]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iommu/intel-iommu.c
Merge remote-tracking branches 'asoc/topic/da7213', 'asoc/topic/da732x', 'asoc/topic...
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
48
49 #include "irq_remapping.h"
50 #include "pci.h"
51
52 #define ROOT_SIZE VTD_PAGE_SIZE
53 #define CONTEXT_SIZE VTD_PAGE_SIZE
54
55 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
56 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
57 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
58
59 #define IOAPIC_RANGE_START (0xfee00000)
60 #define IOAPIC_RANGE_END (0xfeefffff)
61 #define IOVA_START_ADDR (0x1000)
62
63 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
64
65 #define MAX_AGAW_WIDTH 64
66 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
67
68 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
69 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
70
71 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
72 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
73 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
74 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
75 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
76
77 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
78 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
79 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
80
81 /* page table handling */
82 #define LEVEL_STRIDE (9)
83 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
84
85 /*
86 * This bitmap is used to advertise the page sizes our hardware support
87 * to the IOMMU core, which will then use this information to split
88 * physically contiguous memory regions it is mapping into page sizes
89 * that we support.
90 *
91 * Traditionally the IOMMU core just handed us the mappings directly,
92 * after making sure the size is an order of a 4KiB page and that the
93 * mapping has natural alignment.
94 *
95 * To retain this behavior, we currently advertise that we support
96 * all page sizes that are an order of 4KiB.
97 *
98 * If at some point we'd like to utilize the IOMMU core's new behavior,
99 * we could change this to advertise the real page sizes we support.
100 */
101 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
102
103 static inline int agaw_to_level(int agaw)
104 {
105 return agaw + 2;
106 }
107
108 static inline int agaw_to_width(int agaw)
109 {
110 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
111 }
112
113 static inline int width_to_agaw(int width)
114 {
115 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
116 }
117
118 static inline unsigned int level_to_offset_bits(int level)
119 {
120 return (level - 1) * LEVEL_STRIDE;
121 }
122
123 static inline int pfn_level_offset(unsigned long pfn, int level)
124 {
125 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
126 }
127
128 static inline unsigned long level_mask(int level)
129 {
130 return -1UL << level_to_offset_bits(level);
131 }
132
133 static inline unsigned long level_size(int level)
134 {
135 return 1UL << level_to_offset_bits(level);
136 }
137
138 static inline unsigned long align_to_level(unsigned long pfn, int level)
139 {
140 return (pfn + level_size(level) - 1) & level_mask(level);
141 }
142
143 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
144 {
145 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
146 }
147
148 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
149 are never going to work. */
150 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
151 {
152 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
153 }
154
155 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
156 {
157 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 }
159 static inline unsigned long page_to_dma_pfn(struct page *pg)
160 {
161 return mm_to_dma_pfn(page_to_pfn(pg));
162 }
163 static inline unsigned long virt_to_dma_pfn(void *p)
164 {
165 return page_to_dma_pfn(virt_to_page(p));
166 }
167
168 /* global iommu list, set NULL for ignored DMAR units */
169 static struct intel_iommu **g_iommus;
170
171 static void __init check_tylersburg_isoch(void);
172 static int rwbf_quirk;
173
174 /*
175 * set to 1 to panic kernel if can't successfully enable VT-d
176 * (used when kernel is launched w/ TXT)
177 */
178 static int force_on = 0;
179
180 /*
181 * 0: Present
182 * 1-11: Reserved
183 * 12-63: Context Ptr (12 - (haw-1))
184 * 64-127: Reserved
185 */
186 struct root_entry {
187 u64 val;
188 u64 rsvd1;
189 };
190 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
191 static inline bool root_present(struct root_entry *root)
192 {
193 return (root->val & 1);
194 }
195 static inline void set_root_present(struct root_entry *root)
196 {
197 root->val |= 1;
198 }
199 static inline void set_root_value(struct root_entry *root, unsigned long value)
200 {
201 root->val |= value & VTD_PAGE_MASK;
202 }
203
204 static inline struct context_entry *
205 get_context_addr_from_root(struct root_entry *root)
206 {
207 return (struct context_entry *)
208 (root_present(root)?phys_to_virt(
209 root->val & VTD_PAGE_MASK) :
210 NULL);
211 }
212
213 /*
214 * low 64 bits:
215 * 0: present
216 * 1: fault processing disable
217 * 2-3: translation type
218 * 12-63: address space root
219 * high 64 bits:
220 * 0-2: address width
221 * 3-6: aval
222 * 8-23: domain id
223 */
224 struct context_entry {
225 u64 lo;
226 u64 hi;
227 };
228
229 static inline bool context_present(struct context_entry *context)
230 {
231 return (context->lo & 1);
232 }
233 static inline void context_set_present(struct context_entry *context)
234 {
235 context->lo |= 1;
236 }
237
238 static inline void context_set_fault_enable(struct context_entry *context)
239 {
240 context->lo &= (((u64)-1) << 2) | 1;
241 }
242
243 static inline void context_set_translation_type(struct context_entry *context,
244 unsigned long value)
245 {
246 context->lo &= (((u64)-1) << 4) | 3;
247 context->lo |= (value & 3) << 2;
248 }
249
250 static inline void context_set_address_root(struct context_entry *context,
251 unsigned long value)
252 {
253 context->lo |= value & VTD_PAGE_MASK;
254 }
255
256 static inline void context_set_address_width(struct context_entry *context,
257 unsigned long value)
258 {
259 context->hi |= value & 7;
260 }
261
262 static inline void context_set_domain_id(struct context_entry *context,
263 unsigned long value)
264 {
265 context->hi |= (value & ((1 << 16) - 1)) << 8;
266 }
267
268 static inline void context_clear_entry(struct context_entry *context)
269 {
270 context->lo = 0;
271 context->hi = 0;
272 }
273
274 /*
275 * 0: readable
276 * 1: writable
277 * 2-6: reserved
278 * 7: super page
279 * 8-10: available
280 * 11: snoop behavior
281 * 12-63: Host physcial address
282 */
283 struct dma_pte {
284 u64 val;
285 };
286
287 static inline void dma_clear_pte(struct dma_pte *pte)
288 {
289 pte->val = 0;
290 }
291
292 static inline u64 dma_pte_addr(struct dma_pte *pte)
293 {
294 #ifdef CONFIG_64BIT
295 return pte->val & VTD_PAGE_MASK;
296 #else
297 /* Must have a full atomic 64-bit read */
298 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
299 #endif
300 }
301
302 static inline bool dma_pte_present(struct dma_pte *pte)
303 {
304 return (pte->val & 3) != 0;
305 }
306
307 static inline bool dma_pte_superpage(struct dma_pte *pte)
308 {
309 return (pte->val & (1 << 7));
310 }
311
312 static inline int first_pte_in_page(struct dma_pte *pte)
313 {
314 return !((unsigned long)pte & ~VTD_PAGE_MASK);
315 }
316
317 /*
318 * This domain is a statically identity mapping domain.
319 * 1. This domain creats a static 1:1 mapping to all usable memory.
320 * 2. It maps to each iommu if successful.
321 * 3. Each iommu mapps to this domain if successful.
322 */
323 static struct dmar_domain *si_domain;
324 static int hw_pass_through = 1;
325
326 /* devices under the same p2p bridge are owned in one domain */
327 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
328
329 /* domain represents a virtual machine, more than one devices
330 * across iommus may be owned in one domain, e.g. kvm guest.
331 */
332 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
333
334 /* si_domain contains mulitple devices */
335 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
336
337 /* define the limit of IOMMUs supported in each domain */
338 #ifdef CONFIG_X86
339 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
340 #else
341 # define IOMMU_UNITS_SUPPORTED 64
342 #endif
343
344 struct dmar_domain {
345 int id; /* domain id */
346 int nid; /* node id */
347 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
348 /* bitmap of iommus this domain uses*/
349
350 struct list_head devices; /* all devices' list */
351 struct iova_domain iovad; /* iova's that belong to this domain */
352
353 struct dma_pte *pgd; /* virtual address */
354 int gaw; /* max guest address width */
355
356 /* adjusted guest address width, 0 is level 2 30-bit */
357 int agaw;
358
359 int flags; /* flags to find out type of domain */
360
361 int iommu_coherency;/* indicate coherency of iommu access */
362 int iommu_snooping; /* indicate snooping control feature*/
363 int iommu_count; /* reference count of iommu */
364 int iommu_superpage;/* Level of superpages supported:
365 0 == 4KiB (no superpages), 1 == 2MiB,
366 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
367 spinlock_t iommu_lock; /* protect iommu set in domain */
368 u64 max_addr; /* maximum mapped address */
369 };
370
371 /* PCI domain-device relationship */
372 struct device_domain_info {
373 struct list_head link; /* link to domain siblings */
374 struct list_head global; /* link to global list */
375 int segment; /* PCI domain */
376 u8 bus; /* PCI bus number */
377 u8 devfn; /* PCI devfn number */
378 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
379 struct intel_iommu *iommu; /* IOMMU used by this device */
380 struct dmar_domain *domain; /* pointer to domain */
381 };
382
383 static void flush_unmaps_timeout(unsigned long data);
384
385 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
386
387 #define HIGH_WATER_MARK 250
388 struct deferred_flush_tables {
389 int next;
390 struct iova *iova[HIGH_WATER_MARK];
391 struct dmar_domain *domain[HIGH_WATER_MARK];
392 };
393
394 static struct deferred_flush_tables *deferred_flush;
395
396 /* bitmap for indexing intel_iommus */
397 static int g_num_of_iommus;
398
399 static DEFINE_SPINLOCK(async_umap_flush_lock);
400 static LIST_HEAD(unmaps_to_do);
401
402 static int timer_on;
403 static long list_size;
404
405 static void domain_remove_dev_info(struct dmar_domain *domain);
406
407 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
408 int dmar_disabled = 0;
409 #else
410 int dmar_disabled = 1;
411 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
412
413 int intel_iommu_enabled = 0;
414 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
415
416 static int dmar_map_gfx = 1;
417 static int dmar_forcedac;
418 static int intel_iommu_strict;
419 static int intel_iommu_superpage = 1;
420
421 int intel_iommu_gfx_mapped;
422 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
423
424 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
425 static DEFINE_SPINLOCK(device_domain_lock);
426 static LIST_HEAD(device_domain_list);
427
428 static struct iommu_ops intel_iommu_ops;
429
430 static int __init intel_iommu_setup(char *str)
431 {
432 if (!str)
433 return -EINVAL;
434 while (*str) {
435 if (!strncmp(str, "on", 2)) {
436 dmar_disabled = 0;
437 printk(KERN_INFO "Intel-IOMMU: enabled\n");
438 } else if (!strncmp(str, "off", 3)) {
439 dmar_disabled = 1;
440 printk(KERN_INFO "Intel-IOMMU: disabled\n");
441 } else if (!strncmp(str, "igfx_off", 8)) {
442 dmar_map_gfx = 0;
443 printk(KERN_INFO
444 "Intel-IOMMU: disable GFX device mapping\n");
445 } else if (!strncmp(str, "forcedac", 8)) {
446 printk(KERN_INFO
447 "Intel-IOMMU: Forcing DAC for PCI devices\n");
448 dmar_forcedac = 1;
449 } else if (!strncmp(str, "strict", 6)) {
450 printk(KERN_INFO
451 "Intel-IOMMU: disable batched IOTLB flush\n");
452 intel_iommu_strict = 1;
453 } else if (!strncmp(str, "sp_off", 6)) {
454 printk(KERN_INFO
455 "Intel-IOMMU: disable supported super page\n");
456 intel_iommu_superpage = 0;
457 }
458
459 str += strcspn(str, ",");
460 while (*str == ',')
461 str++;
462 }
463 return 0;
464 }
465 __setup("intel_iommu=", intel_iommu_setup);
466
467 static struct kmem_cache *iommu_domain_cache;
468 static struct kmem_cache *iommu_devinfo_cache;
469 static struct kmem_cache *iommu_iova_cache;
470
471 static inline void *alloc_pgtable_page(int node)
472 {
473 struct page *page;
474 void *vaddr = NULL;
475
476 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
477 if (page)
478 vaddr = page_address(page);
479 return vaddr;
480 }
481
482 static inline void free_pgtable_page(void *vaddr)
483 {
484 free_page((unsigned long)vaddr);
485 }
486
487 static inline void *alloc_domain_mem(void)
488 {
489 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
490 }
491
492 static void free_domain_mem(void *vaddr)
493 {
494 kmem_cache_free(iommu_domain_cache, vaddr);
495 }
496
497 static inline void * alloc_devinfo_mem(void)
498 {
499 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
500 }
501
502 static inline void free_devinfo_mem(void *vaddr)
503 {
504 kmem_cache_free(iommu_devinfo_cache, vaddr);
505 }
506
507 struct iova *alloc_iova_mem(void)
508 {
509 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
510 }
511
512 void free_iova_mem(struct iova *iova)
513 {
514 kmem_cache_free(iommu_iova_cache, iova);
515 }
516
517
518 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
519 {
520 unsigned long sagaw;
521 int agaw = -1;
522
523 sagaw = cap_sagaw(iommu->cap);
524 for (agaw = width_to_agaw(max_gaw);
525 agaw >= 0; agaw--) {
526 if (test_bit(agaw, &sagaw))
527 break;
528 }
529
530 return agaw;
531 }
532
533 /*
534 * Calculate max SAGAW for each iommu.
535 */
536 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
537 {
538 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
539 }
540
541 /*
542 * calculate agaw for each iommu.
543 * "SAGAW" may be different across iommus, use a default agaw, and
544 * get a supported less agaw for iommus that don't support the default agaw.
