pte)) {
987 uint64_t pteval;
988
989 tmp_page = alloc_pgtable_page(domain->nid);
990
991 if (!tmp_page)
992 return NULL;
993
994 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
995 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
996 if (cmpxchg64(&pte->val, 0ULL, pteval))
997 /* Someone else set it while we were thinking; use theirs. */
998 free_pgtable_page(tmp_page);
999 else
1000 domain_flush_cache(domain, pte, sizeof(*pte));
1001 }
1002 if (level == 1)
1003 break;
1004
1005 parent = phys_to_virt(dma_pte_addr(pte));
1006 level--;
1007 }
1008
1009 if (!*target_level)
1010 *target_level = level;
1011
1012 return pte;
1013 }
1014
1015
1016 /* return address's pte at specific level */
1017 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1018 unsigned long pfn,
1019 int level, int *large_page)
1020 {
1021 struct dma_pte *parent, *pte = NULL;
1022 int total = agaw_to_level(domain->agaw);
1023 int offset;
1024
1025 parent = domain->pgd;
1026 while (level <= total) {
1027 offset = pfn_level_offset(pfn, total);
1028 pte = &parent[offset];
1029 if (level == total)
1030 return pte;
1031
1032 if (!dma_pte_present(pte)) {
1033 *large_page = total;
1034 break;
1035 }
1036
1037 if (dma_pte_superpage(pte)) {
1038 *large_page = total;
1039 return pte;
1040 }
1041
1042 parent = phys_to_virt(dma_pte_addr(pte));
1043 total--;
1044 }
1045 return NULL;
1046 }
1047
1048 /* clear last level pte, a tlb flush should be followed */
1049 static void dma_pte_clear_range(struct dmar_domain *domain,
1050 unsigned long start_pfn,
1051 unsigned long last_pfn)
1052 {
1053 unsigned int large_page = 1;
1054 struct dma_pte *first_pte, *pte;
1055
1056 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1057 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1058 BUG_ON(start_pfn > last_pfn);
1059
1060 /* we don't need lock here; nobody else touches the iova range */
1061 do {
1062 large_page = 1;
1063 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1064 if (!pte) {
1065 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1066 continue;
1067 }
1068 do {
1069 dma_clear_pte(pte);
1070 start_pfn += lvl_to_nr_pages(large_page);
1071 pte++;
1072 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1073
1074 domain_flush_cache(domain, first_pte,
1075 (void *)pte - (void *)first_pte);
1076
1077 } while (start_pfn && start_pfn <= last_pfn);
1078 }
1079
1080 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1081 struct dma_pte *pte, unsigned long pfn,
1082 unsigned long start_pfn, unsigned long last_pfn)
1083 {
1084 pfn = max(start_pfn, pfn);
1085 pte = &pte[pfn_level_offset(pfn, level)];
1086
1087 do {
1088 unsigned long level_pfn;
1089 struct dma_pte *level_pte;
1090
1091 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1092 goto next;
1093
1094 level_pfn = pfn & level_mask(level - 1);
1095 level_pte = phys_to_virt(dma_pte_addr(pte));
1096
1097 if (level > 2)
1098 dma_pte_free_level(domain, level - 1, level_pte,
1099 level_pfn, start_pfn, last_pfn);
1100
1101 /* If range covers entire pagetable, free it */
1102 if (!(start_pfn > level_pfn ||
1103 last_pfn < level_pfn + level_size(level) - 1)) {
1104 dma_clear_pte(pte);
1105 domain_flush_cache(domain, pte, sizeof(*pte));
1106 free_pgtable_page(level_pte);
1107 }
1108 next:
1109 pfn += level_size(level);
1110 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1111 }
1112
1113 /* free page table pages. last level pte should already be cleared */
1114 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1115 unsigned long start_pfn,
1116 unsigned long last_pfn)
1117 {
1118 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1119 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1120 BUG_ON(start_pfn > last_pfn);
1121
1122 dma_pte_clear_range(domain, start_pfn, last_pfn);
1123
1124 /* We don't need lock here; nobody else touches the iova range */
1125 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1126 domain->pgd, 0, start_pfn, last_pfn);
1127
1128 /* free pgd */
1129 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1130 free_pgtable_page(domain->pgd);
1131 domain->pgd = NULL;
1132 }
1133 }
1134
1135 /* When a page at a given level is being unlinked from its parent, we don't
1136 need to *modify* it at all. All we need to do is make a list of all the
1137 pages which can be freed just as soon as we've flushed the IOTLB and we
1138 know the hardware page-walk will no longer touch them.
1139 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1140 be freed. */
1141 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1142 int level, struct dma_pte *pte,
1143 struct page *freelist)
1144 {
1145 struct page *pg;
1146
1147 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1148 pg->freelist = freelist;
1149 freelist = pg;
1150
1151 if (level == 1)
1152 return freelist;
1153
1154 pte = page_address(pg);
1155 do {
1156 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1157 freelist = dma_pte_list_pagetables(domain, level - 1,
1158 pte, freelist);
1159 pte++;
1160 } while (!first_pte_in_page(pte));
1161
1162 return freelist;
1163 }
1164
1165 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1166 struct dma_pte *pte, unsigned long pfn,
1167 unsigned long start_pfn,
1168 unsigned long last_pfn,
1169 struct page *freelist)
1170 {
1171 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1172
1173 pfn = max(start_pfn, pfn);
1174 pte = &pte[pfn_level_offset(pfn, level)];
1175
1176 do {
1177 unsigned long level_pfn;
1178
1179 if (!dma_pte_present(pte))
1180 goto next;
1181
1182 level_pfn = pfn & level_mask(level);
1183
1184 /* If range covers entire pagetable, free it */
1185 if (start_pfn <= level_pfn &&
1186 last_pfn >= level_pfn + level_size(level) - 1) {
1187 /* These suborbinate page tables are going away entirely. Don't
1188 bother to clear them; we're just going to *free* them. */
1189 if (level > 1 && !dma_pte_superpage(pte))
1190 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1191
1192 dma_clear_pte(pte);
1193 if (!first_pte)
1194 first_pte = pte;
1195 last_pte = pte;
1196 } else if (level > 1) {
1197 /* Recurse down into a level that isn't *entirely* obsolete */
1198 freelist = dma_pte_clear_level(domain, level - 1,
1199 phys_to_virt(dma_pte_addr(pte)),
1200 level_pfn, start_pfn, last_pfn,
1201 freelist);
1202 }
1203 next:
1204 pfn += level_size(level);
1205 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1206
1207 if (first_pte)
1208 domain_flush_cache(domain, first_pte,
1209 (void *)++last_pte - (void *)first_pte);
1210
1211 return freelist;
1212 }
1213
1214 /* We can't just free the pages because the IOMMU may still be walking
1215 the page tables, and may have cached the intermediate levels. The
1216 pages can only be freed after the IOTLB flush has been done. */
1217 static struct page *domain_unmap(struct dmar_domain *domain,
1218 unsigned long start_pfn,
1219 unsigned long last_pfn)
1220 {
1221 struct page *freelist = NULL;
1222
1223 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1224 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1225 BUG_ON(start_pfn > last_pfn);
1226
1227 /* we don't need lock here; nobody else touches the iova range */
1228 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1229 domain->pgd, 0, start_pfn, last_pfn, NULL);
1230
1231 /* free pgd */
1232 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1233 struct page *pgd_page = virt_to_page(domain->pgd);
1234 pgd_page->freelist = freelist;
1235 freelist = pgd_page;
1236
1237 domain->pgd = NULL;
1238 }
1239
1240 return freelist;
1241 }
1242
1243 static void dma_free_pagelist(struct page *freelist)
1244 {
1245 struct page *pg;
1246
1247 while ((pg = freelist)) {
1248 freelist = pg->freelist;
1249 free_pgtable_page(page_address(pg));
1250 }
1251 }
1252
1253 /* iommu handling */
1254 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1255 {
1256 struct root_entry *root;
1257 unsigned long flags;
1258
1259 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1260 if (!root) {
1261 pr_err("Allocating root entry for %s failed\n",
1262 iommu->name);
1263 return -ENOMEM;
1264 }
1265
1266 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1267
1268 spin_lock_irqsave(&iommu->lock, flags);
1269 iommu->root_entry = root;
1270 spin_unlock_irqrestore(&iommu->lock, flags);
1271
1272 return 0;
1273 }
1274
1275 static void iommu_set_root_entry(struct intel_iommu *iommu)
1276 {
1277 u64 addr;
1278 u32 sts;
1279 unsigned long flag;
1280
1281 addr = virt_to_phys(iommu->root_entry);
1282 if (ecs_enabled(iommu))
1283 addr |= DMA_RTADDR_RTT;
1284
1285 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1286 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1287
1288 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1289
1290 /* Make sure hardware complete it */
1291 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1292 readl, (sts & DMA_GSTS_RTPS), sts);
1293
1294 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1295 }
1296
1297 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1298 {
1299 u32 val;
1300 unsigned long flag;
1301
1302 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1303 return;
1304
1305 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1306 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1307
1308 /* Make sure hardware complete it */
1309 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1310 readl, (!(val & DMA_GSTS_WBFS)), val);
1311
1312 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1313 }
1314
1315 /* return value determine if we need a write buffer flush */
1316 static void __iommu_flush_context(struct intel_iommu *iommu,
1317 u16 did, u16 source_id, u8 function_mask,
1318 u64 type)
1319 {
1320 u64 val = 0;
1321 unsigned long flag;
1322
1323 switch (type) {
1324 case DMA_CCMD_GLOBAL_INVL:
1325 val = DMA_CCMD_GLOBAL_INVL;
1326 break;
1327 case DMA_CCMD_DOMAIN_INVL:
1328 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1329 break;
1330 case DMA_CCMD_DEVICE_INVL:
1331 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1332 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1333 break;
1334 default:
1335 BUG();
1336 }
1337 val |= DMA_CCMD_ICC;
1338
1339 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1340 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1341
1342 /* Make sure hardware complete it */
1343 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1344 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1345
1346 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1347 }
1348
1349 /* return value determine if we need a write buffer flush */
1350 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1351 u64 addr, unsigned int size_order, u64 type)
1352 {
1353 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1354 u64 val = 0, val_iva = 0;
1355 unsigned long flag;
1356
1357 switch (type) {
1358 case DMA_TLB_GLOBAL_FLUSH:
1359 /* global flush doesn't need set IVA_REG */
1360 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1361 break;
1362 case DMA_TLB_DSI_FLUSH:
1363 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1364 break;
1365 case DMA_TLB_PSI_FLUSH:
1366 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1367 /* IH bit is passed in as part of address */
1368 val_iva = size_order | addr;
1369 break;
1370 default:
1371 BUG();
1372 }
1373 /* Note: set drain read/write */
1374 #if 0
1375 /*
1376 * This is probably to be super secure.. Looks like we can
1377 * ignore it without any impact.
1378 */
1379 if (cap_read_drain(iommu->cap))
1380 val |= DMA_TLB_READ_DRAIN;
1381 #endif
1382 if (cap_write_drain(iommu->cap))
1383 val |= DMA_TLB_WRITE_DRAIN;
1384
1385 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1386 /* Note: Only uses first TLB reg currently */
1387 if (val_iva)
1388 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1389 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1390
1391 /* Make sure hardware complete it */
1392 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1393 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1394
1395 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1396
1397 /* check IOTLB invalidation granularity */
1398 if (DMA_TLB_IAIG(val) == 0)
1399 pr_err("Flush IOTLB failed\n");
1400 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1401 pr_debug("TLB flush request %Lx, actual %Lx\n",
1402 (unsigned long long)DMA_TLB_IIRG(type),
1403 (unsigned long long)DMA_TLB_IAIG(val));
1404 }
1405
1406 static struct device_domain_info *
1407 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1408 u8 bus, u8 devfn)
1409 {
1410 bool found = false;
1411 struct device_domain_info *info;
1412 struct pci_dev *pdev;
1413
1414 assert_spin_locked(&device_domain_lock);
1415
1416 if (!ecap_dev_iotlb_support(iommu->ecap))
1417 return NULL;
1418
1419 if (!iommu->qi)
1420 return NULL;
1421
1422 list_for_each_entry(info, &domain->devices, link)
1423 if (info->iommu == iommu && info->bus == bus &&
1424 info->devfn == devfn) {
1425 found = true;
1426 break;
1427 }
1428
1429 if (!found || !info->dev || !dev_is_pci(info->dev))
1430 return NULL;
1431
1432 pdev = to_pci_dev(info->dev);
1433
1434 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1435 return NULL;
1436
1437 if (!dmar_find_matched_atsr_unit(pdev))
1438 return NULL;
1439
1440 return info;
1441 }
1442
1443 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1444 {
1445 struct pci_dev *pdev;
1446
1447 if (!info || !dev_is_pci(info->dev))
1448 return;
1449
1450 pdev = to_pci_dev(info->dev);
1451 if (pci_enable_ats(pdev, VTD_PAGE_SHIFT))
1452 return;
1453
1454 info->ats.enabled = 1;
1455 info->ats.qdep = pci_ats_queue_depth(pdev);
1456 }
1457
1458 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1459 {
1460 if (!info->ats.enabled)
1461 return;
1462
1463 pci_disable_ats(to_pci_dev(info->dev));
1464 info->ats.enabled = 0;
1465 }
1466
1467 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1468 u64 addr, unsigned mask)
1469 {
1470 u16 sid, qdep;
1471 unsigned long flags;
1472 struct device_domain_info *info;
1473
1474 spin_lock_irqsave(&device_domain_lock, flags);
1475 list_for_each_entry(info, &domain->devices, link) {
1476 if (!info->ats.enabled)
1477 continue;
1478
1479 sid = info->bus << 8 | info->devfn;
1480 qdep = info->ats.qdep;
1481 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1482 }
1483 spin_unlock_irqrestore(&device_domain_lock, flags);
1484 }
1485
1486 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1487 struct dmar_domain *domain,
1488 unsigned long pfn, unsigned int pages,
1489 int ih, int map)
1490 {
1491 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1492 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1493 u16 did = domain->iommu_did[iommu->seq_id];
1494
1495 BUG_ON(pages == 0);
1496
1497 if (ih)
1498 ih = 1 << 6;
1499 /*
1500 * Fallback to domain selective flush if no PSI support or the size is
1501 * too big.
1502 * PSI requires page size to be 2 ^ x, and the base address is naturally
1503 * aligned to the size
1504 */
1505 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1506 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1507 DMA_TLB_DSI_FLUSH);
1508 else
1509 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1510 DMA_TLB_PSI_FLUSH);
1511
1512 /*
1513 * In caching mode, changes of pages from non-present to present require
1514 * flush. However, device IOTLB doesn't need to be flushed in this case.