545 */
546 int iommu_calculate_agaw(struct intel_iommu *iommu)
547 {
548 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
549 }
550
551 /* This functionin only returns single iommu in a domain */
552 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
553 {
554 int iommu_id;
555
556 /* si_domain and vm domain should not get here. */
557 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
558 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
559
560 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
561 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
562 return NULL;
563
564 return g_iommus[iommu_id];
565 }
566
567 static void domain_update_iommu_coherency(struct dmar_domain *domain)
568 {
569 int i;
570
571 i = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
572
573 domain->iommu_coherency = i < g_num_of_iommus ? 1 : 0;
574
575 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
576 if (!ecap_coherent(g_iommus[i]->ecap)) {
577 domain->iommu_coherency = 0;
578 break;
579 }
580 }
581 }
582
583 static void domain_update_iommu_snooping(struct dmar_domain *domain)
584 {
585 int i;
586
587 domain->iommu_snooping = 1;
588
589 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
590 if (!ecap_sc_support(g_iommus[i]->ecap)) {
591 domain->iommu_snooping = 0;
592 break;
593 }
594 }
595 }
596
597 static void domain_update_iommu_superpage(struct dmar_domain *domain)
598 {
599 struct dmar_drhd_unit *drhd;
600 struct intel_iommu *iommu = NULL;
601 int mask = 0xf;
602
603 if (!intel_iommu_superpage) {
604 domain->iommu_superpage = 0;
605 return;
606 }
607
608 /* set iommu_superpage to the smallest common denominator */
609 for_each_active_iommu(iommu, drhd) {
610 mask &= cap_super_page_val(iommu->cap);
611 if (!mask) {
612 break;
613 }
614 }
615 domain->iommu_superpage = fls(mask);
616 }
617
618 /* Some capabilities may be different across iommus */
619 static void domain_update_iommu_cap(struct dmar_domain *domain)
620 {
621 domain_update_iommu_coherency(domain);
622 domain_update_iommu_snooping(domain);
623 domain_update_iommu_superpage(domain);
624 }
625
626 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
627 {
628 struct dmar_drhd_unit *drhd = NULL;
629 int i;
630
631 for_each_active_drhd_unit(drhd) {
632 if (segment != drhd->segment)
633 continue;
634
635 for (i = 0; i < drhd->devices_cnt; i++) {
636 if (drhd->devices[i] &&
637 drhd->devices[i]->bus->number == bus &&
638 drhd->devices[i]->devfn == devfn)
639 return drhd->iommu;
640 if (drhd->devices[i] &&
641 drhd->devices[i]->subordinate &&
642 drhd->devices[i]->subordinate->number <= bus &&
643 drhd->devices[i]->subordinate->busn_res.end >= bus)
644 return drhd->iommu;
645 }
646
647 if (drhd->include_all)
648 return drhd->iommu;
649 }
650
651 return NULL;
652 }
653
654 static void domain_flush_cache(struct dmar_domain *domain,
655 void *addr, int size)
656 {
657 if (!domain->iommu_coherency)
658 clflush_cache_range(addr, size);
659 }
660
661 /* Gets context entry for a given bus and devfn */
662 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
663 u8 bus, u8 devfn)
664 {
665 struct root_entry *root;
666 struct context_entry *context;
667 unsigned long phy_addr;
668 unsigned long flags;
669
670 spin_lock_irqsave(&iommu->lock, flags);
671 root = &iommu->root_entry[bus];
672 context = get_context_addr_from_root(root);
673 if (!context) {
674 context = (struct context_entry *)
675 alloc_pgtable_page(iommu->node);
676 if (!context) {
677 spin_unlock_irqrestore(&iommu->lock, flags);
678 return NULL;
679 }
680 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
681 phy_addr = virt_to_phys((void *)context);
682 set_root_value(root, phy_addr);
683 set_root_present(root);
684 __iommu_flush_cache(iommu, root, sizeof(*root));
685 }
686 spin_unlock_irqrestore(&iommu->lock, flags);
687 return &context[devfn];
688 }
689
690 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
691 {
692 struct root_entry *root;
693 struct context_entry *context;
694 int ret;
695 unsigned long flags;
696
697 spin_lock_irqsave(&iommu->lock, flags);
698 root = &iommu->root_entry[bus];
699 context = get_context_addr_from_root(root);
700 if (!context) {
701 ret = 0;
702 goto out;
703 }
704 ret = context_present(&context[devfn]);
705 out:
706 spin_unlock_irqrestore(&iommu->lock, flags);
707 return ret;
708 }
709
710 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
711 {
712 struct root_entry *root;
713 struct context_entry *context;
714 unsigned long flags;
715
716 spin_lock_irqsave(&iommu->lock, flags);
717 root = &iommu->root_entry[bus];
718 context = get_context_addr_from_root(root);
719 if (context) {
720 context_clear_entry(&context[devfn]);
721 __iommu_flush_cache(iommu, &context[devfn], \
722 sizeof(*context));
723 }
724 spin_unlock_irqrestore(&iommu->lock, flags);
725 }
726
727 static void free_context_table(struct intel_iommu *iommu)
728 {
729 struct root_entry *root;
730 int i;
731 unsigned long flags;
732 struct context_entry *context;
733
734 spin_lock_irqsave(&iommu->lock, flags);
735 if (!iommu->root_entry) {
736 goto out;
737 }
738 for (i = 0; i < ROOT_ENTRY_NR; i++) {
739 root = &iommu->root_entry[i];
740 context = get_context_addr_from_root(root);
741 if (context)
742 free_pgtable_page(context);
743 }
744 free_pgtable_page(iommu->root_entry);
745 iommu->root_entry = NULL;
746 out:
747 spin_unlock_irqrestore(&iommu->lock, flags);
748 }
749
750 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
751 unsigned long pfn, int target_level)
752 {
753 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
754 struct dma_pte *parent, *pte = NULL;
755 int level = agaw_to_level(domain->agaw);
756 int offset;
757
758 BUG_ON(!domain->pgd);
759
760 if (addr_width < BITS_PER_LONG && pfn >> addr_width)
761 /* Address beyond IOMMU's addressing capabilities. */
762 return NULL;
763
764 parent = domain->pgd;
765
766 while (level > 0) {
767 void *tmp_page;
768
769 offset = pfn_level_offset(pfn, level);
770 pte = &parent[offset];
771 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
772 break;
773 if (level == target_level)
774 break;
775
776 if (!dma_pte_present(pte)) {
777 uint64_t pteval;
778
779 tmp_page = alloc_pgtable_page(domain->nid);
780
781 if (!tmp_page)
782 return NULL;
783
784 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
785 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
786 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
787 /* Someone else set it while we were thinking; use theirs. */
788 free_pgtable_page(tmp_page);
789 } else {
790 dma_pte_addr(pte);
791 domain_flush_cache(domain, pte, sizeof(*pte));
792 }
793 }
794 parent = phys_to_virt(dma_pte_addr(pte));
795 level--;
796 }
797
798 return pte;
799 }
800
801
802 /* return address's pte at specific level */
803 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
804 unsigned long pfn,
805 int level, int *large_page)
806 {
807 struct dma_pte *parent, *pte = NULL;
808 int total = agaw_to_level(domain->agaw);
809 int offset;
810
811 parent = domain->pgd;
812 while (level <= total) {
813 offset = pfn_level_offset(pfn, total);
814 pte = &parent[offset];
815 if (level == total)
816 return pte;
817
818 if (!dma_pte_present(pte)) {
819 *large_page = total;
820 break;
821 }
822
823 if (pte->val & DMA_PTE_LARGE_PAGE) {
824 *large_page = total;
825 return pte;
826 }
827
828 parent = phys_to_virt(dma_pte_addr(pte));
829 total--;
830 }
831 return NULL;
832 }
833
834 /* clear last level pte, a tlb flush should be followed */
835 static int dma_pte_clear_range(struct dmar_domain *domain,
836 unsigned long start_pfn,
837 unsigned long last_pfn)
838 {
839 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
840 unsigned int large_page = 1;
841 struct dma_pte *first_pte, *pte;
842
843 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
844 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
845 BUG_ON(start_pfn > last_pfn);
846
847 /* we don't need lock here; nobody else touches the iova range */
848 do {
849 large_page = 1;
850 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
851 if (!pte) {
852 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
853 continue;
854 }
855 do {
856 dma_clear_pte(pte);
857 start_pfn += lvl_to_nr_pages(large_page);
858 pte++;
859 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
860
861 domain_flush_cache(domain, first_pte,
862 (void *)pte - (void *)first_pte);
863
864 } while (start_pfn && start_pfn <= last_pfn);
865
866 return min_t(int, (large_page - 1) * 9, MAX_AGAW_PFN_WIDTH);
867 }
868
869 static void dma_pte_free_level(struct dmar_domain *domain, int level,
870 struct dma_pte *pte, unsigned long pfn,
871 unsigned long start_pfn, unsigned long last_pfn)
872 {
873 pfn = max(start_pfn, pfn);
874 pte = &pte[pfn_level_offset(pfn, level)];
875
876 do {
877 unsigned long level_pfn;
878 struct dma_pte *level_pte;
879
880 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
881 goto next;
882
883 level_pfn = pfn & level_mask(level - 1);
884 level_pte = phys_to_virt(dma_pte_addr(pte));
885
886 if (level > 2)
887 dma_pte_free_level(domain, level - 1, level_pte,
888 level_pfn, start_pfn, last_pfn);
889
890 /* If range covers entire pagetable, free it */
891 if (!(start_pfn > level_pfn ||
892 last_pfn < level_pfn + level_size(level) - 1)) {
893 dma_clear_pte(pte);
894 domain_flush_cache(domain, pte, sizeof(*pte));
895 free_pgtable_page(level_pte);
896 }
897 next:
898 pfn += level_size(level);
899 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
900 }
901
902 /* free page table pages. last level pte should already be cleared */
903 static void dma_pte_free_pagetable(struct dmar_domain *domain,
904 unsigned long start_pfn,
905 unsigned long last_pfn)
906 {
907 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
908
909 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
910 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
911 BUG_ON(start_pfn > last_pfn);
912
913 /* We don't need lock here; nobody else touches the iova range */
914 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
915 domain->pgd, 0, start_pfn, last_pfn);
916
917 /* free pgd */
918 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
919 free_pgtable_page(domain->pgd);
920 domain->pgd = NULL;
921 }
922 }
923
924 /* iommu handling */
925 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
926 {
927 struct root_entry *root;
928 unsigned long flags;
929
930 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
931 if (!root)
932 return -ENOMEM;
933
934 __iommu_flush_cache(iommu, root, ROOT_SIZE);
935
936 spin_lock_irqsave(&iommu->lock, flags);
937 iommu->root_entry = root;
938 spin_unlock_irqrestore(&iommu->lock, flags);
939
940 return 0;
941 }
942
943 static void iommu_set_root_entry(struct intel_iommu *iommu)
944 {
945 void *addr;
946 u32 sts;
947 unsigned long flag;
948
949 addr = iommu->root_entry;
950
951 raw_spin_lock_irqsave(&iommu->register_lock, flag);
952 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
953
954 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
955
956 /* Make sure hardware complete it */
957 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
958 readl, (sts & DMA_GSTS_RTPS), sts);
959
960 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
961 }
962
963 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
964 {
965 u32 val;
966 unsigned long flag;
967
968 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
969 return;
970
971 raw_spin_lock_irqsave(&iommu->register_lock, flag);
972 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
973
974 /* Make sure hardware complete it */
975 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
976 readl, (!(val & DMA_GSTS_WBFS)), val);
977
978 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
979 }
980
981 /* return value determine if we need a write buffer flush */
982 static void __iommu_flush_context(struct intel_iommu *iommu,
983 u16 did, u16 source_id, u8 function_mask,
984 u64 type)
985 {
986 u64 val = 0;
987 unsigned long flag;
988
989 switch (type) {
990 case DMA_CCMD_GLOBAL_INVL:
991 val = DMA_CCMD_GLOBAL_INVL;
992 break;
993 case DMA_CCMD_DOMAIN_INVL:
994 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
995 break;
996 case DMA_CCMD_DEVICE_INVL:
997 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
998 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
999 break;
1000 default:
1001 BUG();
1002 }
1003 val |= DMA_CCMD_ICC;
1004
1005 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1006 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1007
1008 /* Make sure hardware complete it */
1009 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1010 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1011
1012 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1013 }
1014
1015 /* return value determine if we need a write buffer flush */
1016 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1017 u64 addr, unsigned int size_order, u64 type)
1018 {
1019 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1020 u64 val = 0, val_iva = 0;
1021 unsigned long flag;
1022
1023 switch (type) {
1024 case DMA_TLB_GLOBAL_FLUSH:
1025 /* global flush doesn't need set IVA_REG */
1026 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1027 break;
1028 case DMA_TLB_DSI_FLUSH:
1029 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1030 break;
1031 case DMA_TLB_PSI_FLUSH:
1032 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1033 /* Note: always flush non-leaf currently */
1034 val_iva = size_order | addr;
1035 break;
1036 default:
1037 BUG();
1038 }
1039 /* Note: set drain read/write */
1040 #if 0
1041 /*
1042 * This is probably to be super secure.. Looks like we can
1043 * ignore it without any impact.
1044 */
1045 if (cap_read_drain(iommu->cap))
1046 val |= DMA_TLB_READ_DRAIN;
1047 #endif
1048 if (cap_write_drain(iommu->cap))
1049 val |= DMA_TLB_WRITE_DRAIN;
1050
1051 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1052 /* Note: Only uses first TLB reg currently */
1053 if (val_iva)
1054 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1055 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1056
1057 /* Make sure hardware complete it */
1058 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1059 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1060
1061 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1062
1063 /* check IOTLB invalidation granularity */
1064 if (DMA_TLB_IAIG(val) == 0)
1065 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1066 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1067 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1068 (unsigned long long)DMA_TLB_IIRG(type),
1069 (unsigned long long)DMA_TLB_IAIG(val));
1070 }
1071
1072 static struct device_domain_info *iommu_support_dev_iotlb(
1073 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1074 {
1075 int found = 0;
1076 unsigned long flags;
1077 struct device_domain_info *info;
1078 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1079
1080 if (!ecap_dev_iotlb_support(iommu->ecap))
1081 return NULL;
1082
1083 if (!iommu->qi)
1084 return NULL;
1085
1086 spin_lock_irqsave(&device_domain_lock, flags);
1087 list_for_each_entry(info, &domain->devices, link)
1088 if (info->bus == bus && info->devfn == devfn) {
1089 found = 1;
1090 break;
1091 }
1092 spin_unlock_irqrestore(&device_domain_lock, flags);
1093
1094 if (!found || !info->dev)
1095 return NULL;
1096
1097 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1098 return NULL;
1099
1100 if (!dmar_find_matched_atsr_unit(info->dev))
1101 return NULL;
1102
1103 info->iommu = iommu;
1104
1105 return info;
1106 }
1107
1108 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1109 {
1110 if (!info)
1111 return;
1112
1113 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1114 }
1115
1116 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1117 {
1118 if (!info->dev || !pci_ats_enabled(info->dev))
1119 return;
1120
1121 pci_disable_ats(info->dev);
1122 }
1123
1124 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1125 u64 addr, unsigned mask)
1126 {
1127 u16 sid, qdep;
1128 unsigned long flags;
1129 struct device_domain_info *info;
1130
1131 spin_lock_irqsave(&device_domain_lock, flags);
1132 list_for_each_entry(info, &domain->devices, link) {
1133 if (!info->dev || !pci_ats_enabled(info->dev))
1134 continue;
1135
1136 sid = info->bus << 8 | info->devfn;
1137 qdep = pci_ats_queue_depth(info->dev);
1138 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1139 }
1140 spin_unlock_irqrestore(&device_domain_lock, flags);
1141 }
1142
1143 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1144 unsigned long pfn, unsigned int pages, int map)
1145 {
1146 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1147 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1148
1149 BUG_ON(pages == 0);
1150
1151 /*
1152 * Fallback to domain selective flush if no PSI support or the size is
1153 * too big.
1154 * PSI requires page size to be 2 ^ x, and the base address is naturally
1155 * aligned to the size
1156 */
1157 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1158 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1159 DMA_TLB_DSI_FLUSH);
1160 else
1161 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1162 DMA_TLB_PSI_FLUSH);
1163
1164 /*
1165 * In caching mode, changes of pages from non-present to present require
1166 * flush. However, device IOTLB doesn't need to be flushed in this case.
1167 */
1168 if (!cap_caching_mode(iommu->cap) || !map)
1169 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1170 }
1171
1172 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1173 {
1174 u32 pmen;
1175 unsigned long flags;
1176
1177 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1178 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1179 pmen &= ~DMA_PMEN_EPM;
1180 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1181
1182 /* wait for the protected region status bit to clear */
1183 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1184 readl, !(pmen & DMA_PMEN_PRS), pmen);
1185
1186 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1187 }
1188
1189 static int iommu_enable_translation(struct intel_iommu *iommu)
1190 {
1191 u32 sts;
1192 unsigned long flags;
1193
1194 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1195 iommu->gcmd |= DMA_GCMD_TE;
1196 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1197
1198 /* Make sure hardware complete it */
1199 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1200 readl, (sts & DMA_GSTS_TES), sts);
1201
1202 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1203 return 0;
1204 }
1205
1206 static int iommu_disable_translation(struct intel_iommu *iommu)
1207 {
1208 u32 sts;
1209 unsigned long flag;
1210
1211 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1212 iommu->gcmd &= ~DMA_GCMD_TE;
1213 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1214
1215 /* Make sure hardware complete it */
1216 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1217 readl, (!(sts & DMA_GSTS_TES)), sts);
1218
1219 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1220 return 0;
1221 }
1222
1223
1224 static int iommu_init_domains(struct intel_iommu *iommu)
1225 {
1226 unsigned long ndomains;
1227 unsigned long nlongs;
1228
1229 ndomains = cap_ndoms(iommu->cap);
1230 pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1231 iommu->seq_id, ndomains);
1232 nlongs = BITS_TO_LONGS(ndomains);
1233
1234 spin_lock_init(&iommu->lock);
1235
1236 /* TBD: there might be 64K domains,
1237 * consider other allocation for future chip
1238 */
1239 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1240 if (!iommu->domain_ids) {
1241 pr_err("IOMMU%d: allocating domain id array failed\n",
1242 iommu->seq_id);
1243 return -ENOMEM;
1244 }
1245 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1246 GFP_KERNEL);
1247 if (!iommu->domains) {
1248 pr_err("IOMMU%d: allocating domain array failed\n",
1249 iommu->seq_id);
1250 kfree(iommu->domain_ids);
1251 iommu->domain_ids = NULL;
1252 return -ENOMEM;
1253 }
1254
1255 /*
1256 * if Caching mode is set, then invalid translations are tagged
1257 * with domainid 0. Hence we need to pre-allocate it.
1258 */
1259 if (cap_caching_mode(iommu->cap))
1260 set_bit(0, iommu->domain_ids);
1261 return 0;
1262 }
1263
1264
1265 static void domain_exit(struct dmar_domain *domain);
1266 static void vm_domain_exit(struct dmar_domain *domain);
1267
1268 static void free_dmar_iommu(struct intel_iommu *iommu)
1269 {
1270 struct dmar_domain *domain;
1271 int i, count;
1272 unsigned long flags;
1273
1274 if ((iommu->domains) && (iommu->domain_ids)) {
1275 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1276 domain = iommu->domains[i];
1277 clear_bit(i, iommu->domain_ids);
1278
1279 spin_lock_irqsave(&domain->iommu_lock, flags);
1280 count = --domain->iommu_count;
1281 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1282 if (count == 0) {
1283 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1284 vm_domain_exit(domain);
1285 else
1286 domain_exit(domain);
1287 }
1288 }
1289 }
1290
1291 if (iommu->gcmd & DMA_GCMD_TE)
1292 iommu_disable_translation(iommu);
1293
1294 kfree(iommu->domains);
1295 kfree(iommu->domain_ids);
1296 iommu->domains = NULL;
1297 iommu->domain_ids = NULL;
1298
1299 g_iommus[iommu->seq_id] = NULL;
1300
1301 /* if all iommus are freed, free g_iommus */
1302 for (i = 0; i < g_num_of_iommus; i++) {
1303 if (g_iommus[i])
1304 break;
1305 }
1306
1307 if (i == g_num_of_iommus)
1308 kfree(g_iommus);
1309
1310 /* free context mapping */
1311 free_context_table(iommu);
1312 }
1313
1314 static struct dmar_domain *alloc_domain(void)
1315 {
1316 struct dmar_domain *domain;
1317
1318 domain = alloc_domain_mem();
1319 if (!domain)
1320 return NULL;
1321
1322 domain->nid = -1;
1323 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1324 domain->flags = 0;
1325
1326 return domain;
1327 }
1328
1329 static int iommu_attach_domain(struct dmar_domain *domain,
1330 struct intel_iommu *iommu)
1331 {
1332 int num;
1333 unsigned long ndomains;
1334 unsigned long flags;
1335
1336 ndomains = cap_ndoms(iommu->cap);
1337
1338 spin_lock_irqsave(&iommu->lock, flags);
1339
1340 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1341 if (num >= ndomains) {
1342 spin_unlock_irqrestore(&iommu->lock, flags);
1343 printk(KERN_ERR "IOMMU: no free domain ids\n");
1344 return -ENOMEM;
1345 }
1346
1347 domain->id = num;
1348 set_bit(num, iommu->domain_ids);
1349 set_bit(iommu->seq_id, domain->iommu_bmp);
1350 iommu->domains[num] = domain;
1351 spin_unlock_irqrestore(&iommu->lock, flags);
1352
1353 return 0;
1354 }
1355
1356 static void iommu_detach_domain(struct dmar_domain *domain,
1357 struct intel_iommu *iommu)
1358 {
1359 unsigned long flags;
1360 int num, ndomains;
1361 int found = 0;
1362
1363 spin_lock_irqsave(&iommu->lock, flags);
1364 ndomains = cap_ndoms(iommu->cap);
1365 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1366 if (iommu->domains[num] == domain) {
1367 found = 1;
1368 break;
1369 }
1370 }
1371
1372 if (found) {
1373 clear_bit(num, iommu->domain_ids);
1374 clear_bit(iommu->seq_id, domain->iommu_bmp);
1375 iommu->domains[num] = NULL;
1376 }
1377 spin_unlock_irqrestore(&iommu->lock, flags);
1378 }
1379
1380 static struct iova_domain reserved_iova_list;
1381 static struct lock_class_key reserved_rbtree_key;
1382
1383 static int dmar_init_reserved_ranges(void)
1384 {
1385 struct pci_dev *pdev = NULL;
1386 struct iova *iova;
1387 int i;
1388
1389 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1390
1391 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1392 &reserved_rbtree_key);
1393
1394 /* IOAPIC ranges shouldn't be accessed by DMA */
1395 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1396 IOVA_PFN(IOAPIC_RANGE_END));
1397 if (!iova) {
1398 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1399 return -ENODEV;
1400 }
1401
1402 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1403 for_each_pci_dev(pdev) {
1404 struct resource *r;
1405
1406 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1407 r = &pdev->resource[i];
1408 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1409 continue;
1410 iova = reserve_iova(&reserved_iova_list,
1411 IOVA_PFN(r->start),
1412 IOVA_PFN(r->end));
1413 if (!iova) {
1414 printk(KERN_ERR "Reserve iova failed\n");
1415 return -ENODEV;
1416 }
1417 }
1418 }
1419 return 0;
1420 }
1421
1422 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1423 {
1424 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1425 }
1426
1427 static inline int guestwidth_to_adjustwidth(int gaw)
1428 {
1429 int agaw;
1430 int r = (gaw - 12) % 9;
1431
1432 if (r == 0)
1433 agaw = gaw;
1434 else
1435 agaw = gaw + 9 - r;
1436 if (agaw > 64)
1437 agaw = 64;
1438 return agaw;
1439 }
1440
1441 static int domain_init(struct dmar_domain *domain, int guest_width)
1442 {
1443 struct intel_iommu *iommu;
1444 int adjust_width, agaw;
1445 unsigned long sagaw;
1446
1447 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1448 spin_lock_init(&domain->iommu_lock);
1449
1450 domain_reserve_special_ranges(domain);
1451
1452 /* calculate AGAW */
1453 iommu = domain_get_iommu(domain);
1454 if (guest_width > cap_mgaw(iommu->cap))
1455 guest_width = cap_mgaw(iommu->cap);
1456 domain->gaw = guest_width;
1457 adjust_width = guestwidth_to_adjustwidth(guest_width);
1458 agaw = width_to_agaw(adjust_width);
1459 sagaw = cap_sagaw(iommu->cap);
1460 if (!test_bit(agaw, &sagaw)) {
1461 /* hardware doesn't support it, choose a bigger one */
1462 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1463 agaw = find_next_bit(&sagaw, 5, agaw);
1464 if (agaw >= 5)
1465 return -ENODEV;
1466 }
1467 domain->agaw = agaw;
1468 INIT_LIST_HEAD(&domain->devices);
1469
1470 if (ecap_coherent(iommu->ecap))
1471 domain->iommu_coherency = 1;
1472 else
1473 domain->iommu_coherency = 0;
1474
1475 if (ecap_sc_support(iommu->ecap))
1476 domain->iommu_snooping = 1;
1477 else
1478 domain->iommu_snooping = 0;
1479
1480 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1481 domain->iommu_count = 1;
1482 domain->nid = iommu->node;
1483
1484 /* always allocate the top pgd */
1485 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1486 if (!domain->pgd)
1487 return -ENOMEM;
1488 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1489 return 0;
1490 }
1491
1492 static void domain_exit(struct dmar_domain *domain)
1493 {
1494 struct dmar_drhd_unit *drhd;
1495 struct intel_iommu *iommu;
1496
1497 /* Domain 0 is reserved, so dont process it */
1498 if (!domain)
1499 return;
1500
1501 /* Flush any lazy unmaps that may reference this domain */
1502 if (!intel_iommu_strict)
1503 flush_unmaps_timeout(0);
1504
1505 domain_remove_dev_info(domain);
1506 /* destroy iovas */
1507 put_iova_domain(&domain->iovad);
1508
1509 /* clear ptes */
1510 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1511
1512 /* free page tables */
1513 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1514
1515 for_each_active_iommu(iommu, drhd)
1516 if (test_bit(iommu->seq_id, domain->iommu_bmp))
1517 iommu_detach_domain(domain, iommu);
1518
1519 free_domain_mem(domain);
1520 }
1521
1522 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1523 u8 bus, u8 devfn, int translation)
1524 {
1525 struct context_entry *context;
1526 unsigned long flags;
1527 struct intel_iommu *iommu;
1528 struct dma_pte *pgd;
1529 unsigned long num;
1530 unsigned long ndomains;
1531 int id;
1532 int agaw;
1533 struct device_domain_info *info = NULL;
1534
1535 pr_debug("Set context mapping for %02x:%02x.%d\n",
1536 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1537
1538 BUG_ON(!domain->pgd);
1539 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1540 translation != CONTEXT_TT_MULTI_LEVEL);
1541
1542 iommu = device_to_iommu(segment, bus, devfn);
1543 if (!iommu)
1544 return -ENODEV;
1545
1546 context = device_to_context_entry(iommu, bus, devfn);
1547 if (!context)
1548 return -ENOMEM;
1549 spin_lock_irqsave(&iommu->lock, flags);
1550 if (context_present(context)) {
1551 spin_unlock_irqrestore(&iommu->lock, flags);
1552 return 0;
1553 }
1554
1555 id = domain->id;
1556 pgd = domain->pgd;
1557
1558 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1559 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1560 int found = 0;
1561
1562 /* find an available domain id for this device in iommu */
1563 ndomains = cap_ndoms(iommu->cap);
1564 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1565 if (iommu->domains[num] == domain) {
1566 id = num;
1567 found = 1;
1568 break;
1569 }
1570 }
1571
1572 if (found == 0) {
1573 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1574 if (num >= ndomains) {
1575 spin_unlock_irqrestore(&iommu->lock, flags);
1576 printk(KERN_ERR "IOMMU: no free domain ids\n");
1577 return -EFAULT;
1578 }
1579
1580 set_bit(num, iommu->domain_ids);
1581 iommu->domains[num] = domain;
1582 id = num;
1583 }
1584
1585 /* Skip top levels of page tables for
1586 * iommu which has less agaw than default.
1587 * Unnecessary for PT mode.
1588 */
1589 if (translation != CONTEXT_TT_PASS_THROUGH) {
1590 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1591 pgd = phys_to_virt(dma_pte_addr(pgd));
1592 if (!dma_pte_present(pgd)) {
1593 spin_unlock_irqrestore(&iommu->lock, flags);
1594 return -ENOMEM;
1595 }
1596 }
1597 }
1598 }
1599
1600 context_set_domain_id(context, id);
1601
1602 if (translation != CONTEXT_TT_PASS_THROUGH) {
1603 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1604 translation = info ? CONTEXT_TT_DEV_IOTLB :
1605 CONTEXT_TT_MULTI_LEVEL;
1606 }
1607 /*
1608 * In pass through mode, AW must be programmed to indicate the largest
1609 * AGAW value supported by hardware. And ASR is ignored by hardware.