1515 */
1516 if (!cap_caching_mode(iommu->cap) || !map)
1517 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1518 addr, mask);
1519 }
1520
1521 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1522 {
1523 u32 pmen;
1524 unsigned long flags;
1525
1526 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1527 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1528 pmen &= ~DMA_PMEN_EPM;
1529 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1530
1531 /* wait for the protected region status bit to clear */
1532 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1533 readl, !(pmen & DMA_PMEN_PRS), pmen);
1534
1535 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1536 }
1537
1538 static void iommu_enable_translation(struct intel_iommu *iommu)
1539 {
1540 u32 sts;
1541 unsigned long flags;
1542
1543 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1544 iommu->gcmd |= DMA_GCMD_TE;
1545 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1546
1547 /* Make sure hardware complete it */
1548 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1549 readl, (sts & DMA_GSTS_TES), sts);
1550
1551 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1552 }
1553
1554 static void iommu_disable_translation(struct intel_iommu *iommu)
1555 {
1556 u32 sts;
1557 unsigned long flag;
1558
1559 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1560 iommu->gcmd &= ~DMA_GCMD_TE;
1561 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1562
1563 /* Make sure hardware complete it */
1564 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1565 readl, (!(sts & DMA_GSTS_TES)), sts);
1566
1567 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1568 }
1569
1570
1571 static int iommu_init_domains(struct intel_iommu *iommu)
1572 {
1573 u32 ndomains, nlongs;
1574 size_t size;
1575
1576 ndomains = cap_ndoms(iommu->cap);
1577 pr_debug("%s: Number of Domains supported <%d>\n",
1578 iommu->name, ndomains);
1579 nlongs = BITS_TO_LONGS(ndomains);
1580
1581 spin_lock_init(&iommu->lock);
1582
1583 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1584 if (!iommu->domain_ids) {
1585 pr_err("%s: Allocating domain id array failed\n",
1586 iommu->name);
1587 return -ENOMEM;
1588 }
1589
1590 size = ((ndomains >> 8) + 1) * sizeof(struct dmar_domain **);
1591 iommu->domains = kzalloc(size, GFP_KERNEL);
1592
1593 if (iommu->domains) {
1594 size = 256 * sizeof(struct dmar_domain *);
1595 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1596 }
1597
1598 if (!iommu->domains || !iommu->domains[0]) {
1599 pr_err("%s: Allocating domain array failed\n",
1600 iommu->name);
1601 kfree(iommu->domain_ids);
1602 kfree(iommu->domains);
1603 iommu->domain_ids = NULL;
1604 iommu->domains = NULL;
1605 return -ENOMEM;
1606 }
1607
1608
1609
1610 /*
1611 * If Caching mode is set, then invalid translations are tagged
1612 * with domain-id 0, hence we need to pre-allocate it. We also
1613 * use domain-id 0 as a marker for non-allocated domain-id, so
1614 * make sure it is not used for a real domain.
1615 */
1616 set_bit(0, iommu->domain_ids);
1617
1618 return 0;
1619 }
1620
1621 static void disable_dmar_iommu(struct intel_iommu *iommu)
1622 {
1623 struct device_domain_info *info, *tmp;
1624 unsigned long flags;
1625
1626 if (!iommu->domains || !iommu->domain_ids)
1627 return;
1628
1629 spin_lock_irqsave(&device_domain_lock, flags);
1630 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1631 struct dmar_domain *domain;
1632
1633 if (info->iommu != iommu)
1634 continue;
1635
1636 if (!info->dev || !info->domain)
1637 continue;
1638
1639 domain = info->domain;
1640
1641 dmar_remove_one_dev_info(domain, info->dev);
1642
1643 if (!domain_type_is_vm_or_si(domain))
1644 domain_exit(domain);
1645 }
1646 spin_unlock_irqrestore(&device_domain_lock, flags);
1647
1648 if (iommu->gcmd & DMA_GCMD_TE)
1649 iommu_disable_translation(iommu);
1650 }
1651
1652 static void free_dmar_iommu(struct intel_iommu *iommu)
1653 {
1654 if ((iommu->domains) && (iommu->domain_ids)) {
1655 int elems = (cap_ndoms(iommu->cap) >> 8) + 1;
1656 int i;
1657
1658 for (i = 0; i < elems; i++)
1659 kfree(iommu->domains[i]);
1660 kfree(iommu->domains);
1661 kfree(iommu->domain_ids);
1662 iommu->domains = NULL;
1663 iommu->domain_ids = NULL;
1664 }
1665
1666 g_iommus[iommu->seq_id] = NULL;
1667
1668 /* free context mapping */
1669 free_context_table(iommu);
1670 }
1671
1672 static struct dmar_domain *alloc_domain(int flags)
1673 {
1674 struct dmar_domain *domain;
1675
1676 domain = alloc_domain_mem();
1677 if (!domain)
1678 return NULL;
1679
1680 memset(domain, 0, sizeof(*domain));
1681 domain->nid = -1;
1682 domain->flags = flags;
1683 INIT_LIST_HEAD(&domain->devices);
1684
1685 return domain;
1686 }
1687
1688 /* Must be called with iommu->lock */
1689 static int domain_attach_iommu(struct dmar_domain *domain,
1690 struct intel_iommu *iommu)
1691 {
1692 unsigned long ndomains;
1693 int num;
1694
1695 assert_spin_locked(&device_domain_lock);
1696 assert_spin_locked(&iommu->lock);
1697
1698 domain->iommu_refcnt[iommu->seq_id] += 1;
1699 domain->iommu_count += 1;
1700 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1701 ndomains = cap_ndoms(iommu->cap);
1702 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1703
1704 if (num >= ndomains) {
1705 pr_err("%s: No free domain ids\n", iommu->name);
1706 domain->iommu_refcnt[iommu->seq_id] -= 1;
1707 domain->iommu_count -= 1;
1708 return -ENOSPC;
1709 }
1710
1711 set_bit(num, iommu->domain_ids);
1712 set_iommu_domain(iommu, num, domain);
1713
1714 domain->iommu_did[iommu->seq_id] = num;
1715 domain->nid = iommu->node;
1716
1717 domain_update_iommu_cap(domain);
1718 }
1719
1720 return 0;
1721 }
1722
1723 static int domain_detach_iommu(struct dmar_domain *domain,
1724 struct intel_iommu *iommu)
1725 {
1726 int num, count = INT_MAX;
1727
1728 assert_spin_locked(&device_domain_lock);
1729 assert_spin_locked(&iommu->lock);
1730
1731 domain->iommu_refcnt[iommu->seq_id] -= 1;
1732 count = --domain->iommu_count;
1733 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1734 num = domain->iommu_did[iommu->seq_id];
1735 clear_bit(num, iommu->domain_ids);
1736 set_iommu_domain(iommu, num, NULL);
1737
1738 domain_update_iommu_cap(domain);
1739 domain->iommu_did[iommu->seq_id] = 0;
1740 }
1741
1742 return count;
1743 }
1744
1745 static struct iova_domain reserved_iova_list;
1746 static struct lock_class_key reserved_rbtree_key;
1747
1748 static int dmar_init_reserved_ranges(void)
1749 {
1750 struct pci_dev *pdev = NULL;
1751 struct iova *iova;
1752 int i;
1753
1754 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1755 DMA_32BIT_PFN);
1756
1757 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1758 &reserved_rbtree_key);
1759
1760 /* IOAPIC ranges shouldn't be accessed by DMA */
1761 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1762 IOVA_PFN(IOAPIC_RANGE_END));
1763 if (!iova) {
1764 pr_err("Reserve IOAPIC range failed\n");
1765 return -ENODEV;
1766 }
1767
1768 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1769 for_each_pci_dev(pdev) {
1770 struct resource *r;
1771
1772 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1773 r = &pdev->resource[i];
1774 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1775 continue;
1776 iova = reserve_iova(&reserved_iova_list,
1777 IOVA_PFN(r->start),
1778 IOVA_PFN(r->end));
1779 if (!iova) {
1780 pr_err("Reserve iova failed\n");
1781 return -ENODEV;
1782 }
1783 }
1784 }
1785 return 0;
1786 }
1787
1788 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1789 {
1790 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1791 }
1792
1793 static inline int guestwidth_to_adjustwidth(int gaw)
1794 {
1795 int agaw;
1796 int r = (gaw - 12) % 9;
1797
1798 if (r == 0)
1799 agaw = gaw;
1800 else
1801 agaw = gaw + 9 - r;
1802 if (agaw > 64)
1803 agaw = 64;
1804 return agaw;
1805 }
1806
1807 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1808 int guest_width)
1809 {
1810 int adjust_width, agaw;
1811 unsigned long sagaw;
1812
1813 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1814 DMA_32BIT_PFN);
1815 domain_reserve_special_ranges(domain);
1816
1817 /* calculate AGAW */
1818 if (guest_width > cap_mgaw(iommu->cap))
1819 guest_width = cap_mgaw(iommu->cap);
1820 domain->gaw = guest_width;
1821 adjust_width = guestwidth_to_adjustwidth(guest_width);
1822 agaw = width_to_agaw(adjust_width);
1823 sagaw = cap_sagaw(iommu->cap);
1824 if (!test_bit(agaw, &sagaw)) {
1825 /* hardware doesn't support it, choose a bigger one */
1826 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1827 agaw = find_next_bit(&sagaw, 5, agaw);
1828 if (agaw >= 5)
1829 return -ENODEV;
1830 }
1831 domain->agaw = agaw;
1832
1833 if (ecap_coherent(iommu->ecap))
1834 domain->iommu_coherency = 1;
1835 else
1836 domain->iommu_coherency = 0;
1837
1838 if (ecap_sc_support(iommu->ecap))
1839 domain->iommu_snooping = 1;
1840 else
1841 domain->iommu_snooping = 0;
1842
1843 if (intel_iommu_superpage)
1844 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1845 else
1846 domain->iommu_superpage = 0;
1847
1848 domain->nid = iommu->node;
1849
1850 /* always allocate the top pgd */
1851 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1852 if (!domain->pgd)
1853 return -ENOMEM;
1854 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1855 return 0;
1856 }
1857
1858 static void domain_exit(struct dmar_domain *domain)
1859 {
1860 struct page *freelist = NULL;
1861
1862 /* Domain 0 is reserved, so dont process it */
1863 if (!domain)
1864 return;
1865
1866 /* Flush any lazy unmaps that may reference this domain */
1867 if (!intel_iommu_strict)
1868 flush_unmaps_timeout(0);
1869
1870 /* Remove associated devices and clear attached or cached domains */
1871 rcu_read_lock();
1872 domain_remove_dev_info(domain);
1873 rcu_read_unlock();
1874
1875 /* destroy iovas */
1876 put_iova_domain(&domain->iovad);
1877
1878 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1879
1880 dma_free_pagelist(freelist);
1881
1882 free_domain_mem(domain);
1883 }
1884
1885 static int domain_context_mapping_one(struct dmar_domain *domain,
1886 struct intel_iommu *iommu,
1887 u8 bus, u8 devfn)
1888 {
1889 u16 did = domain->iommu_did[iommu->seq_id];
1890 int translation = CONTEXT_TT_MULTI_LEVEL;
1891 struct device_domain_info *info = NULL;
1892 struct context_entry *context;
1893 unsigned long flags;
1894 struct dma_pte *pgd;
1895 int ret, agaw;
1896
1897 WARN_ON(did == 0);
1898
1899 if (hw_pass_through && domain_type_is_si(domain))
1900 translation = CONTEXT_TT_PASS_THROUGH;
1901
1902 pr_debug("Set context mapping for %02x:%02x.%d\n",
1903 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1904
1905 BUG_ON(!domain->pgd);
1906
1907 spin_lock_irqsave(&device_domain_lock, flags);
1908 spin_lock(&iommu->lock);
1909
1910 ret = -ENOMEM;
1911 context = iommu_context_addr(iommu, bus, devfn, 1);
1912 if (!context)
1913 goto out_unlock;
1914
1915 ret = 0;
1916 if (context_present(context))
1917 goto out_unlock;
1918
1919 pgd = domain->pgd;
1920
1921 context_clear_entry(context);
1922 context_set_domain_id(context, did);
1923
1924 /*
1925 * Skip top levels of page tables for iommu which has less agaw
1926 * than default. Unnecessary for PT mode.
1927 */
1928 if (translation != CONTEXT_TT_PASS_THROUGH) {
1929 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1930 ret = -ENOMEM;
1931 pgd = phys_to_virt(dma_pte_addr(pgd));
1932 if (!dma_pte_present(pgd))
1933 goto out_unlock;
1934 }
1935
1936 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1937 translation = info ? CONTEXT_TT_DEV_IOTLB :
1938 CONTEXT_TT_MULTI_LEVEL;
1939
1940 context_set_address_root(context, virt_to_phys(pgd));
1941 context_set_address_width(context, iommu->agaw);
1942 } else {
1943 /*
1944 * In pass through mode, AW must be programmed to
1945 * indicate the largest AGAW value supported by
1946 * hardware. And ASR is ignored by hardware.