1610 */
1611 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1612 context_set_address_width(context, iommu->msagaw);
1613 else {
1614 context_set_address_root(context, virt_to_phys(pgd));
1615 context_set_address_width(context, iommu->agaw);
1616 }
1617
1618 context_set_translation_type(context, translation);
1619 context_set_fault_enable(context);
1620 context_set_present(context);
1621 domain_flush_cache(domain, context, sizeof(*context));
1622
1623 /*
1624 * It's a non-present to present mapping. If hardware doesn't cache
1625 * non-present entry we only need to flush the write-buffer. If the
1626 * _does_ cache non-present entries, then it does so in the special
1627 * domain #0, which we have to flush:
1628 */
1629 if (cap_caching_mode(iommu->cap)) {
1630 iommu->flush.flush_context(iommu, 0,
1631 (((u16)bus) << 8) | devfn,
1632 DMA_CCMD_MASK_NOBIT,
1633 DMA_CCMD_DEVICE_INVL);
1634 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1635 } else {
1636 iommu_flush_write_buffer(iommu);
1637 }
1638 iommu_enable_dev_iotlb(info);
1639 spin_unlock_irqrestore(&iommu->lock, flags);
1640
1641 spin_lock_irqsave(&domain->iommu_lock, flags);
1642 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1643 domain->iommu_count++;
1644 if (domain->iommu_count == 1)
1645 domain->nid = iommu->node;
1646 domain_update_iommu_cap(domain);
1647 }
1648 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1649 return 0;
1650 }
1651
1652 static int
1653 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1654 int translation)
1655 {
1656 int ret;
1657 struct pci_dev *tmp, *parent;
1658
1659 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1660 pdev->bus->number, pdev->devfn,
1661 translation);
1662 if (ret)
1663 return ret;
1664
1665 /* dependent device mapping */
1666 tmp = pci_find_upstream_pcie_bridge(pdev);
1667 if (!tmp)
1668 return 0;
1669 /* Secondary interface's bus number and devfn 0 */
1670 parent = pdev->bus->self;
1671 while (parent != tmp) {
1672 ret = domain_context_mapping_one(domain,
1673 pci_domain_nr(parent->bus),
1674 parent->bus->number,
1675 parent->devfn, translation);
1676 if (ret)
1677 return ret;
1678 parent = parent->bus->self;
1679 }
1680 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1681 return domain_context_mapping_one(domain,
1682 pci_domain_nr(tmp->subordinate),
1683 tmp->subordinate->number, 0,
1684 translation);
1685 else /* this is a legacy PCI bridge */
1686 return domain_context_mapping_one(domain,
1687 pci_domain_nr(tmp->bus),
1688 tmp->bus->number,
1689 tmp->devfn,
1690 translation);
1691 }
1692
1693 static int domain_context_mapped(struct pci_dev *pdev)
1694 {
1695 int ret;
1696 struct pci_dev *tmp, *parent;
1697 struct intel_iommu *iommu;
1698
1699 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1700 pdev->devfn);
1701 if (!iommu)
1702 return -ENODEV;
1703
1704 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1705 if (!ret)
1706 return ret;
1707 /* dependent device mapping */
1708 tmp = pci_find_upstream_pcie_bridge(pdev);
1709 if (!tmp)
1710 return ret;
1711 /* Secondary interface's bus number and devfn 0 */
1712 parent = pdev->bus->self;
1713 while (parent != tmp) {
1714 ret = device_context_mapped(iommu, parent->bus->number,
1715 parent->devfn);
1716 if (!ret)
1717 return ret;
1718 parent = parent->bus->self;
1719 }
1720 if (pci_is_pcie(tmp))
1721 return device_context_mapped(iommu, tmp->subordinate->number,
1722 0);
1723 else
1724 return device_context_mapped(iommu, tmp->bus->number,
1725 tmp->devfn);
1726 }
1727
1728 /* Returns a number of VTD pages, but aligned to MM page size */
1729 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1730 size_t size)
1731 {
1732 host_addr &= ~PAGE_MASK;
1733 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1734 }
1735
1736 /* Return largest possible superpage level for a given mapping */
1737 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1738 unsigned long iov_pfn,
1739 unsigned long phy_pfn,
1740 unsigned long pages)
1741 {
1742 int support, level = 1;
1743 unsigned long pfnmerge;
1744
1745 support = domain->iommu_superpage;
1746
1747 /* To use a large page, the virtual *and* physical addresses
1748 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1749 of them will mean we have to use smaller pages. So just
1750 merge them and check both at once. */
1751 pfnmerge = iov_pfn | phy_pfn;
1752
1753 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1754 pages >>= VTD_STRIDE_SHIFT;
1755 if (!pages)
1756 break;
1757 pfnmerge >>= VTD_STRIDE_SHIFT;
1758 level++;
1759 support--;
1760 }
1761 return level;
1762 }
1763
1764 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1765 struct scatterlist *sg, unsigned long phys_pfn,
1766 unsigned long nr_pages, int prot)
1767 {
1768 struct dma_pte *first_pte = NULL, *pte = NULL;
1769 phys_addr_t uninitialized_var(pteval);
1770 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1771 unsigned long sg_res;
1772 unsigned int largepage_lvl = 0;
1773 unsigned long lvl_pages = 0;
1774
1775 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1776
1777 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1778 return -EINVAL;
1779
1780 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1781
1782 if (sg)
1783 sg_res = 0;
1784 else {
1785 sg_res = nr_pages + 1;
1786 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1787 }
1788
1789 while (nr_pages > 0) {
1790 uint64_t tmp;
1791
1792 if (!sg_res) {
1793 sg_res = aligned_nrpages(sg->offset, sg->length);
1794 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1795 sg->dma_length = sg->length;
1796 pteval = page_to_phys(sg_page(sg)) | prot;
1797 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1798 }
1799
1800 if (!pte) {
1801 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1802
1803 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1804 if (!pte)
1805 return -ENOMEM;
1806 /* It is large page*/
1807 if (largepage_lvl > 1) {
1808 pteval |= DMA_PTE_LARGE_PAGE;
1809 /* Ensure that old small page tables are removed to make room
1810 for superpage, if they exist. */
1811 dma_pte_clear_range(domain, iov_pfn,
1812 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1813 dma_pte_free_pagetable(domain, iov_pfn,
1814 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1815 } else {
1816 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1817 }
1818
1819 }
1820 /* We don't need lock here, nobody else
1821 * touches the iova range
1822 */
1823 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1824 if (tmp) {
1825 static int dumps = 5;
1826 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1827 iov_pfn, tmp, (unsigned long long)pteval);
1828 if (dumps) {
1829 dumps--;
1830 debug_dma_dump_mappings(NULL);
1831 }
1832 WARN_ON(1);
1833 }
1834
1835 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1836
1837 BUG_ON(nr_pages < lvl_pages);
1838 BUG_ON(sg_res < lvl_pages);
1839
1840 nr_pages -= lvl_pages;
1841 iov_pfn += lvl_pages;
1842 phys_pfn += lvl_pages;
1843 pteval += lvl_pages * VTD_PAGE_SIZE;
1844 sg_res -= lvl_pages;
1845
1846 /* If the next PTE would be the first in a new page, then we
1847 need to flush the cache on the entries we've just written.
1848 And then we'll need to recalculate 'pte', so clear it and
1849 let it get set again in the if (!pte) block above.
1850
1851 If we're done (!nr_pages) we need to flush the cache too.
1852
1853 Also if we've been setting superpages, we may need to
1854 recalculate 'pte' and switch back to smaller pages for the
1855 end of the mapping, if the trailing size is not enough to
1856 use another superpage (i.e. sg_res < lvl_pages). */
1857 pte++;
1858 if (!nr_pages || first_pte_in_page(pte) ||
1859 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1860 domain_flush_cache(domain, first_pte,
1861 (void *)pte - (void *)first_pte);
1862 pte = NULL;
1863 }
1864
1865 if (!sg_res && nr_pages)
1866 sg = sg_next(sg);
1867 }
1868 return 0;
1869 }
1870
1871 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1872 struct scatterlist *sg, unsigned long nr_pages,
1873 int prot)
1874 {
1875 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1876 }
1877
1878 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1879 unsigned long phys_pfn, unsigned long nr_pages,
1880 int prot)
1881 {
1882 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1883 }
1884
1885 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1886 {
1887 if (!iommu)
1888 return;
1889
1890 clear_context_table(iommu, bus, devfn);
1891 iommu->flush.flush_context(iommu, 0, 0, 0,
1892 DMA_CCMD_GLOBAL_INVL);
1893 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1894 }
1895
1896 static inline void unlink_domain_info(struct device_domain_info *info)
1897 {
1898 assert_spin_locked(&device_domain_lock);
1899 list_del(&info->link);
1900 list_del(&info->global);
1901 if (info->dev)
1902 info->dev->dev.archdata.iommu = NULL;
1903 }
1904
1905 static void domain_remove_dev_info(struct dmar_domain *domain)
1906 {
1907 struct device_domain_info *info;
1908 unsigned long flags;
1909 struct intel_iommu *iommu;
1910
1911 spin_lock_irqsave(&device_domain_lock, flags);
1912 while (!list_empty(&domain->devices)) {
1913 info = list_entry(domain->devices.next,
1914 struct device_domain_info, link);
1915 unlink_domain_info(info);
1916 spin_unlock_irqrestore(&device_domain_lock, flags);
1917
1918 iommu_disable_dev_iotlb(info);
1919 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1920 iommu_detach_dev(iommu, info->bus, info->devfn);
1921 free_devinfo_mem(info);
1922
1923 spin_lock_irqsave(&device_domain_lock, flags);
1924 }
1925 spin_unlock_irqrestore(&device_domain_lock, flags);
1926 }
1927
1928 /*
1929 * find_domain
1930 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1931 */
1932 static struct dmar_domain *
1933 find_domain(struct pci_dev *pdev)
1934 {
1935 struct device_domain_info *info;
1936
1937 /* No lock here, assumes no domain exit in normal case */
1938 info = pdev->dev.archdata.iommu;
1939 if (info)
1940 return info->domain;
1941 return NULL;
1942 }
1943
1944 /* domain is initialized */
1945 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1946 {
1947 struct dmar_domain *domain, *found = NULL;
1948 struct intel_iommu *iommu;
1949 struct dmar_drhd_unit *drhd;
1950 struct device_domain_info *info, *tmp;
1951 struct pci_dev *dev_tmp;
1952 unsigned long flags;
1953 int bus = 0, devfn = 0;
1954 int segment;
1955 int ret;
1956
1957 domain = find_domain(pdev);
1958 if (domain)
1959 return domain;
1960
1961 segment = pci_domain_nr(pdev->bus);
1962
1963 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1964 if (dev_tmp) {
1965 if (pci_is_pcie(dev_tmp)) {
1966 bus = dev_tmp->subordinate->number;
1967 devfn = 0;
1968 } else {
1969 bus = dev_tmp->bus->number;
1970 devfn = dev_tmp->devfn;
1971 }
1972 spin_lock_irqsave(&device_domain_lock, flags);
1973 list_for_each_entry(info, &device_domain_list, global) {
1974 if (info->segment == segment &&
1975 info->bus == bus && info->devfn == devfn) {
1976 found = info->domain;
1977 break;
1978 }
1979 }
1980 spin_unlock_irqrestore(&device_domain_lock, flags);
1981 /* pcie-pci bridge already has a domain, uses it */
1982 if (found) {
1983 domain = found;
1984 goto found_domain;
1985 }
1986 }
1987
1988 domain = alloc_domain();
1989 if (!domain)
1990 goto error;
1991
1992 /* Allocate new domain for the device */
1993 drhd = dmar_find_matched_drhd_unit(pdev);
1994 if (!drhd) {
1995 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1996 pci_name(pdev));
1997 free_domain_mem(domain);
1998 return NULL;
1999 }
2000 iommu = drhd->iommu;
2001
2002 ret = iommu_attach_domain(domain, iommu);
2003 if (ret) {
2004 free_domain_mem(domain);
2005 goto error;
2006 }
2007
2008 if (domain_init(domain, gaw)) {
2009 domain_exit(domain);
2010 goto error;
2011 }
2012
2013 /* register pcie-to-pci device */
2014 if (dev_tmp) {
2015 info = alloc_devinfo_mem();
2016 if (!info) {
2017 domain_exit(domain);
2018 goto error;
2019 }
2020 info->segment = segment;
2021 info->bus = bus;
2022 info->devfn = devfn;
2023 info->dev = NULL;
2024 info->domain = domain;
2025 /* This domain is shared by devices under p2p bridge */
2026 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2027
2028 /* pcie-to-pci bridge already has a domain, uses it */
2029 found = NULL;
2030 spin_lock_irqsave(&device_domain_lock, flags);
2031 list_for_each_entry(tmp, &device_domain_list, global) {
2032 if (tmp->segment == segment &&
2033 tmp->bus == bus && tmp->devfn == devfn) {
2034 found = tmp->domain;
2035 break;
2036 }
2037 }
2038 if (found) {
2039 spin_unlock_irqrestore(&device_domain_lock, flags);
2040 free_devinfo_mem(info);
2041 domain_exit(domain);
2042 domain = found;
2043 } else {
2044 list_add(&info->link, &domain->devices);
2045 list_add(&info->global, &device_domain_list);
2046 spin_unlock_irqrestore(&device_domain_lock, flags);
2047 }
2048 }
2049
2050 found_domain:
2051 info = alloc_devinfo_mem();
2052 if (!info)
2053 goto error;
2054 info->segment = segment;
2055 info->bus = pdev->bus->number;
2056 info->devfn = pdev->devfn;
2057 info->dev = pdev;
2058 info->domain = domain;
2059 spin_lock_irqsave(&device_domain_lock, flags);
2060 /* somebody is fast */
2061 found = find_domain(pdev);
2062 if (found != NULL) {
2063 spin_unlock_irqrestore(&device_domain_lock, flags);
2064 if (found != domain) {
2065 domain_exit(domain);
2066 domain = found;
2067 }
2068 free_devinfo_mem(info);
2069 return domain;
2070 }
2071 list_add(&info->link, &domain->devices);
2072 list_add(&info->global, &device_domain_list);
2073 pdev->dev.archdata.iommu = info;
2074 spin_unlock_irqrestore(&device_domain_lock, flags);
2075 return domain;
2076 error:
2077 /* recheck it here, maybe others set it */
2078 return find_domain(pdev);
2079 }
2080
2081 static int iommu_identity_mapping;
2082 #define IDENTMAP_ALL 1
2083 #define IDENTMAP_GFX 2
2084 #define IDENTMAP_AZALIA 4
2085
2086 static int iommu_domain_identity_map(struct dmar_domain *domain,
2087 unsigned long long start,
2088 unsigned long long end)
2089 {
2090 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2091 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2092
2093 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2094 dma_to_mm_pfn(last_vpfn))) {
2095 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2096 return -ENOMEM;
2097 }
2098
2099 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2100 start, end, domain->id);
2101 /*
2102 * RMRR range might have overlap with physical memory range,
2103 * clear it first
2104 */
2105 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2106
2107 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2108 last_vpfn - first_vpfn + 1,
2109 DMA_PTE_READ|DMA_PTE_WRITE);
2110 }
2111
2112 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2113 unsigned long long start,
2114 unsigned long long end)
2115 {
2116 struct dmar_domain *domain;
2117 int ret;
2118
2119 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2120 if (!domain)
2121 return -ENOMEM;
2122
2123 /* For _hardware_ passthrough, don't bother. But for software
2124 passthrough, we do it anyway -- it may indicate a memory
2125 range which is reserved in E820, so which didn't get set
2126 up to start with in si_domain */
2127 if (domain == si_domain && hw_pass_through) {
2128 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2129 pci_name(pdev), start, end);
2130 return 0;
2131 }
2132
2133 printk(KERN_INFO
2134 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2135 pci_name(pdev), start, end);
2136
2137 if (end < start) {
2138 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2139 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2140 dmi_get_system_info(DMI_BIOS_VENDOR),
2141 dmi_get_system_info(DMI_BIOS_VERSION),
2142 dmi_get_system_info(DMI_PRODUCT_VERSION));
2143 ret = -EIO;
2144 goto error;
2145 }
2146
2147 if (end >> agaw_to_width(domain->agaw)) {
2148 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2149 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2150 agaw_to_width(domain->agaw),
2151 dmi_get_system_info(DMI_BIOS_VENDOR),
2152 dmi_get_system_info(DMI_BIOS_VERSION),
2153 dmi_get_system_info(DMI_PRODUCT_VERSION));
2154 ret = -EIO;
2155 goto error;
2156 }
2157
2158 ret = iommu_domain_identity_map(domain, start, end);
2159 if (ret)
2160 goto error;
2161
2162 /* context entry init */
2163 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2164 if (ret)
2165 goto error;
2166
2167 return 0;
2168
2169 error:
2170 domain_exit(domain);
2171 return ret;
2172 }
2173
2174 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2175 struct pci_dev *pdev)
2176 {
2177 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2178 return 0;
2179 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2180 rmrr->end_address);
2181 }
2182
2183 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2184 static inline void iommu_prepare_isa(void)
2185 {
2186 struct pci_dev *pdev;
2187 int ret;
2188
2189 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2190 if (!pdev)
2191 return;
2192
2193 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2194 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2195
2196 if (ret)
2197 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2198 "floppy might not work\n");
2199
2200 }
2201 #else
2202 static inline void iommu_prepare_isa(void)
2203 {
2204 return;
2205 }
2206 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2207
2208 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2209
2210 static int __init si_domain_init(int hw)
2211 {
2212 struct dmar_drhd_unit *drhd;
2213 struct intel_iommu *iommu;
2214 int nid, ret = 0;
2215
2216 si_domain = alloc_domain();
2217 if (!si_domain)
2218 return -EFAULT;
2219
2220 for_each_active_iommu(iommu, drhd) {
2221 ret = iommu_attach_domain(si_domain, iommu);
2222 if (ret) {
2223 domain_exit(si_domain);
2224 return -EFAULT;
2225 }
2226 }
2227
2228 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2229 domain_exit(si_domain);
2230 return -EFAULT;
2231 }
2232
2233 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2234 pr_debug("IOMMU: identity mapping domain is domain %d\n",
2235 si_domain->id);
2236
2237 if (hw)
2238 return 0;
2239
2240 for_each_online_node(nid) {
2241 unsigned long start_pfn, end_pfn;
2242 int i;
2243
2244 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2245 ret = iommu_domain_identity_map(si_domain,
2246 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2247 if (ret)
2248 return ret;
2249 }
2250 }
2251
2252 return 0;
2253 }
2254
2255 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2256 struct pci_dev *pdev);
2257 static int identity_mapping(struct pci_dev *pdev)
2258 {
2259 struct device_domain_info *info;
2260
2261 if (likely(!iommu_identity_mapping))
2262 return 0;
2263
2264 info = pdev->dev.archdata.iommu;
2265 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2266 return (info->domain == si_domain);
2267
2268 return 0;
2269 }
2270
2271 static int domain_add_dev_info(struct dmar_domain *domain,
2272 struct pci_dev *pdev,
2273 int translation)
2274 {
2275 struct device_domain_info *info;
2276 unsigned long flags;
2277 int ret;
2278
2279 info = alloc_devinfo_mem();
2280 if (!info)
2281 return -ENOMEM;
2282
2283 info->segment = pci_domain_nr(pdev->bus);
2284 info->bus = pdev->bus->number;
2285 info->devfn = pdev->devfn;
2286 info->dev = pdev;
2287 info->domain = domain;
2288
2289 spin_lock_irqsave(&device_domain_lock, flags);
2290 list_add(&info->link, &domain->devices);
2291 list_add(&info->global, &device_domain_list);
2292 pdev->dev.archdata.iommu = info;
2293 spin_unlock_irqrestore(&device_domain_lock, flags);
2294
2295 ret = domain_context_mapping(domain, pdev, translation);
2296 if (ret) {
2297 spin_lock_irqsave(&device_domain_lock, flags);
2298 unlink_domain_info(info);
2299 spin_unlock_irqrestore(&device_domain_lock, flags);
2300 free_devinfo_mem(info);
2301 return ret;
2302 }
2303
2304 return 0;
2305 }
2306
2307 static bool device_has_rmrr(struct pci_dev *dev)
2308 {
2309 struct dmar_rmrr_unit *rmrr;
2310 int i;
2311
2312 for_each_rmrr_units(rmrr) {
2313 for (i = 0; i < rmrr->devices_cnt; i++) {
2314 /*
2315 * Return TRUE if this RMRR contains the device that
2316 * is passed in.
2317 */
2318 if (rmrr->devices[i] == dev)
2319 return true;
2320 }
2321 }
2322 return false;
2323 }
2324
2325 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2326 {
2327
2328 /*
2329 * We want to prevent any device associated with an RMRR from
2330 * getting placed into the SI Domain. This is done because
2331 * problems exist when devices are moved in and out of domains
2332 * and their respective RMRR info is lost. We exempt USB devices
2333 * from this process due to their usage of RMRRs that are known
2334 * to not be needed after BIOS hand-off to OS.
2335 */
2336 if (device_has_rmrr(pdev) &&
2337 (pdev->class >> 8) != PCI_CLASS_SERIAL_USB)
2338 return 0;
2339
2340 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2341 return 1;
2342
2343 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2344 return 1;
2345
2346 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2347 return 0;
2348
2349 /*
2350 * We want to start off with all devices in the 1:1 domain, and
2351 * take them out later if we find they can't access all of memory.
2352 *
2353 * However, we can't do this for PCI devices behind bridges,
2354 * because all PCI devices behind the same bridge will end up
2355 * with the same source-id on their transactions.
2356 *
2357 * Practically speaking, we can't change things around for these
2358 * devices at run-time, because we can't be sure there'll be no
2359 * DMA transactions in flight for any of their siblings.
2360 *
2361 * So PCI devices (unless they're on the root bus) as well as
2362 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2363 * the 1:1 domain, just in _case_ one of their siblings turns out
2364 * not to be able to map all of memory.
2365 */
2366 if (!pci_is_pcie(pdev)) {
2367 if (!pci_is_root_bus(pdev->bus))
2368 return 0;
2369 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2370 return 0;
2371 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2372 return 0;
2373
2374 /*
2375 * At boot time, we don't yet know if devices will be 64-bit capable.
2376 * Assume that they will -- if they turn out not to be, then we can
2377 * take them out of the 1:1 domain later.
2378 */
2379 if (!startup) {
2380 /*
2381 * If the device's dma_mask is less than the system's memory
2382 * size then this is not a candidate for identity mapping.
2383 */
2384 u64 dma_mask = pdev->dma_mask;
2385
2386 if (pdev->dev.coherent_dma_mask &&
2387 pdev->dev.coherent_dma_mask < dma_mask)
2388 dma_mask = pdev->dev.coherent_dma_mask;
2389
2390 return dma_mask >= dma_get_required_mask(&pdev->dev);
2391 }
2392
2393 return 1;
2394 }
2395
2396 static int __init iommu_prepare_static_identity_mapping(int hw)
2397 {
2398 struct pci_dev *pdev = NULL;
2399 int ret;
2400
2401 ret = si_domain_init(hw);
2402 if (ret)
2403 return -EFAULT;
2404
2405 for_each_pci_dev(pdev) {
2406 if (iommu_should_identity_map(pdev, 1)) {
2407 ret = domain_add_dev_info(si_domain, pdev,
2408 hw ? CONTEXT_TT_PASS_THROUGH :
2409 CONTEXT_TT_MULTI_LEVEL);
2410 if (ret) {
2411 /* device not associated with an iommu */
2412 if (ret == -ENODEV)
2413 continue;
2414 return ret;
2415 }
2416 pr_info("IOMMU: %s identity mapping for device %s\n",
2417 hw ? "hardware" : "software", pci_name(pdev));
2418 }
2419 }
2420
2421 return 0;
2422 }
2423
2424 static int __init init_dmars(void)
2425 {
2426 struct dmar_drhd_unit *drhd;
2427 struct dmar_rmrr_unit *rmrr;
2428 struct pci_dev *pdev;
2429 struct intel_iommu *iommu;
2430 int i, ret;
2431
2432 /*
2433 * for each drhd
2434 * allocate root
2435 * initialize and program root entry to not present
2436 * endfor
2437 */
2438 for_each_drhd_unit(drhd) {
2439 /*
2440 * lock not needed as this is only incremented in the single
2441 * threaded kernel __init code path all other access are read
2442 * only
2443 */
2444 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2445 g_num_of_iommus++;
2446 continue;
2447 }
2448 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2449 IOMMU_UNITS_SUPPORTED);
2450 }
2451
2452 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2453 GFP_KERNEL);
2454 if (!g_iommus) {
2455 printk(KERN_ERR "Allocating global iommu array failed\n");
2456 ret = -ENOMEM;
2457 goto error;
2458 }
2459
2460 deferred_flush = kzalloc(g_num_of_iommus *
2461 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2462 if (!deferred_flush) {
2463 ret = -ENOMEM;
2464 goto error;
2465 }
2466
2467 for_each_active_iommu(iommu, drhd) {
2468 g_iommus[iommu->seq_id] = iommu;
2469
2470 ret = iommu_init_domains(iommu);
2471 if (ret)
2472 goto error;
2473
2474 /*
2475 * TBD:
2476 * we could share the same root & context tables
2477 * among all IOMMU's. Need to Split it later.
2478 */
2479 ret = iommu_alloc_root_entry(iommu);
2480 if (ret) {
2481 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2482 goto error;
2483 }
2484 if (!ecap_pass_through(iommu->ecap))
2485 hw_pass_through = 0;
2486 }
2487
2488 /*
2489 * Start from the sane iommu hardware state.
2490 */
2491 for_each_active_iommu(iommu, drhd) {
2492 /*
2493 * If the queued invalidation is already initialized by us
2494 * (for example, while enabling interrupt-remapping) then
2495 * we got the things already rolling from a sane state.
2496 */
2497 if (iommu->qi)
2498 continue;
2499
2500 /*
2501 * Clear any previous faults.
2502 */
2503 dmar_fault(-1, iommu);
2504 /*
2505 * Disable queued invalidation if supported and already enabled
2506 * before OS handover.
2507 */
2508 dmar_disable_qi(iommu);
2509 }
2510
2511 for_each_active_iommu(iommu, drhd) {
2512 if (dmar_enable_qi(iommu)) {
2513 /*
2514 * Queued Invalidate not enabled, use Register Based
2515 * Invalidate
2516 */
2517 iommu->flush.flush_context = __iommu_flush_context;
2518 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2519 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2520 "invalidation\n",
2521 iommu->seq_id,
2522 (unsigned long long)drhd->reg_base_addr);
2523 } else {
2524 iommu->flush.flush_context = qi_flush_context;
2525 iommu->flush.flush_iotlb = qi_flush_iotlb;
2526 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2527 "invalidation\n",
2528 iommu->seq_id,
2529 (unsigned long long)drhd->reg_base_addr);
2530 }
2531 }
2532
2533 if (iommu_pass_through)
2534 iommu_identity_mapping |= IDENTMAP_ALL;
2535
2536 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2537 iommu_identity_mapping |= IDENTMAP_GFX;
2538 #endif
2539
2540 check_tylersburg_isoch();
2541
2542 /*
2543 * If pass through is not set or not enabled, setup context entries for
2544 * identity mappings for rmrr, gfx, and isa and may fall back to static
2545 * identity mapping if iommu_identity_mapping is set.
2546 */
2547 if (iommu_identity_mapping) {
2548 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2549 if (ret) {
2550 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2551 goto error;
2552 }
2553 }
2554 /*
2555 * For each rmrr
2556 * for each dev attached to rmrr
2557 * do
2558 * locate drhd for dev, alloc domain for dev
2559 * allocate free domain
2560 * allocate page table entries for rmrr
2561 * if context not allocated for bus
2562 * allocate and init context
2563 * set present in root table for this bus
2564 * init context with domain, translation etc
2565 * endfor
2566 * endfor
2567 */
2568 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2569 for_each_rmrr_units(rmrr) {
2570 for (i = 0; i < rmrr->devices_cnt; i++) {
2571 pdev = rmrr->devices[i];
2572 /*
2573 * some BIOS lists non-exist devices in DMAR
2574 * table.
2575 */
2576 if (!pdev)
2577 continue;
2578 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2579 if (ret)
2580 printk(KERN_ERR
2581 "IOMMU: mapping reserved region failed\n");
2582 }
2583 }
2584
2585 iommu_prepare_isa();
2586
2587 /*
2588 * for each drhd
2589 * enable fault log
2590 * global invalidate context cache
2591 * global invalidate iotlb
2592 * enable translation
2593 */
2594 for_each_iommu(iommu, drhd) {
2595 if (drhd->ignored) {
2596 /*
2597 * we always have to disable PMRs or DMA may fail on
2598 * this device
2599 */
2600 if (force_on)
2601 iommu_disable_protect_mem_regions(iommu);
2602 continue;
2603 }
2604
2605 iommu_flush_write_buffer(iommu);
2606
2607 ret = dmar_set_interrupt(iommu);
2608 if (ret)
2609 goto error;
2610
2611 iommu_set_root_entry(iommu);
2612
2613 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2614 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2615
2616 ret = iommu_enable_translation(iommu);
2617 if (ret)
2618 goto error;
2619
2620 iommu_disable_protect_mem_regions(iommu);
2621 }
2622
2623 return 0;
2624 error:
2625 for_each_active_iommu(iommu, drhd)
2626 free_dmar_iommu(iommu);
2627 kfree(deferred_flush);
2628 kfree(g_iommus);
2629 return ret;
2630 }
2631
2632 /* This takes a number of _MM_ pages, not VTD pages */
2633 static struct iova *intel_alloc_iova(struct device *dev,
2634 struct dmar_domain *domain,
2635 unsigned long nrpages, uint64_t dma_mask)
2636 {
2637 struct pci_dev *pdev = to_pci_dev(dev);
2638 struct iova *iova = NULL;
2639
2640 /* Restrict dma_mask to the width that the iommu can handle */
2641 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2642
2643 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2644 /*
2645 * First try to allocate an io virtual address in
2646 * DMA_BIT_MASK(32) and if that fails then try allocating
2647 * from higher range
2648 */
2649 iova = alloc_iova(&domain->iovad, nrpages,
2650 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2651 if (iova)
2652 return iova;
2653 }
2654 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2655 if (unlikely(!iova)) {
2656 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2657 nrpages, pci_name(pdev));
2658 return NULL;
2659 }
2660
2661 return iova;
2662 }
2663
2664 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2665 {
2666 struct dmar_domain *domain;
2667 int ret;
2668
2669 domain = get_domain_for_dev(pdev,
2670 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2671 if (!domain) {
2672 printk(KERN_ERR
2673 "Allocating domain for %s failed", pci_name(pdev));
2674 return NULL;
2675 }
2676
2677 /* make sure context mapping is ok */
2678 if (unlikely(!domain_context_mapped(pdev))) {
2679 ret = domain_context_mapping(domain, pdev,
2680 CONTEXT_TT_MULTI_LEVEL);
2681 if (ret) {
2682 printk(KERN_ERR
2683 "Domain context map for %s failed",
2684 pci_name(pdev));
2685 return NULL;
2686 }
2687 }
2688
2689 return domain;
2690 }
2691
2692 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2693 {
2694 struct device_domain_info *info;
2695
2696 /* No lock here, assumes no domain exit in normal case */
2697 info = dev->dev.archdata.iommu;
2698 if (likely(info))
2699 return info->domain;
2700
2701 return __get_valid_domain_for_dev(dev);
2702 }
2703
2704 static int iommu_dummy(struct pci_dev *pdev)
2705 {
2706 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2707 }
2708
2709 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2710 static int iommu_no_mapping(struct device *dev)
2711 {
2712 struct pci_dev *pdev;
2713 int found;
2714
2715 if (unlikely(!dev_is_pci(dev)))
2716 return 1;
2717
2718 pdev = to_pci_dev(dev);
2719 if (iommu_dummy(pdev))
2720 return 1;
2721
2722 if (!iommu_identity_mapping)
2723 return 0;
2724
2725 found = identity_mapping(pdev);
2726 if (found) {
2727 if (iommu_should_identity_map(pdev, 0))
2728 return 1;
2729 else {
2730 /*
2731 * 32 bit DMA is removed from si_domain and fall back
2732 * to non-identity mapping.
2733 */
2734 domain_remove_one_dev_info(si_domain, pdev);
2735 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2736 pci_name(pdev));
2737 return 0;
2738 }
2739 } else {
2740 /*
2741 * In case of a detached 64 bit DMA device from vm, the device
2742 * is put into si_domain for identity mapping.
2743 */
2744 if (iommu_should_identity_map(pdev, 0)) {
2745 int ret;
2746 ret = domain_add_dev_info(si_domain, pdev,
2747 hw_pass_through ?