1947 */
1948 context_set_address_width(context, iommu->msagaw);
1949 }
1950
1951 context_set_translation_type(context, translation);
1952 context_set_fault_enable(context);
1953 context_set_present(context);
1954 domain_flush_cache(domain, context, sizeof(*context));
1955
1956 /*
1957 * It's a non-present to present mapping. If hardware doesn't cache
1958 * non-present entry we only need to flush the write-buffer. If the
1959 * _does_ cache non-present entries, then it does so in the special
1960 * domain #0, which we have to flush:
1961 */
1962 if (cap_caching_mode(iommu->cap)) {
1963 iommu->flush.flush_context(iommu, 0,
1964 (((u16)bus) << 8) | devfn,
1965 DMA_CCMD_MASK_NOBIT,
1966 DMA_CCMD_DEVICE_INVL);
1967 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1968 } else {
1969 iommu_flush_write_buffer(iommu);
1970 }
1971 iommu_enable_dev_iotlb(info);
1972
1973 ret = 0;
1974
1975 out_unlock:
1976 spin_unlock(&iommu->lock);
1977 spin_unlock_irqrestore(&device_domain_lock, flags);
1978
1979 return 0;
1980 }
1981
1982 struct domain_context_mapping_data {
1983 struct dmar_domain *domain;
1984 struct intel_iommu *iommu;
1985 };
1986
1987 static int domain_context_mapping_cb(struct pci_dev *pdev,
1988 u16 alias, void *opaque)
1989 {
1990 struct domain_context_mapping_data *data = opaque;
1991
1992 return domain_context_mapping_one(data->domain, data->iommu,
1993 PCI_BUS_NUM(alias), alias & 0xff);
1994 }
1995
1996 static int
1997 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
1998 {
1999 struct intel_iommu *iommu;
2000 u8 bus, devfn;
2001 struct domain_context_mapping_data data;
2002
2003 iommu = device_to_iommu(dev, &bus, &devfn);
2004 if (!iommu)
2005 return -ENODEV;
2006
2007 if (!dev_is_pci(dev))
2008 return domain_context_mapping_one(domain, iommu, bus, devfn);
2009
2010 data.domain = domain;
2011 data.iommu = iommu;
2012
2013 return pci_for_each_dma_alias(to_pci_dev(dev),
2014 &domain_context_mapping_cb, &data);
2015 }
2016
2017 static int domain_context_mapped_cb(struct pci_dev *pdev,
2018 u16 alias, void *opaque)
2019 {
2020 struct intel_iommu *iommu = opaque;
2021
2022 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2023 }
2024
2025 static int domain_context_mapped(struct device *dev)
2026 {
2027 struct intel_iommu *iommu;
2028 u8 bus, devfn;
2029
2030 iommu = device_to_iommu(dev, &bus, &devfn);
2031 if (!iommu)
2032 return -ENODEV;
2033
2034 if (!dev_is_pci(dev))
2035 return device_context_mapped(iommu, bus, devfn);
2036
2037 return !pci_for_each_dma_alias(to_pci_dev(dev),
2038 domain_context_mapped_cb, iommu);
2039 }
2040
2041 /* Returns a number of VTD pages, but aligned to MM page size */
2042 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2043 size_t size)
2044 {
2045 host_addr &= ~PAGE_MASK;
2046 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2047 }
2048
2049 /* Return largest possible superpage level for a given mapping */
2050 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2051 unsigned long iov_pfn,
2052 unsigned long phy_pfn,
2053 unsigned long pages)
2054 {
2055 int support, level = 1;
2056 unsigned long pfnmerge;
2057
2058 support = domain->iommu_superpage;
2059
2060 /* To use a large page, the virtual *and* physical addresses
2061 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2062 of them will mean we have to use smaller pages. So just
2063 merge them and check both at once. */
2064 pfnmerge = iov_pfn | phy_pfn;
2065
2066 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2067 pages >>= VTD_STRIDE_SHIFT;
2068 if (!pages)
2069 break;
2070 pfnmerge >>= VTD_STRIDE_SHIFT;
2071 level++;
2072 support--;
2073 }
2074 return level;
2075 }
2076
2077 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2078 struct scatterlist *sg, unsigned long phys_pfn,
2079 unsigned long nr_pages, int prot)
2080 {
2081 struct dma_pte *first_pte = NULL, *pte = NULL;
2082 phys_addr_t uninitialized_var(pteval);
2083 unsigned long sg_res = 0;
2084 unsigned int largepage_lvl = 0;
2085 unsigned long lvl_pages = 0;
2086
2087 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2088
2089 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2090 return -EINVAL;
2091
2092 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2093
2094 if (!sg) {
2095 sg_res = nr_pages;
2096 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2097 }
2098
2099 while (nr_pages > 0) {
2100 uint64_t tmp;
2101
2102 if (!sg_res) {
2103 sg_res = aligned_nrpages(sg->offset, sg->length);
2104 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2105 sg->dma_length = sg->length;
2106 pteval = (sg_phys(sg) & PAGE_MASK) | prot;
2107 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2108 }
2109
2110 if (!pte) {
2111 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2112
2113 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2114 if (!pte)
2115 return -ENOMEM;
2116 /* It is large page*/
2117 if (largepage_lvl > 1) {
2118 unsigned long nr_superpages, end_pfn;
2119
2120 pteval |= DMA_PTE_LARGE_PAGE;
2121 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2122
2123 nr_superpages = sg_res / lvl_pages;
2124 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2125
2126 /*
2127 * Ensure that old small page tables are
2128 * removed to make room for superpage(s).
2129 */
2130 dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
2131 } else {
2132 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2133 }
2134
2135 }
2136 /* We don't need lock here, nobody else
2137 * touches the iova range
2138 */
2139 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2140 if (tmp) {
2141 static int dumps = 5;
2142 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2143 iov_pfn, tmp, (unsigned long long)pteval);
2144 if (dumps) {
2145 dumps--;
2146 debug_dma_dump_mappings(NULL);
2147 }
2148 WARN_ON(1);
2149 }
2150
2151 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2152
2153 BUG_ON(nr_pages < lvl_pages);
2154 BUG_ON(sg_res < lvl_pages);
2155
2156 nr_pages -= lvl_pages;
2157 iov_pfn += lvl_pages;
2158 phys_pfn += lvl_pages;
2159 pteval += lvl_pages * VTD_PAGE_SIZE;
2160 sg_res -= lvl_pages;
2161
2162 /* If the next PTE would be the first in a new page, then we
2163 need to flush the cache on the entries we've just written.
2164 And then we'll need to recalculate 'pte', so clear it and
2165 let it get set again in the if (!pte) block above.
2166
2167 If we're done (!nr_pages) we need to flush the cache too.
2168
2169 Also if we've been setting superpages, we may need to
2170 recalculate 'pte' and switch back to smaller pages for the
2171 end of the mapping, if the trailing size is not enough to
2172 use another superpage (i.e. sg_res < lvl_pages). */
2173 pte++;
2174 if (!nr_pages || first_pte_in_page(pte) ||
2175 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2176 domain_flush_cache(domain, first_pte,
2177 (void *)pte - (void *)first_pte);
2178 pte = NULL;
2179 }
2180
2181 if (!sg_res && nr_pages)
2182 sg = sg_next(sg);
2183 }
2184 return 0;
2185 }
2186
2187 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2188 struct scatterlist *sg, unsigned long nr_pages,
2189 int prot)
2190 {
2191 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2192 }
2193
2194 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2195 unsigned long phys_pfn, unsigned long nr_pages,
2196 int prot)
2197 {
2198 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2199 }
2200
2201 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2202 {
2203 if (!iommu)
2204 return;
2205
2206 clear_context_table(iommu, bus, devfn);
2207 iommu->flush.flush_context(iommu, 0, 0, 0,
2208 DMA_CCMD_GLOBAL_INVL);
2209 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2210 }
2211
2212 static inline void unlink_domain_info(struct device_domain_info *info)
2213 {
2214 assert_spin_locked(&device_domain_lock);
2215 list_del(&info->link);
2216 list_del(&info->global);
2217 if (info->dev)
2218 info->dev->archdata.iommu = NULL;
2219 }
2220
2221 static void domain_remove_dev_info(struct dmar_domain *domain)
2222 {
2223 struct device_domain_info *info, *tmp;
2224 unsigned long flags;
2225
2226 spin_lock_irqsave(&device_domain_lock, flags);
2227 list_for_each_entry_safe(info, tmp, &domain->devices, link)
2228 __dmar_remove_one_dev_info(info);
2229 spin_unlock_irqrestore(&device_domain_lock, flags);
2230 }
2231
2232 /*
2233 * find_domain
2234 * Note: we use struct device->archdata.iommu stores the info
2235 */
2236 static struct dmar_domain *find_domain(struct device *dev)
2237 {
2238 struct device_domain_info *info;
2239
2240 /* No lock here, assumes no domain exit in normal case */
2241 info = dev->archdata.iommu;
2242 if (info)
2243 return info->domain;
2244 return NULL;
2245 }
2246
2247 static inline struct device_domain_info *
2248 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2249 {
2250 struct device_domain_info *info;
2251
2252 list_for_each_entry(info, &device_domain_list, global)
2253 if (info->iommu->segment == segment && info->bus == bus &&
2254 info->devfn == devfn)
2255 return info;
2256
2257 return NULL;
2258 }
2259
2260 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2261 int bus, int devfn,
2262 struct device *dev,
2263 struct dmar_domain *domain)
2264 {
2265 struct dmar_domain *found = NULL;
2266 struct device_domain_info *info;
2267 unsigned long flags;
2268 int ret;
2269
2270 info = alloc_devinfo_mem();
2271 if (!info)
2272 return NULL;
2273
2274 info->bus = bus;
2275 info->devfn = devfn;
2276 info->ats.enabled = 0;
2277 info->ats.qdep = 0;
2278 info->dev = dev;
2279 info->domain = domain;
2280 info->iommu = iommu;
2281
2282 spin_lock_irqsave(&device_domain_lock, flags);
2283 if (dev)
2284 found = find_domain(dev);
2285
2286 if (!found) {
2287 struct device_domain_info *info2;
2288 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2289 if (info2) {
2290 found = info2->domain;
2291 info2->dev = dev;
2292 }
2293 }
2294
2295 if (found) {
2296 spin_unlock_irqrestore(&device_domain_lock, flags);
2297 free_devinfo_mem(info);
2298 /* Caller must free the original domain */
2299 return found;
2300 }
2301
2302 spin_lock(&iommu->lock);
2303 ret = domain_attach_iommu(domain, iommu);
2304 spin_unlock(&iommu->lock);
2305
2306 if (ret) {
2307 spin_unlock_irqrestore(&device_domain_lock, flags);
2308 free_devinfo_mem(info);
2309 return NULL;
2310 }
2311
2312 list_add(&info->link, &domain->devices);
2313 list_add(&info->global, &device_domain_list);
2314 if (dev)
2315 dev->archdata.iommu = info;
2316 spin_unlock_irqrestore(&device_domain_lock, flags);
2317
2318 if (dev && domain_context_mapping(domain, dev)) {
2319 pr_err("Domain context map for %s failed\n", dev_name(dev));
2320 dmar_remove_one_dev_info(domain, dev);
2321 return NULL;
2322 }
2323
2324 return domain;
2325 }
2326
2327 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2328 {
2329 *(u16 *)opaque = alias;
2330 return 0;
2331 }
2332
2333 /* domain is initialized */
2334 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2335 {
2336 struct device_domain_info *info = NULL;
2337 struct dmar_domain *domain, *tmp;
2338 struct intel_iommu *iommu;
2339 u16 req_id, dma_alias;
2340 unsigned long flags;
2341 u8 bus, devfn;
2342
2343 domain = find_domain(dev);
2344 if (domain)
2345 return domain;
2346
2347 iommu = device_to_iommu(dev, &bus, &devfn);
2348 if (!iommu)
2349 return NULL;
2350
2351 req_id = ((u16)bus << 8) | devfn;
2352
2353 if (dev_is_pci(dev)) {
2354 struct pci_dev *pdev = to_pci_dev(dev);
2355
2356 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2357
2358 spin_lock_irqsave(&device_domain_lock, flags);
2359 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2360 PCI_BUS_NUM(dma_alias),
2361 dma_alias & 0xff);
2362 if (info) {
2363 iommu = info->iommu;
2364 domain = info->domain;
2365 }
2366 spin_unlock_irqrestore(&device_domain_lock, flags);
2367
2368 /* DMA alias already has a domain, uses it */
2369 if (info)
2370 goto found_domain;
2371 }
2372
2373 /* Allocate and initialize new domain for the device */
2374 domain = alloc_domain(0);
2375 if (!domain)
2376 return NULL;
2377 if (domain_init(domain, iommu, gaw)) {
2378 domain_exit(domain);
2379 return NULL;
2380 }
2381
2382 /* register PCI DMA alias device */
2383 if (req_id != dma_alias && dev_is_pci(dev)) {
2384 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2385 dma_alias & 0xff, NULL, domain);
2386
2387 if (!tmp || tmp != domain) {
2388 domain_exit(domain);
2389 domain = tmp;
2390 }
2391
2392 if (!domain)
2393 return NULL;
2394 }
2395
2396 found_domain:
2397 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2398
2399 if (!tmp || tmp != domain) {
2400 domain_exit(domain);
2401 domain = tmp;
2402 }
2403
2404 return domain;
2405 }
2406
2407 static int iommu_identity_mapping;
2408 #define IDENTMAP_ALL 1
2409 #define IDENTMAP_GFX 2
2410 #define IDENTMAP_AZALIA 4
2411
2412 static int iommu_domain_identity_map(struct dmar_domain *domain,
2413 unsigned long long start,
2414 unsigned long long end)
2415 {
2416 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2417 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2418
2419 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2420 dma_to_mm_pfn(last_vpfn))) {
2421 pr_err("Reserving iova failed\n");
2422 return -ENOMEM;
2423 }
2424
2425 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2426 /*
2427 * RMRR range might have overlap with physical memory range,
2428 * clear it first
2429 */
2430 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2431
2432 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2433 last_vpfn - first_vpfn + 1,
2434 DMA_PTE_READ|DMA_PTE_WRITE);
2435 }
2436
2437 static int iommu_prepare_identity_map(struct device *dev,
2438 unsigned long long start,
2439 unsigned long long end)
2440 {
2441 struct dmar_domain *domain;
2442 int ret;
2443
2444 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2445 if (!domain)
2446 return -ENOMEM;
2447
2448 /* For _hardware_ passthrough, don't bother. But for software
2449 passthrough, we do it anyway -- it may indicate a memory
2450 range which is reserved in E820, so which didn't get set
2451 up to start with in si_domain */
2452 if (domain == si_domain && hw_pass_through) {
2453 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2454 dev_name(dev), start, end);
2455 return 0;
2456 }
2457
2458 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2459 dev_name(dev), start, end);
2460
2461 if (end < start) {
2462 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2463 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2464 dmi_get_system_info(DMI_BIOS_VENDOR),
2465 dmi_get_system_info(DMI_BIOS_VERSION),
2466 dmi_get_system_info(DMI_PRODUCT_VERSION));
2467 ret = -EIO;
2468 goto error;
2469 }
2470
2471 if (end >> agaw_to_width(domain->agaw)) {
2472 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2473 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2474 agaw_to_width(domain->agaw),
2475 dmi_get_system_info(DMI_BIOS_VENDOR),
2476 dmi_get_system_info(DMI_BIOS_VERSION),
2477 dmi_get_system_info(DMI_PRODUCT_VERSION));
2478 ret = -EIO;
2479 goto error;
2480 }
2481
2482 ret = iommu_domain_identity_map(domain, start, end);
2483 if (ret)
2484 goto error;
2485
2486 return 0;
2487
2488 error:
2489 domain_exit(domain);
2490 return ret;
2491 }
2492
2493 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2494 struct device *dev)
2495 {
2496 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2497 return 0;
2498 return iommu_prepare_identity_map(dev, rmrr->base_address,
2499 rmrr->end_address);
2500 }
2501
2502 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2503 static inline void iommu_prepare_isa(void)
2504 {
2505 struct pci_dev *pdev;
2506 int ret;
2507
2508 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2509 if (!pdev)
2510 return;
2511
2512 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2513 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2514
2515 if (ret)
2516 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2517
2518 pci_dev_put(pdev);
2519 }
2520 #else
2521 static inline void iommu_prepare_isa(void)
2522 {
2523 return;
2524 }
2525 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2526
2527 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2528
2529 static int __init si_domain_init(int hw)
2530 {
2531 int nid, ret = 0;
2532
2533 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2534 if (!si_domain)
2535 return -EFAULT;
2536
2537 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2538 domain_exit(si_domain);
2539 return -EFAULT;
2540 }
2541
2542 pr_debug("Identity mapping domain allocated\n");
2543
2544 if (hw)
2545 return 0;
2546
2547 for_each_online_node(nid) {
2548 unsigned long start_pfn, end_pfn;
2549 int i;
2550
2551 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2552 ret = iommu_domain_identity_map(si_domain,
2553 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2554 if (ret)
2555 return ret;
2556 }
2557 }
2558
2559 return 0;
2560 }
2561
2562 static int identity_mapping(struct device *dev)
2563 {
2564 struct device_domain_info *info;
2565
2566 if (likely(!iommu_identity_mapping))
2567 return 0;
2568
2569 info = dev->archdata.iommu;
2570 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2571 return (info->domain == si_domain);
2572
2573 return 0;
2574 }
2575
2576 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2577 {
2578 struct dmar_domain *ndomain;
2579 struct intel_iommu *iommu;
2580 u8 bus, devfn;
2581
2582 iommu = device_to_iommu(dev, &bus, &devfn);
2583 if (!iommu)
2584 return -ENODEV;
2585
2586 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2587 if (ndomain != domain)
2588 return -EBUSY;
2589
2590 return 0;
2591 }
2592
2593 static bool device_has_rmrr(struct device *dev)
2594 {
2595 struct dmar_rmrr_unit *rmrr;
2596 struct device *tmp;
2597 int i;
2598
2599 rcu_read_lock();
2600 for_each_rmrr_units(rmrr) {
2601 /*
2602 * Return TRUE if this RMRR contains the device that
2603 * is passed in.