2748 CONTEXT_TT_PASS_THROUGH :
2749 CONTEXT_TT_MULTI_LEVEL);
2750 if (!ret) {
2751 printk(KERN_INFO "64bit %s uses identity mapping\n",
2752 pci_name(pdev));
2753 return 1;
2754 }
2755 }
2756 }
2757
2758 return 0;
2759 }
2760
2761 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2762 size_t size, int dir, u64 dma_mask)
2763 {
2764 struct pci_dev *pdev = to_pci_dev(hwdev);
2765 struct dmar_domain *domain;
2766 phys_addr_t start_paddr;
2767 struct iova *iova;
2768 int prot = 0;
2769 int ret;
2770 struct intel_iommu *iommu;
2771 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2772
2773 BUG_ON(dir == DMA_NONE);
2774
2775 if (iommu_no_mapping(hwdev))
2776 return paddr;
2777
2778 domain = get_valid_domain_for_dev(pdev);
2779 if (!domain)
2780 return 0;
2781
2782 iommu = domain_get_iommu(domain);
2783 size = aligned_nrpages(paddr, size);
2784
2785 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2786 if (!iova)
2787 goto error;
2788
2789 /*
2790 * Check if DMAR supports zero-length reads on write only
2791 * mappings..
2792 */
2793 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2794 !cap_zlr(iommu->cap))
2795 prot |= DMA_PTE_READ;
2796 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2797 prot |= DMA_PTE_WRITE;
2798 /*
2799 * paddr - (paddr + size) might be partial page, we should map the whole
2800 * page. Note: if two part of one page are separately mapped, we
2801 * might have two guest_addr mapping to the same host paddr, but this
2802 * is not a big problem
2803 */
2804 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2805 mm_to_dma_pfn(paddr_pfn), size, prot);
2806 if (ret)
2807 goto error;
2808
2809 /* it's a non-present to present mapping. Only flush if caching mode */
2810 if (cap_caching_mode(iommu->cap))
2811 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2812 else
2813 iommu_flush_write_buffer(iommu);
2814
2815 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2816 start_paddr += paddr & ~PAGE_MASK;
2817 return start_paddr;
2818
2819 error:
2820 if (iova)
2821 __free_iova(&domain->iovad, iova);
2822 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2823 pci_name(pdev), size, (unsigned long long)paddr, dir);
2824 return 0;
2825 }
2826
2827 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2828 unsigned long offset, size_t size,
2829 enum dma_data_direction dir,
2830 struct dma_attrs *attrs)
2831 {
2832 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2833 dir, to_pci_dev(dev)->dma_mask);
2834 }
2835
2836 static void flush_unmaps(void)
2837 {
2838 int i, j;
2839
2840 timer_on = 0;
2841
2842 /* just flush them all */
2843 for (i = 0; i < g_num_of_iommus; i++) {
2844 struct intel_iommu *iommu = g_iommus[i];
2845 if (!iommu)
2846 continue;
2847
2848 if (!deferred_flush[i].next)
2849 continue;
2850
2851 /* In caching mode, global flushes turn emulation expensive */
2852 if (!cap_caching_mode(iommu->cap))
2853 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2854 DMA_TLB_GLOBAL_FLUSH);
2855 for (j = 0; j < deferred_flush[i].next; j++) {
2856 unsigned long mask;
2857 struct iova *iova = deferred_flush[i].iova[j];
2858 struct dmar_domain *domain = deferred_flush[i].domain[j];
2859
2860 /* On real hardware multiple invalidations are expensive */
2861 if (cap_caching_mode(iommu->cap))
2862 iommu_flush_iotlb_psi(iommu, domain->id,
2863 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2864 else {
2865 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2866 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2867 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2868 }
2869 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2870 }
2871 deferred_flush[i].next = 0;
2872 }
2873
2874 list_size = 0;
2875 }
2876
2877 static void flush_unmaps_timeout(unsigned long data)
2878 {
2879 unsigned long flags;
2880
2881 spin_lock_irqsave(&async_umap_flush_lock, flags);
2882 flush_unmaps();
2883 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2884 }
2885
2886 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2887 {
2888 unsigned long flags;
2889 int next, iommu_id;
2890 struct intel_iommu *iommu;
2891
2892 spin_lock_irqsave(&async_umap_flush_lock, flags);
2893 if (list_size == HIGH_WATER_MARK)
2894 flush_unmaps();
2895
2896 iommu = domain_get_iommu(dom);
2897 iommu_id = iommu->seq_id;
2898
2899 next = deferred_flush[iommu_id].next;
2900 deferred_flush[iommu_id].domain[next] = dom;
2901 deferred_flush[iommu_id].iova[next] = iova;
2902 deferred_flush[iommu_id].next++;
2903
2904 if (!timer_on) {
2905 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2906 timer_on = 1;
2907 }
2908 list_size++;
2909 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2910 }
2911
2912 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2913 size_t size, enum dma_data_direction dir,
2914 struct dma_attrs *attrs)
2915 {
2916 struct pci_dev *pdev = to_pci_dev(dev);
2917 struct dmar_domain *domain;
2918 unsigned long start_pfn, last_pfn;
2919 struct iova *iova;
2920 struct intel_iommu *iommu;
2921
2922 if (iommu_no_mapping(dev))
2923 return;
2924
2925 domain = find_domain(pdev);
2926 BUG_ON(!domain);
2927
2928 iommu = domain_get_iommu(domain);
2929
2930 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2931 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2932 (unsigned long long)dev_addr))
2933 return;
2934
2935 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2936 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2937
2938 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2939 pci_name(pdev), start_pfn, last_pfn);
2940
2941 /* clear the whole page */
2942 dma_pte_clear_range(domain, start_pfn, last_pfn);
2943
2944 /* free page tables */
2945 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2946
2947 if (intel_iommu_strict) {
2948 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2949 last_pfn - start_pfn + 1, 0);
2950 /* free iova */
2951 __free_iova(&domain->iovad, iova);
2952 } else {
2953 add_unmap(domain, iova);
2954 /*
2955 * queue up the release of the unmap to save the 1/6th of the
2956 * cpu used up by the iotlb flush operation...
2957 */
2958 }
2959 }
2960
2961 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2962 dma_addr_t *dma_handle, gfp_t flags,
2963 struct dma_attrs *attrs)
2964 {
2965 void *vaddr;
2966 int order;
2967
2968 size = PAGE_ALIGN(size);
2969 order = get_order(size);
2970
2971 if (!iommu_no_mapping(hwdev))
2972 flags &= ~(GFP_DMA | GFP_DMA32);
2973 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2974 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2975 flags |= GFP_DMA;
2976 else
2977 flags |= GFP_DMA32;
2978 }
2979
2980 vaddr = (void *)__get_free_pages(flags, order);
2981 if (!vaddr)
2982 return NULL;
2983 memset(vaddr, 0, size);
2984
2985 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2986 DMA_BIDIRECTIONAL,
2987 hwdev->coherent_dma_mask);
2988 if (*dma_handle)
2989 return vaddr;
2990 free_pages((unsigned long)vaddr, order);
2991 return NULL;
2992 }
2993
2994 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2995 dma_addr_t dma_handle, struct dma_attrs *attrs)
2996 {
2997 int order;
2998
2999 size = PAGE_ALIGN(size);
3000 order = get_order(size);
3001
3002 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3003 free_pages((unsigned long)vaddr, order);
3004 }
3005
3006 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
3007 int nelems, enum dma_data_direction dir,
3008 struct dma_attrs *attrs)
3009 {
3010 struct pci_dev *pdev = to_pci_dev(hwdev);
3011 struct dmar_domain *domain;
3012 unsigned long start_pfn, last_pfn;
3013 struct iova *iova;
3014 struct intel_iommu *iommu;
3015
3016 if (iommu_no_mapping(hwdev))
3017 return;
3018
3019 domain = find_domain(pdev);
3020 BUG_ON(!domain);
3021
3022 iommu = domain_get_iommu(domain);
3023
3024 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3025 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3026 (unsigned long long)sglist[0].dma_address))
3027 return;
3028
3029 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3030 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3031
3032 /* clear the whole page */
3033 dma_pte_clear_range(domain, start_pfn, last_pfn);
3034
3035 /* free page tables */
3036 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
3037
3038 if (intel_iommu_strict) {
3039 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3040 last_pfn - start_pfn + 1, 0);
3041 /* free iova */
3042 __free_iova(&domain->iovad, iova);
3043 } else {
3044 add_unmap(domain, iova);
3045 /*
3046 * queue up the release of the unmap to save the 1/6th of the
3047 * cpu used up by the iotlb flush operation...
3048 */
3049 }
3050 }
3051
3052 static int intel_nontranslate_map_sg(struct device *hddev,
3053 struct scatterlist *sglist, int nelems, int dir)
3054 {
3055 int i;
3056 struct scatterlist *sg;
3057
3058 for_each_sg(sglist, sg, nelems, i) {
3059 BUG_ON(!sg_page(sg));
3060 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3061 sg->dma_length = sg->length;
3062 }
3063 return nelems;
3064 }
3065
3066 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3067 enum dma_data_direction dir, struct dma_attrs *attrs)
3068 {
3069 int i;
3070 struct pci_dev *pdev = to_pci_dev(hwdev);
3071 struct dmar_domain *domain;
3072 size_t size = 0;
3073 int prot = 0;
3074 struct iova *iova = NULL;
3075 int ret;
3076 struct scatterlist *sg;
3077 unsigned long start_vpfn;
3078 struct intel_iommu *iommu;
3079
3080 BUG_ON(dir == DMA_NONE);
3081 if (iommu_no_mapping(hwdev))
3082 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3083
3084 domain = get_valid_domain_for_dev(pdev);
3085 if (!domain)
3086 return 0;
3087
3088 iommu = domain_get_iommu(domain);
3089
3090 for_each_sg(sglist, sg, nelems, i)
3091 size += aligned_nrpages(sg->offset, sg->length);
3092
3093 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3094 pdev->dma_mask);
3095 if (!iova) {
3096 sglist->dma_length = 0;
3097 return 0;
3098 }
3099
3100 /*
3101 * Check if DMAR supports zero-length reads on write only
3102 * mappings..
3103 */
3104 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3105 !cap_zlr(iommu->cap))
3106 prot |= DMA_PTE_READ;
3107 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3108 prot |= DMA_PTE_WRITE;
3109
3110 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3111
3112 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3113 if (unlikely(ret)) {
3114 /* clear the page */
3115 dma_pte_clear_range(domain, start_vpfn,
3116 start_vpfn + size - 1);
3117 /* free page tables */
3118 dma_pte_free_pagetable(domain, start_vpfn,
3119 start_vpfn + size - 1);
3120 /* free iova */
3121 __free_iova(&domain->iovad, iova);
3122 return 0;
3123 }
3124
3125 /* it's a non-present to present mapping. Only flush if caching mode */
3126 if (cap_caching_mode(iommu->cap))
3127 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3128 else
3129 iommu_flush_write_buffer(iommu);
3130
3131 return nelems;
3132 }
3133
3134 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3135 {
3136 return !dma_addr;
3137 }
3138
3139 struct dma_map_ops intel_dma_ops = {
3140 .alloc = intel_alloc_coherent,
3141 .free = intel_free_coherent,
3142 .map_sg = intel_map_sg,
3143 .unmap_sg = intel_unmap_sg,
3144 .map_page = intel_map_page,
3145 .unmap_page = intel_unmap_page,
3146 .mapping_error = intel_mapping_error,
3147 };
3148
3149 static inline int iommu_domain_cache_init(void)
3150 {
3151 int ret = 0;
3152
3153 iommu_domain_cache = kmem_cache_create("iommu_domain",
3154 sizeof(struct dmar_domain),
3155 0,
3156 SLAB_HWCACHE_ALIGN,
3157
3158 NULL);
3159 if (!iommu_domain_cache) {
3160 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3161 ret = -ENOMEM;
3162 }
3163
3164 return ret;
3165 }
3166
3167 static inline int iommu_devinfo_cache_init(void)
3168 {
3169 int ret = 0;
3170
3171 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3172 sizeof(struct device_domain_info),
3173 0,
3174 SLAB_HWCACHE_ALIGN,
3175 NULL);
3176 if (!iommu_devinfo_cache) {
3177 printk(KERN_ERR "Couldn't create devinfo cache\n");
3178 ret = -ENOMEM;
3179 }
3180
3181 return ret;
3182 }
3183
3184 static inline int iommu_iova_cache_init(void)
3185 {
3186 int ret = 0;
3187
3188 iommu_iova_cache = kmem_cache_create("iommu_iova",
3189 sizeof(struct iova),
3190 0,
3191 SLAB_HWCACHE_ALIGN,
3192 NULL);
3193 if (!iommu_iova_cache) {
3194 printk(KERN_ERR "Couldn't create iova cache\n");
3195 ret = -ENOMEM;
3196 }
3197
3198 return ret;
3199 }
3200
3201 static int __init iommu_init_mempool(void)
3202 {
3203 int ret;
3204 ret = iommu_iova_cache_init();
3205 if (ret)
3206 return ret;
3207
3208 ret = iommu_domain_cache_init();
3209 if (ret)
3210 goto domain_error;
3211
3212 ret = iommu_devinfo_cache_init();
3213 if (!ret)
3214 return ret;
3215
3216 kmem_cache_destroy(iommu_domain_cache);
3217 domain_error:
3218 kmem_cache_destroy(iommu_iova_cache);
3219
3220 return -ENOMEM;
3221 }
3222
3223 static void __init iommu_exit_mempool(void)
3224 {
3225 kmem_cache_destroy(iommu_devinfo_cache);
3226 kmem_cache_destroy(iommu_domain_cache);
3227 kmem_cache_destroy(iommu_iova_cache);
3228
3229 }
3230
3231 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3232 {
3233 struct dmar_drhd_unit *drhd;
3234 u32 vtbar;
3235 int rc;
3236
3237 /* We know that this device on this chipset has its own IOMMU.
3238 * If we find it under a different IOMMU, then the BIOS is lying
3239 * to us. Hope that the IOMMU for this device is actually
3240 * disabled, and it needs no translation...