2604 */
2605 for_each_active_dev_scope(rmrr->devices,
2606 rmrr->devices_cnt, i, tmp)
2607 if (tmp == dev) {
2608 rcu_read_unlock();
2609 return true;
2610 }
2611 }
2612 rcu_read_unlock();
2613 return false;
2614 }
2615
2616 /*
2617 * There are a couple cases where we need to restrict the functionality of
2618 * devices associated with RMRRs. The first is when evaluating a device for
2619 * identity mapping because problems exist when devices are moved in and out
2620 * of domains and their respective RMRR information is lost. This means that
2621 * a device with associated RMRRs will never be in a "passthrough" domain.
2622 * The second is use of the device through the IOMMU API. This interface
2623 * expects to have full control of the IOVA space for the device. We cannot
2624 * satisfy both the requirement that RMRR access is maintained and have an
2625 * unencumbered IOVA space. We also have no ability to quiesce the device's
2626 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2627 * We therefore prevent devices associated with an RMRR from participating in
2628 * the IOMMU API, which eliminates them from device assignment.
2629 *
2630 * In both cases we assume that PCI USB devices with RMRRs have them largely
2631 * for historical reasons and that the RMRR space is not actively used post
2632 * boot. This exclusion may change if vendors begin to abuse it.
2633 *
2634 * The same exception is made for graphics devices, with the requirement that
2635 * any use of the RMRR regions will be torn down before assigning the device
2636 * to a guest.
2637 */
2638 static bool device_is_rmrr_locked(struct device *dev)
2639 {
2640 if (!device_has_rmrr(dev))
2641 return false;
2642
2643 if (dev_is_pci(dev)) {
2644 struct pci_dev *pdev = to_pci_dev(dev);
2645
2646 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2647 return false;
2648 }
2649
2650 return true;
2651 }
2652
2653 static int iommu_should_identity_map(struct device *dev, int startup)
2654 {
2655
2656 if (dev_is_pci(dev)) {
2657 struct pci_dev *pdev = to_pci_dev(dev);
2658
2659 if (device_is_rmrr_locked(dev))
2660 return 0;
2661
2662 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2663 return 1;
2664
2665 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2666 return 1;
2667
2668 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2669 return 0;
2670
2671 /*
2672 * We want to start off with all devices in the 1:1 domain, and
2673 * take them out later if we find they can't access all of memory.
2674 *
2675 * However, we can't do this for PCI devices behind bridges,
2676 * because all PCI devices behind the same bridge will end up
2677 * with the same source-id on their transactions.
2678 *
2679 * Practically speaking, we can't change things around for these
2680 * devices at run-time, because we can't be sure there'll be no
2681 * DMA transactions in flight for any of their siblings.
2682 *
2683 * So PCI devices (unless they're on the root bus) as well as
2684 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2685 * the 1:1 domain, just in _case_ one of their siblings turns out
2686 * not to be able to map all of memory.
2687 */
2688 if (!pci_is_pcie(pdev)) {
2689 if (!pci_is_root_bus(pdev->bus))
2690 return 0;
2691 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2692 return 0;
2693 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2694 return 0;
2695 } else {
2696 if (device_has_rmrr(dev))
2697 return 0;
2698 }
2699
2700 /*
2701 * At boot time, we don't yet know if devices will be 64-bit capable.
2702 * Assume that they will — if they turn out not to be, then we can
2703 * take them out of the 1:1 domain later.
2704 */
2705 if (!startup) {
2706 /*
2707 * If the device's dma_mask is less than the system's memory
2708 * size then this is not a candidate for identity mapping.
2709 */
2710 u64 dma_mask = *dev->dma_mask;
2711
2712 if (dev->coherent_dma_mask &&
2713 dev->coherent_dma_mask < dma_mask)
2714 dma_mask = dev->coherent_dma_mask;
2715
2716 return dma_mask >= dma_get_required_mask(dev);
2717 }
2718
2719 return 1;
2720 }
2721
2722 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2723 {
2724 int ret;
2725
2726 if (!iommu_should_identity_map(dev, 1))
2727 return 0;
2728
2729 ret = domain_add_dev_info(si_domain, dev);
2730 if (!ret)
2731 pr_info("%s identity mapping for device %s\n",
2732 hw ? "Hardware" : "Software", dev_name(dev));
2733 else if (ret == -ENODEV)
2734 /* device not associated with an iommu */
2735 ret = 0;
2736
2737 return ret;
2738 }
2739
2740
2741 static int __init iommu_prepare_static_identity_mapping(int hw)
2742 {
2743 struct pci_dev *pdev = NULL;
2744 struct dmar_drhd_unit *drhd;
2745 struct intel_iommu *iommu;
2746 struct device *dev;
2747 int i;
2748 int ret = 0;
2749
2750 for_each_pci_dev(pdev) {
2751 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2752 if (ret)
2753 return ret;
2754 }
2755
2756 for_each_active_iommu(iommu, drhd)
2757 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2758 struct acpi_device_physical_node *pn;
2759 struct acpi_device *adev;
2760
2761 if (dev->bus != &acpi_bus_type)
2762 continue;
2763
2764 adev= to_acpi_device(dev);
2765 mutex_lock(&adev->physical_node_lock);
2766 list_for_each_entry(pn, &adev->physical_node_list, node) {
2767 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2768 if (ret)
2769 break;
2770 }
2771 mutex_unlock(&adev->physical_node_lock);
2772 if (ret)
2773 return ret;
2774 }
2775
2776 return 0;
2777 }
2778
2779 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2780 {
2781 /*
2782 * Start from the sane iommu hardware state.
2783 * If the queued invalidation is already initialized by us
2784 * (for example, while enabling interrupt-remapping) then
2785 * we got the things already rolling from a sane state.
2786 */
2787 if (!iommu->qi) {
2788 /*
2789 * Clear any previous faults.
2790 */
2791 dmar_fault(-1, iommu);
2792 /*
2793 * Disable queued invalidation if supported and already enabled
2794 * before OS handover.
2795 */
2796 dmar_disable_qi(iommu);
2797 }
2798
2799 if (dmar_enable_qi(iommu)) {
2800 /*
2801 * Queued Invalidate not enabled, use Register Based Invalidate
2802 */
2803 iommu->flush.flush_context = __iommu_flush_context;
2804 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2805 pr_info("%s: Using Register based invalidation\n",
2806 iommu->name);
2807 } else {
2808 iommu->flush.flush_context = qi_flush_context;
2809 iommu->flush.flush_iotlb = qi_flush_iotlb;
2810 pr_info("%s: Using Queued invalidation\n", iommu->name);
2811 }
2812 }
2813
2814 static int copy_context_table(struct intel_iommu *iommu,
2815 struct root_entry __iomem *old_re,
2816 struct context_entry **tbl,
2817 int bus, bool ext)
2818 {
2819 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2820 struct context_entry __iomem *old_ce = NULL;
2821 struct context_entry *new_ce = NULL, ce;
2822 struct root_entry re;
2823 phys_addr_t old_ce_phys;
2824
2825 tbl_idx = ext ? bus * 2 : bus;
2826 memcpy_fromio(&re, old_re, sizeof(re));
2827
2828 for (devfn = 0; devfn < 256; devfn++) {
2829 /* First calculate the correct index */
2830 idx = (ext ? devfn * 2 : devfn) % 256;
2831
2832 if (idx == 0) {
2833 /* First save what we may have and clean up */
2834 if (new_ce) {
2835 tbl[tbl_idx] = new_ce;
2836 __iommu_flush_cache(iommu, new_ce,
2837 VTD_PAGE_SIZE);
2838 pos = 1;
2839 }
2840
2841 if (old_ce)
2842 iounmap(old_ce);
2843
2844 ret = 0;
2845 if (devfn < 0x80)
2846 old_ce_phys = root_entry_lctp(&re);
2847 else
2848 old_ce_phys = root_entry_uctp(&re);
2849
2850 if (!old_ce_phys) {
2851 if (ext && devfn == 0) {
2852 /* No LCTP, try UCTP */
2853 devfn = 0x7f;
2854 continue;
2855 } else {
2856 goto out;
2857 }
2858 }
2859
2860 ret = -ENOMEM;
2861 old_ce = ioremap_cache(old_ce_phys, PAGE_SIZE);
2862 if (!old_ce)
2863 goto out;
2864
2865 new_ce = alloc_pgtable_page(iommu->node);
2866 if (!new_ce)
2867 goto out_unmap;
2868
2869 ret = 0;
2870 }
2871
2872 /* Now copy the context entry */
2873 memcpy_fromio(&ce, old_ce + idx, sizeof(ce));
2874
2875 if (!__context_present(&ce))
2876 continue;
2877
2878 did = context_domain_id(&ce);
2879 if (did >= 0 && did < cap_ndoms(iommu->cap))
2880 set_bit(did, iommu->domain_ids);
2881
2882 /*
2883 * We need a marker for copied context entries. This
2884 * marker needs to work for the old format as well as
2885 * for extended context entries.
2886 *
2887 * Bit 67 of the context entry is used. In the old
2888 * format this bit is available to software, in the
2889 * extended format it is the PGE bit, but PGE is ignored
2890 * by HW if PASIDs are disabled (and thus still
2891 * available).
2892 *
2893 * So disable PASIDs first and then mark the entry
2894 * copied. This means that we don't copy PASID
2895 * translations from the old kernel, but this is fine as
2896 * faults there are not fatal.
2897 */
2898 context_clear_pasid_enable(&ce);
2899 context_set_copied(&ce);
2900
2901 new_ce[idx] = ce;
2902 }
2903
2904 tbl[tbl_idx + pos] = new_ce;
2905
2906 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2907
2908 out_unmap:
2909 iounmap(old_ce);
2910
2911 out:
2912 return ret;
2913 }
2914
2915 static int copy_translation_tables(struct intel_iommu *iommu)
2916 {
2917 struct root_entry __iomem *old_rt;
2918 struct context_entry **ctxt_tbls;
2919 phys_addr_t old_rt_phys;
2920 int ctxt_table_entries;
2921 unsigned long flags;
2922 u64 rtaddr_reg;
2923 int bus, ret;
2924 bool new_ext, ext;
2925
2926 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
2927 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
2928 new_ext = !!ecap_ecs(iommu->ecap);
2929
2930 /*
2931 * The RTT bit can only be changed when translation is disabled,
2932 * but disabling translation means to open a window for data
2933 * corruption. So bail out and don't copy anything if we would
2934 * have to change the bit.
2935 */
2936 if (new_ext != ext)
2937 return -EINVAL;
2938
2939 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
2940 if (!old_rt_phys)
2941 return -EINVAL;
2942
2943 old_rt = ioremap_cache(old_rt_phys, PAGE_SIZE);
2944 if (!old_rt)
2945 return -ENOMEM;
2946
2947 /* This is too big for the stack - allocate it from slab */
2948 ctxt_table_entries = ext ? 512 : 256;
2949 ret = -ENOMEM;
2950 ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
2951 if (!ctxt_tbls)
2952 goto out_unmap;
2953
2954 for (bus = 0; bus < 256; bus++) {
2955 ret = copy_context_table(iommu, &old_rt[bus],
2956 ctxt_tbls, bus, ext);
2957 if (ret) {
2958 pr_err("%s: Failed to copy context table for bus %d\n",
2959 iommu->name, bus);
2960 continue;
2961 }
2962 }
2963
2964 spin_lock_irqsave(&iommu->lock, flags);
2965
2966 /* Context tables are copied, now write them to the root_entry table */
2967 for (bus = 0; bus < 256; bus++) {
2968 int idx = ext ? bus * 2 : bus;
2969 u64 val;
2970
2971 if (ctxt_tbls[idx]) {
2972 val = virt_to_phys(ctxt_tbls[idx]) | 1;
2973 iommu->root_entry[bus].lo = val;
2974 }
2975
2976 if (!ext || !ctxt_tbls[idx + 1])
2977 continue;
2978
2979 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
2980 iommu->root_entry[bus].hi = val;
2981 }
2982
2983 spin_unlock_irqrestore(&iommu->lock, flags);
2984
2985 kfree(ctxt_tbls);
2986
2987 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
2988
2989 ret = 0;
2990
2991 out_unmap:
2992 iounmap(old_rt);
2993
2994 return ret;
2995 }
2996
2997 static int __init init_dmars(void)
2998 {
2999 struct dmar_drhd_unit *drhd;
3000 struct dmar_rmrr_unit *rmrr;
3001 bool copied_tables = false;
3002 struct device *dev;
3003 struct intel_iommu *iommu;
3004 int i, ret;
3005
3006 /*
3007 * for each drhd
3008 * allocate root
3009 * initialize and program root entry to not present
3010 * endfor
3011 */
3012 for_each_drhd_unit(drhd) {
3013 /*
3014 * lock not needed as this is only incremented in the single
3015 * threaded kernel __init code path all other access are read
3016 * only
3017 */
3018 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3019 g_num_of_iommus++;
3020 continue;
3021 }
3022 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3023 }
3024
3025 /* Preallocate enough resources for IOMMU hot-addition */
3026 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3027 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3028
3029 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3030 GFP_KERNEL);
3031 if (!g_iommus) {
3032 pr_err("Allocating global iommu array failed\n");
3033 ret = -ENOMEM;
3034 goto error;
3035 }
3036
3037 deferred_flush = kzalloc(g_num_of_iommus *
3038 sizeof(struct deferred_flush_tables), GFP_KERNEL);
3039 if (!deferred_flush) {
3040 ret = -ENOMEM;
3041 goto free_g_iommus;
3042 }
3043
3044 for_each_active_iommu(iommu, drhd) {
3045 g_iommus[iommu->seq_id] = iommu;
3046
3047 intel_iommu_init_qi(iommu);
3048
3049 ret = iommu_init_domains(iommu);
3050 if (ret)
3051 goto free_iommu;
3052
3053 init_translation_status(iommu);
3054
3055 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3056 iommu_disable_translation(iommu);
3057 clear_translation_pre_enabled(iommu);
3058 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3059 iommu->name);
3060 }
3061
3062 /*
3063 * TBD:
3064 * we could share the same root & context tables
3065 * among all IOMMU's. Need to Split it later.
3066 */
3067 ret = iommu_alloc_root_entry(iommu);
3068 if (ret)
3069 goto free_iommu;
3070
3071 if (translation_pre_enabled(iommu)) {
3072 pr_info("Translation already enabled - trying to copy translation structures\n");
3073
3074 ret = copy_translation_tables(iommu);
3075 if (ret) {
3076 /*
3077 * We found the IOMMU with translation
3078 * enabled - but failed to copy over the
3079 * old root-entry table. Try to proceed
3080 * by disabling translation now and
3081 * allocating a clean root-entry table.
3082 * This might cause DMAR faults, but
3083 * probably the dump will still succeed.
3084 */
3085 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3086 iommu->name);
3087 iommu_disable_translation(iommu);
3088 clear_translation_pre_enabled(iommu);
3089 } else {
3090 pr_info("Copied translation tables from previous kernel for %s\n",
3091 iommu->name);
3092 copied_tables = true;
3093 }
3094 }
3095
3096 iommu_flush_write_buffer(iommu);
3097 iommu_set_root_entry(iommu);
3098 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3099 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3100
3101 if (!ecap_pass_through(iommu->ecap))
3102 hw_pass_through = 0;
3103 }
3104
3105 if (iommu_pass_through)
3106 iommu_identity_mapping |= IDENTMAP_ALL;
3107
3108 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3109 iommu_identity_mapping |= IDENTMAP_GFX;
3110 #endif
3111
3112 if (iommu_identity_mapping) {
3113 ret = si_domain_init(hw_pass_through);
3114 if (ret)
3115 goto free_iommu;
3116 }
3117
3118 check_tylersburg_isoch();
3119
3120 /*
3121 * If we copied translations from a previous kernel in the kdump
3122 * case, we can not assign the devices to domains now, as that
3123 * would eliminate the old mappings. So skip this part and defer
3124 * the assignment to device driver initialization time.
3125 */
3126 if (copied_tables)
3127 goto domains_done;
3128
3129 /*
3130 * If pass through is not set or not enabled, setup context entries for
3131 * identity mappings for rmrr, gfx, and isa and may fall back to static
3132 * identity mapping if iommu_identity_mapping is set.
3133 */
3134 if (iommu_identity_mapping) {
3135 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3136 if (ret) {
3137 pr_crit("Failed to setup IOMMU pass-through\n");
3138 goto free_iommu;
3139 }
3140 }
3141 /*
3142 * For each rmrr
3143 * for each dev attached to rmrr
3144 * do
3145 * locate drhd for dev, alloc domain for dev
3146 * allocate free domain
3147 * allocate page table entries for rmrr
3148 * if context not allocated for bus
3149 * allocate and init context
3150 * set present in root table for this bus
3151 * init context with domain, translation etc
3152 * endfor
3153 * endfor
3154 */
3155 pr_info("Setting RMRR:\n");
3156 for_each_rmrr_units(rmrr) {
3157 /* some BIOS lists non-exist devices in DMAR table. */
3158 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3159 i, dev) {
3160 ret = iommu_prepare_rmrr_dev(rmrr, dev);
3161 if (ret)
3162 pr_err("Mapping reserved region failed\n");
3163 }
3164 }
3165
3166 iommu_prepare_isa();
3167
3168 domains_done:
3169
3170 /*
3171 * for each drhd
3172 * enable fault log
3173 * global invalidate context cache
3174 * global invalidate iotlb
3175 * enable translation
3176 */
3177 for_each_iommu(iommu, drhd) {
3178 if (drhd->ignored) {
3179 /*
3180 * we always have to disable PMRs or DMA may fail on
3181 * this device
3182 */
3183 if (force_on)
3184 iommu_disable_protect_mem_regions(iommu);
3185 continue;
3186 }
3187
3188 iommu_flush_write_buffer(iommu);
3189
3190 ret = dmar_set_interrupt(iommu);
3191 if (ret)
3192 goto free_iommu;
3193
3194 if (!translation_pre_enabled(iommu))
3195 iommu_enable_translation(iommu);
3196
3197 iommu_disable_protect_mem_regions(iommu);
3198 }
3199
3200 return 0;
3201
3202 free_iommu:
3203 for_each_active_iommu(iommu, drhd) {
3204 disable_dmar_iommu(iommu);
3205 free_dmar_iommu(iommu);
3206 }
3207 kfree(deferred_flush);
3208 free_g_iommus:
3209 kfree(g_iommus);
3210 error:
3211 return ret;
3212 }
3213
3214 /* This takes a number of _MM_ pages, not VTD pages */
3215 static struct iova *intel_alloc_iova(struct device *dev,
3216 struct dmar_domain *domain,
3217 unsigned long nrpages, uint64_t dma_mask)
3218 {
3219 struct iova *iova = NULL;
3220
3221 /* Restrict dma_mask to the width that the iommu can handle */
3222 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3223 /* Ensure we reserve the whole size-aligned region */
3224 nrpages = __roundup_pow_of_two(nrpages);
3225
3226 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3227 /*
3228 * First try to allocate an io virtual address in
3229 * DMA_BIT_MASK(32) and if that fails then try allocating
3230 * from higher range
3231 */
3232 iova = alloc_iova(&domain->iovad, nrpages,
3233 IOVA_PFN(DMA_BIT_MASK(32)), 1);
3234 if (iova)
3235 return iova;
3236 }
3237 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
3238 if (unlikely(!iova)) {
3239 pr_err("Allocating %ld-page iova for %s failed",
3240 nrpages, dev_name(dev));
3241 return NULL;
3242 }
3243
3244 return iova;
3245 }
3246
3247 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3248 {
3249 struct dmar_domain *domain;
3250
3251 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3252 if (!domain) {
3253 pr_err("Allocating domain for %s failed\n",
3254 dev_name(dev));
3255 return NULL;
3256 }
3257
3258 return domain;
3259 }
3260
3261 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3262 {
3263 struct device_domain_info *info;
3264
3265 /* No lock here, assumes no domain exit in normal case */
3266 info = dev->archdata.iommu;
3267 if (likely(info))
3268 return info->domain;
3269
3270 return __get_valid_domain_for_dev(dev);
3271 }
3272
3273 /* Check if the dev needs to go through non-identity map and unmap process.*/
3274 static int iommu_no_mapping(struct device *dev)
3275 {
3276 int found;
3277
3278 if (iommu_dummy(dev))
3279 return 1;
3280
3281 if (!iommu_identity_mapping)
3282 return 0;
3283
3284 found = identity_mapping(dev);
3285 if (found) {
3286 if (iommu_should_identity_map(dev, 0))
3287 return 1;
3288 else {
3289 /*
3290 * 32 bit DMA is removed from si_domain and fall back
3291 * to non-identity mapping.
3292 */
3293 dmar_remove_one_dev_info(si_domain, dev);
3294 pr_info("32bit %s uses non-identity mapping\n",
3295 dev_name(dev));
3296 return 0;
3297 }
3298 } else {
3299 /*
3300 * In case of a detached 64 bit DMA device from vm, the device
3301 * is put into si_domain for identity mapping.
3302 */
3303 if (iommu_should_identity_map(dev, 0)) {
3304 int ret;
3305 ret = domain_add_dev_info(si_domain, dev);
3306 if (!ret) {
3307 pr_info("64bit %s uses identity mapping\n",
3308 dev_name(dev));
3309 return 1;
3310 }
3311 }
3312 }
3313
3314 return 0;
3315 }
3316
3317 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3318 size_t size, int dir, u64 dma_mask)
3319 {
3320 struct dmar_domain *domain;
3321 phys_addr_t start_paddr;
3322 struct iova *iova;
3323 int prot = 0;
3324 int ret;
3325 struct intel_iommu *iommu;
3326 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3327
3328 BUG_ON(dir == DMA_NONE);
3329
3330 if (iommu_no_mapping(dev))
3331 return paddr;
3332
3333 domain = get_valid_domain_for_dev(dev);
3334 if (!domain)
3335 return 0;
3336
3337 iommu = domain_get_iommu(domain);
3338 size = aligned_nrpages(paddr, size);
3339
3340 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3341 if (!iova)
3342 goto error;
3343
3344 /*
3345 * Check if DMAR supports zero-length reads on write only
3346 * mappings..
3347 */
3348 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3349 !cap_zlr(iommu->cap))
3350 prot |= DMA_PTE_READ;
3351 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3352 prot |= DMA_PTE_WRITE;
3353 /*
3354 * paddr - (paddr + size) might be partial page, we should map the whole
3355 * page. Note: if two part of one page are separately mapped, we
3356 * might have two guest_addr mapping to the same host paddr, but this
3357 * is not a big problem
3358 */
3359 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3360 mm_to_dma_pfn(paddr_pfn), size, prot);
3361 if (ret)
3362 goto error;
3363
3364 /* it's a non-present to present mapping. Only flush if caching mode */
3365 if (cap_caching_mode(iommu->cap))
3366 iommu_flush_iotlb_psi(iommu, domain,
3367 mm_to_dma_pfn(iova->pfn_lo),
3368 size, 0, 1);
3369 else
3370 iommu_flush_write_buffer(iommu);
3371
3372 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3373 start_paddr += paddr & ~PAGE_MASK;
3374 return start_paddr;
3375
3376 error:
3377 if (iova)
3378 __free_iova(&domain->iovad, iova);
3379 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3380 dev_name(dev), size, (unsigned long long)paddr, dir);
3381 return 0;
3382 }
3383
3384 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3385 unsigned long offset, size_t size,
3386 enum dma_data_direction dir,
3387 struct dma_attrs *attrs)
3388 {
3389 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3390 dir, *dev->dma_mask);
3391 }
3392
3393 static void flush_unmaps(void)
3394 {
3395 int i, j;
3396
3397 timer_on = 0;
3398
3399 /* just flush them all */
3400 for (i = 0; i < g_num_of_iommus; i++) {
3401 struct intel_iommu *iommu = g_iommus[i];
3402 if (!iommu)
3403 continue;
3404
3405 if (!deferred_flush[i].next)
3406 continue;
3407
3408 /* In caching mode, global flushes turn emulation expensive */
3409 if (!cap_caching_mode(iommu->cap))
3410 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3411 DMA_TLB_GLOBAL_FLUSH);
3412 for (j = 0; j < deferred_flush[i].next; j++) {
3413 unsigned long mask;
3414 struct iova *iova = deferred_flush[i].iova[j];
3415 struct dmar_domain *domain = deferred_flush[i].domain[j];
3416
3417 /* On real hardware multiple invalidations are expensive */
3418 if (cap_caching_mode(iommu->cap))
3419 iommu_flush_iotlb_psi(iommu, domain,
3420 iova->pfn_lo, iova_size(iova),
3421 !deferred_flush[i].freelist[j], 0);
3422 else {
3423 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
3424 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3425 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3426 }
3427 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3428 if (deferred_flush[i].freelist[j])
3429 dma_free_pagelist(deferred_flush[i].freelist[j]);
3430 }
3431 deferred_flush[i].next = 0;
3432 }
3433
3434 list_size = 0;
3435 }
3436
3437 static void flush_unmaps_timeout(unsigned long data)
3438 {
3439 unsigned long flags;
3440
3441 spin_lock_irqsave(&async_umap_flush_lock, flags);
3442 flush_unmaps();
3443 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3444 }
3445
3446 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3447 {
3448 unsigned long flags;
3449 int next, iommu_id;
3450 struct intel_iommu *iommu;
3451
3452 spin_lock_irqsave(&async_umap_flush_lock, flags);
3453 if (list_size == HIGH_WATER_MARK)
3454 flush_unmaps();
3455
3456 iommu = domain_get_iommu(dom);
3457 iommu_id = iommu->seq_id;
3458
3459 next = deferred_flush[iommu_id].next;
3460 deferred_flush[iommu_id].domain[next] = dom;
3461 deferred_flush[iommu_id].iova[next] = iova;
3462 deferred_flush[iommu_id].freelist[next] = freelist;
3463 deferred_flush[iommu_id].next++;
3464
3465 if (!timer_on) {
3466 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3467 timer_on = 1;
3468 }
3469 list_size++;
3470 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3471 }
3472
3473 static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
3474 {
3475 struct dmar_domain *domain;
3476 unsigned long start_pfn, last_pfn;
3477 struct iova *iova;
3478 struct intel_iommu *iommu;
3479 struct page *freelist;
3480
3481 if (iommu_no_mapping(dev))
3482 return;
3483
3484 domain = find_domain(dev);
3485 BUG_ON(!domain);
3486
3487 iommu = domain_get_iommu(domain);
3488
3489 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3490 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3491 (unsigned long long)dev_addr))
3492 return;
3493
3494 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3495 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3496
3497 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3498 dev_name(dev), start_pfn, last_pfn);
3499
3500 freelist = domain_unmap(domain, start_pfn, last_pfn);
3501
3502 if (intel_iommu_strict) {
3503 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3504 last_pfn - start_pfn + 1, !freelist, 0);
3505 /* free iova */
3506 __free_iova(&domain->iovad, iova);
3507 dma_free_pagelist(freelist);
3508 } else {
3509 add_unmap(domain, iova, freelist);
3510 /*
3511 * queue up the release of the unmap to save the 1/6th of the
3512 * cpu used up by the iotlb flush operation...