3241 */
3242 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3243 if (rc) {
3244 /* "can't" happen */
3245 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3246 return;
3247 }
3248 vtbar &= 0xffff0000;
3249
3250 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3251 drhd = dmar_find_matched_drhd_unit(pdev);
3252 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3253 TAINT_FIRMWARE_WORKAROUND,
3254 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3255 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3256 }
3257 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3258
3259 static void __init init_no_remapping_devices(void)
3260 {
3261 struct dmar_drhd_unit *drhd;
3262
3263 for_each_drhd_unit(drhd) {
3264 if (!drhd->include_all) {
3265 int i;
3266 for (i = 0; i < drhd->devices_cnt; i++)
3267 if (drhd->devices[i] != NULL)
3268 break;
3269 /* ignore DMAR unit if no pci devices exist */
3270 if (i == drhd->devices_cnt)
3271 drhd->ignored = 1;
3272 }
3273 }
3274
3275 for_each_active_drhd_unit(drhd) {
3276 int i;
3277 if (drhd->include_all)
3278 continue;
3279
3280 for (i = 0; i < drhd->devices_cnt; i++)
3281 if (drhd->devices[i] &&
3282 !IS_GFX_DEVICE(drhd->devices[i]))
3283 break;
3284
3285 if (i < drhd->devices_cnt)
3286 continue;
3287
3288 /* This IOMMU has *only* gfx devices. Either bypass it or
3289 set the gfx_mapped flag, as appropriate */
3290 if (dmar_map_gfx) {
3291 intel_iommu_gfx_mapped = 1;
3292 } else {
3293 drhd->ignored = 1;
3294 for (i = 0; i < drhd->devices_cnt; i++) {
3295 if (!drhd->devices[i])
3296 continue;
3297 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3298 }
3299 }
3300 }
3301 }
3302
3303 #ifdef CONFIG_SUSPEND
3304 static int init_iommu_hw(void)
3305 {
3306 struct dmar_drhd_unit *drhd;
3307 struct intel_iommu *iommu = NULL;
3308
3309 for_each_active_iommu(iommu, drhd)
3310 if (iommu->qi)
3311 dmar_reenable_qi(iommu);
3312
3313 for_each_iommu(iommu, drhd) {
3314 if (drhd->ignored) {
3315 /*
3316 * we always have to disable PMRs or DMA may fail on
3317 * this device
3318 */
3319 if (force_on)
3320 iommu_disable_protect_mem_regions(iommu);
3321 continue;
3322 }
3323
3324 iommu_flush_write_buffer(iommu);
3325
3326 iommu_set_root_entry(iommu);
3327
3328 iommu->flush.flush_context(iommu, 0, 0, 0,
3329 DMA_CCMD_GLOBAL_INVL);
3330 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3331 DMA_TLB_GLOBAL_FLUSH);
3332 if (iommu_enable_translation(iommu))
3333 return 1;
3334 iommu_disable_protect_mem_regions(iommu);
3335 }
3336
3337 return 0;
3338 }
3339
3340 static void iommu_flush_all(void)
3341 {
3342 struct dmar_drhd_unit *drhd;
3343 struct intel_iommu *iommu;
3344
3345 for_each_active_iommu(iommu, drhd) {
3346 iommu->flush.flush_context(iommu, 0, 0, 0,
3347 DMA_CCMD_GLOBAL_INVL);
3348 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3349 DMA_TLB_GLOBAL_FLUSH);
3350 }
3351 }
3352
3353 static int iommu_suspend(void)
3354 {
3355 struct dmar_drhd_unit *drhd;
3356 struct intel_iommu *iommu = NULL;
3357 unsigned long flag;
3358
3359 for_each_active_iommu(iommu, drhd) {
3360 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3361 GFP_ATOMIC);
3362 if (!iommu->iommu_state)
3363 goto nomem;
3364 }
3365
3366 iommu_flush_all();
3367
3368 for_each_active_iommu(iommu, drhd) {
3369 iommu_disable_translation(iommu);
3370
3371 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3372
3373 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3374 readl(iommu->reg + DMAR_FECTL_REG);
3375 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3376 readl(iommu->reg + DMAR_FEDATA_REG);
3377 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3378 readl(iommu->reg + DMAR_FEADDR_REG);
3379 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3380 readl(iommu->reg + DMAR_FEUADDR_REG);
3381
3382 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3383 }
3384 return 0;
3385
3386 nomem:
3387 for_each_active_iommu(iommu, drhd)
3388 kfree(iommu->iommu_state);
3389
3390 return -ENOMEM;
3391 }
3392
3393 static void iommu_resume(void)
3394 {
3395 struct dmar_drhd_unit *drhd;
3396 struct intel_iommu *iommu = NULL;
3397 unsigned long flag;
3398
3399 if (init_iommu_hw()) {
3400 if (force_on)
3401 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3402 else
3403 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3404 return;
3405 }
3406
3407 for_each_active_iommu(iommu, drhd) {
3408
3409 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3410
3411 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3412 iommu->reg + DMAR_FECTL_REG);
3413 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3414 iommu->reg + DMAR_FEDATA_REG);
3415 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3416 iommu->reg + DMAR_FEADDR_REG);
3417 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3418 iommu->reg + DMAR_FEUADDR_REG);
3419
3420 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3421 }
3422
3423 for_each_active_iommu(iommu, drhd)
3424 kfree(iommu->iommu_state);
3425 }
3426
3427 static struct syscore_ops iommu_syscore_ops = {
3428 .resume = iommu_resume,
3429 .suspend = iommu_suspend,
3430 };
3431
3432 static void __init init_iommu_pm_ops(void)
3433 {
3434 register_syscore_ops(&iommu_syscore_ops);
3435 }
3436
3437 #else
3438 static inline void init_iommu_pm_ops(void) {}
3439 #endif /* CONFIG_PM */
3440
3441 LIST_HEAD(dmar_rmrr_units);
3442
3443 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3444 {
3445 list_add(&rmrr->list, &dmar_rmrr_units);
3446 }
3447
3448
3449 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3450 {
3451 struct acpi_dmar_reserved_memory *rmrr;
3452 struct dmar_rmrr_unit *rmrru;
3453
3454 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3455 if (!rmrru)
3456 return -ENOMEM;
3457
3458 rmrru->hdr = header;
3459 rmrr = (struct acpi_dmar_reserved_memory *)header;
3460 rmrru->base_address = rmrr->base_address;
3461 rmrru->end_address = rmrr->end_address;
3462
3463 dmar_register_rmrr_unit(rmrru);
3464 return 0;
3465 }
3466
3467 static int __init
3468 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3469 {
3470 struct acpi_dmar_reserved_memory *rmrr;
3471
3472 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3473 return dmar_parse_dev_scope((void *)(rmrr + 1),
3474 ((void *)rmrr) + rmrr->header.length,
3475 &rmrru->devices_cnt, &rmrru->devices,
3476 rmrr->segment);
3477 }
3478
3479 static LIST_HEAD(dmar_atsr_units);
3480
3481 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3482 {
3483 struct acpi_dmar_atsr *atsr;
3484 struct dmar_atsr_unit *atsru;
3485
3486 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3487 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3488 if (!atsru)
3489 return -ENOMEM;
3490
3491 atsru->hdr = hdr;
3492 atsru->include_all = atsr->flags & 0x1;
3493
3494 list_add(&atsru->list, &dmar_atsr_units);
3495
3496 return 0;
3497 }
3498
3499 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3500 {
3501 struct acpi_dmar_atsr *atsr;
3502
3503 if (atsru->include_all)
3504 return 0;
3505
3506 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3507 return dmar_parse_dev_scope((void *)(atsr + 1),
3508 (void *)atsr + atsr->header.length,
3509 &atsru->devices_cnt, &atsru->devices,
3510 atsr->segment);
3511 }
3512
3513 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3514 {
3515 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3516 kfree(atsru);
3517 }
3518
3519 static void intel_iommu_free_dmars(void)
3520 {
3521 struct dmar_rmrr_unit *rmrru, *rmrr_n;
3522 struct dmar_atsr_unit *atsru, *atsr_n;
3523
3524 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3525 list_del(&rmrru->list);
3526 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3527 kfree(rmrru);
3528 }
3529
3530 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3531 list_del(&atsru->list);
3532 intel_iommu_free_atsr(atsru);
3533 }
3534 }
3535
3536 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3537 {
3538 int i;
3539 struct pci_bus *bus;
3540 struct acpi_dmar_atsr *atsr;
3541 struct dmar_atsr_unit *atsru;
3542
3543 dev = pci_physfn(dev);
3544
3545 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3546 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3547 if (atsr->segment == pci_domain_nr(dev->bus))
3548 goto found;
3549 }
3550
3551 return 0;
3552
3553 found:
3554 for (bus = dev->bus; bus; bus = bus->parent) {
3555 struct pci_dev *bridge = bus->self;
3556
3557 if (!bridge || !pci_is_pcie(bridge) ||
3558 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3559 return 0;
3560
3561 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) {
3562 for (i = 0; i < atsru->devices_cnt; i++)
3563 if (atsru->devices[i] == bridge)
3564 return 1;
3565 break;
3566 }
3567 }
3568
3569 if (atsru->include_all)
3570 return 1;
3571
3572 return 0;
3573 }
3574
3575 int __init dmar_parse_rmrr_atsr_dev(void)
3576 {
3577 struct dmar_rmrr_unit *rmrr;
3578 struct dmar_atsr_unit *atsr;
3579 int ret = 0;
3580
3581 list_for_each_entry(rmrr, &dmar_rmrr_units, list) {
3582 ret = rmrr_parse_dev(rmrr);
3583 if (ret)
3584 return ret;
3585 }
3586
3587 list_for_each_entry(atsr, &dmar_atsr_units, list) {
3588 ret = atsr_parse_dev(atsr);
3589 if (ret)
3590 return ret;
3591 }
3592
3593 return ret;
3594 }
3595
3596 /*
3597 * Here we only respond to action of unbound device from driver.
3598 *
3599 * Added device is not attached to its DMAR domain here yet. That will happen
3600 * when mapping the device to iova.
3601 */
3602 static int device_notifier(struct notifier_block *nb,
3603 unsigned long action, void *data)
3604 {
3605 struct device *dev = data;
3606 struct pci_dev *pdev = to_pci_dev(dev);
3607 struct dmar_domain *domain;
3608
3609 if (iommu_no_mapping(dev))
3610 return 0;
3611
3612 domain = find_domain(pdev);
3613 if (!domain)
3614 return 0;
3615
3616 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3617 domain_remove_one_dev_info(domain, pdev);
3618
3619 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3620 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3621 list_empty(&domain->devices))
3622 domain_exit(domain);
3623 }
3624
3625 return 0;
3626 }
3627
3628 static struct notifier_block device_nb = {
3629 .notifier_call = device_notifier,
3630 };
3631
3632 int __init intel_iommu_init(void)
3633 {
3634 int ret = -ENODEV;
3635 struct dmar_drhd_unit *drhd;
3636 struct intel_iommu *iommu;
3637
3638 /* VT-d is required for a TXT/tboot launch, so enforce that */
3639 force_on = tboot_force_iommu();
3640
3641 if (dmar_table_init()) {
3642 if (force_on)
3643 panic("tboot: Failed to initialize DMAR table\n");
3644 goto out_free_dmar;
3645 }
3646
3647 /*
3648 * Disable translation if already enabled prior to OS handover.
3649 */
3650 for_each_active_iommu(iommu, drhd)
3651 if (iommu->gcmd & DMA_GCMD_TE)
3652 iommu_disable_translation(iommu);
3653
3654 if (dmar_dev_scope_init() < 0) {
3655 if (force_on)
3656 panic("tboot: Failed to initialize DMAR device scope\n");
3657 goto out_free_dmar;
3658 }
3659
3660 if (no_iommu || dmar_disabled)
3661 goto out_free_dmar;
3662
3663 if (iommu_init_mempool()) {
3664 if (force_on)
3665 panic("tboot: Failed to initialize iommu memory\n");
3666 goto out_free_dmar;
3667 }
3668
3669 if (list_empty(&dmar_rmrr_units))
3670 printk(KERN_INFO "DMAR: No RMRR found\n");
3671
3672 if (list_empty(&dmar_atsr_units))
3673 printk(KERN_INFO "DMAR: No ATSR found\n");
3674
3675 if (dmar_init_reserved_ranges()) {
3676 if (force_on)
3677 panic("tboot: Failed to reserve iommu ranges\n");
3678 goto out_free_mempool;
3679 }
3680
3681 init_no_remapping_devices();
3682
3683 ret = init_dmars();
3684 if (ret) {
3685 if (force_on)
3686 panic("tboot: Failed to initialize DMARs\n");
3687 printk(KERN_ERR "IOMMU: dmar init failed\n");
3688 goto out_free_reserved_range;
3689 }
3690 printk(KERN_INFO
3691 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3692
3693 init_timer(&unmap_timer);
3694 #ifdef CONFIG_SWIOTLB
3695 swiotlb = 0;
3696 #endif
3697 dma_ops = &intel_dma_ops;
3698
3699 init_iommu_pm_ops();
3700
3701 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3702
3703 bus_register_notifier(&pci_bus_type, &device_nb);
3704
3705 intel_iommu_enabled = 1;
3706
3707 return 0;
3708
3709 out_free_reserved_range:
3710 put_iova_domain(&reserved_iova_list);
3711 out_free_mempool:
3712 iommu_exit_mempool();
3713 out_free_dmar:
3714 intel_iommu_free_dmars();
3715 return ret;
3716 }
3717
3718 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3719 struct pci_dev *pdev)
3720 {
3721 struct pci_dev *tmp, *parent;
3722
3723 if (!iommu || !pdev)
3724 return;
3725
3726 /* dependent device detach */
3727 tmp = pci_find_upstream_pcie_bridge(pdev);
3728 /* Secondary interface's bus number and devfn 0 */
3729 if (tmp) {
3730 parent = pdev->bus->self;
3731 while (parent != tmp) {
3732 iommu_detach_dev(iommu, parent->bus->number,
3733 parent->devfn);
3734 parent = parent->bus->self;
3735 }
3736 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3737 iommu_detach_dev(iommu,
3738 tmp->subordinate->number, 0);
3739 else /* this is a legacy PCI bridge */
3740 iommu_detach_dev(iommu, tmp->bus->number,
3741 tmp->devfn);
3742 }
3743 }
3744
3745 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3746 struct pci_dev *pdev)
3747 {
3748 struct device_domain_info *info, *tmp;
3749 struct intel_iommu *iommu;
3750 unsigned long flags;
3751 int found = 0;
3752
3753 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3754 pdev->devfn);
3755 if (!iommu)
3756 return;
3757
3758 spin_lock_irqsave(&device_domain_lock, flags);
3759 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
3760 if (info->segment == pci_domain_nr(pdev->bus) &&
3761 info->bus == pdev->bus->number &&
3762 info->devfn == pdev->devfn) {
3763 unlink_domain_info(info);
3764 spin_unlock_irqrestore(&device_domain_lock, flags);
3765
3766 iommu_disable_dev_iotlb(info);
3767 iommu_detach_dev(iommu, info->bus, info->devfn);
3768 iommu_detach_dependent_devices(iommu, pdev);
3769 free_devinfo_mem(info);
3770
3771 spin_lock_irqsave(&device_domain_lock, flags);
3772
3773 if (found)
3774 break;
3775 else
3776 continue;
3777 }
3778
3779 /* if there is no other devices under the same iommu
3780 * owned by this domain, clear this iommu in iommu_bmp
3781 * update iommu count and coherency
3782 */
3783 if (iommu == device_to_iommu(info->segment, info->bus,
3784 info->devfn))
3785 found = 1;
3786 }
3787
3788 spin_unlock_irqrestore(&device_domain_lock, flags);
3789
3790 if (found == 0) {
3791 unsigned long tmp_flags;
3792 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3793 clear_bit(iommu->seq_id, domain->iommu_bmp);
3794 domain->iommu_count--;
3795 domain_update_iommu_cap(domain);
3796 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3797
3798 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3799 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3800 spin_lock_irqsave(&iommu->lock, tmp_flags);
3801 clear_bit(domain->id, iommu->domain_ids);
3802 iommu->domains[domain->id] = NULL;
3803 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3804 }
3805 }
3806 }
3807
3808 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3809 {
3810 struct device_domain_info *info;
3811 struct intel_iommu *iommu;
3812 unsigned long flags1, flags2;
3813
3814 spin_lock_irqsave(&device_domain_lock, flags1);
3815 while (!list_empty(&domain->devices)) {
3816 info = list_entry(domain->devices.next,
3817 struct device_domain_info, link);
3818 unlink_domain_info(info);
3819 spin_unlock_irqrestore(&device_domain_lock, flags1);
3820
3821 iommu_disable_dev_iotlb(info);
3822 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3823 iommu_detach_dev(iommu, info->bus, info->devfn);
3824 iommu_detach_dependent_devices(iommu, info->dev);
3825
3826 /* clear this iommu in iommu_bmp, update iommu count
3827 * and capabilities
3828 */