3513 */
3514 }
3515 }
3516
3517 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3518 size_t size, enum dma_data_direction dir,
3519 struct dma_attrs *attrs)
3520 {
3521 intel_unmap(dev, dev_addr);
3522 }
3523
3524 static void *intel_alloc_coherent(struct device *dev, size_t size,
3525 dma_addr_t *dma_handle, gfp_t flags,
3526 struct dma_attrs *attrs)
3527 {
3528 struct page *page = NULL;
3529 int order;
3530
3531 size = PAGE_ALIGN(size);
3532 order = get_order(size);
3533
3534 if (!iommu_no_mapping(dev))
3535 flags &= ~(GFP_DMA | GFP_DMA32);
3536 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3537 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3538 flags |= GFP_DMA;
3539 else
3540 flags |= GFP_DMA32;
3541 }
3542
3543 if (flags & __GFP_WAIT) {
3544 unsigned int count = size >> PAGE_SHIFT;
3545
3546 page = dma_alloc_from_contiguous(dev, count, order);
3547 if (page && iommu_no_mapping(dev) &&
3548 page_to_phys(page) + size > dev->coherent_dma_mask) {
3549 dma_release_from_contiguous(dev, page, count);
3550 page = NULL;
3551 }
3552 }
3553
3554 if (!page)
3555 page = alloc_pages(flags, order);
3556 if (!page)
3557 return NULL;
3558 memset(page_address(page), 0, size);
3559
3560 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3561 DMA_BIDIRECTIONAL,
3562 dev->coherent_dma_mask);
3563 if (*dma_handle)
3564 return page_address(page);
3565 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3566 __free_pages(page, order);
3567
3568 return NULL;
3569 }
3570
3571 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3572 dma_addr_t dma_handle, struct dma_attrs *attrs)
3573 {
3574 int order;
3575 struct page *page = virt_to_page(vaddr);
3576
3577 size = PAGE_ALIGN(size);
3578 order = get_order(size);
3579
3580 intel_unmap(dev, dma_handle);
3581 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3582 __free_pages(page, order);
3583 }
3584
3585 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3586 int nelems, enum dma_data_direction dir,
3587 struct dma_attrs *attrs)
3588 {
3589 intel_unmap(dev, sglist[0].dma_address);
3590 }
3591
3592 static int intel_nontranslate_map_sg(struct device *hddev,
3593 struct scatterlist *sglist, int nelems, int dir)
3594 {
3595 int i;
3596 struct scatterlist *sg;
3597
3598 for_each_sg(sglist, sg, nelems, i) {
3599 BUG_ON(!sg_page(sg));
3600 sg->dma_address = sg_phys(sg);
3601 sg->dma_length = sg->length;
3602 }
3603 return nelems;
3604 }
3605
3606 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3607 enum dma_data_direction dir, struct dma_attrs *attrs)
3608 {
3609 int i;
3610 struct dmar_domain *domain;
3611 size_t size = 0;
3612 int prot = 0;
3613 struct iova *iova = NULL;
3614 int ret;
3615 struct scatterlist *sg;
3616 unsigned long start_vpfn;
3617 struct intel_iommu *iommu;
3618
3619 BUG_ON(dir == DMA_NONE);
3620 if (iommu_no_mapping(dev))
3621 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3622
3623 domain = get_valid_domain_for_dev(dev);
3624 if (!domain)
3625 return 0;
3626
3627 iommu = domain_get_iommu(domain);
3628
3629 for_each_sg(sglist, sg, nelems, i)
3630 size += aligned_nrpages(sg->offset, sg->length);
3631
3632 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3633 *dev->dma_mask);
3634 if (!iova) {
3635 sglist->dma_length = 0;
3636 return 0;
3637 }
3638
3639 /*
3640 * Check if DMAR supports zero-length reads on write only
3641 * mappings..
3642 */
3643 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3644 !cap_zlr(iommu->cap))
3645 prot |= DMA_PTE_READ;
3646 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3647 prot |= DMA_PTE_WRITE;
3648
3649 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3650
3651 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3652 if (unlikely(ret)) {
3653 dma_pte_free_pagetable(domain, start_vpfn,
3654 start_vpfn + size - 1);
3655 __free_iova(&domain->iovad, iova);
3656 return 0;
3657 }
3658
3659 /* it's a non-present to present mapping. Only flush if caching mode */
3660 if (cap_caching_mode(iommu->cap))
3661 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3662 else
3663 iommu_flush_write_buffer(iommu);
3664
3665 return nelems;
3666 }
3667
3668 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3669 {
3670 return !dma_addr;
3671 }
3672
3673 struct dma_map_ops intel_dma_ops = {
3674 .alloc = intel_alloc_coherent,
3675 .free = intel_free_coherent,
3676 .map_sg = intel_map_sg,
3677 .unmap_sg = intel_unmap_sg,
3678 .map_page = intel_map_page,
3679 .unmap_page = intel_unmap_page,
3680 .mapping_error = intel_mapping_error,
3681 };
3682
3683 static inline int iommu_domain_cache_init(void)
3684 {
3685 int ret = 0;
3686
3687 iommu_domain_cache = kmem_cache_create("iommu_domain",
3688 sizeof(struct dmar_domain),
3689 0,
3690 SLAB_HWCACHE_ALIGN,
3691
3692 NULL);
3693 if (!iommu_domain_cache) {
3694 pr_err("Couldn't create iommu_domain cache\n");
3695 ret = -ENOMEM;
3696 }
3697
3698 return ret;
3699 }
3700
3701 static inline int iommu_devinfo_cache_init(void)
3702 {
3703 int ret = 0;
3704
3705 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3706 sizeof(struct device_domain_info),
3707 0,
3708 SLAB_HWCACHE_ALIGN,
3709 NULL);
3710 if (!iommu_devinfo_cache) {
3711 pr_err("Couldn't create devinfo cache\n");
3712 ret = -ENOMEM;
3713 }
3714
3715 return ret;
3716 }
3717
3718 static int __init iommu_init_mempool(void)
3719 {
3720 int ret;
3721 ret = iova_cache_get();
3722 if (ret)
3723 return ret;
3724
3725 ret = iommu_domain_cache_init();
3726 if (ret)
3727 goto domain_error;
3728
3729 ret = iommu_devinfo_cache_init();
3730 if (!ret)
3731 return ret;
3732
3733 kmem_cache_destroy(iommu_domain_cache);
3734 domain_error:
3735 iova_cache_put();
3736
3737 return -ENOMEM;
3738 }
3739
3740 static void __init iommu_exit_mempool(void)
3741 {
3742 kmem_cache_destroy(iommu_devinfo_cache);
3743 kmem_cache_destroy(iommu_domain_cache);
3744 iova_cache_put();
3745 }
3746
3747 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3748 {
3749 struct dmar_drhd_unit *drhd;
3750 u32 vtbar;
3751 int rc;
3752
3753 /* We know that this device on this chipset has its own IOMMU.
3754 * If we find it under a different IOMMU, then the BIOS is lying
3755 * to us. Hope that the IOMMU for this device is actually
3756 * disabled, and it needs no translation...
3757 */
3758 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3759 if (rc) {
3760 /* "can't" happen */
3761 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3762 return;
3763 }
3764 vtbar &= 0xffff0000;
3765
3766 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3767 drhd = dmar_find_matched_drhd_unit(pdev);
3768 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3769 TAINT_FIRMWARE_WORKAROUND,
3770 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3771 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3772 }
3773 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3774
3775 static void __init init_no_remapping_devices(void)
3776 {
3777 struct dmar_drhd_unit *drhd;
3778 struct device *dev;
3779 int i;
3780
3781 for_each_drhd_unit(drhd) {
3782 if (!drhd->include_all) {
3783 for_each_active_dev_scope(drhd->devices,
3784 drhd->devices_cnt, i, dev)
3785 break;
3786 /* ignore DMAR unit if no devices exist */
3787 if (i == drhd->devices_cnt)
3788 drhd->ignored = 1;
3789 }
3790 }
3791
3792 for_each_active_drhd_unit(drhd) {
3793 if (drhd->include_all)
3794 continue;
3795
3796 for_each_active_dev_scope(drhd->devices,
3797 drhd->devices_cnt, i, dev)
3798 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3799 break;
3800 if (i < drhd->devices_cnt)
3801 continue;
3802
3803 /* This IOMMU has *only* gfx devices. Either bypass it or
3804 set the gfx_mapped flag, as appropriate */
3805 if (dmar_map_gfx) {
3806 intel_iommu_gfx_mapped = 1;
3807 } else {
3808 drhd->ignored = 1;
3809 for_each_active_dev_scope(drhd->devices,
3810 drhd->devices_cnt, i, dev)
3811 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3812 }
3813 }
3814 }
3815
3816 #ifdef CONFIG_SUSPEND
3817 static int init_iommu_hw(void)
3818 {
3819 struct dmar_drhd_unit *drhd;
3820 struct intel_iommu *iommu = NULL;
3821
3822 for_each_active_iommu(iommu, drhd)
3823 if (iommu->qi)
3824 dmar_reenable_qi(iommu);
3825
3826 for_each_iommu(iommu, drhd) {
3827 if (drhd->ignored) {
3828 /*
3829 * we always have to disable PMRs or DMA may fail on
3830 * this device
3831 */
3832 if (force_on)
3833 iommu_disable_protect_mem_regions(iommu);
3834 continue;
3835 }
3836
3837 iommu_flush_write_buffer(iommu);
3838
3839 iommu_set_root_entry(iommu);
3840
3841 iommu->flush.flush_context(iommu, 0, 0, 0,
3842 DMA_CCMD_GLOBAL_INVL);
3843 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3844 iommu_enable_translation(iommu);
3845 iommu_disable_protect_mem_regions(iommu);
3846 }
3847
3848 return 0;
3849 }
3850
3851 static void iommu_flush_all(void)
3852 {
3853 struct dmar_drhd_unit *drhd;
3854 struct intel_iommu *iommu;
3855
3856 for_each_active_iommu(iommu, drhd) {
3857 iommu->flush.flush_context(iommu, 0, 0, 0,
3858 DMA_CCMD_GLOBAL_INVL);
3859 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3860 DMA_TLB_GLOBAL_FLUSH);
3861 }
3862 }
3863
3864 static int iommu_suspend(void)
3865 {
3866 struct dmar_drhd_unit *drhd;
3867 struct intel_iommu *iommu = NULL;
3868 unsigned long flag;
3869
3870 for_each_active_iommu(iommu, drhd) {
3871 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3872 GFP_ATOMIC);
3873 if (!iommu->iommu_state)
3874 goto nomem;
3875 }
3876
3877 iommu_flush_all();
3878
3879 for_each_active_iommu(iommu, drhd) {
3880 iommu_disable_translation(iommu);
3881
3882 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3883
3884 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3885 readl(iommu->reg + DMAR_FECTL_REG);
3886 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3887 readl(iommu->reg + DMAR_FEDATA_REG);
3888 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3889 readl(iommu->reg + DMAR_FEADDR_REG);
3890 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3891 readl(iommu->reg + DMAR_FEUADDR_REG);
3892
3893 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3894 }
3895 return 0;
3896
3897 nomem:
3898 for_each_active_iommu(iommu, drhd)
3899 kfree(iommu->iommu_state);
3900
3901 return -ENOMEM;
3902 }
3903
3904 static void iommu_resume(void)
3905 {
3906 struct dmar_drhd_unit *drhd;
3907 struct intel_iommu *iommu = NULL;
3908 unsigned long flag;
3909
3910 if (init_iommu_hw()) {
3911 if (force_on)
3912 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3913 else
3914 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3915 return;
3916 }
3917
3918 for_each_active_iommu(iommu, drhd) {
3919
3920 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3921
3922 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3923 iommu->reg + DMAR_FECTL_REG);
3924 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3925 iommu->reg + DMAR_FEDATA_REG);
3926 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3927 iommu->reg + DMAR_FEADDR_REG);
3928 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3929 iommu->reg + DMAR_FEUADDR_REG);
3930
3931 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3932 }
3933
3934 for_each_active_iommu(iommu, drhd)
3935 kfree(iommu->iommu_state);
3936 }
3937
3938 static struct syscore_ops iommu_syscore_ops = {
3939 .resume = iommu_resume,
3940 .suspend = iommu_suspend,
3941 };
3942
3943 static void __init init_iommu_pm_ops(void)
3944 {
3945 register_syscore_ops(&iommu_syscore_ops);
3946 }
3947
3948 #else
3949 static inline void init_iommu_pm_ops(void) {}
3950 #endif /* CONFIG_PM */
3951
3952
3953 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3954 {
3955 struct acpi_dmar_reserved_memory *rmrr;
3956 struct dmar_rmrr_unit *rmrru;
3957
3958 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3959 if (!rmrru)
3960 return -ENOMEM;
3961
3962 rmrru->hdr = header;
3963 rmrr = (struct acpi_dmar_reserved_memory *)header;
3964 rmrru->base_address = rmrr->base_address;
3965 rmrru->end_address = rmrr->end_address;
3966 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3967 ((void *)rmrr) + rmrr->header.length,
3968 &rmrru->devices_cnt);
3969 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3970 kfree(rmrru);
3971 return -ENOMEM;
3972 }
3973
3974 list_add(&rmrru->list, &dmar_rmrr_units);
3975
3976 return 0;
3977 }
3978
3979 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
3980 {
3981 struct dmar_atsr_unit *atsru;
3982 struct acpi_dmar_atsr *tmp;
3983
3984 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3985 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
3986 if (atsr->segment != tmp->segment)
3987 continue;
3988 if (atsr->header.length != tmp->header.length)
3989 continue;
3990 if (memcmp(atsr, tmp, atsr->header.length) == 0)
3991 return atsru;
3992 }
3993
3994 return NULL;
3995 }
3996
3997 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3998 {
3999 struct acpi_dmar_atsr *atsr;
4000 struct dmar_atsr_unit *atsru;
4001
4002 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4003 return 0;
4004
4005 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4006 atsru = dmar_find_atsr(atsr);
4007 if (atsru)
4008 return 0;
4009
4010 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4011 if (!atsru)
4012 return -ENOMEM;
4013
4014 /*
4015 * If memory is allocated from slab by ACPI _DSM method, we need to
4016 * copy the memory content because the memory buffer will be freed
4017 * on return.
4018 */
4019 atsru->hdr = (void *)(atsru + 1);
4020 memcpy(atsru->hdr, hdr, hdr->length);
4021 atsru->include_all = atsr->flags & 0x1;
4022 if (!atsru->include_all) {
4023 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4024 (void *)atsr + atsr->header.length,
4025 &atsru->devices_cnt);
4026 if (atsru->devices_cnt && atsru->devices == NULL) {
4027 kfree(atsru);
4028 return -ENOMEM;
4029 }
4030 }
4031
4032 list_add_rcu(&atsru->list, &dmar_atsr_units);
4033
4034 return 0;
4035 }
4036
4037 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4038 {
4039 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4040 kfree(atsru);
4041 }
4042
4043 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4044 {
4045 struct acpi_dmar_atsr *atsr;
4046 struct dmar_atsr_unit *atsru;
4047
4048 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4049 atsru = dmar_find_atsr(atsr);
4050 if (atsru) {
4051 list_del_rcu(&atsru->list);
4052 synchronize_rcu();
4053 intel_iommu_free_atsr(atsru);
4054 }
4055
4056 return 0;
4057 }
4058
4059 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4060 {
4061 int i;
4062 struct device *dev;
4063 struct acpi_dmar_atsr *atsr;
4064 struct dmar_atsr_unit *atsru;
4065
4066 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4067 atsru = dmar_find_atsr(atsr);
4068 if (!atsru)
4069 return 0;
4070
4071 if (!atsru->include_all && atsru->devices && atsru->devices_cnt)
4072 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4073 i, dev)
4074 return -EBUSY;
4075
4076 return 0;
4077 }
4078
4079 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4080 {
4081 int sp, ret = 0;
4082 struct intel_iommu *iommu = dmaru->iommu;
4083
4084 if (g_iommus[iommu->seq_id])
4085 return 0;
4086
4087 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4088 pr_warn("%s: Doesn't support hardware pass through.\n",
4089 iommu->name);
4090 return -ENXIO;
4091 }
4092 if (!ecap_sc_support(iommu->ecap) &&
4093 domain_update_iommu_snooping(iommu)) {
4094 pr_warn("%s: Doesn't support snooping.\n",
4095 iommu->name);
4096 return -ENXIO;
4097 }
4098 sp = domain_update_iommu_superpage(iommu) - 1;
4099 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4100 pr_warn("%s: Doesn't support large page.\n",
4101 iommu->name);
4102 return -ENXIO;
4103 }
4104
4105 /*
4106 * Disable translation if already enabled prior to OS handover.
4107 */
4108 if (iommu->gcmd & DMA_GCMD_TE)
4109 iommu_disable_translation(iommu);
4110
4111 g_iommus[iommu->seq_id] = iommu;
4112 ret = iommu_init_domains(iommu);
4113 if (ret == 0)
4114 ret = iommu_alloc_root_entry(iommu);
4115 if (ret)
4116 goto out;
4117
4118 if (dmaru->ignored) {
4119 /*
4120 * we always have to disable PMRs or DMA may fail on this device
4121 */
4122 if (force_on)
4123 iommu_disable_protect_mem_regions(iommu);
4124 return 0;
4125 }
4126
4127 intel_iommu_init_qi(iommu);
4128 iommu_flush_write_buffer(iommu);
4129 ret = dmar_set_interrupt(iommu);
4130 if (ret)
4131 goto disable_iommu;
4132
4133 iommu_set_root_entry(iommu);
4134 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4135 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4136 iommu_enable_translation(iommu);
4137
4138 iommu_disable_protect_mem_regions(iommu);
4139 return 0;
4140
4141 disable_iommu:
4142 disable_dmar_iommu(iommu);
4143 out:
4144 free_dmar_iommu(iommu);
4145 return ret;
4146 }
4147
4148 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4149 {
4150 int ret = 0;
4151 struct intel_iommu *iommu = dmaru->iommu;
4152
4153 if (!intel_iommu_enabled)
4154 return 0;
4155 if (iommu == NULL)
4156 return -EINVAL;
4157
4158 if (insert) {
4159 ret = intel_iommu_add(dmaru);
4160 } else {
4161 disable_dmar_iommu(iommu);
4162 free_dmar_iommu(iommu);
4163 }
4164
4165 return ret;
4166 }
4167
4168 static void intel_iommu_free_dmars(void)
4169 {
4170 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4171 struct dmar_atsr_unit *atsru, *atsr_n;
4172
4173 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4174 list_del(&rmrru->list);
4175 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4176 kfree(rmrru);
4177 }
4178
4179 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4180 list_del(&atsru->list);
4181 intel_iommu_free_atsr(atsru);
4182 }
4183 }
4184
4185 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4186 {
4187 int i, ret = 1;
4188 struct pci_bus *bus;
4189 struct pci_dev *bridge = NULL;
4190 struct device *tmp;
4191 struct acpi_dmar_atsr *atsr;
4192 struct dmar_atsr_unit *atsru;
4193
4194 dev = pci_physfn(dev);
4195 for (bus = dev->bus; bus; bus = bus->parent) {
4196 bridge = bus->self;
4197 if (!bridge || !pci_is_pcie(bridge) ||
4198 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4199 return 0;
4200 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4201 break;
4202 }
4203 if (!bridge)
4204 return 0;
4205
4206 rcu_read_lock();
4207 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4208 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4209 if (atsr->segment != pci_domain_nr(dev->bus))
4210 continue;
4211
4212 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4213 if (tmp == &bridge->dev)
4214 goto out;
4215
4216 if (atsru->include_all)
4217 goto out;
4218 }
4219 ret = 0;
4220 out:
4221 rcu_read_unlock();
4222
4223 return ret;
4224 }
4225
4226 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4227 {
4228 int ret = 0;
4229 struct dmar_rmrr_unit *rmrru;
4230 struct dmar_atsr_unit *atsru;
4231 struct acpi_dmar_atsr *atsr;
4232 struct acpi_dmar_reserved_memory *rmrr;
4233
4234 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4235 return 0;
4236
4237 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4238 rmrr = container_of(rmrru->hdr,
4239 struct acpi_dmar_reserved_memory, header);
4240 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4241 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4242 ((void *)rmrr) + rmrr->header.length,
4243 rmrr->segment, rmrru->devices,
4244 rmrru->devices_cnt);
4245 if(ret < 0)
4246 return ret;
4247 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4248 dmar_remove_dev_scope(info, rmrr->segment,
4249 rmrru->devices, rmrru->devices_cnt);
4250 }
4251 }
4252
4253 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4254 if (atsru->include_all)
4255 continue;
4256
4257 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4258 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4259 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4260 (void *)atsr + atsr->header.length,
4261 atsr->segment, atsru->devices,
4262 atsru->devices_cnt);
4263 if (ret > 0)
4264 break;
4265 else if(ret < 0)
4266 return ret;
4267 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
4268 if (dmar_remove_dev_scope(info, atsr->segment,
4269 atsru->devices, atsru->devices_cnt))
4270 break;
4271 }
4272 }
4273
4274 return 0;
4275 }
4276
4277 /*
4278 * Here we only respond to action of unbound device from driver.
4279 *
4280 * Added device is not attached to its DMAR domain here yet. That will happen
4281 * when mapping the device to iova.
4282 */
4283 static int device_notifier(struct notifier_block *nb,
4284 unsigned long action, void *data)
4285 {
4286 struct device *dev = data;
4287 struct dmar_domain *domain;
4288
4289 if (iommu_dummy(dev))
4290 return 0;
4291
4292 if (action != BUS_NOTIFY_REMOVED_DEVICE)
4293 return 0;
4294
4295 domain = find_domain(dev);
4296 if (!domain)
4297 return 0;
4298
4299 dmar_remove_one_dev_info(domain, dev);
4300 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4301 domain_exit(domain);
4302
4303 return 0;
4304 }
4305
4306 static struct notifier_block device_nb = {
4307 .notifier_call = device_notifier,
4308 };
4309
4310 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4311 unsigned long val, void *v)
4312 {
4313 struct memory_notify *mhp = v;
4314 unsigned long long start, end;
4315 unsigned long start_vpfn, last_vpfn;
4316
4317 switch (val) {
4318 case MEM_GOING_ONLINE:
4319 start = mhp->start_pfn << PAGE_SHIFT;
4320 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4321 if (iommu_domain_identity_map(si_domain, start, end)) {
4322 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4323 start, end);
4324 return NOTIFY_BAD;
4325 }
4326 break;
4327
4328 case MEM_OFFLINE:
4329 case MEM_CANCEL_ONLINE:
4330 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4331 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4332 while (start_vpfn <= last_vpfn) {
4333 struct iova *iova;
4334 struct dmar_drhd_unit *drhd;
4335 struct intel_iommu *iommu;
4336 struct page *freelist;
4337
4338 iova = find_iova(&si_domain->iovad, start_vpfn);
4339 if (iova == NULL) {
4340 pr_debug("Failed get IOVA for PFN %lx\n",
4341 start_vpfn);
4342 break;
4343 }
4344
4345 iova = split_and_remove_iova(&si_domain->iovad, iova,
4346 start_vpfn, last_vpfn);
4347 if (iova == NULL) {
4348 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4349 start_vpfn, last_vpfn);
4350 return NOTIFY_BAD;
4351 }
4352
4353 freelist = domain_unmap(si_domain, iova->pfn_lo,
4354 iova->pfn_hi);
4355
4356 rcu_read_lock();
4357 for_each_active_iommu(iommu, drhd)
4358 iommu_flush_iotlb_psi(iommu, si_domain,
4359 iova->pfn_lo, iova_size(iova),
4360 !freelist, 0);
4361 rcu_read_unlock();
4362 dma_free_pagelist(freelist);
4363
4364 start_vpfn = iova->pfn_hi + 1;
4365 free_iova_mem(iova);
4366 }
4367 break;
4368 }
4369
4370 return NOTIFY_OK;
4371 }
4372
4373 static struct notifier_block intel_iommu_memory_nb = {
4374 .notifier_call = intel_iommu_memory_notifier,
4375 .priority = 0
4376 };
4377
4378
4379 static ssize_t intel_iommu_show_version(struct device *dev,
4380 struct device_attribute *attr,
4381 char *buf)
4382 {
4383 struct intel_iommu *iommu = dev_get_drvdata(dev);
4384 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4385 return sprintf(buf, "%d:%d\n",
4386 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4387 }
4388 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4389
4390 static ssize_t intel_iommu_show_address(struct device *dev,
4391 struct device_attribute *attr,
4392 char *buf)
4393 {
4394 struct intel_iommu *iommu = dev_get_drvdata(dev);
4395 return sprintf(buf, "%llx\n", iommu->reg_phys);
4396 }
4397 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4398
4399 static ssize_t intel_iommu_show_cap(struct device *dev,
4400 struct device_attribute *attr,
4401 char *buf)
4402 {
4403 struct intel_iommu *iommu = dev_get_drvdata(dev);
4404 return sprintf(buf, "%llx\n", iommu->cap);
4405 }
4406 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4407
4408 static ssize_t intel_iommu_show_ecap(struct device *dev,
4409 struct device_attribute *attr,
4410 char *buf)
4411 {
4412 struct intel_iommu *iommu = dev_get_drvdata(dev);
4413 return sprintf(buf, "%llx\n", iommu->ecap);
4414 }
4415 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4416
4417 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4418 struct device_attribute *attr,
4419 char *buf)
4420 {
4421 struct intel_iommu *iommu = dev_get_drvdata(dev);
4422 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4423 }
4424 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4425
4426 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4427 struct device_attribute *attr,
4428 char *buf)
4429 {
4430 struct intel_iommu *iommu = dev_get_drvdata(dev);
4431 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4432 cap_ndoms(iommu->cap)));
4433 }
4434 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4435
4436 static struct attribute *intel_iommu_attrs[] = {
4437 &dev_attr_version.attr,
4438 &dev_attr_address.attr,
4439 &dev_attr_cap.attr,
4440 &dev_attr_ecap.attr,
4441 &dev_attr_domains_supported.attr,
4442 &dev_attr_domains_used.attr,
4443 NULL,
4444 };
4445
4446 static struct attribute_group intel_iommu_group = {
4447 .name = "intel-iommu",
4448 .attrs = intel_iommu_attrs,
4449 };
4450
4451 const struct attribute_group *intel_iommu_groups[] = {
4452 &intel_iommu_group,
4453 NULL,
4454 };
4455
4456 int __init intel_iommu_init(void)
4457 {
4458 int ret = -ENODEV;
4459 struct dmar_drhd_unit *drhd;
4460 struct intel_iommu *iommu;
4461
4462 /* VT-d is required for a TXT/tboot launch, so enforce that */
4463 force_on = tboot_force_iommu();
4464
4465 if (iommu_init_mempool()) {
4466 if (force_on)
4467 panic("tboot: Failed to initialize iommu memory\n");
4468 return -ENOMEM;
4469 }
4470
4471 down_write(&dmar_global_lock);
4472 if (dmar_table_init()) {
4473 if (force_on)
4474 panic("tboot: Failed to initialize DMAR table\n");
4475 goto out_free_dmar;
4476 }
4477
4478 if (dmar_dev_scope_init() < 0) {
4479 if (force_on)
4480 panic("tboot: Failed to initialize DMAR device scope\n");
4481 goto out_free_dmar;
4482 }
4483
4484 if (no_iommu || dmar_disabled)
4485 goto out_free_dmar;
4486
4487 if (list_empty(&dmar_rmrr_units))
4488 pr_info("No RMRR found\n");
4489
4490 if (list_empty(&dmar_atsr_units))
4491 pr_info("No ATSR found\n");
4492
4493 if (dmar_init_reserved_ranges()) {
4494 if (force_on)
4495 panic("tboot: Failed to reserve iommu ranges\n");
4496 goto out_free_reserved_range;
4497 }
4498
4499 init_no_remapping_devices();
4500
4501 ret = init_dmars();
4502 if (ret) {
4503 if (force_on)
4504 panic("tboot: Failed to initialize DMARs\n");
4505 pr_err("Initialization failed\n");
4506 goto out_free_reserved_range;
4507 }
4508 up_write(&dmar_global_lock);
4509 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4510
4511 init_timer(&unmap_timer);
4512 #ifdef CONFIG_SWIOTLB
4513 swiotlb = 0;
4514 #endif
4515 dma_ops = &intel_dma_ops;
4516
4517 init_iommu_pm_ops();
4518
4519 for_each_active_iommu(iommu, drhd)
4520 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4521 intel_iommu_groups,
4522 "%s", iommu->name);
4523
4524 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4525 bus_register_notifier(&pci_bus_type, &device_nb);
4526 if (si_domain && !hw_pass_through)
4527 register_memory_notifier(&intel_iommu_memory_nb);
4528
4529 intel_iommu_enabled = 1;
4530
4531 return 0;
4532
4533 out_free_reserved_range:
4534 put_iova_domain(&reserved_iova_list);
4535 out_free_dmar:
4536 intel_iommu_free_dmars();
4537 up_write(&dmar_global_lock);
4538 iommu_exit_mempool();
4539 return ret;
4540 }
4541
4542 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4543 {
4544 struct intel_iommu *iommu = opaque;
4545
4546 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4547 return 0;
4548 }
4549
4550 /*
4551 * NB - intel-iommu lacks any sort of reference counting for the users of
4552 * dependent devices. If multiple endpoints have intersecting dependent
4553 * devices, unbinding the driver from any one of them will possibly leave
4554 * the others unable to operate.