3829 spin_lock_irqsave(&domain->iommu_lock, flags2);
3830 if (test_and_clear_bit(iommu->seq_id,
3831 domain->iommu_bmp)) {
3832 domain->iommu_count--;
3833 domain_update_iommu_cap(domain);
3834 }
3835 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3836
3837 free_devinfo_mem(info);
3838 spin_lock_irqsave(&device_domain_lock, flags1);
3839 }
3840 spin_unlock_irqrestore(&device_domain_lock, flags1);
3841 }
3842
3843 /* domain id for virtual machine, it won't be set in context */
3844 static atomic_t vm_domid = ATOMIC_INIT(0);
3845
3846 static struct dmar_domain *iommu_alloc_vm_domain(void)
3847 {
3848 struct dmar_domain *domain;
3849
3850 domain = alloc_domain_mem();
3851 if (!domain)
3852 return NULL;
3853
3854 domain->id = atomic_inc_return(&vm_domid);
3855 domain->nid = -1;
3856 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
3857 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3858
3859 return domain;
3860 }
3861
3862 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3863 {
3864 int adjust_width;
3865
3866 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3867 spin_lock_init(&domain->iommu_lock);
3868
3869 domain_reserve_special_ranges(domain);
3870
3871 /* calculate AGAW */
3872 domain->gaw = guest_width;
3873 adjust_width = guestwidth_to_adjustwidth(guest_width);
3874 domain->agaw = width_to_agaw(adjust_width);
3875
3876 INIT_LIST_HEAD(&domain->devices);
3877
3878 domain->iommu_count = 0;
3879 domain->iommu_coherency = 0;
3880 domain->iommu_snooping = 0;
3881 domain->iommu_superpage = 0;
3882 domain->max_addr = 0;
3883 domain->nid = -1;
3884
3885 /* always allocate the top pgd */
3886 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3887 if (!domain->pgd)
3888 return -ENOMEM;
3889 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3890 return 0;
3891 }
3892
3893 static void iommu_free_vm_domain(struct dmar_domain *domain)
3894 {
3895 unsigned long flags;
3896 struct dmar_drhd_unit *drhd;
3897 struct intel_iommu *iommu;
3898 unsigned long i;
3899 unsigned long ndomains;
3900
3901 for_each_active_iommu(iommu, drhd) {
3902 ndomains = cap_ndoms(iommu->cap);
3903 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3904 if (iommu->domains[i] == domain) {
3905 spin_lock_irqsave(&iommu->lock, flags);
3906 clear_bit(i, iommu->domain_ids);
3907 iommu->domains[i] = NULL;
3908 spin_unlock_irqrestore(&iommu->lock, flags);
3909 break;
3910 }
3911 }
3912 }
3913 }
3914
3915 static void vm_domain_exit(struct dmar_domain *domain)
3916 {
3917 /* Domain 0 is reserved, so dont process it */
3918 if (!domain)
3919 return;
3920
3921 vm_domain_remove_all_dev_info(domain);
3922 /* destroy iovas */
3923 put_iova_domain(&domain->iovad);
3924
3925 /* clear ptes */
3926 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3927
3928 /* free page tables */
3929 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3930
3931 iommu_free_vm_domain(domain);
3932 free_domain_mem(domain);
3933 }
3934
3935 static int intel_iommu_domain_init(struct iommu_domain *domain)
3936 {
3937 struct dmar_domain *dmar_domain;
3938
3939 dmar_domain = iommu_alloc_vm_domain();
3940 if (!dmar_domain) {
3941 printk(KERN_ERR
3942 "intel_iommu_domain_init: dmar_domain == NULL\n");
3943 return -ENOMEM;
3944 }
3945 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3946 printk(KERN_ERR
3947 "intel_iommu_domain_init() failed\n");
3948 vm_domain_exit(dmar_domain);
3949 return -ENOMEM;
3950 }
3951 domain_update_iommu_cap(dmar_domain);
3952 domain->priv = dmar_domain;
3953
3954 domain->geometry.aperture_start = 0;
3955 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
3956 domain->geometry.force_aperture = true;
3957
3958 return 0;
3959 }
3960
3961 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3962 {
3963 struct dmar_domain *dmar_domain = domain->priv;
3964
3965 domain->priv = NULL;
3966 vm_domain_exit(dmar_domain);
3967 }
3968
3969 static int intel_iommu_attach_device(struct iommu_domain *domain,
3970 struct device *dev)
3971 {
3972 struct dmar_domain *dmar_domain = domain->priv;
3973 struct pci_dev *pdev = to_pci_dev(dev);
3974 struct intel_iommu *iommu;
3975 int addr_width;
3976
3977 /* normally pdev is not mapped */
3978 if (unlikely(domain_context_mapped(pdev))) {
3979 struct dmar_domain *old_domain;
3980
3981 old_domain = find_domain(pdev);
3982 if (old_domain) {
3983 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3984 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3985 domain_remove_one_dev_info(old_domain, pdev);
3986 else
3987 domain_remove_dev_info(old_domain);
3988 }
3989 }
3990
3991 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3992 pdev->devfn);
3993 if (!iommu)
3994 return -ENODEV;
3995
3996 /* check if this iommu agaw is sufficient for max mapped address */
3997 addr_width = agaw_to_width(iommu->agaw);
3998 if (addr_width > cap_mgaw(iommu->cap))
3999 addr_width = cap_mgaw(iommu->cap);
4000
4001 if (dmar_domain->max_addr > (1LL << addr_width)) {
4002 printk(KERN_ERR "%s: iommu width (%d) is not "
4003 "sufficient for the mapped address (%llx)\n",
4004 __func__, addr_width, dmar_domain->max_addr);
4005 return -EFAULT;
4006 }
4007 dmar_domain->gaw = addr_width;
4008
4009 /*
4010 * Knock out extra levels of page tables if necessary
4011 */
4012 while (iommu->agaw < dmar_domain->agaw) {
4013 struct dma_pte *pte;
4014
4015 pte = dmar_domain->pgd;
4016 if (dma_pte_present(pte)) {
4017 dmar_domain->pgd = (struct dma_pte *)
4018 phys_to_virt(dma_pte_addr(pte));
4019 free_pgtable_page(pte);
4020 }
4021 dmar_domain->agaw--;
4022 }
4023
4024 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4025 }
4026
4027 static void intel_iommu_detach_device(struct iommu_domain *domain,
4028 struct device *dev)
4029 {
4030 struct dmar_domain *dmar_domain = domain->priv;
4031 struct pci_dev *pdev = to_pci_dev(dev);
4032
4033 domain_remove_one_dev_info(dmar_domain, pdev);
4034 }
4035
4036 static int intel_iommu_map(struct iommu_domain *domain,
4037 unsigned long iova, phys_addr_t hpa,
4038 size_t size, int iommu_prot)
4039 {
4040 struct dmar_domain *dmar_domain = domain->priv;
4041 u64 max_addr;
4042 int prot = 0;
4043 int ret;
4044
4045 if (iommu_prot & IOMMU_READ)
4046 prot |= DMA_PTE_READ;
4047 if (iommu_prot & IOMMU_WRITE)
4048 prot |= DMA_PTE_WRITE;
4049 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4050 prot |= DMA_PTE_SNP;
4051
4052 max_addr = iova + size;
4053 if (dmar_domain->max_addr < max_addr) {
4054 u64 end;
4055
4056 /* check if minimum agaw is sufficient for mapped address */
4057 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4058 if (end < max_addr) {
4059 printk(KERN_ERR "%s: iommu width (%d) is not "
4060 "sufficient for the mapped address (%llx)\n",
4061 __func__, dmar_domain->gaw, max_addr);
4062 return -EFAULT;
4063 }
4064 dmar_domain->max_addr = max_addr;
4065 }
4066 /* Round up size to next multiple of PAGE_SIZE, if it and
4067 the low bits of hpa would take us onto the next page */
4068 size = aligned_nrpages(hpa, size);
4069 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4070 hpa >> VTD_PAGE_SHIFT, size, prot);
4071 return ret;
4072 }
4073
4074 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4075 unsigned long iova, size_t size)
4076 {
4077 struct dmar_domain *dmar_domain = domain->priv;
4078 int order;
4079
4080 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4081 (iova + size - 1) >> VTD_PAGE_SHIFT);
4082
4083 if (dmar_domain->max_addr == iova + size)
4084 dmar_domain->max_addr = iova;
4085
4086 return PAGE_SIZE << order;
4087 }
4088
4089 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4090 dma_addr_t iova)
4091 {
4092 struct dmar_domain *dmar_domain = domain->priv;
4093 struct dma_pte *pte;
4094 u64 phys = 0;
4095
4096 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4097 if (pte)
4098 phys = dma_pte_addr(pte);
4099
4100 return phys;
4101 }
4102
4103 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4104 unsigned long cap)
4105 {
4106 struct dmar_domain *dmar_domain = domain->priv;
4107
4108 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4109 return dmar_domain->iommu_snooping;
4110 if (cap == IOMMU_CAP_INTR_REMAP)
4111 return irq_remapping_enabled;
4112
4113 return 0;
4114 }
4115
4116 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4117
4118 static int intel_iommu_add_device(struct device *dev)
4119 {
4120 struct pci_dev *pdev = to_pci_dev(dev);
4121 struct pci_dev *bridge, *dma_pdev = NULL;
4122 struct iommu_group *group;
4123 int ret;
4124
4125 if (!device_to_iommu(pci_domain_nr(pdev->bus),
4126 pdev->bus->number, pdev->devfn))
4127 return -ENODEV;
4128
4129 bridge = pci_find_upstream_pcie_bridge(pdev);
4130 if (bridge) {
4131 if (pci_is_pcie(bridge))
4132 dma_pdev = pci_get_domain_bus_and_slot(
4133 pci_domain_nr(pdev->bus),
4134 bridge->subordinate->number, 0);
4135 if (!dma_pdev)
4136 dma_pdev = pci_dev_get(bridge);
4137 } else
4138 dma_pdev = pci_dev_get(pdev);
4139
4140 /* Account for quirked devices */
4141 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4142
4143 /*
4144 * If it's a multifunction device that does not support our
4145 * required ACS flags, add to the same group as lowest numbered
4146 * function that also does not suport the required ACS flags.
4147 */
4148 if (dma_pdev->multifunction &&
4149 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
4150 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
4151
4152 for (i = 0; i < 8; i++) {
4153 struct pci_dev *tmp;
4154
4155 tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
4156 if (!tmp)
4157 continue;
4158
4159 if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
4160 swap_pci_ref(&dma_pdev, tmp);
4161 break;
4162 }
4163 pci_dev_put(tmp);
4164 }
4165 }
4166
4167 /*
4168 * Devices on the root bus go through the iommu. If that's not us,
4169 * find the next upstream device and test ACS up to the root bus.
4170 * Finding the next device may require skipping virtual buses.
4171 */
4172 while (!pci_is_root_bus(dma_pdev->bus)) {
4173 struct pci_bus *bus = dma_pdev->bus;
4174
4175 while (!bus->self) {
4176 if (!pci_is_root_bus(bus))
4177 bus = bus->parent;
4178 else
4179 goto root_bus;
4180 }
4181
4182 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4183 break;
4184
4185 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4186 }
4187
4188 root_bus:
4189 group = iommu_group_get(&dma_pdev->dev);
4190 pci_dev_put(dma_pdev);
4191 if (!group) {
4192 group = iommu_group_alloc();
4193 if (IS_ERR(group))
4194 return PTR_ERR(group);
4195 }
4196
4197 ret = iommu_group_add_device(group, dev);
4198
4199 iommu_group_put(group);
4200 return ret;
4201 }
4202
4203 static void intel_iommu_remove_device(struct device *dev)
4204 {
4205 iommu_group_remove_device(dev);
4206 }
4207
4208 static struct iommu_ops intel_iommu_ops = {
4209 .domain_init = intel_iommu_domain_init,
4210 .domain_destroy = intel_iommu_domain_destroy,
4211 .attach_dev = intel_iommu_attach_device,
4212 .detach_dev = intel_iommu_detach_device,
4213 .map = intel_iommu_map,
4214 .unmap = intel_iommu_unmap,
4215 .iova_to_phys = intel_iommu_iova_to_phys,
4216 .domain_has_cap = intel_iommu_domain_has_cap,
4217 .add_device = intel_iommu_add_device,
4218 .remove_device = intel_iommu_remove_device,
4219 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4220 };
4221
4222 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4223 {
4224 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4225 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4226 dmar_map_gfx = 0;
4227 }
4228
4229 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4230 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4231 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4232 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4233 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4234 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4235 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4236
4237 static void quirk_iommu_rwbf(struct pci_dev *dev)
4238 {
4239 /*
4240 * Mobile 4 Series Chipset neglects to set RWBF capability,
4241 * but needs it. Same seems to hold for the desktop versions.
4242 */
4243 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4244 rwbf_quirk = 1;
4245 }
4246
4247 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4248 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4249 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4250 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4251 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4252 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4253 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4254
4255 #define GGC 0x52
4256 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4257 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4258 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4259 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4260 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4261 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4262 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4263 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4264
4265 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4266 {
4267 unsigned short ggc;
4268
4269 if (pci_read_config_word(dev, GGC, &ggc))
4270 return;
4271
4272 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4273 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4274 dmar_map_gfx = 0;
4275 } else if (dmar_map_gfx) {
4276 /* we have to ensure the gfx device is idle before we flush */
4277 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4278 intel_iommu_strict = 1;
4279 }
4280 }
4281 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4282 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4283 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4284 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4285
4286 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4287 ISOCH DMAR unit for the Azalia sound device, but not give it any
4288 TLB entries, which causes it to deadlock. Check for that. We do
4289 this in a function called from init_dmars(), instead of in a PCI
4290 quirk, because we don't want to print the obnoxious "BIOS broken"
4291 message if VT-d is actually disabled.
4292 */
4293 static void __init check_tylersburg_isoch(void)
4294 {
4295 struct pci_dev *pdev;
4296 uint32_t vtisochctrl;
4297
4298 /* If there's no Azalia in the system anyway, forget it. */
4299 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4300 if (!pdev)
4301 return;
4302 pci_dev_put(pdev);
4303
4304 /* System Management Registers. Might be hidden, in which case
4305 we can't do the sanity check. But that's OK, because the
4306 known-broken BIOSes _don't_ actually hide it, so far. */
4307 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4308 if (!pdev)
4309 return;
4310
4311 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4312 pci_dev_put(pdev);
4313 return;
4314 }
4315
4316 pci_dev_put(pdev);
4317
4318 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4319 if (vtisochctrl & 1)
4320 return;
4321
4322 /* Drop all bits other than the number of TLB entries */
4323 vtisochctrl &= 0x1c;
4324
4325 /* If we have the recommended number of TLB entries (16), fine. */
4326 if (vtisochctrl == 0x10)
4327 return;
4328
4329 /* Zero TLB entries? You get to ride the short bus to school. */
4330 if (!vtisochctrl) {
4331 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4332 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4333 dmi_get_system_info(DMI_BIOS_VENDOR),
4334 dmi_get_system_info(DMI_BIOS_VERSION),
4335 dmi_get_system_info(DMI_PRODUCT_VERSION));
4336 iommu_identity_mapping |= IDENTMAP_AZALIA;
4337 return;
4338 }
4339
4340 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4341 vtisochctrl);
4342 }