4555 */
4556 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4557 {
4558 if (!iommu || !dev || !dev_is_pci(dev))
4559 return;
4560
4561 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4562 }
4563
4564 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4565 {
4566 struct intel_iommu *iommu;
4567 unsigned long flags;
4568
4569 assert_spin_locked(&device_domain_lock);
4570
4571 if (WARN_ON(!info))
4572 return;
4573
4574 iommu = info->iommu;
4575
4576 if (info->dev) {
4577 iommu_disable_dev_iotlb(info);
4578 domain_context_clear(iommu, info->dev);
4579 }
4580
4581 unlink_domain_info(info);
4582
4583 spin_lock_irqsave(&iommu->lock, flags);
4584 domain_detach_iommu(info->domain, iommu);
4585 spin_unlock_irqrestore(&iommu->lock, flags);
4586
4587 free_devinfo_mem(info);
4588 }
4589
4590 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4591 struct device *dev)
4592 {
4593 struct device_domain_info *info;
4594 unsigned long flags;
4595
4596 spin_lock_irqsave(&device_domain_lock, flags);
4597 info = dev->archdata.iommu;
4598 __dmar_remove_one_dev_info(info);
4599 spin_unlock_irqrestore(&device_domain_lock, flags);
4600 }
4601
4602 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4603 {
4604 int adjust_width;
4605
4606 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4607 DMA_32BIT_PFN);
4608 domain_reserve_special_ranges(domain);
4609
4610 /* calculate AGAW */
4611 domain->gaw = guest_width;
4612 adjust_width = guestwidth_to_adjustwidth(guest_width);
4613 domain->agaw = width_to_agaw(adjust_width);
4614
4615 domain->iommu_coherency = 0;
4616 domain->iommu_snooping = 0;
4617 domain->iommu_superpage = 0;
4618 domain->max_addr = 0;
4619
4620 /* always allocate the top pgd */
4621 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4622 if (!domain->pgd)
4623 return -ENOMEM;
4624 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4625 return 0;
4626 }
4627
4628 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4629 {
4630 struct dmar_domain *dmar_domain;
4631 struct iommu_domain *domain;
4632
4633 if (type != IOMMU_DOMAIN_UNMANAGED)
4634 return NULL;
4635
4636 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4637 if (!dmar_domain) {
4638 pr_err("Can't allocate dmar_domain\n");
4639 return NULL;
4640 }
4641 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4642 pr_err("Domain initialization failed\n");
4643 domain_exit(dmar_domain);
4644 return NULL;
4645 }
4646 domain_update_iommu_cap(dmar_domain);
4647
4648 domain = &dmar_domain->domain;
4649 domain->geometry.aperture_start = 0;
4650 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4651 domain->geometry.force_aperture = true;
4652
4653 return domain;
4654 }
4655
4656 static void intel_iommu_domain_free(struct iommu_domain *domain)
4657 {
4658 domain_exit(to_dmar_domain(domain));
4659 }
4660
4661 static int intel_iommu_attach_device(struct iommu_domain *domain,
4662 struct device *dev)
4663 {
4664 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4665 struct intel_iommu *iommu;
4666 int addr_width;
4667 u8 bus, devfn;
4668
4669 if (device_is_rmrr_locked(dev)) {
4670 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4671 return -EPERM;
4672 }
4673
4674 /* normally dev is not mapped */
4675 if (unlikely(domain_context_mapped(dev))) {
4676 struct dmar_domain *old_domain;
4677
4678 old_domain = find_domain(dev);
4679 if (old_domain) {
4680 rcu_read_lock();
4681 dmar_remove_one_dev_info(old_domain, dev);
4682 rcu_read_unlock();
4683
4684 if (!domain_type_is_vm_or_si(old_domain) &&
4685 list_empty(&old_domain->devices))
4686 domain_exit(old_domain);
4687 }
4688 }
4689
4690 iommu = device_to_iommu(dev, &bus, &devfn);
4691 if (!iommu)
4692 return -ENODEV;
4693
4694 /* check if this iommu agaw is sufficient for max mapped address */
4695 addr_width = agaw_to_width(iommu->agaw);
4696 if (addr_width > cap_mgaw(iommu->cap))
4697 addr_width = cap_mgaw(iommu->cap);
4698
4699 if (dmar_domain->max_addr > (1LL << addr_width)) {
4700 pr_err("%s: iommu width (%d) is not "
4701 "sufficient for the mapped address (%llx)\n",
4702 __func__, addr_width, dmar_domain->max_addr);
4703 return -EFAULT;
4704 }
4705 dmar_domain->gaw = addr_width;
4706
4707 /*
4708 * Knock out extra levels of page tables if necessary
4709 */
4710 while (iommu->agaw < dmar_domain->agaw) {
4711 struct dma_pte *pte;
4712
4713 pte = dmar_domain->pgd;
4714 if (dma_pte_present(pte)) {
4715 dmar_domain->pgd = (struct dma_pte *)
4716 phys_to_virt(dma_pte_addr(pte));
4717 free_pgtable_page(pte);
4718 }
4719 dmar_domain->agaw--;
4720 }
4721
4722 return domain_add_dev_info(dmar_domain, dev);
4723 }
4724
4725 static void intel_iommu_detach_device(struct iommu_domain *domain,
4726 struct device *dev)
4727 {
4728 dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
4729 }
4730
4731 static int intel_iommu_map(struct iommu_domain *domain,
4732 unsigned long iova, phys_addr_t hpa,
4733 size_t size, int iommu_prot)
4734 {
4735 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4736 u64 max_addr;
4737 int prot = 0;
4738 int ret;
4739
4740 if (iommu_prot & IOMMU_READ)
4741 prot |= DMA_PTE_READ;
4742 if (iommu_prot & IOMMU_WRITE)
4743 prot |= DMA_PTE_WRITE;
4744 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4745 prot |= DMA_PTE_SNP;
4746
4747 max_addr = iova + size;
4748 if (dmar_domain->max_addr < max_addr) {
4749 u64 end;
4750
4751 /* check if minimum agaw is sufficient for mapped address */
4752 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4753 if (end < max_addr) {
4754 pr_err("%s: iommu width (%d) is not "
4755 "sufficient for the mapped address (%llx)\n",
4756 __func__, dmar_domain->gaw, max_addr);
4757 return -EFAULT;
4758 }
4759 dmar_domain->max_addr = max_addr;
4760 }
4761 /* Round up size to next multiple of PAGE_SIZE, if it and
4762 the low bits of hpa would take us onto the next page */
4763 size = aligned_nrpages(hpa, size);
4764 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4765 hpa >> VTD_PAGE_SHIFT, size, prot);
4766 return ret;
4767 }
4768
4769 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4770 unsigned long iova, size_t size)
4771 {
4772 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4773 struct page *freelist = NULL;
4774 struct intel_iommu *iommu;
4775 unsigned long start_pfn, last_pfn;
4776 unsigned int npages;
4777 int iommu_id, level = 0;
4778
4779 /* Cope with horrid API which requires us to unmap more than the
4780 size argument if it happens to be a large-page mapping. */
4781 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
4782
4783 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4784 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4785
4786 start_pfn = iova >> VTD_PAGE_SHIFT;
4787 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4788
4789 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4790
4791 npages = last_pfn - start_pfn + 1;
4792
4793 for_each_domain_iommu(iommu_id, dmar_domain) {
4794 iommu = g_iommus[iommu_id];
4795
4796 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
4797 start_pfn, npages, !freelist, 0);
4798 }
4799
4800 dma_free_pagelist(freelist);
4801
4802 if (dmar_domain->max_addr == iova + size)
4803 dmar_domain->max_addr = iova;
4804
4805 return size;
4806 }
4807
4808 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4809 dma_addr_t iova)
4810 {
4811 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4812 struct dma_pte *pte;
4813 int level = 0;
4814 u64 phys = 0;
4815
4816 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4817 if (pte)
4818 phys = dma_pte_addr(pte);
4819
4820 return phys;
4821 }
4822
4823 static bool intel_iommu_capable(enum iommu_cap cap)
4824 {
4825 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4826 return domain_update_iommu_snooping(NULL) == 1;
4827 if (cap == IOMMU_CAP_INTR_REMAP)
4828 return irq_remapping_enabled == 1;
4829
4830 return false;
4831 }
4832
4833 static int intel_iommu_add_device(struct device *dev)
4834 {
4835 struct intel_iommu *iommu;
4836 struct iommu_group *group;
4837 u8 bus, devfn;
4838
4839 iommu = device_to_iommu(dev, &bus, &devfn);
4840 if (!iommu)
4841 return -ENODEV;
4842
4843 iommu_device_link(iommu->iommu_dev, dev);
4844
4845 group = iommu_group_get_for_dev(dev);
4846
4847 if (IS_ERR(group))
4848 return PTR_ERR(group);
4849
4850 iommu_group_put(group);
4851 return 0;
4852 }
4853
4854 static void intel_iommu_remove_device(struct device *dev)
4855 {
4856 struct intel_iommu *iommu;
4857 u8 bus, devfn;
4858
4859 iommu = device_to_iommu(dev, &bus, &devfn);
4860 if (!iommu)
4861 return;
4862
4863 iommu_group_remove_device(dev);
4864
4865 iommu_device_unlink(iommu->iommu_dev, dev);
4866 }
4867
4868 static const struct iommu_ops intel_iommu_ops = {
4869 .capable = intel_iommu_capable,
4870 .domain_alloc = intel_iommu_domain_alloc,
4871 .domain_free = intel_iommu_domain_free,
4872 .attach_dev = intel_iommu_attach_device,
4873 .detach_dev = intel_iommu_detach_device,
4874 .map = intel_iommu_map,
4875 .unmap = intel_iommu_unmap,
4876 .map_sg = default_iommu_map_sg,
4877 .iova_to_phys = intel_iommu_iova_to_phys,
4878 .add_device = intel_iommu_add_device,
4879 .remove_device = intel_iommu_remove_device,
4880 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4881 };
4882
4883 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4884 {
4885 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4886 pr_info("Disabling IOMMU for graphics on this chipset\n");
4887 dmar_map_gfx = 0;
4888 }
4889
4890 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4891 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4892 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4893 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4894 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4895 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4896 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4897
4898 static void quirk_iommu_rwbf(struct pci_dev *dev)
4899 {
4900 /*
4901 * Mobile 4 Series Chipset neglects to set RWBF capability,
4902 * but needs it. Same seems to hold for the desktop versions.
4903 */
4904 pr_info("Forcing write-buffer flush capability\n");
4905 rwbf_quirk = 1;
4906 }
4907
4908 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4909 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4910 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4911 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4912 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4913 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4914 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4915
4916 #define GGC 0x52
4917 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4918 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4919 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4920 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4921 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4922 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4923 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4924 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4925
4926 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4927 {
4928 unsigned short ggc;
4929
4930 if (pci_read_config_word(dev, GGC, &ggc))
4931 return;
4932
4933 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4934 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4935 dmar_map_gfx = 0;
4936 } else if (dmar_map_gfx) {
4937 /* we have to ensure the gfx device is idle before we flush */
4938 pr_info("Disabling batched IOTLB flush on Ironlake\n");
4939 intel_iommu_strict = 1;
4940 }
4941 }
4942 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4943 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4944 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4945 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4946
4947 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4948 ISOCH DMAR unit for the Azalia sound device, but not give it any
4949 TLB entries, which causes it to deadlock. Check for that. We do
4950 this in a function called from init_dmars(), instead of in a PCI
4951 quirk, because we don't want to print the obnoxious "BIOS broken"
4952 message if VT-d is actually disabled.
4953 */
4954 static void __init check_tylersburg_isoch(void)
4955 {
4956 struct pci_dev *pdev;
4957 uint32_t vtisochctrl;
4958
4959 /* If there's no Azalia in the system anyway, forget it. */
4960 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4961 if (!pdev)
4962 return;
4963 pci_dev_put(pdev);
4964
4965 /* System Management Registers. Might be hidden, in which case
4966 we can't do the sanity check. But that's OK, because the
4967 known-broken BIOSes _don't_ actually hide it, so far. */
4968 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4969 if (!pdev)
4970 return;
4971
4972 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4973 pci_dev_put(pdev);
4974 return;
4975 }
4976
4977 pci_dev_put(pdev);
4978
4979 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4980 if (vtisochctrl & 1)
4981 return;
4982
4983 /* Drop all bits other than the number of TLB entries */
4984 vtisochctrl &= 0x1c;
4985
4986 /* If we have the recommended number of TLB entries (16), fine. */
4987 if (vtisochctrl == 0x10)
4988 return;
4989
4990 /* Zero TLB entries? You get to ride the short bus to school. */
4991 if (!vtisochctrl) {
4992 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4993 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4994 dmi_get_system_info(DMI_BIOS_VENDOR),
4995 dmi_get_system_info(DMI_BIOS_VERSION),
4996 dmi_get_system_info(DMI_PRODUCT_VERSION));
4997 iommu_identity_mapping |= IDENTMAP_AZALIA;
4998 return;
4999 }
5000
5001 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5002 vtisochctrl);
5003 }